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Effective field theories in the largeN limit
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Various effective field theories in four dimensions are shown to have exact nontrivial solutions in the limit
as the numbeN of fields of some type becomes large. These include extended versions ofNheQugss-
Neveu model, the nonlinear @) o model, and the CcP ! model. Although these models are not renormal-
izable in the usual sense, the infinite number of coupling types allows a complete cancellation of infinities.
These models provide qualitative predictions of the form of scattering amplitudes for arbitrary momenta, but
because of the infinite number of free parameters, it is possible to derive quantitative predictions only in the
limit of small momenta. For small momenta the lafddimit provides only a modest simplification, removing
at most a finite number of diagrams to each order in momenta, except near phase transitions, where it reduces
the infinite number of diagrams that contribute for low momenta to a finite nurf®@556-282197)05016-9

PACS numbsdrs): 11.15.Pg

[. INTRODUCTION term in Eq.(1) by adding an expression that is quadratic in
an auxiliary fieldo, and that vanishes whemn is integrated

There are a number of instructive models that can be exeut. This results in the replacement of EQG) with the
actly solved in the limit where the numbér of fields be- equivalent action
comes very largél]. Well-known examples include the lin-
ear and nonlineas- models[2], the Gross-Neveu modgs], _ 2 TR
and the CP~! model[4]. In four dimensions none of these Lyo]=] [¢//]+(N/4g)j dx[o+ (29/N) o]
models except the linear model is conventionally renor-
mahzable3 o) the_|r largbk I|m|'F has usually been stL_Jdle_d :f dzx[_lﬂr?’”%lﬁﬁU¢r¢r+(N/4Q)UZ]-
either by introducing an ultraviolet cutoff, or by working in
two dimensions, where the simpler versions of these models 2)
are renormalizable.

There is an alternative approach to infinities. In effectiveSince the fermion field appears quadratically in E2), it
field theories that are not renormalizable in the usuamay be integrated out, yielding an effective action dor
“power-counting” sense, infinities are canceled by renor-
maIizatio_n of coupli_ng constants provided we include in t_he F[a]=(N/4g)f d2xo2—iNTr In (y*d,—a). (3
Lagrangian every interaction allowed by symmetry prin-
ciples. Even though this means that the Lagrangian contain_F . . . :
an infinite number of interaction terms, it is often possible to he whole action foro is proportional toN, so the contri-

derive useful results in such theories by expanding in powePution of graphs witll. o loops to the effective action for
of energy rather than coupling constafss. o is suppressed by a factdi* ~-. Because this method uses

In this paper | will show how nontrivial finite results can th€ SPecial properties of integrals over Gaussians, it is often
be obtained by passing to the limit of largé in various said that this method is limited to models in which the inter-
four-dimensional effective field theories that are not renor-2€tion is a product of just two bilinear current, as in Eq.

malizable in the conventional sense. In this task we will en- D).

counter problems both of combinatorics and of renormaliza- 11€ré are also special problems with infinities when an
tion auxiliary field is introduced in order to impose some con-

The combinatoric problems here can be illustrated by reStraint on theN-component field, as in the nonlineamodel

calling the Gross-Neveu model in its original form. The ac-N four dimensions. In the original form of this model the
tion is Lagrangian is

o o EZ—%fzﬁ’uWré"uWr, 4
| =f d?x[ — i, y*3 b, — (gIN) 2], Q)
Lv] L= ey 0ute = (0N ()" wheref is anN-independent constant with the dimensions of
mass, and the scalar fielas form an ON) N vector, con-

where ¢, is a set ofN fermion fields in two spacetime di- strained by

mensions, forming the defining representation of aN)J(
symmetry, andy is a constant that is held fixed bls— . As o, =N. (5)
an aid to counting factors of M one cancels the quartic
The counting of powers o becomes much easier if one
replaces this constraint with a Lagrange multiplier term, so
*Electronic address: weinberg@physics.utexas.edu that the Lagrangian becomes
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£=—%fZ&Mﬂ'r&“Wr—%fz)\(Trrﬂ'r—N), (6)
with 77, now unconstrained. Integrating out the auxiliary
field A (x) yields the Lagrangiaf¥), with the 7r, constrained
by Eqg. (5). If instead we integrate over the, we find an
effective action for the auxiliary field:

iN Nf2
F[)\]=?Tr In (O—\)+ TJ d*xA. (7
Because both terms are proportionaNpthe Green'’s func-
tions for A(x) are given by using the effective actig®) in
the tree approximation. As well known, this theory is non-
renormalizable. We can see this in Ed@). The field A (x)
here has dimensionality- 2, so the trace term may be writ-
ten (aside from an inconsequential constant teas

i Tr In(D—)\)=Jd4x[Zl)\+Iz)\2]+Tf[)\], (8)

where theZ, are divergent constants, aifigl \ ] is finite. The
infinite termZ; can be canceled by an infinity in the param-
eterf?, leaving a finite remainderN 3/ d*x\ in I'(\), with
f§=f2+ 27,. But the termZ, cannot be canceled in this
way. We could, of course, add a term proportionahfoto
the Lagrangiari6), with a coefficient whose infinite part can-
cels the infinite constar, in Eg. (8), but then we would
lose the constraint), and this would be the linear model
rather than the nonlineasr model. If we view this as an
effective field theory then the Lagrangié is just the first
term in an infinite series involving higher powers of the cur-
rentsd, ¢,d,¢, and higher derivatives, but it is not immedi-
ately obvious how these higher terms will allow us to cance
the infinity in Z,.

We run into a similar problem when an auxiliary field is
introduced to impose a condition of gauge invariance. Th
classic example here is the &P' model in four dimensions.
This model contains a set & complex scalar fieldsl, ,
subject to the constraint that

uf (x)u(x)=N.

9

In order that theau,(x) at eachx should form a CP~! mani-
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Equivalently, we can replaca,(x) in Eqg. (11) with an in-
dependent auxiliary field,(x), so that the action is

| = _fzf d*x(o*u,—iA*u,)(9,u,—iAu.). (14

SinceA ,(x) enters quadratically in Eq14), the path inte-
gral overA,(x) is done by giving it a value at which the
action (14) is stationary with respect t8,,(x), which turns
out to giveA ,(x)=a,(X). To enforce the constrairi®) we
can add a Lagrange multiplier termf2fd*x\(uu,—N),
with \(x) another auxiliary field, andi,(x) now uncon-
strained. Sincel,(x) enters quadratically in the action it can
be integrated out, yielding an effective action for the auxil-
iary fields

I'[AN]=iNTr In[DMD“—)\]+Nf2f d*x\, (15

where hereD ,=d,—iA,. Because each term is propor-
tional to N, the contribution of graphs with loops to the
Green’s functions fol and a, is suppressed by a factor
N~L. Equation(15) displays the problem with renormaliz-
ability [7] in four dimensions: Dimensional analysis and
gauge invariance show that the infinite part of the trace is a
linear  combination  of  fd*\, fd*x\?,  and
Jd*(d,A,—3,A,)? with divergent coefficients, and al-
though the infinite part of the coefficient ¢id*x\ can be
canceled by an infinite term if?, there is nothing here that
can cancel the infinite coefficients offd*x\? or
Jd*(d,A,—3,A,)? Treating this as an effective field
theory, we would certainly have to add terms to the action
involving fd*x(d,a,—d,a,)? wherea, is defined by Eq.
(12), but this would not cancel the infinity ill[\,A] pro-

Jportional to Jd*x(a,A,—3,A,)%. We cannot add a term

proportional tofd*x(d,A,—d,A,)? without makingA ,(x)
an independent dynamical field, thus removing the most in-
teresting aspect of the theory, the appearance of long-range
forces in a theory without an elementary gauge field.

Finally, there is a problem that always confronts us in
dealing with effective field theories: how to use a theory with
an infinite number of free parameters to derive physical pre-

fold, we must require the action to be invariant underdictions. As we shall see, the lar§etimit can give qualita-

“gauge” transformations

ou(X) =ie(x)u(x), (10
with e(x) an arbitrary real infinitesimal function. In the
original CPY~! model, this is accomplished by taking the
action as

|=—f2f d*x(d*u, —ia*u,) (g, u,—ia,u.), (1D

wheref is anN-independent constant with the dimensions of

mass, and,(x) may be defined as the bilinear

)Ur],

which under the gauge transformatiti0) changes by

a,=—(i12N)[ufd,u,—(d,u] (12)

da,=

M&e.

M

13

tive information about théorm of S-matrix elements, but in
effective field theories it is not possible actually to calculate
the functions that appear &matrix elements except in the
low-energy limit. In the extended Gross-Neveu model con-
sidered in Sec. Il it turns out that there are usually only a
finite number of graphs that contribute to each order in en-
ergy, whatever the value &, so for low energy the large-

N limit leads only to modest simplifications. As shown in
Secs. Il and 1V, the same is true in the extended nonlinear
o model and the extended &P! model, with one interest-
ing exception: Near the phase transitions at which the broken
symmetries of these models are restored, there is an infinite
number of graphs of the same order in energy, which can be
summed only in the larght limit.

The original motivation of this work was to decide
whether the appearance of a spin-one “photon” in the two-
dimensional CP~! model occurs also in four-dimensional
versions of this model, when the problem of infinities is
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handled by treating the model as an effective quantum fieldo the action [ ¢,o] given by Eq.(17) is equivalent to the

theory. Section IV shows that the answer to this question i®riginal action(16).

yes, but as discussed in Sec. V, this result is less surprising In the limit of largeN the Fourier integral18) may be

than might be supposed. done by setting,(x) at the stationary “point”77(x) of the
integrand, at which

II. THE EXTENDED GROSS-NEVEU MODEL
SF[ 7]

To illustrate the use of the large-limit in effective field 57,(X)
theories, let us consider the general class of models with a set
of N massless fermion fields id spacetime dimensions, so thatG[o,N] approaches aN-independent functional, the
transforming according to the defining representation of g egendre transform of[ 7]:
global U(N) symmetry. Any U{)-invariant action will be a
functional of a set of bilinear currenjs(x) that are invari- . q ”
ant under UN), such as the currents Glo,N]=G[a]=F[7 ]_f d®o (X)77(x).  (22)
Jo=¢cths j1,= 9,4, etc. We will consider a class of _ _
extended four-dimensional Gross-Neveu models, with an acthat is, forN—co, the action may be taken as
tion of the fornt

=0,(X), 21

=70

B L= [ Q=00+ 0,001 001+ NG o]
T01=— [ @By o, e NFLINL, ) 23

. . . - We could just as well have taken the acti(@8) as our
whereF[ 7] is SOrT‘eN"r.‘depe”deF“ functional. The orlglnal starting poijnt, withG[ o] an arbitraryN-independent func-
Grgss-Neveu a_ct|_or(11) IS a §peC|aI case of EA16), with  ona1- the only difference would be that then the theory
F[j/N] quadratic in the particular currefg= ¢ . ASWe  would be equivalent to one with an action of the original
shall see, theN dependence given the second term in theform (16), but with F[ 7] independent oN only in the limit
action(16) makes the theory nontrivial but solullg], as in  N_ 0.
the original Gross-Neveu model. _ _ Now, we want to calculate the quantum effective action
The action(16) may be replaced with an equivalent action [ 4,0, which by definition in the tree approximation gives
the same result as the sum of all loop and tree graphs calcu-
[.o]= | d*[ = v™d, i+ (X)j (X)]+NG[o,N], lated using the actiof23). According to the usual prescrip-
[.] f =y 0uth+ o 0] ()] [o:N] tion, we must replace, (x) ando (x) in Eq.(23) with sums
7 U (X)+ ¢/ (x) and o,(x)+o,(x) and integrate over the
guantum perturbationg; (x) ando (x), including only one-
particle-irreducible graphs. A standard power-counting argu-
ment gives, to leading order inN/

where expiNG[o,N]} is the functional Fourier transform
with respect toN7 of exp{iNF[ 7]}

exp[iNG[ o,N]} - '
Moot [ 05—y a0+ 0,001, (0]

Ef l_[X dr/(x)exp{—iNf d4Xo'/(X)7'/(X)+iNF[T]}- +NT[o]+NG[ o], (24
(18) whereT[ o] is anN-independent functional af, such as the
functional Tr InG*d,— o) in Eq. (3), defined in general by

Of course, expNF[ 7]} is then(up to an unimportant con- . )
BNFI 7]} (up P the integral of a Gaussian

stant factor the Fourier transform of exiNG[o,N]}:

eXp{iNF[T]}OCJ I1 d(r/(x)exp[iNj d*Xa /() 7(X) eXp{iNT[UJ}EJ L@ dyy ()

+iNG[cr,N]]. (19 +U/(X)j’/(><)]]- (25)

[To obtain Eg.(24), note first that purely fermionic loops
yield a termNT[ o] in the effective action, which just makes
an additive contribution ttNG[ o]. The o, propagators are
then given by the inverse of the coefficient of the quadratic
: o ; term in NT[o]+NG[ o], and are hence proportional to
J l_[x do (oexplit [y oTr=explil Y1}, 0 1/N, while the purely bosonic verticggncluding those de-
rived from T[o]) make contributions proportional tol.
Thus a graph withv,, purely bosonic verticesy,, fermion-
The free-field action could itself be regarded as a linear term irfermion-boson verticed,, internal fermion linegexcluding
NF[j/N], but it is convenient to treat it separately. those in purely fermionic loopsandl , internal boson lines

exp[ i f dX[ — o] y*a, 0,

The integral over ther,(x) in the functional integral of
explil[ o]} thus yields
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makes a contribution of ordeédVe"'s. But 2V,=2l,+F, This works out in a particularly simple way if the currents
whereF is the number of external fermion lingise., factors j,(x) have dimensionality(in powers of mass, with
of the classicaly field), and the numbek of loops(with all ~A#=c=1) less than the spacetime dimensionality, so that the
purely fermionic loops counted as bosonic verticés o ,(x) have positive dimensionality. In this case the infinite
L=1,+1,-V,—V,+1, so the number of powers & is  partT.[c] of T[o] is the integral of gpolynomialin the
V,—1,=1-L—F/2. The leading graphs are, therefore, o,(x) and their derivatives, with infinite constant coeffi-
those with no loops, but the only one-particle-irreduciblecients. For instance, consider an extended Gross-Neveu
graphs with no loops are those consisting of just a singlenodel in four dimensions, with an action of the form
vertex, which yield the resul{24).]
For instance, the amplitude for fermion-fermion scattering — .
is given to leading order in ¥ by the tree graphs in which IL]= _f d4x‘/’r7’ﬂ‘9#¢r+NF[JO/N]’ (29
a singleco line is exchanged between the external fermions,
with the vertices given by the terffid*xo (x)j (x) in Eq.  whereF[j,/N] is an arbitrary even local functional of the
(24), and theo propagator given by the inverse of the coef- single current:
ficient of the quadratic term iNG[ o]+ NT[ o]. Unlike the
case of the original Gross-Neveu model, the terms of higher jo=%/fr . (30
order in 1N arise not only from loop graphs that correct the
effective action(24), but also from higher-order terms in We takeF[j/N] even so that the action will be invariant
G[o,N]. under a discrete chiral symmetry transformation
Now, let us take up the problem of renormalization in the 4, — ys4, , which, if unbroken, keeps the fermions massless.
largeN limit. Although the one-loop functionall[ o] is Here, o(x) has dimensionality+1, and chiral symmetry
highly nonlocal, its infinite part is “perturbatively local,” tells us that the functiondl[ o] defined by Eq(25) is even
that is, it is the integral of a seridén general infinite of in o, so this functional takes the form
products of fields and their derivatives with divergent coef-
ficients, of which only a finite number of terms contribute to
the tree amplitude for any given process to any finite orderin ~ TLo]= j d*X[Zo+T10°+ ToOo+ Iz0* ]+ T o],
momentum. In order to cancel these infinities, it is necessary (32)
that G[ o] be a general perturbatively local functional, sub-
ject to no constraints other than symmetry properties thajvhere theZ, are infinite constants, an@ is a finite func-
also constraif[ o]. But any perturbatively locaG[ o] can  tional, which for constant- takes the well-known forni9]
be obtained as the Legendre transform of some perturba-
tively local F[ 7], provided only that 1
Tilol==——
82G[ o] 327

so,(oon(y) 20

f d*xa?lng?.

DetM#O, M/X'myE
The functionalF[ 7] may be expanded in a series of even

[To see this, it is only necessary to note that the functionalloCal operators of increasing dimensionality

G[ o] is the Legendre transform of a functiorig] 7] given
by the inverse Legendre transform Gf o ]: F[T]:J d*[Ag+ A 72+ Ayr 7+ Agr?

F[r]:G[af]Jrf A0 (X)7,(X), 27 FAHE T, (32

in which case Eqs(21) and(22) give
with ¢” the stationary “point” of the expression on the

right-hand side: 1 Az
G[O’]:fdélx AO—E(Tz-F—ZO'DO"F 40'4
5G[ o] ~ 1 16A%
30,(%) o = 7/(X). (29) A, A2
4_A%_4_Ai cd0o+---]. (33

In terms of Feynman graphs, this just says fhjat] is given

a sum of tree Feynman graphs calculated from the actio
Glo]+fd%e,(x)7,(x), for which the propagator is
M;,},my. Therefore F[ 7] is perturbatively local ifG[ o] is,
and if DetM+#0.] Furthermore, the condition that Det
#0 can always be satjsfied by adding a finite quadratic termAOZCO_IO, Aj=—1[C,—T, ] A= Com 1o -,
to G[ o], and subtracting the same term frofho]. Apart 4[C1—14]
from symmetries, the only constraint ¢ff 7] is that it be

perturbatively local, so it is always possible to choose an Ca—Ts

F[ 7] that gives whateve6[ o] is needed to cancel the in- Ag=————|

finities in T[o]. 16C,— 17,1

Pn order to cancel infinities, we must take the bare param-
eters as
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C, [C,—T,]2 with the N dependence o6[ o] left unspecified. Take all
A= 5~ 3" . (34  incoming and outgoing momenta of the order of some small
4[Ci—1,]° 4[Ci—1I4] momentumQ, and suppose that infinities are canceled by

renormalizing at momenta also of ord®r Fermion propa-

gators go a® ", while o propagators go as constaitéy

quadratic terms irG[ o] involving derivatives being treated
as interactionsand each loop introduces four factors @f

G[0]+T[U]=J d*x[Co+Cy0?+Cyo0o+Czo* so an amplitude with , internal fermion lines and. loops
goes ax)’, where

where theC, are the finite renormalized coupling parameters
that appear in the final result

+Cyoldddo+ -]+ T a]. (35
It is important but not surprising that the infinite number of v=4L-I “’+Ei diVi, (39
unrenormalized constants, can be chosen to give finite
results forl'[ o], despite the fact that the Gross-Neveu modelwhereV; is the number of purely bosonic interactions of type
is not conventionally renormalizable in four dimensions.i, andd; is the number of derivatives in such an interaction.
What is somewhat surprising is that this is possible with arThis may be rewritten by using the familiar formulas
interaction given by a power series in the single current
jo= ¢ ¢, and its derivatives, without needing to include ad-

ditional currents, such af, ,= #,d,4, . Although it is not
necessary to include additional currents in order to cancel 21+ Egzz Vini+V,, (47
infinities, in the spirit of effective field theory we really :
should include all UN)-invariant currents in the action. This
complicates the cancellation of infinities through renormal-
ization, but as we have shown earlier, it does not make it
impossible. L=1,+1,=2 Vi=V,+1, (42)
What good is a theory like this, that has an infinite num- '
ber of arbitrary parameters? For an action of the f¢29), wherel , is the number of internat lines, E, andE,, are the
the effective actior(24) takes the form numbers of external fermion and lines,V,, is the number
of fermion-fermione vertices, andn; is the number ofo
r[(/,,g]:_J d4XE,yM(9M¢r+j d*xa i, i, fields in the purely bosonic interaction of type Equation
(39 then may be put in the form

21, +E,=2V,, (40)

+NG[o]+NT[o], (36 E
¢
. . . =2L+ 2, A\V;+2— ——-E_ +2, 43
with G[ o]+ T[ o] given by Eq.(35). To calculate scattering v Z. o 2 o (43
amplitudes we must use this as the action in the tree approxi-
mation. For instance, the invariant amplitude for a fermion-where
fermion scattering proce¥s+B— C+ D takes the form A=ni+di—2. (a4

M(A+B—C+D)=3, ; &« (UcUa) (UpUg)A(t)
6

Now, all o interactions have eithen;=4 or n;=2 and
(U_DUA)(U_CUD)A(u)a d;=2 (the term_proportional_ tof o?d*x ?n G[ o] being

37) treated as the kinematic action for tlefield), so for all

purely bosonic interactions;=2. A scattering amplitude for

wheret andu are the Mandelstam variables — (ppa—pc)2 @ fixed processi.e., E, andE, fixed) is, therefore, domi-
andu=— (pA_ pD)Z, and A(t) is the o propagator_ This nated fOI’Q—>O by tree graphS with any number of fermion-
particular form of the scattering amplitude is a consequencéermiono vertices but no loops and no pueeinteractions.
of the assumption that the action has the f¢2), with only ~ These graphs are a subset of those we encountered in the
the one currenj,, and it is valid in the largaN limit for ~ limit of large N, so the largeN limit would introduce no
arbitrary values of the fermion momenta. further simplification here.

Unfortunately, to go further and actually calculate the The largeN limit becomes relevant in the next order in
propagaton (s) without knowing the infinite number of free Q% which according to Eqs(43) and (44), is given by
parameters ifF[ ] or G[ ], it is necessary to take the limit graphs with any number of fermion-fermienvertices and
of small momenta. But in this limit, little is gained by also €ither one loop or with no loops and one purenteraction
letting N become large. with A;=2. The graphs with a single interaction from

To compare the consequences of the lalgand low G[o] or a single purely fermionic loop reproduce what we
momentum approximations, let us consider an amplitude cawould find by using the largét effective action(36) to this
culated using the actiof29) in the equivalent form order ian. But here there is also a class of graphs that does

not appear in the largi-limit: the graphs constructed out of
— — only fermion-fermione vertices and containing a single

I, o]= _f d4X‘/’r7“‘9M‘/’r+f d*e ;i +NGL], loop, which is not purely fermionic.(For instance, in

(38)  fermion-fermion scattering these are the graphs in which a

-9

"A'p“Tefc



2308 STEVEN WEINBERG 56

pair of o lines are exchanged between the fermipishe  with 77 defined by

largeN limit is, therefore, useful here, but not very useful,

because even without it there are only a finite number of oF[ 7]
graphs to each order i@2. This is just a consequence of the Srx) |,
fact that this is a theory where all interactions are nonrenor- T
malizable. In the next section we will see an example where p¢ this point, it is not so obvious how infinite counter-

the largeN limit is much more important, because there is aniorms in the functionaG[ o] can be used to cancel the ul-
infinite number of graphs to each order in small momentay,4yiolet divergence proportional thd*x\2 that is encoun-

=—o(x). (51)

which cannot be summed except in the limit of lafde tered when we introduce a Lagrange multiplefx) and
integrate over ther,. Yet we know that this is possible,
lll. THE NONLINEAR o MODEL: INTEGRATING because the cancellation of infinities is obvious in an ex-
IN AN ORDER PARAMETER tended linearc model, in which the action is an arbitrary

Auxiliary fields are sometimes introduced to enforce Con_perturbatively local functional of an_unconstrainlﬁd/ec_tor
straints on the other fields, as well as to help in counting'©d ¢r. and from such a model it is always possible to
factors of 1N. The classic example is the nonlinear Oconstructanonlmear model by integrating out the massive
(N) & model, which in its usual form has Lagrangiéd). order parameter represented by theNgcalary ¢, ¢,. This

Here. we will consider a class of extended nonlineanod-  SU99ests that we should show the cancellation of infinities in
els v;/ith Lagrangians of the form the extended nonlinearr model by using the ingredients

appearing in Eq(48) to construct something like a linear

2 model.
I[7]=— ?f d*xd, m " +NF2F[j/IN], (45 For this purpose, let us define new fields
wherer, is a set ofN scalar fields, satisfying the constraint br=fVltom. (52
e =N; (46) Using the constraint46), the curren{47) may be written as
j(x) is the ON)-invariant scalar current with the minimum ] 5 b - 53
. . . = I — g g.
number of derivatives: | 221+ 0) “ 0T g1t )2 H

F—§ .
J=20ym “7 Also, the constraint now reads
f2 is an arbitrary positive constant; afid 7] is a functional
that, apart from being perturbatively local ahdindepen-
dent, can be chosen as we like. TNedependence in Eq.
(45) has been chosen so that this model will be soluble bu
nontrivial in the limitN—oco.

As in the case of the extended Gross-Neveu model, wi
shall introduce an auxiliary field-(x), and replace Eq45)
with the equivalent action |[¢,a,)\]:NfZG’[a]—f d*x{3\[ &, b, —NFf2(1+0)]

¢ =NF*(1+0) (54

imd will again be imposed by introducing a Lagrange multi-
plier A(x). The action(48) is thereby replaced with the
gquivalent action

I[Tr,a]=Nf2G[a,N]—f2f d*x(1+0)j, (48 + 20,00 i}, (55)

where

where exgiNf ?G[o,N]} is the functional Fourier transform
with respect tof N+ of exp{iNf 2F[ 7]}: 1 9,000
G'[c]=G[o]+ §f d*x li-i—a’

(56)

exp[iNsz[o,N]}Ef 11 dr(x)exp[iNfzf d*xa(x) 7(X)
x Now, it is A(x) rather thano(x) that interacts with theN

vector of scalar fields, so thg, scattering amplitude may be
+iNf2F[7-]]. (49 calculated in terms of the effective action farnx) and

&.(X), which is obtained by integrating out(x). The part of
the action involvingo(x) is proportional toN, and does not
involve the ¢,(x), so we can integrate out(x) to leading
order in 1N by settingo(x) equal to the value™(x) where
Eq. (55) is stationary with respect to(x):

It is easy to see that we get back to E45) when we inte-
grate outo(x), but it will be convenient instead to use the
action in the form(48).

In the limit of largeN the functionalG[ o-,N] approaches
an N-independent functional given by the Legendre trans-

form of F[ 7], oGl o]

5ot |~ B (57)

G[U'T]_’G[U]:J’ d*a 77+ F[ 7], 50 This gives an action for,(x) and\ (X):
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[ ]= NH[)\]—J X206+ b ], va!ue have a coefficie_nt matrix g.iven in momentum space by
mr ro 2Ry —5D(k), whereD(k) is the matrix
(58)
whereH[\] is another Legendre transform Dis(k)=K?85, Dy(k) = NA(K?),
Di(K)=Dy (k) = VNu,. (66)

Here, A(k?) is an N-independent, one-loop amplitude de-
rived from the part of'[ A ] quadratic in\, which is easily
calculated to be

HIA]=f2G'[oM]+ %fZJ’ d*x\(1+ o). (59

The same reasoning as in the previous sectwith A and
7, replacingo and ¢,) shows that to leading order inN/
the quantum effective action, which in tree approximation 22 o
gives the complete scattering amplitude, is here AK?) = In(k*/ M) + E d, (k)" (67)
2m? Am1 " '
= — Ayri “ 1

TL¢A=TTA] fd X20ubed" bt 2N ], (60 with d,, another set of model-dependent finite constants, and

M is a constant chosen so that the constant tégnm the

where sum is absent. The scalar propagaigk) =D *(k), hence,
TIN]=NH[A]+ 2iNTr In(C—0). (61) naselements

Following the same argument as in the previous section, by A= —| 6,o— UrUs

choosingF[ 7] we can makeé5'[ o] andH[\] any perturba- rs K2\ " p2-K2A(KY) )’

tively local functionals we like, so we can adjud{\] to

cancel the infinite terms in the one-loop trace TiIR{\) K2

proportional tofd*x\ and fd*x\?. For A spacetime inde- RN T —

pendent, this gives N[v?~k*A(k?)]

NAZIn(A/M?) v

V= N coA, (62) A (K)=Ay (k)= r (68)

WN[v?—K*AK?)]’
where thec,, are model-dependeniti-independent finite con- where v2=v,v,. The pole inA,. at k?=0 clearly arises

stants;M is a constant that can be chosen, for instance, sy the Goldstone bosons of ®J/O(N—1). This pole oc-
thatc,=1; andV[A] is the “effective potential,” defined so ;s only in the propagators of the componentsdofin

that for a spacetime-independent directions perpendicular to, . There may be other particles

__ associated with poles at model-dependent nonzero masses
TA] VaV(M), 63 arising from the vanishing of the denominators
with V, the spacetime volume. vZ—k?A(K?) in the propagators of the fields ¢, and\, but

To identify the possible phases of this model, we mustVithout special assumptions abddf\ | we can say nothing
examine the possible spacetime-independent vacuum expePout them, except that they do not mix with the Goldstone
tation values of the fieldg, and\, at which the effective bosons. The invariant amplitude for Goldstone boson-

action (60) is stationary. These phases are of two differentGoldstone boson scattering is given by the\ element of
types. the propagator, as

A. Broken symmetry phase M(ap,.ba—a’p’,b’q’)

In this phase the vacuum expectation valuex (%) van- 1
ishes, whileg,(x) has a vacuum expectatiofNv,, given N
by the solution of the equation

5ab5a,brs 5aar 6bbrt
v2+SA(—s) vZ+tA(—t)

éabr 5arbu
1

= 32Nvv,. (64) v2+UA(—U)
A=0

ST[A]

V()
SN(X) B

2N

, (69

ANX)=0
where a, b, a’, b’ run over the Goldstone directions,
from 1 to N—1 (with v, taken in theN direction, and
s, t, u are the usual Mandelstam Vvariables:
s=—(p+0q)? t=—(p—p')? andu=—(p—q’)>

VU, =—2Cy. (65) Even with the functiomA(s) unknown, this specific form

of the scattering amplitude is a nontrivial consequence of the

To see the particle content of the theory in this phase, weaction (45) in the limit of large N. But to go further and
note that the terms in the effective actioB0) of second calculate the actual value of the scattering amplitude we need
order in the displacement of the fields from their equilibriumto restrict ourselves to low energies.

From Egs.(62) and (64) we see the system will be in this
phase ifc;<<0, and that in this case, is N independent and
given by
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In the extreme low-energy limit, Eq69) reduces to the model independent, as we have done here, than by evaluating
usual low-energy Goldstone boson scattering amplifd®  the model-independent leading log terms for gendralnd
then passing to the limit of largd, but it is still true that to
M(ap,bgq—a’p’,b'q’) each order in energy there are only a finite number of dia-
grams, whether or not we invoke the lariyelimit.

4
Hg[éabéa’b’s"' 5aar ébbrt'f' 5ab’ 5arbu], (70)

ko

B. Unbroken symmetry phase

provided we identify the Goldstone boson decay amplitude In this phase the vacuum expectauon'valueﬁpqx) van-
F. (equal to~184 MeV for pions as ishes, whilex (x) has a vacuum expectation valhg, given

by the solution of the equation

In this low-energy limit, nothing is gained by also takihg ON(X) )= 2N '
large.

The largeN limit does produce some simplification in the pare the ON) symmetry is unbroken, and in the lare-
terms of higher order in energy. According to E(/), (69),  |imit we have a degenerate multiplet of scalars with squared

and(71), the term in the Goldstone boson scattering amp"‘mass)\o, so the system will be in this phase only if the

tude of fourth order in momenta is stationary point\, of V(\) is positive The S-matrix ele-
ments for these degenerate scalars are given in the limit of

M@(ap,bg—a’p’,b'q’)= —MLéa;wszln(—s/Mz) IarggN by u§ing the effective actiof60) in th.e tree ap'proxi-'
2m°F2 mation; for instance, the Feynman scattering amplitude is
* crossedterms,  (72) M(rp,sa—r'p’,s'q") =[ 55815/ A(S) + 8 S5z A(D)
which may be compared with the exact formula for the terms + 8,58, A(U)], (75)

in the amplitude of fourth order in momefta

whereA is the\ propagator, of order N.

Since \q is generically of the same order as whatever
characteristic squared mass scale appears in the functional
I'[\], there is no way to use the model to make useful quan-

1 5 5 ) titative predict.ions about masses qnd scatterir!g amplitudes in
_E(U —s°+3t9)In(—1) this phase without making special assumptions about the
constants appearing H[ A ]. From the largeN limit we can
only infer conclusions such as E¢75) about the general

Sandarny| N-3
aba’b’: F4 {_ 2772 S |n(—S)

w

- (t2—s?+3u?)In(—u)—cs? form of scattering amplitudes.
1272
C. Phase transition
A ($2 2
¢'(t°+u%) |+ crossed terms, (73 As we have seen, in general, without knowing all the

constantg,, in the potentiaM(\), we can say nothing about

wherec and ¢’ are unknown constants. We see that thethe masses in the unbroken symmetry phase except that they
effect of taking the largé¥ limit here is just to eliminate a are ON) degenerate, and without knowing all the constants
few of the terms in Eq(73). d, in A(k?®) we can say nothing about the masses in the

Inspection of Eqs(67) and (69) shows that not only the broken symmetry phase except for the existence of a mass-
terms in the scattering amplitude of second and fourth ordeless multiplet of Goldstone bosons. We can do better in the
in a generic momenturk, but all the “leading log” terms of ~ case where the constants are tuned so that the system is near
order k2™ 1(Ink)" for n=0, are uniquely determined by the transition between the two phases. _
the first, model-independent term in E7), with no depen- In the unbroken symmetry phase the system is near the
dence on the Coefﬁcienwn or the mode'-dependent func- phase transition |f\0, although nonzero, IS small. For small
tional H[\]. These are just the model-independent consed. Ed.(62) becomes
guences of unitarity and the broken K)( symmetry alone,
specialized to the case of larQye It is far easier to calculate NAZIn(\/M?)

) i 4 V(N)—» ———————+C4A\. (76)

the leading logarithms by using a laremodel and then 6412
passing to the low-energy limit where the results become

(Recall thatM has been chosen to make vanish) Condi-

tion (74) then becomes
2This agrees with the result of Ref5] for the physical case

N=4. The term of formé,,8., s’In(—9) is proportional toN—3
rather tharN— 1 because it receives contributions from graphs that Ci=

Noln(el?\y/M?)
do not have index loops as well as from those that do. 32m? '

(77
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This has small positive solutions fag as long a4 is small L 4

and positive On the other hand, in the broken symmetry _Ef d*x\ ¢ by ;

phase the system is near the phase transitien i small,

which according to Eq(65 requires thatc; be small and  and an infinite number of nonrenormalizalftérrelevant’)
negative Thus there is a second-order phase transition beterms, including terms of second order in derivatives\of
tween these two phases whep=0, regardless of the values that act as corrections to the momentum-independent zeroth-
of the otherc,,. order \ propagator[The subscript B orc;z and c,g indi-

Near this phase transition in the broken symmetry phasegates that these are bare couplings, chosen to give finite val-
the largeN approximation allows us to sum amplitudes to all yes to thec; andc, in Eq. (62). To leading order in M
orders in the ratio of momenta to the small vacuum expectathere is no renormalization of the coefficients of
tion valuev, provided the momenta are small compared withfd“-xgﬂg{)r(yﬂd,r andfd*x\ ¢, ¢, ; these coefficients are fixed
all the other mass scales characteristicHjfA ]. Equation  to be —1/2 by a choice of normalization of and ¢, .] The
(68) shows that in this case the Goldstone boson scatteringresence of a superrenormalizable term prevents an expan-
amplitude has poles a&=—m? t=-m? andu=-m?  sjon in powers of momenta alone, but near the phase transi-

with m given in terms ofv by tion with c; small, we can expand any scattering amplitude
in powers of the overall scale of momenta agd;. The

m?In(—m?/ M?) leading term in this expansion is given by Feynman diagrams
vi=—-mA(-m) - ———=, (79 9 P 9 y ey 9

involving only the renormalizable and superrenormalizable
interactions listed above.
indicating the presence of an unstable light No3{1)- The presence of the renormalizable interaction
singlet particle with complex mass. This is not unex- [d*x\ ¢, ¢, means that there is an infinite number of multi-
pected; continuity suggests that tNe- 1 Goldstone bosons loop graphs of leading order in momenta and{@y. Here,
should be joined near the phase transition by an additionahe largeN limit offers the huge simplification, of reducing
scalar whose mass must vanish at the phase transition, ihe complete quantum effective action to the simple form
order to allow a smooth transition to the unbroken symmetry60), only now with H[\] containing only terms linear and
phase, where th&l degenerate scalars become massless &uadratic in\:
the phase transition. The massgiven by Eq.(78) is com-
plex because this scalar can decay into Goldstone bosons. 4t N

There are other possibilities: near the phase transition the Il ]= _f d'%[20,br0" brt 2N by ]
unbroken phase could have a degenerate multiplet of light
scalars belonging to any representation oNQ¢hat contains _ aon 4oy 2
the (N—1)-vector representation of G 1), not necessar- NCle d NCZBJ dx
ily the defining representation. The Goldstone bosons of the
broken symmetry phase would then be joined at the phase
transition with those massless scalars that are needed to fill Using Eq.(79) in the tree approximation gives the terms

i i QY i - . . . . . .
out this representation when NY is restored. Our transfor in scattering amplitudes of leading order ifN1znd in small

mation of the theory has emphasized the possibility that near . .
the phase transition the light degenerate multiplet of the un[nomenta andVc,. For instance, in the broken symmetry

broken phase forms aN-vector, but of course we do not phase th'e functioA(k'Z) appeafing in Eqe(66)—~(69) is here
know that thec, parameter encountered in this transformedSlmply given by the first term in Eq67)

:heor_y.|s small. To explore other possible types of phase (K2 M?)
ransition, we would have to transform the theory in other Ak?)= ———~
ways, and then assume that the parameter corresponding to 3272

c, in those transformed theories is small.

The smallness of; opens up a much more powerful role For v—0 there is just one solution of the equation
for the largeN approximation. The expectation val(k) is  v?=k?A(k?) with k— 0 [the only case where E¢80) can
then small or zero, and the propagatordofjoes ak 2 for  be trusted This solution has R&*<0, and corresponds to
a four-momentunk which though small is larger thaf\).  an unstable scalar particle that can decay into pairs of Gold-
On the other hand, the term in the action of second order istone bosons.

\ has a momentum-independent term which is not small near

the phase transition, so thepropagator must be regarded as |y, THE EXTENDED CP N~! MODEL: INTEGRATING

of zeroth order in momenta. We can count powers of mo- IN A GAUGE FIELD

mentum and/ok/c; in any diagram by dimensional analysis,

with the fields¢, and\ taken as having dimensions one and [N addition to helping us to count factors of\land en-
two (|n powers of momentum respective|y_ fOfCing constraints on the fields, aUXiIiary fields are some-

With this understanding, the actidf8) contains one su- times introduced in order to enforce a condition of gauge

perrenormalizablé relevant”) termc, g d*x\; three renor-  invariance. The leading example of this sort is the"CP
malizable(“*marginal” ) terms model[4] which in its original form has an action given by

Egs.(11) and(12). Here, we shall consider a class of exten-
B O sions of the CP~! model in which nontrivial finite results
CZBJ SR Zf d™x, ¢rd" b may be obtained in the limit of larghl in four spacetime

3272

+ 2iINTrin(O—\). (79

(80)
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dimensions. As we shall see, just as in its original two-B(x). Since the terms in Eq87) that depend onv,,(x) or

dimensional version, this model has the remarkable propertg(x) are simply proportional ttd and do not depend on the

that a long-range Coulomb force arises even though no el , in the limit of largeN we can set these fields equal to the

ementary gauge field is introduced into the action. values at which Eq.(87) is stationary with respect to
The extended CF* models to be considered here con- a,(x) and B(x), giving

tain a set ofN complex scalar fieldsi, , subject to the con-

straint that | =~ Nf2 f d*[(1+0)b+p#a,]+Nf2G[p,o], (889)

ul(x)u,(x)=N. (81) . .
whereG is the Legendre transform &+ [d*xa ,a”,
The action is invariant under “gauge” transformations

— 4
U, (X) =i e(X)u,(X), (82) Glp,o]= F[aﬁﬂf d"xa,a*
with e(x) an arbitrary real infinitesimal function. For a 4
soluble model which yields nontrivial finite results, it turns + | dx(p*a,top)
out to be sufficient to take the action in the form

; (89

staty

with the subscript “staty” meaning that we set,(x) and

I[u]=Nf2f d*x(—b+a,a*) +Nf2F[a,b], (83 B(X) _qual to values satisfying conditions that make the
# quantity in square brackets stationary:

where oF

=—2a,(X)=pu(X), =—o(x). (90)

SoF

a,=—(i/2N)[ufa,u,~ (3,uhu,], (84) Sart(x) SB(x)

The Legendre transform of a general perturbatively local
functional is just another general perturbatively local func-
tional, so we can regarG[p,o] as arbitrary, except for a
gauge invariance condition. Using E@O) and the invari-
ance ofF[a,b] under the transformatiof86), we easily see
that

b=(1/N)(d,u)é"u,, (85)

andF[a,b] is an arbitraryN-independent Lorentz-invariant
perturbatively local functional, invariant under the transfor-
mation induced by the gauge transformati82):

ob(x)=2a*(x)d,e(x), da,(x)=d,e(xX). (86)
2a

L OFLaB] 5F[a,/3]>
oB Sa

oG[p,0]
op

. . . . . . 0=f d4X¢9M6
The first term in Eq(83) is a rewritten version of the action

(11), (12) of the original CP'~! model; this term could have

been included ilNF[a,b], but it is convenient to display the = f d*xd e
kinematic part of the action explicitly. In principle we should a
include all SUN)-invariant bilinear currents in addition to
a, andb, but the effects of other currents are suppressed
small momenta, and the addition of an arbitrary functional of 1 "

a, andb is enough to allow the cancellation of infinities. G'[p,0]=G[p,o]+ Zf d4x1”T (92
Note thata#(x) is now given by Eq(84), and isnottaken as 7

an independent field, because we will need to include termg 4+ is invariant under the transformations

in F[a,b] involving 4,a,—4d,a,, and we are trying to see

"

-2(1+0)

—p“). (91)

"

A{ follows that we can define a new functional

how a Maxwell field can arise without its being put in from 8p,=—2(1+0)d,e, So=0. (93
the beginning. The photon will appear here in quite a differ-
ent way. This suggests that we should define a gauge field

For the sake of variety, we will take a different approach
to counting powers of N here, which gives the same result A =— Pu (94)
as the functional Fourier transform used in the previous sec- m 2(1+o0)’

tions. We introduce apair of new auxiliary fields ] ) .
a,(X), pu(x) and B(x), o(x) for each of the bilinears which according to Eq(93) has the gauge transformation
a,(x) andb(x) appearing in the action, writing E¢83) in ~ Property
the equivalent form

OA,=d €. (95
| = Nfzf d*X[—b+a,a*+o(B—b) In the original version of the C¥* model,F=0, and then
Eqg. (90) shows thatp,=—2a,=—2a, ando=0, so Eq.
+pﬂ(aﬂ_aﬂ)]+Nf2F[a”g]_ (87) (94) givesA,=a, . But in the general case with+#0, it is
incorrect to identifyA,, with a,, .
Integrating out ther(x) andp ,(x) yields é functions which We are not yet ready to add a Lagrange multiplier term

set B(x) =b(x) and «,(x)=a,(X), taking us back to Eq. —fd“x)\(u;rur—N) and integrate out the, fields, because
(83). Instead, we shall first integrate out thg,(x) and then we would again encounter an infinite term proportional
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to fd*x\?, and it is not yet clear how this could be canceled.(104). Following the same reasoning as in Sec(ith z,
Instead, we will first redefine the fields to introduce an ordereplacingy, , and\ andA replacingo), we find that this is
parameter, as we did in the previous section for the nonlineagiven to leading order in N by

o model. Define

z=f\V1tou,, (96) F[Z,A,)\]=—f d“x(DMzr)*DMzr—f d*x\z/z,+T[A ],
subject to the constraint (2079
zl2.=Nf?(1+0). (97 where
The bilinears(84) and(85) then take the form FAN]=INTr In[D,D*—=A]+NH[AN]. (108
_ Gauge invariance and dimensional analysis tell us that the
MIZ—[Z:%Zr—(%Zr)TZr], (98 infinite part of the first term in Eq(108) is a linear combi-
2f°N(1+0) nation of the gauge-invariant functionafel*xx, [d*x\2,
andfd*x(d,A,—d,A,)? ButH[A,\] is an arbitrary pertur-
B tou 1 " batively local functional, constrained only by invariance un-
b= 2N(1+ o) 02y d Zr—4(1+0)2‘9u"‘9 o. (99 der the gauge transformatid@s), so there is no problem in

adjusting it to cancel these infinities.
The action given by Eq88) now may be written Like the nonlinear sigma model, the &P' model can
exist in several phases, characterized here by different
spacetime-independent vacuum expectation value of the sca-
lar fields z, and N, with A¥(x)=0. In analyzing these
phases, we shall make use of the fact thatX6(x)=0 and
whereD , is the gauge-covariant derivative A(x) constantI'[A,\] may be expressed as in E@3) in
D,z =0,2—iA,z,, (101) terms of an effective potentidl(\)

|=—f d*x(D,z,)'D*z,+Nf2G"[A,0], (100

and G” is another arbitrary gauge-invariant perturbatively TLOA]==VaV(N), (109

local functional . . . . .
with V, the spacetime volume. The effective potential here is

1 3, 00" given by a formula such as E¢62),
G"[A,a]z—f d*x—% +G'[p,o]. (102
4 1+o 5 5 -
NA“In(A/M“) |
Now, we may enforce the constraif®7) by introducing a V(N = 3om2 + anl Coh", (110

Lagrange multiplier term

with ¢, a set of new constant coefficients depending on
—J d*x\[z]z,—Nf?(1+0)], (103  H[OA], andM a new constant that can be chosen to make
c,=0. (The coefficient in the first term is 1/3Z instead of

which preserves gauge invariance if we defig) to be 1/64m? because, is complex) In analyzing the vector par-

gauge invariant. After integrating out thefield, the action ticle mass and the “charge” of thg, particles, we will also
becomes need to study the term il'[A,\] of second order in the

photon field for constank(x), which gauge invariance re-

4 4ot quires must take the form
|=— [ d*x(D,z)'D*z,— | d*x\z[z,+NH[A ],

N
(104 IP[AN]= Ef d*xA*(X)(7,,0-3,,)f(—0,N)A”(X).
whereH[A,\] is yet another Legendre transform (111)
H[AN]=f2 G"[A,UHJ d*x(1+ o)\ , (105  Evaluating the trace in Eq108), gives
(T=0')\
1 + 02 _
with o™(x) equal to ther(x) at which the quantity in square f(q?\)=— ! j dx(l_zx)2|n<w>
brackets on the right-hand side of E405) is stationary 16m2Jo w2
SG"[A, ] - )
- - =_ + f A 112
5o | A(X). (106 2 ful@?) (112
The z, field is now unconstrained. wheref(g?) areN-independent functions af? analytic at

We want to calculate the effective actioi[z,A,\], g?=0, arising from the unknown functiona[A,\], and
which in the tree approximation gives the same result as thg/ is another mass parameter, which can be chosen to make
sum of all loop and tree graphs calculated using the actioffig(0)=0.
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A. Broken symmetry phase boson massu. But it is clear that any massive scalar or
In this phasez,(x) has a nonvanishing vacuum expecta-VeCtor partlcl_es would have to be unstable, because they
tion value VNuv, while the vacuum expectation values of could decay into the Goldstone bosans

A (X) and A*(x) both vanish, which requires that
B. Unbroken symmetry phase

AV(N)

= —Np2 (113 In this phasex has a nonzero vacuum expectation value
2N NS \o, satisfying the condition
where v?=v¥v,. Sincel'=xN, v, is N independent. For dV(N) —0 121
small constank, the effective potential110) is NN e (123
-0
2 2
V(N)— NAZIn(A/M*) NCyA. (114 which allowsz(x) as well asA*(x) to have vanishing ex-
3272 pectation values. Equatidi07) shows that in this phase the
N . z, have squared mags, so\y must be positive. The photon
Hence conditior(113) gives propagator in momentum space equals
c.=-v2 (115 .
_ mv
A, (k)= —————+ gauge terms,

In analyzing the degrees of freedom in this phase, it is very kN f(k2,\o)

convenient to eliminate the scalar-vector mixing in E7)

by adopting unitarity gauge, in which Imf z,)=0. Taking  where “gauge terms” denote gauge-dependent terms propor-

vny=v real andv;=0 fori=1,... N—1, this means that tional tok,k,. Because the, for A\y#0 have a finite mass

zy, is real, while thez; are still complex. The; are massless  the functionf (k? \) is analytic atk’=0, so the photon here

Goldstone boson fields, whilg, has the same sort of mixing iS__massless. Also, the renormalized gauge field is

with \ that we saw in the previous section; the terms in theyNf(0\g)A*, so thez, charge is 1/Nf(O,\o), and is hence

action of second order in and/orzy—Nuv have a coeffi- of order 1A/N. Without making special assumptions about

cient matrix given by the functionaH[ A,\ ], it is impossible to say anything more
about the values of the. squared mask, or thez, charge.

Dun(k?)=K?, Dy (K*)=NA(K?),

C. Phase transition

Dy (k) =Din(k) = VNo, (118 As in the case of the nonlinear model, we can obtain
where now more detailed results when the model is near a phase transi-
tion between the broken and unbroken symmetry phases. In
In(k?/ M?) * the unbroken symmetry phase, the model is near this phase
AKY)=————+ Z fn(kH)", (117 transition if the, satisfying Eq.(121) is positive and small.
16m n=1 In this case Eqs(110 and(121) give
with f,, yet another set of model-dependent constants, and AgIn(el2\ o /M2)
M is a constant chosen so that the tefgin the sum is C=— 2 "0 (122
absent. The scalar massis given by the condition that this 1672

has a zero determinant k= —m?: _ N _
which has positive small solutions far, as long asc, be

—m?A(—m?)=v?. (1189  small and positive. On the other hand, in the broken symme-
try phase the model is near the phase transitienig small,
W|th0ut further information about the fUnCtionH[O,)\], we Wh|Ch according to Eq(lls) requires that:l is Sma” and
spectrum ofzy and. c,=0, irrespective of the values of other parameters.
To study the vector particles in this phase, we note that " Tq analyze the low-momentum limit near a phase transi-
according to Eq(107), the term inl"[v,A,0] of second order  tjon, we note that the actiofl04) contains a single super-

in the photon field is given in this phase by renormalizable term- Nc,gfd*x\; four strictly renormaliz-
able terms
I'@[JNov,A,0]=— sz‘f d*xA,(X)A%(x)+T [ A,0],
(119 —NCZBJ d*x\?; —%NZJ d*x(9,A,—3,A,)%
whereT'(?)A,0] is defined by Eq(111). There is a vector
particle of masqu+#0 if _f d“x(D#zr)*D“z,; _f d*x\z'z, ;
w2 (— p2,0) =202 (120

and an infinite number of nonrenormalizable terfiEhe
Without special assumptions abddifA,0], it is not possible  subscript B again indicates bare values, adjusted to give fi-
to tell this has a solution, much less to calculate the vectonite values toc; andc, in Eq. (110).] In the limit where
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¢, and all momenta are small, we can ignore the nonrenor-
malizable interactions, and calculate scattering amplitudes by The cPV-1

using the quantum effective interacti¢b07) in the tree ap-
proximation, now with

F[AN]=iNTrIn[D,D*—\]— Ncle d*x\

—chsj d“x)\z—%NZf d*x(9,A,—3d,A,)%
(123

This tells us that, for example, the potent&I\) is given by
Eq. (114); that for constant (x) the functionf(g?,\) ap-
pearing in the formulg112) for the term in'[ A,\] of sec-
ond order in the vector field is here

1 (1 A+ g2X(1—X)
f(g2N)=— f dx(1-2x)%n| ——mM—=|;
(@) 16m%Jo ( ) ( W2 )

(124

and that the functiol(k?) appearing in the scalar two-point

function (116) is

In(k?/ M?)

A(k?) = P
ar

(125

2315

V. DYNAMICAL GAUGE BOSONS: A REMARK

model has attracted much attention because
of the appearance of a massless gauge boson in a theory
involving only scalar fields. It is important to recognize that
this phenomenon does not depend on the existence of the
gauge symmetry(82), or indeed on any of the symmetry
properties of the action.

This can be seen by a very general argunjédi. Con-
sider a theory that is invariant under a gauge gr@pvith
various matter multiplets forming various representations of
G. Suppose that one of these multiplets consists of scalar
fields, some of which have vacuum expectation values that
completely break the gauge symmetry. Integrate out the mas-
sive gauge vector bosons in unitarity gauge. We then have a
perturbatively local effective field theory, with no hint of the
original gauge invariance. It seems pretty clear that if we
allow arbitrary interactions in the original theory, then in this
way we obtain a completely general effective field theory of
the remaining fields. But this procedure can be reversed, so
out of any effective field theory with no gauge symmetry and
possibly no global symmetry, we can obtain a theory with
any broken gauge symmetry.

The point is that a spontaneously broken gauge symmetry
in itself has no predictive powéd 2]. Of course, it can have
plenty of predictive power if the gauge couplingweak but
for this we have to fine-tune the parameters in the action. In
the CP'~! model studied in the previous section, this fine-
tuning is achieved by the condition that is small.

As an example of the use of these resullts, let us look more o illustrate the possibility of constructing a broken gauge
closely at the properties of the particles near the phase tragymmetry in an effective field theory that has no symmetry

sition. In the unbroken symmetry phase for smejl Eq.

(124 gives
In| —|.
8m% | W2

This is positive but diverges for,— 0, so that the, charge

f(ONg)— -2 (126

to begin with, consider a theory of Dirac fielgg(x) with an
action of form

t1=- [ a%S Jiyou-clyl, (129

where G[ ] is an essentially arbitrary perturbatively local

1/\/NT(0,\o) vanishes at the phase transition. In the brokerfunctional of the fermion fields. We can chod3gy/] so that
symmetry phase the vector boson mass is determined by t{BiS action hasio internal symmetries, if we like, not even

function f(g2,0), which forg?>—0 is given by Eq(124) as

q*| 8
mW—g.

1
f(qZ,O)—>—4 (127

8’772

fermion conservation. This action can be obtained by inte-
grating out a vector field\ ,(x) in the action

_ M ?2
[y, A]=— f A% 970, =G Y- = J d'xA, A

Equation(120) for the vector boson squared mas$ has a 4 N ,
single solution that vanishes as—0, indicating the pres- +f d™xA,j~ Zf d*xF,,F*", (130
ence of a single light vector particle. Also, in the broken
symmetry phase near the phase transition, (E§8 for the \yhere M is an arbitrary mass  parameter,
scalar massn takes the form F ()=d,A,—d,A,, and
2% u vilw oy
—m?n(—m¥ M?) 1
oV (129 G TI=6L01— 5 | 4%, 00 ——#(x)
This has one solution fan? that vanishes as— 0, indicat- 1 . _
ing the presence of single massive but light scalar particle. —WJ' d*xd,j"(x) M7 3, J#(x),
These solutions fop? and m? both have positive real part
but are complex, reflecting the fact that both of these par- (131

ticles are unstable, because they can decay into pairs of
Goldstone bosons. wherej#(x) is the current
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jMEEi QY (132

with g; an arbitrary set of real parameters. As longMs
#0, G' is still perturbatively local. The actiofL30) can be
obtained from another action

M?2 _
I[(//,A,u]z—TJ d4x|&Mu—iAﬂu|2—f d*x> iy (a,

1
—iqiA,) thi— ZJ d*xF, F*"+G'[¢'] (133
with u a scalar field constrained By|?>=1, and

i =u” . (134

STEVEN WEINBERG

u(x)— e *@uy(x),

(%) — 9 gy (x),
—A,(X)+3d,a(X),

Au(x)
(139

so the actior{130 can be obtained from E4133) by adopt-

ing the unitarity gauge, in which=1.[The action(133) is
also perturbatively local, because in deriving perturbation
theory, we expand around=1 rather tharu=0.] Yet, there

is no trace of this gauge invariance or even global invariance
in the action(129 with which we started.
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