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Various effective field theories in four dimensions are shown to have exact nontrivial solutions in the limit
as the numberN of fields of some type becomes large. These include extended versions of the U(N) Gross-
Neveu model, the nonlinear O(N) s model, and the CPN21 model. Although these models are not renormal-
izable in the usual sense, the infinite number of coupling types allows a complete cancellation of infinities.
These models provide qualitative predictions of the form of scattering amplitudes for arbitrary momenta, but
because of the infinite number of free parameters, it is possible to derive quantitative predictions only in the
limit of small momenta. For small momenta the large-N limit provides only a modest simplification, removing
at most a finite number of diagrams to each order in momenta, except near phase transitions, where it reduces
the infinite number of diagrams that contribute for low momenta to a finite number.@S0556-2821~97!05016-9#

PACS number~s!: 11.15.Pg

I. INTRODUCTION

There are a number of instructive models that can be ex-
actly solved in the limit where the numberN of fields be-
comes very large@1#. Well-known examples include the lin-
ear and nonlinears models@2#, the Gross-Neveu model@3#,
and the CPN21 model@4#. In four dimensions none of these
models except the linears model is conventionally renor-
malizable, so their large-N limit has usually been studied
either by introducing an ultraviolet cutoff, or by working in
two dimensions, where the simpler versions of these models
are renormalizable.

There is an alternative approach to infinities. In effective
field theories that are not renormalizable in the usual
‘‘power-counting’’ sense, infinities are canceled by renor-
malization of coupling constants provided we include in the
Lagrangian every interaction allowed by symmetry prin-
ciples. Even though this means that the Lagrangian contains
an infinite number of interaction terms, it is often possible to
derive useful results in such theories by expanding in power
of energy rather than coupling constants@5#.

In this paper I will show how nontrivial finite results can
be obtained by passing to the limit of largeN in various
four-dimensional effective field theories that are not renor-
malizable in the conventional sense. In this task we will en-
counter problems both of combinatorics and of renormaliza-
tion.

The combinatoric problems here can be illustrated by re-
calling the Gross-Neveu model in its original form. The ac-
tion is

I @c#5E d2x@2 c̄ rg
m]mc r2~g/N!~ c̄ rc r !

2#, ~1!

wherec r is a set ofN fermion fields in two spacetime di-
mensions, forming the defining representation of a U(N)
symmetry, andg is a constant that is held fixed asN→`. As
an aid to counting factors of 1/N, one cancels the quartic

term in Eq.~1! by adding an expression that is quadratic in
an auxiliary fields, and that vanishes whens is integrated
out. This results in the replacement of Eq.~1! with the
equivalent action

I @c,s#5I @c#1~N/4g!E d2x@s1~2g/N!c̄ rc r #
2

5E d2x@2 c̄ rg
m]mc r1sc̄ rc r1~N/4g!s2#.

~2!

Since the fermion field appears quadratically in Eq.~2!, it
may be integrated out, yielding an effective action fors:

G@s#5~N/4g!E d2xs22 iNTr ln ~gm]m2s!. ~3!

The whole action fors is proportional toN, so the contri-
bution of graphs withL s loops to the effective action for
s is suppressed by a factorN12L. Because this method uses
the special properties of integrals over Gaussians, it is often
said that this method is limited to models in which the inter-
action is a product of just two bilinear currents@6#, as in Eq.
~1!.

There are also special problems with infinities when an
auxiliary field is introduced in order to impose some con-
straint on theN-component field, as in the nonlinears model
in four dimensions. In the original form of this model the
Lagrangian is

L52 1
2 f 2]mp r]

mp r , ~4!

wheref is anN-independent constant with the dimensions of
mass, and the scalar fieldsp r form an O(N) N vector, con-
strained by

p rp r5N. ~5!

The counting of powers ofN becomes much easier if one
replaces this constraint with a Lagrange multiplier term, so
that the Lagrangian becomes*Electronic address: weinberg@physics.utexas.edu
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L52 1
2 f 2]mp r]

mp r2
1
2 f 2l~p rp r2N!, ~6!

with p r now unconstrained. Integrating out the auxiliary
field l(x) yields the Lagrangian~4!, with thep r constrained
by Eq. ~5!. If instead we integrate over thep r we find an
effective action for the auxiliary field:

G@l#5
iN

2
Tr ln ~h2l!1

N f2

2 E d4xl. ~7!

Because both terms are proportional toN, the Green’s func-
tions for l(x) are given by using the effective action~7! in
the tree approximation. As well known, this theory is non-
renormalizable. We can see this in Eq.~7!. The field l(x)
here has dimensionality12, so the trace term may be writ-
ten ~aside from an inconsequential constant term! as

1
2 iTr ln~h2l!5E d4x@I1l1I2l2#1Tf@l#, ~8!

where theIa are divergent constants, andTf@l# is finite. The
infinite termI1 can be canceled by an infinity in the param-
eter f 2, leaving a finite remainder12 N fR

2*d4xl in G(l), with
f R

25 f 212I1. But the termI2 cannot be canceled in this
way. We could, of course, add a term proportional tol2 to
the Lagrangian~6!, with a coefficient whose infinite part can-
cels the infinite constantI2 in Eq. ~8!, but then we would
lose the constraint~5!, and this would be the linears model
rather than the nonlinears model. If we view this as an
effective field theory then the Lagrangian~4! is just the first
term in an infinite series involving higher powers of the cur-
rents]mf r]nf r and higher derivatives, but it is not immedi-
ately obvious how these higher terms will allow us to cancel
the infinity in I2.

We run into a similar problem when an auxiliary field is
introduced to impose a condition of gauge invariance. The
classic example here is the CPN21 model in four dimensions.
This model contains a set ofN complex scalar fieldsur ,
subject to the constraint that

ur
†~x!ur~x!5N. ~9!

In order that theur(x) at eachx should form a CPN21 mani-
fold, we must require the action to be invariant under
‘‘gauge’’ transformations

dur~x!5 i e~x!ur~x!, ~10!

with e(x) an arbitrary real infinitesimal function. In the
original CPN21 model, this is accomplished by taking the
action as

I 52 f 2E d4x~]mur2 iamur !
†~]mur2 iamur !, ~11!

wheref is anN-independent constant with the dimensions of
mass, andam(x) may be defined as the bilinear

am[2~ i /2N!@ur
†]mur2~]mur

†!ur #, ~12!

which under the gauge transformation~10! changes by

dam5]me. ~13!

Equivalently, we can replaceam(x) in Eq. ~11! with an in-
dependent auxiliary fieldAm(x), so that the action is

I 52 f 2E d4x~]mur2 iAmur !
†~]mur2 iAmur !. ~14!

SinceAm(x) enters quadratically in Eq.~14!, the path inte-
gral overAm(x) is done by giving it a value at which the
action ~14! is stationary with respect toAm(x), which turns
out to giveAm(x)5am(x). To enforce the constraint~9! we
can add a Lagrange multiplier term2 f 2*d4xl(ur

†ur2N),
with l(x) another auxiliary field, andur(x) now uncon-
strained. Sinceur(x) enters quadratically in the action it can
be integrated out, yielding an effective action for the auxil-
iary fields

G@A,l#5 iNTr ln@DmDm2l#1N f2E d4xl, ~15!

where hereDm[]m2 iAm . Because each term is propor-
tional to N, the contribution of graphs withL loops to the
Green’s functions forl and am is suppressed by a factor
N12L. Equation~15! displays the problem with renormaliz-
ability @7# in four dimensions: Dimensional analysis and
gauge invariance show that the infinite part of the trace is a
linear combination of *d4xl, *d4xl2, and
*d4x(]mAn2]nAm)2 with divergent coefficients, and al-
though the infinite part of the coefficient of*d4xl can be
canceled by an infinite term inf 2, there is nothing here that
can cancel the infinite coefficients of*d4xl2 or
*d4x(]mAn2]nAm)2. Treating this as an effective field
theory, we would certainly have to add terms to the action
involving *d4x(]man2]nam)2, wheream is defined by Eq.
~12!, but this would not cancel the infinity inG@l,A# pro-
portional to *d4x(]mAn2]nAm)2. We cannot add a term
proportional to*d4x(]mAn2]nAm)2 without makingAm(x)
an independent dynamical field, thus removing the most in-
teresting aspect of the theory, the appearance of long-range
forces in a theory without an elementary gauge field.

Finally, there is a problem that always confronts us in
dealing with effective field theories: how to use a theory with
an infinite number of free parameters to derive physical pre-
dictions. As we shall see, the large-N limit can give qualita-
tive information about theform of S-matrix elements, but in
effective field theories it is not possible actually to calculate
the functions that appear inS-matrix elements except in the
low-energy limit. In the extended Gross-Neveu model con-
sidered in Sec. II it turns out that there are usually only a
finite number of graphs that contribute to each order in en-
ergy, whatever the value ofN, so for low energy the large-
N limit leads only to modest simplifications. As shown in
Secs. III and IV, the same is true in the extended nonlinear
s model and the extended CPN21 model, with one interest-
ing exception: Near the phase transitions at which the broken
symmetries of these models are restored, there is an infinite
number of graphs of the same order in energy, which can be
summed only in the large-N limit.

The original motivation of this work was to decide
whether the appearance of a spin-one ‘‘photon’’ in the two-
dimensional CPN21 model occurs also in four-dimensional
versions of this model, when the problem of infinities is
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handled by treating the model as an effective quantum field
theory. Section IV shows that the answer to this question is
yes, but as discussed in Sec. V, this result is less surprising
than might be supposed.

II. THE EXTENDED GROSS-NEVEU MODEL

To illustrate the use of the large-N limit in effective field
theories, let us consider the general class of models with a set
of N massless fermion fields ind spacetime dimensions,
transforming according to the defining representation of a
global U(N) symmetry. Any U(N)-invariant action will be a
functional of a set of bilinear currentsj l (x) that are invari-
ant under U(N), such as the currents
j 05 c̄ rc r , j 1m5 c̄ r]mc r , etc. We will consider a class of
extended four-dimensional Gross-Neveu models, with an ac-
tion of the form1

I @c#52E ddxc̄ rg
m]mc r1NF@ j /N#, ~16!

whereF@t# is someN-independent functional. The original
Gross-Neveu action~1! is a special case of Eq.~16!, with
F@ j /N# quadratic in the particular currentj 05 c̄ rc r . As we
shall see, theN dependence given the second term in the
action~16! makes the theory nontrivial but soluble@8#, as in
the original Gross-Neveu model.

The action~16! may be replaced with an equivalent action

I @c,s#5E d4x@2 c̄ rg
m]mc r1s l ~x! j l ~x!#1NG@s,N#,

~17!

where exp$iNG@s,N#% is the functional Fourier transform
with respect toNt of exp$iNF@t#%:

exp$ iNG@s,N#%

[E )
l ,x

dt l ~x!expH 2 iNE d4xs l ~x!t l ~x!1 iNF@t#J .

~18!

Of course, exp$iNF@t#% is then ~up to an unimportant con-
stant factor! the Fourier transform of exp$iNG@s,N#%:

exp$ iNF@t#%}E )
l ,x

ds l ~x!expH iNE d4xs l ~x!t l ~x!

1 iNG@s,N#J . ~19!

The integral over thes l (x) in the functional integral of
exp$iI @c,s#% thus yields

E )
l ,x

ds l ~x!exp$ i I @c,s#%}exp$ i I @c#%, ~20!

so the actionI @c,s# given by Eq.~17! is equivalent to the
original action~16!.

In the limit of largeN the Fourier integral~18! may be
done by settingt l (x) at the stationary ‘‘point’’ts(x) of the
integrand, at which

dF@t#

dt l ~x!
U

t5ts

[s l ~x!, ~21!

so thatG@s,N# approaches anN-independent functional, the
Legendre transform ofF@t#:

G@s,N#→G@s#[F@ts#2E ddxs l ~x!t l
s~x!. ~22!

That is, forN→`, the action may be taken as

I @c,s#5E d4x@2 c̄ rg
m]mc r1s l ~x! j l ~x!#1NG@s#.

~23!

We could just as well have taken the action~23! as our
starting point, withG@s# an arbitraryN-independent func-
tional; the only difference would be that then the theory
would be equivalent to one with an action of the original
form ~16!, but with F@t# independent ofN only in the limit
N→`.

Now, we want to calculate the quantum effective action
G@c,s#, which by definition in the tree approximation gives
the same result as the sum of all loop and tree graphs calcu-
lated using the action~23!. According to the usual prescrip-
tion, we must replacec r(x) ands l (x) in Eq. ~23! with sums
c r(x)1c r8(x) and s l (x)1s l8 (x) and integrate over the
quantum perturbationsc r8(x) ands l8 (x), including only one-
particle-irreducible graphs. A standard power-counting argu-
ment gives, to leading order in 1/N,

G@c,s#→E d4x@2 c̄ rg
m]mc r1s l ~x! j l ~x!#

1NT@s#1NG@s#, ~24!

whereT@s# is anN-independent functional ofs, such as the
functional Tr ln(gm]m2s) in Eq. ~3!, defined in general by
the integral of a Gaussian

exp$ iNT@s#%[E F)
n,x

dc r8~x!GexpH i E ddx@2 c̄ r8g
m]mc r8

1s l ~x! j l8 ~x!#J . ~25!

@To obtain Eq.~24!, note first that purely fermionic loops
yield a termNT@s# in the effective action, which just makes
an additive contribution toNG@s#. The s l propagators are
then given by the inverse of the coefficient of the quadratic
term in NT@s#1NG@s#, and are hence proportional to
1/N, while the purely bosonic vertices~including those de-
rived from T@s#) make contributions proportional toN.
Thus a graph withVs purely bosonic vertices,Vc fermion-
fermion-boson vertices,I c internal fermion lines~excluding
those in purely fermionic loops!, andI s internal boson lines

1The free-field action could itself be regarded as a linear term in
NF@ j /N#, but it is convenient to treat it separately.
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makes a contribution of orderNVs2I s. But 2Vc52I c1F,
whereF is the number of external fermion lines~i.e., factors
of the classicalc field!, and the numberL of loops~with all
purely fermionic loops counted as bosonic vertices! is
L5I c1I s2Vc2Vs11, so the number of powers ofN is
Vs2I s512L2F/2. The leading graphs are, therefore,
those with no loops, but the only one-particle-irreducible
graphs with no loops are those consisting of just a single
vertex, which yield the result~24!.#

For instance, the amplitude for fermion-fermion scattering
is given to leading order in 1/N by the tree graphs in which
a singles line is exchanged between the external fermions,
with the vertices given by the term*d4xs l (x) j l (x) in Eq.
~24!, and thes propagator given by the inverse of the coef-
ficient of the quadratic term inNG@s#1NT@s#. Unlike the
case of the original Gross-Neveu model, the terms of higher
order in 1/N arise not only from loop graphs that correct the
effective action~24!, but also from higher-order terms in
G@s,N#.

Now, let us take up the problem of renormalization in the
large-N limit. Although the one-loop functionalT@s# is
highly nonlocal, its infinite part is ‘‘perturbatively local,’’
that is, it is the integral of a series~in general infinite! of
products of fields and their derivatives with divergent coef-
ficients, of which only a finite number of terms contribute to
the tree amplitude for any given process to any finite order in
momentum. In order to cancel these infinities, it is necessary
that G@s# be a general perturbatively local functional, sub-
ject to no constraints other than symmetry properties that
also constrainT@s#. But any perturbatively localG@s# can
be obtained as the Legendre transform of some perturba-
tively local F@t#, provided only that

DetMÞ0, Ml x,my[
d2G@s#

ds l ~x!dsm~y!
. ~26!

@To see this, it is only necessary to note that the functional
G@s# is the Legendre transform of a functionalF@t# given
by the inverse Legendre transform ofG@s#:

F@t#5G@st#1E ddxs l
t ~x!t l ~x!, ~27!

with st the stationary ‘‘point’’ of the expression on the
right-hand side:

dG@s#

ds l ~x!
U

s5st

52t l ~x!. ~28!

In terms of Feynman graphs, this just says thatF@t# is given
a sum of tree Feynman graphs calculated from the action
G@s#1*ddxs l (x)t l (x), for which the propagator is
Ml x,my

21 . Therefore,F@t# is perturbatively local ifG@s# is,
and if DetMÞ0.# Furthermore, the condition that DetM
Þ0 can always be satisfied by adding a finite quadratic term
to G@s#, and subtracting the same term fromT@s#. Apart
from symmetries, the only constraint onF@t# is that it be
perturbatively local, so it is always possible to choose an
F@t# that gives whateverG@s# is needed to cancel the in-
finities in T@s#.

This works out in a particularly simple way if the currents
j l (x) have dimensionality ~in powers of mass, with
\5c51) less than the spacetime dimensionality, so that the
s l (x) have positive dimensionality. In this case the infinite
part T`@s# of T@s# is the integral of apolynomial in the
s l (x) and their derivatives, with infinite constant coeffi-
cients. For instance, consider an extended Gross-Neveu
model in four dimensions, with an action of the form

I @c#52E d4xc̄ rg
m]mc r1NF@ j 0 /N#, ~29!

whereF@ j 0 /N# is an arbitrary even local functional of the
single current:

j 05 c̄ rc r . ~30!

We takeF@ j /N# even so that the action will be invariant
under a discrete chiral symmetry transformation
c r→g5c r , which, if unbroken, keeps the fermions massless.
Here, s(x) has dimensionality11, and chiral symmetry
tells us that the functionalT@s# defined by Eq.~25! is even
in s, so this functional takes the form

T@s#5E d4x@I01I1s21I2shs1I3s4#1Tf@s#,

~31!

where theIa are infinite constants, andTf is a finite func-
tional, which for constants takes the well-known form@9#

Tf@s#52
1

32p2E d4xs4lns2.

The functionalF@t# may be expanded in a series of even
local operators of increasing dimensionality

F@t#5E d4x@A01A1t21A2tht1A3t4

1A4thht1•••#, ~32!

in which case Eqs.~21! and ~22! give

G@s#5E d4xFA02
1

4A1
s21

A2

4A1
2
shs1

A3

16A1
4
s4

1S A4

4A1
2

2
A2

2

4A1
3D shhs1•••G . ~33!

In order to cancel infinities, we must take the bare param-
eters as

A05C02I0 , A152 1
4 @C12I1#21, A25

C22I2

4@C12I1#2
,

A35
C32I3

16@C12I1#4
,
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A45
C4

4@C12I1#2
2

@C22I2#2

4@C12I1#3
, . . . , ~34!

where theCa are the finite renormalized coupling parameters
that appear in the final result

G@s#1T@s#5E d4x@C01C1s21C2shs1C3s4

1C4shhs1•••#1Tf@s#. ~35!

It is important but not surprising that the infinite number of
unrenormalized constantsAa can be chosen to give finite
results forG@s#, despite the fact that the Gross-Neveu model
is not conventionally renormalizable in four dimensions.
What is somewhat surprising is that this is possible with an
interaction given by a power series in the single current
j 05 c̄ rc r and its derivatives, without needing to include ad-
ditional currents, such asj 1m[c̄ r]mc r . Although it is not
necessary to include additional currents in order to cancel
infinities, in the spirit of effective field theory we really
should include all U(N)-invariant currents in the action. This
complicates the cancellation of infinities through renormal-
ization, but as we have shown earlier, it does not make it
impossible.

What good is a theory like this, that has an infinite num-
ber of arbitrary parameters? For an action of the form~29!,
the effective action~24! takes the form

G@c,s#52E d4xc̄ rg
m]mc r1E d4xsc̄ rc r

1NG@s#1NT@s#, ~36!

with G@s#1T@s# given by Eq.~35!. To calculate scattering
amplitudes we must use this as the action in the tree approxi-
mation. For instance, the invariant amplitude for a fermion-
fermion scattering processA1B→C1D takes the form

M ~A1B→C1D !5d r Ar C
d r Br D

~ ūCuA!~ ūDuB!D~ t !

2d r Ar D
d r Br C

~ ūDuA!~ ūCuD!D~u!,
~37!

wheret andu are the Mandelstam variablest52(pA2pC)2

and u52(pA2pD)2, and D(t) is the s propagator. This
particular form of the scattering amplitude is a consequence
of the assumption that the action has the form~29!, with only
the one currentj 0, and it is valid in the large-N limit for
arbitrary values of the fermion momenta.

Unfortunately, to go further and actually calculate the
propagatorD(s) without knowing the infinite number of free
parameters inF@t# or G@s#, it is necessary to take the limit
of small momenta. But in this limit, little is gained by also
letting N become large.

To compare the consequences of the largeN and low
momentum approximations, let us consider an amplitude cal-
culated using the action~29! in the equivalent form

I @c,s#52E d4xc̄ rg
m]mc r1E d4xsc̄ rc r1NG@s#,

~38!

with the N dependence ofG@s# left unspecified. Take all
incoming and outgoing momenta of the order of some small
momentumQ, and suppose that infinities are canceled by
renormalizing at momenta also of orderQ. Fermion propa-
gators go asQ21, while s propagators go as constants~any
quadratic terms inG@s# involving derivatives being treated
as interactions! and each loop introduces four factors ofQ,
so an amplitude withI c internal fermion lines andL loops
goes asQn, where

n54L2I c1(
i

diVi , ~39!

whereVi is the number of purely bosonic interactions of type
i , anddi is the number of derivatives in such an interaction.
This may be rewritten by using the familiar formulas

2I c1Ec52Vc , ~40!

2I s1Es5(
i

Vini1Vc , ~41!

and

L5I c1I s2(
i

Vi2Vc11, ~42!

whereI s is the number of internals lines,Ec andEs are the
numbers of external fermion ands lines, Vc is the number
of fermion-fermion-s vertices, andni is the number ofs
fields in the purely bosonic interaction of typei . Equation
~39! then may be put in the form

n52L1(
i

D iVi122
Ec

2
2Es12, ~43!

where

D i5ni1di22. ~44!

Now, all s interactions have eitherni>4 or ni52 and
di>2 ~the term proportional to*s2d4x in G@s# being
treated as the kinematic action for thes field!, so for all
purely bosonic interactionsD i>2. A scattering amplitude for
a fixed process~i.e., Ec and Es fixed! is, therefore, domi-
nated forQ→0 by treegraphs with any number of fermion-
fermion-s vertices but no loops and no pures interactions.
These graphs are a subset of those we encountered in the
limit of large N, so the large-N limit would introduce no
further simplification here.

The large-N limit becomes relevant in the next order in
Q2, which according to Eqs.~43! and ~44!, is given by
graphs with any number of fermion-fermion-s vertices and
either one loop or with no loops and one pures interaction
with D i52. The graphs with a single interaction from
G@s# or a single purely fermionic loop reproduce what we
would find by using the large-N effective action~36! to this
order inQ2. But here there is also a class of graphs that does
not appear in the large-N limit: the graphs constructed out of
only fermion-fermion-s vertices and containing a single
loop, which is not purely fermionic.~For instance, in
fermion-fermion scattering these are the graphs in which a
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pair of s lines are exchanged between the fermions.! The
large-N limit is, therefore, useful here, but not very useful,
because even without it there are only a finite number of
graphs to each order inQ2. This is just a consequence of the
fact that this is a theory where all interactions are nonrenor-
malizable. In the next section we will see an example where
the large-N limit is much more important, because there is an
infinite number of graphs to each order in small momenta,
which cannot be summed except in the limit of largeN.

III. THE NONLINEAR s MODEL: INTEGRATING
IN AN ORDER PARAMETER

Auxiliary fields are sometimes introduced to enforce con-
straints on the other fields, as well as to help in counting
factors of 1/N. The classic example is the nonlinear O
(N) s model, which in its usual form has Lagrangian~4!.
Here, we will consider a class of extended nonlinears mod-
els, with Lagrangians of the form

I @p#52
f 2

2 E d4x]mp r]
mp r1N f2F@ j /N#, ~45!

wherep r is a set ofN scalar fields, satisfying the constraint

p rp r5N; ~46!

j (x) is the O(N)-invariant scalar current with the minimum
number of derivatives:

j [ 1
2 ]mp r]

mp r ; ~47!

f 2 is an arbitrary positive constant; andF@t# is a functional
that, apart from being perturbatively local andN indepen-
dent, can be chosen as we like. TheN dependence in Eq.
~45! has been chosen so that this model will be soluble but
nontrivial in the limit N→`.

As in the case of the extended Gross-Neveu model, we
shall introduce an auxiliary fields(x), and replace Eq.~45!
with the equivalent action

I @p,s#5N f2G@s,N#2 f 2E d4x~11s! j , ~48!

where exp$iNf 2G@s,N#% is the functional Fourier transform
with respect tof 2Nt of exp$iNf 2F@t#%:

exp$ iN f 2G@s,N#%[E )
x

dt~x!expH iN f 2E d4xs~x!t~x!

1 iN f 2F@t#J . ~49!

It is easy to see that we get back to Eq.~45! when we inte-
grate outs(x), but it will be convenient instead to use the
action in the form~48!.

In the limit of largeN the functionalG@s,N# approaches
an N-independent functional given by the Legendre trans-
form of F@t#,

G@s,t#→G@s#5E d4xsts1F@ts#, ~50!

with ts defined by

dF@t#

dt~x!
U

t5ts

52s~x!. ~51!

At this point, it is not so obvious how infinite counter-
terms in the functionalG@s# can be used to cancel the ul-
traviolet divergence proportional to*d4xl2 that is encoun-
tered when we introduce a Lagrange multiplierl(x) and
integrate over thep r . Yet we know that this is possible,
because the cancellation of infinities is obvious in an ex-
tended linears model, in which the action is an arbitrary
perturbatively local functional of an unconstrainedN-vector
field f r , and from such a model it is always possible to
construct a nonlinears model by integrating out the massive
order parameter represented by the O(N) scalarAf rf r . This
suggests that we should show the cancellation of infinities in
the extended nonlinears model by using the ingredients
appearing in Eq.~48! to construct something like a linears
model.

For this purpose, let us define new fields

f r[ fA11sp r . ~52!

Using the constraint~46!, the current~47! may be written as

j 5
1

2 f 2~11s!
]mf r]

mf r2
N

8~11s!2
]ms]ms. ~53!

Also, the constraint now reads

f rf r5N f2~11s! ~54!

and will again be imposed by introducing a Lagrange multi-
plier l(x). The action ~48! is thereby replaced with the
equivalent action

I @f,s,l#5N f2G8@s#2E d4x$ 1
2 l@f rf r2N f2~11s!#

1 1
2 ]mf r]

mf r%, ~55!

where

G8@s#[G@s#1
1

8E d4x
]ms]ms

11s
. ~56!

Now, it is l(x) rather thans(x) that interacts with theN
vector of scalar fields, so thef r scattering amplitude may be
calculated in terms of the effective action forl(x) and
f r(x), which is obtained by integrating outs(x). The part of
the action involvings(x) is proportional toN, and does not
involve thef r(x), so we can integrate outs(x) to leading
order in 1/N by settings(x) equal to the valuesl(x) where
Eq. ~55! is stationary with respect tos(x):

dG8@s#

ds~x!
U

s5sl

52 1
2 l~x!. ~57!

This gives an action forf r(x) andl(x):
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I @f,l#5NH@l#2E d4x@ 1
2 ]mf r]

mf r1
1
2 lf rf r #,

~58!

whereH@l# is another Legendre transform

H@l#[ f 2G8@sl#1 1
2 f 2E d4xl~11sl!. ~59!

The same reasoning as in the previous section~with l and
p r replacings andc r) shows that to leading order in 1/N,
the quantum effective action, which in tree approximation
gives the complete scattering amplitude, is here

G@f,l#5G@l#2E d4x@ 1
2 ]mf r]

mf r1
1
2 lf rf r #, ~60!

where

G@l#5NH@l#1 1
2 iNTr ln~h2l!. ~61!

Following the same argument as in the previous section, by
choosingF@t# we can makeG8@s# andH@l# any perturba-
tively local functionals we like, so we can adjustH@l# to
cancel the infinite terms in the one-loop trace Tr ln(h2l)
proportional to*d4xl and *d4xl2. For l spacetime inde-
pendent, this gives

V~l!5
Nl2ln~l/M2!

64p2
1N(

n50

`

cnln, ~62!

where thecn are model-dependent,N-independent finite con-
stants;M is a constant that can be chosen, for instance, so
thatc251; andV@l# is the ‘‘effective potential,’’ defined so
that for a spacetime-independentl,

G@l#52V4V~l!, ~63!

with V4 the spacetime volume.
To identify the possible phases of this model, we must

examine the possible spacetime-independent vacuum expec-
tation values of the fieldsf r and l, at which the effective
action ~60! is stationary. These phases are of two different
types.

A. Broken symmetry phase

In this phase the vacuum expectation value ofl(x) van-
ishes, whilef r(x) has a vacuum expectationANv r , given
by the solution of the equation

dG@l#

dl~x!
U

l~x!50

52
]V~l!

]l U
l50

5 1
2 Nv rv r . ~64!

From Eqs.~62! and ~64! we see the system will be in this
phase ifc1,0, and that in this casev r is N independent and
given by

v rv r522c1 . ~65!

To see the particle content of the theory in this phase, we
note that the terms in the effective action~60! of second
order in the displacement of the fields from their equilibrium

value have a coefficient matrix given in momentum space by

2 1
2D(k), whereD(k) is the matrix

Drs~k!5k2d rs , Dll~k! 5 NA~k2!,

Drl~k!5Dlr~k! 5 ANv r . ~66!

Here, A(k2) is an N-independent, one-loop amplitude de-
rived from the part ofG@l# quadratic inl, which is easily
calculated to be

A~k2!5
ln~k2/M2!

32p2
1 (

n51

`

dn~k2!n, ~67!

with dn another set of model-dependent finite constants, and
M is a constant chosen so that the constant termd0 in the
sum is absent. The scalar propagatorD(k)5D21(k), hence,
has elements

D rs~k!5
1

k2S d rs2
v rvs

v22k2A~k2!
D ,

Dll~k!52
k2

N@v22k2A~k2!#
,

D rl~k!5Dlr~k!5
v r

AN@v22k2A~k2!#
, ~68!

where v2[v rv r . The pole inD rs at k250 clearly arises
from the Goldstone bosons of O(N)/O(N21). This pole oc-
curs only in the propagators of the components off r in
directions perpendicular tov r . There may be other particles
associated with poles at model-dependent nonzero masses
arising from the vanishing of the denominators
v22k2A(k2) in the propagators of the fieldsv rf r andl, but
without special assumptions aboutH@l# we can say nothing
about them, except that they do not mix with the Goldstone
bosons. The invariant amplitude for Goldstone boson-
Goldstone boson scattering is given by thel-l element of
the propagator, as

M ~ap,bq→a8p8,b8q8!

5
1

NF dabda8b8s

v21sA~2s!
1

daa8dbb8t

v21tA~2t !

1
dab8da8bu

v21uA~2u!
G , ~69!

where a, b, a8, b8 run over the Goldstone directions,
from 1 to N21 ~with v r taken in theN direction!, and
s, t, u are the usual Mandelstam variables:
s52(p1q)2, t52(p2p8)2, andu52(p2q8)2.

Even with the functionA(s) unknown, this specific form
of the scattering amplitude is a nontrivial consequence of the
action ~45! in the limit of large N. But to go further and
calculate the actual value of the scattering amplitude we need
to restrict ourselves to low energies.
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In the extreme low-energy limit, Eq.~69! reduces to the
usual low-energy Goldstone boson scattering amplitude@10#,

M ~ap,bq→a8p8,b8q8!

→
4

Fp
2 @dabda8b8s1daa8dbb8t1dab8da8bu#, ~70!

provided we identify the Goldstone boson decay amplitude
Fp ~equal to'184 MeV for pions! as

Fp52vAN. ~71!

In this low-energy limit, nothing is gained by also takingN
large.

The large-N limit does produce some simplification in the
terms of higher order in energy. According to Eqs.~67!, ~69!,
and ~71!, the term in the Goldstone boson scattering ampli-
tude of fourth order in momenta is

M ~4!~ap,bq→a8p8,b8q8!52
Ndabda8b8

2p2Fp
4

s2ln~2s/M2!

1 crossed terms, ~72!

which may be compared with the exact formula for the terms
in the amplitude of fourth order in momenta2

Maba8b8
~4!

5
dabda8b8

Fp
4 F2

N23

2p2
s2ln~2s!

2
1

12p2
~u22s213t2!ln~2t !

2
1

12p2
~ t22s213u2!ln~2u!2cs2

2c8~ t21u2!G1 crossed terms, ~73!

where c and c8 are unknown constants. We see that the
effect of taking the large-N limit here is just to eliminate a
few of the terms in Eq.~73!.

Inspection of Eqs.~67! and ~69! shows that not only the
terms in the scattering amplitude of second and fourth order
in a generic momentumk, but all the ‘‘leading log’’ terms of
order k2(n11)(lnk2)n for n>0, are uniquely determined by
the first, model-independent term in Eq.~67!, with no depen-
dence on the coefficientsdn or the model-dependent func-
tional H@l#. These are just the model-independent conse-
quences of unitarity and the broken O(N) symmetry alone,
specialized to the case of largeN. It is far easier to calculate
the leading logarithms by using a large-N model and then
passing to the low-energy limit where the results become

model independent, as we have done here, than by evaluating
the model-independent leading log terms for generalN and
then passing to the limit of largeN, but it is still true that to
each order in energy there are only a finite number of dia-
grams, whether or not we invoke the large-N limit.

B. Unbroken symmetry phase

In this phase the vacuum expectation value off r(x) van-
ishes, whilel(x) has a vacuum expectation valuel0, given
by the solution of the equation

dG@l#

dl~x!
U

l~x!5l0

52
]V~l!

]l U
l5l0

50. ~74!

Here, the O(N) symmetry is unbroken, and in the large-N
limit we have a degenerate multiplet of scalars with squared
massl0, so the system will be in this phase only if the
stationary pointl0 of V(l) is positive. The S-matrix ele-
ments for these degenerate scalars are given in the limit of
largeN by using the effective action~60! in the tree approxi-
mation; for instance, the Feynman scattering amplitude is

M ~rp,sq→r 8p8,s8q8!5@d rsd r 8s8D~s!1d rr 8dss8D~ t !

1d rs8d r 8sD~u!#, ~75!

whereD is thel propagator, of order 1/N.
Since l0 is generically of the same order as whatever

characteristic squared mass scale appears in the functional
G@l#, there is no way to use the model to make useful quan-
titative predictions about masses and scattering amplitudes in
this phase without making special assumptions about the
constants appearing inH@l#. From the large-N limit we can
only infer conclusions such as Eq.~75! about the general
form of scattering amplitudes.

C. Phase transition

As we have seen, in general, without knowing all the
constantscn in the potentialV(l), we can say nothing about
the masses in the unbroken symmetry phase except that they
are O(N) degenerate, and without knowing all the constants
dn in A(k2) we can say nothing about the masses in the
broken symmetry phase except for the existence of a mass-
less multiplet of Goldstone bosons. We can do better in the
case where the constants are tuned so that the system is near
the transition between the two phases.

In the unbroken symmetry phase the system is near the
phase transition ifl0, although nonzero, is small. For small
l, Eq. ~62! becomes

V~l!→
Nl2ln~l/M2!

64p2
1c1l. ~76!

~Recall thatM has been chosen to makec2 vanish.! Condi-
tion ~74! then becomes

c152
l0ln~e1/2l0 /M2!

32p2
. ~77!

2This agrees with the result of Ref.@5# for the physical case
N54. The term of formdabda8b8s

2ln(2s) is proportional toN23
rather thanN21 because it receives contributions from graphs that
do not have index loops as well as from those that do.
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This has small positive solutions forl0 as long asc1 is small
and positive. On the other hand, in the broken symmetry
phase the system is near the phase transition ifv r is small,
which according to Eq.~65! requires thatc1 be small and
negative. Thus there is a second-order phase transition be-
tween these two phases whenc150, regardless of the values
of the othercn .

Near this phase transition in the broken symmetry phase
the large-N approximation allows us to sum amplitudes to all
orders in the ratio of momenta to the small vacuum expecta-
tion valuev, provided the momenta are small compared with
all the other mass scales characteristic ofH@l#. Equation
~68! shows that in this case the Goldstone boson scattering
amplitude has poles ats52m2, t52m2, and u52m2,
with m given in terms ofv by

v252m2A~2m2!→2
m2ln~2m2/M2!

32p2
, ~78!

indicating the presence of an unstable light O(N21)-
singlet particle with complex massm. This is not unex-
pected; continuity suggests that theN21 Goldstone bosons
should be joined near the phase transition by an additional
scalar whose mass must vanish at the phase transition, in
order to allow a smooth transition to the unbroken symmetry
phase, where theN degenerate scalars become massless at
the phase transition. The massm given by Eq.~78! is com-
plex because this scalar can decay into Goldstone bosons.

There are other possibilities: near the phase transition the
unbroken phase could have a degenerate multiplet of light
scalars belonging to any representation of O(N) that contains
the (N21)-vector representation of O(N21), not necessar-
ily the defining representation. The Goldstone bosons of the
broken symmetry phase would then be joined at the phase
transition with those massless scalars that are needed to fill
out this representation when O(N) is restored. Our transfor-
mation of the theory has emphasized the possibility that near
the phase transition the light degenerate multiplet of the un-
broken phase forms anN-vector, but of course we do not
know that thec1 parameter encountered in this transformed
theory is small. To explore other possible types of phase
transition, we would have to transform the theory in other
ways, and then assume that the parameter corresponding to
c1 in those transformed theories is small.

The smallness ofc1 opens up a much more powerful role
for the large-N approximation. The expectation value^l& is
then small or zero, and the propagator off goes ask22 for
a four-momentumk which though small is larger than̂l&.
On the other hand, the term in the action of second order in
l has a momentum-independent term which is not small near
the phase transition, so thel propagator must be regarded as
of zeroth order in momenta. We can count powers of mo-
mentum and/orAc1 in any diagram by dimensional analysis,
with the fieldsf r andl taken as having dimensions one and
two ~in powers of momentum!, respectively.

With this understanding, the action~58! contains one su-
perrenormalizable~‘‘relevant’’ ! termc1B*d4xl; three renor-
malizable~‘‘marginal’’ ! terms

2c2BE d4xl2, 2 1
2 E d4x]mf r]

mf r ,

2 1
2 E d4xlf rf r ;

and an infinite number of nonrenormalizable~‘‘irrelevant’’ !
terms, including terms of second order in derivatives ofl
that act as corrections to the momentum-independent zeroth-
order l propagator.@The subscript B onc1B and c2B indi-
cates that these are bare couplings, chosen to give finite val-
ues to thec1 and c2 in Eq. ~62!. To leading order in 1/N
there is no renormalization of the coefficients of
*d4x]mf r]

mf r and*d4xlf rf r ; these coefficients are fixed
to be21/2 by a choice of normalization ofl andf r .] The
presence of a superrenormalizable term prevents an expan-
sion in powers of momenta alone, but near the phase transi-
tion with c1 small, we can expand any scattering amplitude
in powers of the overall scale of momenta andAc1. The
leading term in this expansion is given by Feynman diagrams
involving only the renormalizable and superrenormalizable
interactions listed above.

The presence of the renormalizable interaction
*d4xlf rf r means that there is an infinite number of multi-
loop graphs of leading order in momenta and/orAc1. Here,
the large-N limit offers the huge simplification, of reducing
the complete quantum effective action to the simple form
~60!, only now with H@l# containing only terms linear and
quadratic inl:

G@f,l#52E d4x@ 1
2 ]mf r]

mf r1
1
2 lf rf r #

2Nc1BE d4xl2Nc2BE d4xl2

1 1
2 iNTrln~h2l!. ~79!

Using Eq.~79! in the tree approximation gives the terms
in scattering amplitudes of leading order in 1/N and in small
momenta andAc1. For instance, in the broken symmetry
phase the functionA(k2) appearing in Eqs.~66!–~69! is here
simply given by the first term in Eq.~67!

A~k2!5
ln~k2/M2!

32p2
. ~80!

For v→0 there is just one solution of the equation
v25k2A(k2) with k2→0 @the only case where Eq.~80! can
be trusted#. This solution has Rek2,0, and corresponds to
an unstable scalar particle that can decay into pairs of Gold-
stone bosons.

IV. THE EXTENDED CP N21 MODEL: INTEGRATING
IN A GAUGE FIELD

In addition to helping us to count factors of 1/N and en-
forcing constraints on the fields, auxiliary fields are some-
times introduced in order to enforce a condition of gauge
invariance. The leading example of this sort is the CPN21

model @4# which in its original form has an action given by
Eqs.~11! and~12!. Here, we shall consider a class of exten-
sions of the CPN21 model in which nontrivial finite results
may be obtained in the limit of largeN in four spacetime
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dimensions. As we shall see, just as in its original two-
dimensional version, this model has the remarkable property
that a long-range Coulomb force arises even though no el-
ementary gauge field is introduced into the action.

The extended CPN21 models to be considered here con-
tain a set ofN complex scalar fieldsur , subject to the con-
straint that

ur
†~x!ur~x!5N. ~81!

The action is invariant under ‘‘gauge’’ transformations

dur~x!5 i e~x!ur~x!, ~82!

with e(x) an arbitrary real infinitesimal function. For a
soluble model which yields nontrivial finite results, it turns
out to be sufficient to take the action in the form

I @u#5N f2E d4x~2b1amam!1N f2F@a,b#, ~83!

where

am[2~ i /2N!@ur
†]mur2~]mur

†!ur #, ~84!

b[~1/N!~]mur
†!]mur , ~85!

andF@a,b# is an arbitraryN-independent Lorentz-invariant
perturbatively local functional, invariant under the transfor-
mation induced by the gauge transformation~82!:

db~x!52am~x!]me~x!, dam~x!5]me~x!. ~86!

The first term in Eq.~83! is a rewritten version of the action
~11!, ~12! of the original CPN21 model; this term could have
been included inNF@a,b#, but it is convenient to display the
kinematic part of the action explicitly. In principle we should
include all SU(N)-invariant bilinear currents in addition to
am andb, but the effects of other currents are suppressed at
small momenta, and the addition of an arbitrary functional of
am and b is enough to allow the cancellation of infinities.
Note thatam(x) is now given by Eq.~84!, and isnot taken as
an independent field, because we will need to include terms
in F@a,b# involving ]man2]nam , and we are trying to see
how a Maxwell field can arise without its being put in from
the beginning. The photon will appear here in quite a differ-
ent way.

For the sake of variety, we will take a different approach
to counting powers of 1/N here, which gives the same result
as the functional Fourier transform used in the previous sec-
tions. We introduce apair of new auxiliary fields
am(x), rm(x) and b(x), s(x) for each of the bilinears
am(x) andb(x) appearing in the action, writing Eq.~83! in
the equivalent form

I 5N f2E d4x@2b1amam1s~b2b!

1rm~am2am!#1N f2F@a,b#. ~87!

Integrating out thes(x) andrm(x) yieldsd functions which
set b(x)5b(x) and am(x)5am(x), taking us back to Eq.
~83!. Instead, we shall first integrate out theam(x) and

b(x). Since the terms in Eq.~87! that depend onam(x) or
b(x) are simply proportional toN and do not depend on the
ur , in the limit of largeN we can set these fields equal to the
values at which Eq.~87! is stationary with respect to
am(x) andb(x), giving

I 52N f2E d4x@~11s!b1rmam#1N f2G@r,s#, ~88!

whereG is the Legendre transform ofF1*d4xamam,

G@r,s#5FF@a,b#1E d4xamam

1E d4x~rmam1sb!G
staty

, ~89!

with the subscript ‘‘staty’’ meaning that we setam(x) and
b(x) equal to values satisfying conditions that make the
quantity in square brackets stationary:

dF

dam~x!
522am~x!2rm~x!,

dF

db~x!
52s~x!. ~90!

The Legendre transform of a general perturbatively local
functional is just another general perturbatively local func-
tional, so we can regardG@r,s# as arbitrary, except for a
gauge invariance condition. Using Eq.~90! and the invari-
ance ofF@a,b# under the transformation~86!, we easily see
that

05E d4x]meS 2am
dF@a,b#

db
1

dF@a,b#

dam
D

5E d4x]meS 22~11s!
dG@r,s#

drm
2rmD . ~91!

It follows that we can define a new functional

G8@r,s#[G@r,s#1
1

4E d4x
rmrm

11s
~92!

that is invariant under the transformations

drm522~11s!]me, ds50. ~93!

This suggests that we should define a gauge field

Am[2
rm

2~11s!
, ~94!

which according to Eq.~93! has the gauge transformation
property

dAm5]me. ~95!

In the original version of the CPN21 model,F50, and then
Eq. ~90! shows thatrm522am522am and s50, so Eq.
~94! givesAm5am . But in the general case withFÞ0, it is
incorrect to identifyAm with am .

We are not yet ready to add a Lagrange multiplier term
2*d4xl(ur

†ur2N) and integrate out theur fields, because
then we would again encounter an infinite term proportional
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to *d4xl2, and it is not yet clear how this could be canceled.
Instead, we will first redefine the fields to introduce an order
parameter, as we did in the previous section for the nonlinear
s model. Define

zr[ fA11sur , ~96!

subject to the constraint

zr
†zr5N f2~11s!. ~97!

The bilinears~84! and ~85! then take the form

am5
2 i

2 f 2N~11s!
@zr

†]mzr2~]mzr !
†zr #, ~98!

b5
1

f 2N~11s!
]mzr

†]mzr2
1

4~11s!2
]ms]ms. ~99!

The action given by Eq.~88! now may be written

I 52E d4x~Dmzr !
†Dmzr1N f2G9@A,s#, ~100!

whereDm is the gauge-covariant derivative

Dmzr[]mzr2 iAmzr , ~101!

and G9 is another arbitrary gauge-invariant perturbatively
local functional

G9@A,s#[
1

4E d4x
]ms]ms

11s
1G8@r,s#. ~102!

Now, we may enforce the constraint~97! by introducing a
Lagrange multiplier term

2E d4xl@zr
†zr2N f2~11s!#, ~103!

which preserves gauge invariance if we definel(x) to be
gauge invariant. After integrating out thes field, the action
becomes

I 52E d4x~Dmzr !
†Dmzr2E d4xlzr

†zr1NH@A,l#,

~104!

whereH@A,l# is yet another Legendre transform

H@A,l#5 f 2FG9@A,s#1E d4x~11s!l G
s5sl

, ~105!

with sl(x) equal to thes(x) at which the quantity in square
brackets on the right-hand side of Eq.~105! is stationary

dG9@A,s#

ds~x!
U

s5sl

52l~x!. ~106!

The zr field is now unconstrained.
We want to calculate the effective actionG@z,A,l#,

which in the tree approximation gives the same result as the
sum of all loop and tree graphs calculated using the action

~104!. Following the same reasoning as in Sec. II~with zr
replacingc r , andl andA replacings), we find that this is
given to leading order in 1/N by

G@z,A,l#52E d4x~Dmzr !
†Dmzr2E d4xlzr

†zr1G@A,l#,

~107!

where

G@A,l#5 iNTr ln@DmDm2l#1NH@A,l#. ~108!

Gauge invariance and dimensional analysis tell us that the
infinite part of the first term in Eq.~108! is a linear combi-
nation of the gauge-invariant functionals*d4xl, *d4xl2,
and*d4x(]mAn2]nAm)2. But H@A,l# is an arbitrary pertur-
batively local functional, constrained only by invariance un-
der the gauge transformation~95!, so there is no problem in
adjusting it to cancel these infinities.

Like the nonlinear sigma model, the CPN21 model can
exist in several phases, characterized here by different
spacetime-independent vacuum expectation value of the sca-
lar fields zr and l, with Am(x)50. In analyzing these
phases, we shall make use of the fact that forAm(x)50 and
l(x) constant,G@A,l# may be expressed as in Eq.~63! in
terms of an effective potentialV(l)

G@0,l#52V4V~l!, ~109!

with V4 the spacetime volume. The effective potential here is
given by a formula such as Eq.~62!,

V~l!5
Nl2ln~l/M2!

32p2
1N(

n51

`

cnln, ~110!

with cn a set of new constant coefficients depending on
H@0,l#, andM a new constant that can be chosen to make
c250. ~The coefficient in the first term is 1/32p2 instead of
1/64p2 becausezr is complex.! In analyzing the vector par-
ticle mass and the ‘‘charge’’ of thezr particles, we will also
need to study the term inG@A,l# of second order in the
photon field for constantl(x), which gauge invariance re-
quires must take the form

G~2!@A,l#5
N

2E d4xAm~x!~hmnh2]m]n! f ~2h,l!An~x!.

~111!

Evaluating the trace in Eq.~108!, gives

f ~q2,l!52
1

16p2E0

1

dx~122x!2lnS l1q2x~12x!

W2 D
1 (

n50

`

f n~q2!ln, ~112!

where f n(q2) areN-independent functions ofq2 analytic at
q250, arising from the unknown functionalH@A,l#, and
W is another mass parameter, which can be chosen to make
f 0(0)50.
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A. Broken symmetry phase

In this phasezr(x) has a nonvanishing vacuum expecta-
tion value ANv r while the vacuum expectation values of
l(x) andAm(x) both vanish, which requires that

]V~l!

]l U
l50

52Nv2, ~113!

where v2[v r* v r . Since G}N, v r is N independent. For
small constantl, the effective potential~110! is

V~l!→
Nl2ln~l/M2!

32p2
1Nc1l. ~114!

Hence condition~113! gives

c152v2. ~115!

In analyzing the degrees of freedom in this phase, it is very
convenient to eliminate the scalar-vector mixing in Eq.~107!
by adopting unitarity gauge, in which Im(v r* zr)50. Taking
vN5v real andv i50 for i 51, . . . ,N21, this means that
zN is real, while thezi are still complex. Thezi are massless
Goldstone boson fields, whilezN has the same sort of mixing
with l that we saw in the previous section; the terms in the
action of second order inl and/orzN2ANv have a coeffi-
cient matrix given by

DNN~k2!5k2, Dll~k2!5NA~k2!,

DNl~k!5DlN~k!5ANv, ~116!

where now

A~k2!5
ln~k2/M2!

16p2
1 (

n51

`

f n~k2!n, ~117!

with f n yet another set of model-dependent constants, and
M is a constant chosen so that the termf 0 in the sum is
absent. The scalar massm is given by the condition that this
has a zero determinant atk252m2:

2m2A~2m2!5v2. ~118!

Without further information about the functionalH@0,l#, we
cannot tell whether there actually is a massive scalar in the
spectrum ofzN andl.

To study the vector particles in this phase, we note that
according to Eq.~107!, the term inG@v,A,0# of second order
in the photon field is given in this phase by

G~2!@ANv,A,0#52Nv2E d4xAm~x!Am~x!1G~2!@A,0#,

~119!

whereG (2)@A,0# is defined by Eq.~111!. There is a vector
particle of massmÞ0 if

m2f ~2m2,0!52v2. ~120!

Without special assumptions aboutH@A,0#, it is not possible
to tell this has a solution, much less to calculate the vector

boson massm. But it is clear that any massive scalar or
vector particles would have to be unstable, because they
could decay into the Goldstone bosonszi .

B. Unbroken symmetry phase

In this phasel has a nonzero vacuum expectation value
l0, satisfying the condition

]V~l!

]l U
l5l0

50, ~121!

which allowszr(x) as well asAm(x) to have vanishing ex-
pectation values. Equation~107! shows that in this phase the
zr have squared massl0, sol0 must be positive. The photon
propagator in momentum space equals

Dmn~k!5
hmn

k2N f~k2,l0!
1 gauge terms,

where ‘‘gauge terms’’ denote gauge-dependent terms propor-
tional to kmkn . Because thezr for l0Þ0 have a finite mass
the functionf (k2,l0) is analytic atk250, so the photon here
is massless. Also, the renormalized gauge field is
AN f(0,l0)Am, so thezr charge is 1/AN f(0,l0), and is hence
of order 1/AN. Without making special assumptions about
the functionalH@A,l#, it is impossible to say anything more
about the values of thezr squared massl0 or thezr charge.

C. Phase transition

As in the case of the nonlinears model, we can obtain
more detailed results when the model is near a phase transi-
tion between the broken and unbroken symmetry phases. In
the unbroken symmetry phase, the model is near this phase
transition if thel0 satisfying Eq.~121! is positive and small.
In this case Eqs.~110! and ~121! give

c152
l0ln~e1/2l0 /M2!

16p2
, ~122!

which has positive small solutions forl0 as long asc1 be
small and positive. On the other hand, in the broken symme-
try phase the model is near the phase transition ifv is small,
which according to Eq.~115! requires thatc1 is small and
negative. Thus there is a second-order phase transition at
c150, irrespective of the values of other parameters.

To analyze the low-momentum limit near a phase transi-
tion, we note that the action~104! contains a single super-
renormalizable term2Nc1B*d4xl; four strictly renormaliz-
able terms

2Nc2BE d4xl2; 2 1
4 NZE d4x~]mAn2]nAm!2;

2E d4x~Dmzr !
†Dmzr ; 2E d4xlzr

†zr ;

and an infinite number of nonrenormalizable terms.@The
subscript B again indicates bare values, adjusted to give fi-
nite values toc1 and c2 in Eq. ~110!.# In the limit where

2314 56STEVEN WEINBERG



c1 and all momenta are small, we can ignore the nonrenor-
malizable interactions, and calculate scattering amplitudes by
using the quantum effective interaction~107! in the tree ap-
proximation, now with

G@A,l#5 iNTr ln@DmDm2l#2Nc1BE d4xl

2Nc2BE d4xl22 1
4 NZE d4x~]mAn2]nAm!2.

~123!

This tells us that, for example, the potentialV(l) is given by
Eq. ~114!; that for constantl(x) the function f (q2,l) ap-
pearing in the formula~111! for the term inG@A,l# of sec-
ond order in the vector field is here

f ~q2,l!52
1

16p2E0

1

dx~122x!2lnS l1q2x~12x!

W2 D ;

~124!

and that the functionA(k2) appearing in the scalar two-point
function ~116! is

A~k2!5
ln~k2/M2!

32p2
. ~125!

As an example of the use of these results, let us look more
closely at the properties of the particles near the phase tran-
sition. In the unbroken symmetry phase for smalll0, Eq.
~124! gives

f ~0,l0!→2
N

48p2
lnS l0

W2D . ~126!

This is positive but diverges forl0→0, so that thezr charge
1/AN f(0,l0) vanishes at the phase transition. In the broken
symmetry phase the vector boson mass is determined by the
function f (q2,0), which forq2→0 is given by Eq.~124! as

f ~q2,0!→2
1

48p2F lnS q2

W2D 2
8

3G . ~127!

Equation~120! for the vector boson squared massm2 has a
single solution that vanishes asv→0, indicating the pres-
ence of a single light vector particle. Also, in the broken
symmetry phase near the phase transition, Eq.~118! for the
scalar massm takes the form

2m2ln~2m2/M2!

32p2
5v2. ~128!

This has one solution form2 that vanishes asv→0, indicat-
ing the presence of single massive but light scalar particle.
These solutions form2 and m2 both have positive real part
but are complex, reflecting the fact that both of these par-
ticles are unstable, because they can decay into pairs of
Goldstone bosons.

V. DYNAMICAL GAUGE BOSONS: A REMARK

The CPN21 model has attracted much attention because
of the appearance of a massless gauge boson in a theory
involving only scalar fields. It is important to recognize that
this phenomenon does not depend on the existence of the
gauge symmetry~82!, or indeed on any of the symmetry
properties of the action.

This can be seen by a very general argument@11#. Con-
sider a theory that is invariant under a gauge groupG, with
various matter multiplets forming various representations of
G. Suppose that one of these multiplets consists of scalar
fields, some of which have vacuum expectation values that
completely break the gauge symmetry. Integrate out the mas-
sive gauge vector bosons in unitarity gauge. We then have a
perturbatively local effective field theory, with no hint of the
original gauge invariance. It seems pretty clear that if we
allow arbitrary interactions in the original theory, then in this
way we obtain a completely general effective field theory of
the remaining fields. But this procedure can be reversed, so
out of any effective field theory with no gauge symmetry and
possibly no global symmetry, we can obtain a theory with
any broken gauge symmetry.

The point is that a spontaneously broken gauge symmetry
in itself has no predictive power@12#. Of course, it can have
plenty of predictive power if the gauge coupling isweak, but
for this we have to fine-tune the parameters in the action. In
the CPN21 model studied in the previous section, this fine-
tuning is achieved by the condition thatc1 is small.

To illustrate the possibility of constructing a broken gauge
symmetry in an effective field theory that has no symmetry
to begin with, consider a theory of Dirac fieldsc i(x) with an
action of form

I @c#52E d4x(
i

c ig
m]mc i2G@c#, ~129!

where G@c# is an essentially arbitrary perturbatively local
functional of the fermion fields. We can chooseG@c# so that
this action hasno internal symmetries, if we like, not even
fermion conservation. This action can be obtained by inte-
grating out a vector fieldAm(x) in the action

I @c,A#52E d4x(
i

c ig
m]mc i2G8@c#2

M2

2 E d4xAmAm

1E d4xAm j m2
1

4E d4xFmnFmn, ~130!

where M is an arbitrary mass parameter,
Fmn(x)[]mAn2]nAm , and

G8@c#[G@c#2
1

2E d4x jm~x!
1

M22h
j m~x!

2
1

2M2E d4x]n j n~x!
1

M22h
]m j m~x!,

~131!

where j m(x) is the current
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j m[(
i

qic ig
mc i , ~132!

with qi an arbitrary set of real parameters. As long asM
Þ0, G8 is still perturbatively local. The action~130! can be
obtained from another action

I @c,A,u#52
M2

2 E d4xu]mu2 iAmuu22E d4x(
i

c ig
m~]m

2 iqiAm!c i2
1

4E d4xFmnFmn1G8@c8# ~133!

with u a scalar field constrained byuuu251, and

c i8[c iu
2qi. ~134!

The action~133! is invariant under the gauge transformation

c i~x!→eiqia~x!c i~x!, u~x!→eia~x!u~x!, Am~x!

→Am~x!1]ma~x!, ~135!

so the action~130! can be obtained from Eq.~133! by adopt-
ing the unitarity gauge, in whichu51. @The action~133! is
also perturbatively local, because in deriving perturbation
theory, we expand aroundu51 rather thanu50.# Yet, there
is no trace of this gauge invariance or even global invariance
in the action~129! with which we started.
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