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The HQET and NRQCD Lagrangian is computed to orderas /m
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I. INTRODUCTION

Heavy quark effective theory~HQET! @1# and nonrelativ-
istic QCD ~NRQCD! @2,3# are two effective theories that
describe the interactions of almost on-shell heavy quarks.
HQET describes the interactions of quarks of massm in
which the momentum transferp is much smaller thanm. The
HQET Lagrangian has an expansion in powers ofp/m.
HQET is typically applied to hadrons containing a single
heavy quark, such as theB meson, in whichp;LQCD, the
scale of the strong interactions. The HQET expansion is thus
an expansion in powers ofLQCD/m. NRQCD describes the
interactions of nonrelativistic quarks, and is typically applied
to Q̄Q bound states such as theY. The NRQCD Lagrangian
also has an expansion in powers of 1/m. The momentum
transfer in NRQCD is of ordermv, so that the small expan-
sion parameter in NRQCD is the velocityv. The size of a
term in the NRQCD Lagrangian can be estimated using ve-
locity counting rules @3#. The basic difference between
HQET and NRQCD can be seen from the first two terms in
the effective Lagrangian:

L5Q†~ iD 0!Q1Q†
D2

2m
Q. ~1!

In HQET, the first term is of orderLQCD, and the second
term is of orderLQCD

2 /m, whereas in NRQCD both terms are
of ordermv2. As a result, the quark propagator in HQET is
i /(k01 i e), and in NRQCD it is

i

~k02k2/2m1 i e!
. ~2!

The HQET and NRQCD Lagrangian is computed in this
paper to one loop and order 1/m3. Only the terms bilinear in
fermions are considered here. There are also four-quark op-
erators in the effective Lagrangian. Their coefficients are or-
der as , and can be obtained simply from tree-level match-
ing.

II. MATCHING CONDITIONS AND POWER COUNTING

The HQET effective theory matching computation is a
straightforward generalization of known results to order
1/m2 @4–8#. One can compute diagrams in the full and effec-
tive theories, and match to a given order in 1/m. Since the

HQET propagator ism independent, the HQET power count-
ing is manifest — one counts powers of 1/m directly from
the vertex factors. This means that graphs with a vertex of
order 1/mr do not make any contributions to terms of order
1/ms, with s,r to any order in the loop expansion.

The use of NRQCD as an effective field theory is more
subtle. NRQCD with the propagator, Eq.~2!, cannot be used
as an effective Lagrangian to compute matching corrections,
since the velocity power counting breaks down.1 The match-
ing conditions for NRQCD should be computed using the
HQET power counting, by expanding inpm/m. After the
HQET Lagrangian has been computed, it can be used for
computing bound state properties using the NRQCD velocity
power counting rules. In other words, the NRQCD propaga-
tor Eq. ~2! should be thought of as the infinite series

1

k02k2/2m1 i e
5
1

k0
1

k2

2m~k0!2
1•••, ~3!

where one uses the right-hand side inside any ultraviolet di-
vergent Feynman graph. This is necessary when a cutoff
such as dimensional regularization is used to regulate the
Feynman graphs. NRQED matching conditions have previ-
ously been computed using a momentum space cutoff@9#. In
this case, there is no difference between using the left- or
right-hand sides of Eq.~3!. However, a momentum space
cutoff cannot be used in NRQCD, since it breaks gauge in-
variance.

The difference between using the two forms of Eq.~3! in
a loop graph can be illustrated by a simple example. Con-
sider the integral

E
0

`

dk2
~k2!a

~k21m1
2!~k21m2

2!
5

p

sinpa

~m1
2!a2~m2

2!a

m1
22m2

2 . ~4!

The denominator of a typical NRQCD loop graph has poles
at k2;p2, where p is the external momentum,and at
k2;m2 wherem is the quark mass. The graph can be written
in the form Eq.~4!, where the scalesm1 andm2 in Eq. ~4!
can be taken to be of orderp andm, respectively. The power
a increases as one considers more and more divergent loop

1I would like to thank M. Luke for extensive discussions on this
point. Some of these issues will be discussed in a future publication.
See also@15#.
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graphs in the effective theory. One can see immediately that
the NRQCD power counting breaks down. Loop graphs with
insertions of higher dimension operators are divergent, and
can be proportional to positive powers ofm because of the
(m2

2)a term in Eq.~4!. The positive powers ofm from the
loop integral can compensate for inverse powers ofm in the
coefficient, and the entire effective Lagrangian expansion
breaks down. Now consider the same integral, but first ex-
pand

1

k21m2
2 5

1

k2
2
m2
2

k4
1•••,

evaluate the integral, and then resum the series. The answer
is

E
0

`

dk2
~k2!a

~k21m1
2!~k21m2

2!
5

p

sinpa

~m1
2!a

m1
22m2

2 . ~5!

The integral is missing the (m2
2)a term since it is nonanalytic

at the origin foraÞ integer, which is where the integral is
evaluated in 42e dimensions. Equation~5! only has inverse

powers of the high momentum scalem2;m, and leads to an
acceptable effective field theory. Thus NRQCD and HQET
matching conditions are computed in the same way, and the
two Lagrangians are the same.

III. THE LAGRANGIAN

The continuum NRQED effective Lagrangian at one loop
has previously been computed@9# using a photon mass to
regulated the infrared divergences, and a momentum space
cutoff. This procedure cannot be used in a non-abelian gauge
theory such as QCD. The kinetic terms in the NRQCD La-
grangian at one loop have previously been computed by
Morningstar@10# using a lattice regulator. The computations
in this article will be done in the continuum using dimen-
sional regularization for the infrared and ultraviolet diver-
gences, and for on-shell external states. This has the advan-
tage that one can freely use the equations of motion to reduce
the number of operators in the effective Lagrangian@11#. The
most general effective Lagrangian to order 1/m3 ~up to field
redefinitions! is

L5Q†H iD 01c2
D2

2m
1c4

D4

8m3 1cFg
s–B

2m
1cDg

@D–E#

8m2 1 icSg
s•~D3E2E3D!

8m2 1cW1g
$D2,s–B%

8m3 2cW2g
Dis•BDi

4m3

1cp8pg
s•DB•D1D•Bs•D

8m3 1 icMg
D–†D3B‡1@D3B#•D

8m3 1cA1g
2
B22E2

8m3 2cA2g
2
E2

16m3 1cA3g
2TrSB22E2

8m3 D
2cA4g

2TrS E2

16m3D1 icB1g
2

s•~B3B2E3E!

8m3 2 icB2g
2

s•~E3E!

8m3 JQ, ~6!

which is the HQET-NRQCD Lagrangian in the special framev5(1,0,0,0), and the notation of@9# has been used. The
covariant derivative isDm5]m1 igAmaTa5(D0,2D). Covariant derivatives in square brackets act only on the fields within
the brackets. The other covariant derivatives act on all fields to the right. The subscriptsF, S, andD stand for Fermi,
spin-orbit, and Darwin, respectively. The last seven terms in Eq.~6! were not given in Ref.@9#, since they were not required
for the computation done there. The last four terms can be omitted for QED.

In an arbitrary frame, Eq.~6! can be written as

Lv5Q̄vH iD •v2c2
D'
2

2m
1c4

D'
4

8m3 2cFg
sabG

ab

4m
2cDg

va@D'
bGab#

8m2 1 icSg
vlsab$D'

a ,Glb%

8m2 1cW1g
$D'

2 ,sabG
ab%

16m3

2cW2g
D'

l sabG
abD'l

8m3 1cp8pg
sab~D'

lGlaD'b1D'bGlaD'
l 2D'

lGabD'l!

8m3 2 icMg
D'a@D'bG

ab#1@D'bG
ab#D'a

8m3

1cA1g
2
GabG

ab

16m3 1cA2g
2
GmaG

mbvavb

16m3 1cA3g
2TrSGabG

ab

16m3 D1cA4g
2TrSGmaG

mbvavb

16m3 D2 icB1g
2
sab@Gma,Gm

b#

16m3

2 icB2g
2
sab@Gma,Gnb#vmvn

16m3 JQv , ~7!

where

D'
m5Dm2vmv•D. ~8!

The tree-level matching conditions can be obtained by integrating out the antiquark components, and making a field redefi-
nition to eliminate terms withv•D acting on the quark fields. The ‘‘standard’’ form of the HQET Lagrangian after integrating
out the antiquark fields is
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Lv5Q̄vH iv•D1 iD”'

1

2m1 iv•D
iD”'JQv5Q̄vH iv•D2

1

2m
D”'D”'1

1

4m2D”'~ iv•D !D”'2
1

8m3D”'~ iv•D !2D”'JQv .

The field redefinition

Qv→S 12
D'
2

8m2 2
gsabG

ab

16m2 1
D'

a~ iv•D !D'a

16m3 1
gvlD'aG

al

16m3 2 i
sabD'

a~ iv•D !D'
b

16m3 2 i
gvlsabD'

aGbl

16m3 DQv

@thes matrices are understood to bePvsPv , wherePv5(11v” )/2# can be used to eliminate the time derivative terms, and put
the Lagrangian into the ‘‘NRQCD’’ form. The result is Eq.~7! with c25c45cF5cD5cS5cW15cA15cB151, and
cW25cp8p5cM5cA25cA35cA45cB250. ThecA and cB terms are quadratic in the field strengths, and are orderg2. The
one-loop corrections to these terms will not be computed here.

IV. QUARK FORM FACTORS AND MATCHING CONDITIONS

A loop diagram in QCD is a functionF($p%,m,m,e) where$p% are the external momenta,m is the quark mass,m is the
scale parameter of dimensional regularization, and the computation is done ind542e dimensions. As an example, consider
the diagram in Fig. 1~in background field gauge!, which gives radiative corrections to the quark-gluon three-point vertex. This
vertex is conventionally expressed in terms of two form factorsF1(q

2) andF2(q
2) defined by

G~3!52 igTaū~p8!FF1~q
2!gm1 iF 2~q

2!
smnqn

2m Gu~p!, ~9!

whereq5p82p, andG (3) is the irreducible three-point function. In dimensional regularization, the diagram givesF1 and
F2 as functions of the formF1,2(q

2/m2,m/m,e). TheF1 form factor can be expanded as a power series inq2/m2 at fixed
e, followed by the limite→0

F15F1~0!S A0

eUV
1
B0

e IR
1~A01B0!ln

m

m
1D0D1q2

dF1
dq2

~0!S A1

eUV
1
B1

e IR
1~A11B1!ln

m

m
1D1D1•••, ~10!

and similarly for theF2 form factor. It is conventional to
label e as eithereUV or e IR , depending on whether the inte-
gral is ultraviolet or infrared divergent. Ultraviolet diver-
gences are cancelled by renormalization counterterms. Infra-
red divergences cancel when a physically measurable
quantity is computed. Expanding the form factor inq2 and
then taking the limite→0 gives an expression that is ana-
lytic in q2, and misses terms which are nonanalytic inq2.
The nonanalytic terms are not needed for the calculation of
the coefficients in the effective theory, since the effective
Lagrangian is analytic in momentum. The coefficients of the
effective Lagrangian are determined by computing~for ex-
ample! the difference ofF1 in the full theory and effective
theories. The nonanalytic terms inF1 cancel in the differ-
ence, and the analytic terms determine the unknown param-
eterscF•••cB2 in the effective Lagrangian.

Loop diagrams in HQET are functionsF($p%,m,e) times
powers of the coefficientsci in the effective Lagrangian,
where $p% are the external momenta. All on-shell loop
graphs vanish when expanded in powers ofp, followed by
e→0. This is because the coefficient of any power ofp is a
dimensionally regulated integral of the form

E ddk

~2p!d
f ~k2,k•v !. ~11!

There is no dimensionful parameter in the integrand, so the
integral vanishes. The matching condition is then trivial: one
takes Eq.~10!, and throws away the 1/e terms to obtain the

difference of the graph in the full and effective theory. All
the 1/e terms in the difference are ultraviolet divergences
~which are cancelled by renormalization counterterms!, since
there are no infrared divergences in matching conditions. To
see this more explicitly, one can evaluate integrals such as
Eq. ~11! by breaking them up into the sum of two integrals,
one only ultraviolet divergent, and the other only infrared
divergent. For example,

E ddk

~2p!d
1

k4
5E ddk

~2p!dF 1

k2~k22m2!
2

m2

k4~k22m2!G
5

i

8p2F 1

eUV
2

1

e IR
G50, ~12!

sinceeUV5e IR5e. A given quantity in the effective theory
is of the form

AeffS 1

eUV
2

1

e IR
D . ~13!

There can be no finite parts@the analogs of the
(A1B)lnm/mandD terms in Eq.~10!#, since the net integral
is zero. A typical matching condition is of the form

graphs in full theory5graphs in effective theory1ci ,
~14!
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whereci is a coefficient in the effective Lagrangian. Using
Eq. ~10! and Eq.~13!, the matching condition can be written
as

B

e IR
1~A1B!ln

m

m
1D52Aeff

1

e IR
1ci . ~15!

TheA/eUV andAeff /eUV terms are canceled by the renormal-
ization counterterms in the full and effective theories, respec-
tively. The coefficients in the effective Lagrangian have no
infrared divergences, which impliesB52Aeff so that infra-
red divergences in the full theory are related to ultraviolet
and infrared divergences in the effective theory, and

ci5~A1B!ln
m

m
1D. ~16!

Thus ci is obtained from Eq.~10! by keeping the finite
pieces, and omitting the 1/eUV and 1/e IR terms. The proce-
dure described here has been used previously in computing
matching conditions@4,12,13#.

The coefficients of theQ†(D2/2m)Q andQ†(D4/8m3)Q
are fixed by the dispersion relationE25p21m2 of QCD,
c25c451. The other terms, which all contain at least one
power of the gauge fieldAm, are obtained by computing the
one-loopQ†QA on-shell scattering amplitude. The wave-
function renormalization graph Fig. 2 and the ‘‘Abelian’’
vertex correction Fig. 3 can be found in many textbooks on
quantum field theory@14#. In dimensional regularization, one
finds that the wave-function graph is

2 iS~p!52 iCF

as

4p
@A~p2!m1B~p2!p” #, ~17!

A~p2!5E
0

1

dxG~e/2!~42e!@m2x2p2x~12x!#2e/2,

~18!

B~p2!52E
0

1

dxG~e/2!~22e!

3~12x!@m2x2p2x~12x!#2e/2, ~19!

where

CF5TaTa5 4
3

is the quadratic Casimir of the quark representation~not to
be confused withcF , the coefficient of the Fermi interac-
tion!. The on-shell wave-function renormalization correction
is

dZ52CF

as

4pFB~m2!12m2S ]A

]p2
1

]B

]p2D
p25m2

G
5CF

as

p F 1

2eUV
1

1

e IR
112

3

2
ln
m

m G . ~20!

The on-shell Abelian vertex correction from Fig. 3 can be
expressed in terms of the form factorsF1 andF2:

F1
~a!~q2!5

as

2pSCF2
1

2
CAD F 1

eUV
1

1

e IR
S 22

q2

m2D I ~q2/m2!

1S 32
q2

m2D I ~q2/m2!2
1

2
J~q2/m2!

2S 12
q2

2m2DK~q2/m2!21G ~21!

and

F2
~a!~q2!5

as

2pSCF2
1

2
CAD I ~q2/m2!, ~22!

where

I ~q2/m2!5E
0

1

dx
m2

m22q2x~12x!
, ~23!

J~q2/m2!5E
0

1

dxln
m22q2x~12x!

m2 , ~24!

FIG. 1. Non-Abelian contribution to the one-loop vertex correc-
tion. The contribution of this diagram is denoted by a superscript
(g).

FIG. 2. One-loop wave-function renormalization.

FIG. 3. Abelian one-loop vertex correction. The contribution of
this diagram is denoted by a superscript (a).
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K~q2/m2!5E
0

1

dx
m2

m22q2x~12x!
ln
m22q2x~12x!

m2 ,

~25!

and

CA53,

is the quadratic Casimir of the adjoint representation. Ex-
panding to orderq2/m2 gives

F1
~a!5

as

p SCF2
1

2
CAD F 1

2eUV
1

1

e IR
11

2
3

2
ln
m

m
1

q2

m2S 2
1

3

1

e IR
2
1

8
1
1

3
ln
m

m D G , ~26!

F2
~a!5

as

p SCF2
1

2
CAD F121

q2

12m2G . ~27!

The final diagram is the non-Abelian vertex correction,
Fig. 1. This is computed in background field Feynman
gauge, which preserves gauge invariance. The resulting dia-
gram can also be evaluated in terms of theF1 andF2 form
factors:

F1
~g!5

as

8p
CAE

0

1

dxE
0

12x

dy„2G~11e/2!$2q2~x1y!

12m2~12x2y!@2~x1y!1~42e!~12x2y!#%

3@m2~x1y21!22q2xy#212e/21~22e!G~e/2!

3@m2~x1y21!22q2xy#2e/2
…

5
as

8p
CAF 2

eUV
1

4

e IR
1426ln

m

m
1

q2

m2

3S 2
3

e IR
2113ln

m

m D1••• G , ~28!

F2
~g!52

as

4p
CAm

2G~11e/2!E
0

1

dxE
0

12x

dy~12x2y!@e

1~22e!~x1y!#@m2~x1y21!22q2xy#212e/2

5
as

8p
CAF 4e IR1624ln

m

m
1

q2

m2S 4

e IR
1124ln

m

m D1••• G .
~29!

The total on-shell form factors at one loop are given by

F1512dZ1F1
~a!1F1

~g!

511
as

p

q2

m2F S 2
1

3e IR
2
1

8
1
1

3
ln
m

m DCF

1S 2
5

24e IR
2

1

16
1

5

24
ln
m

m DCAG , ~30!

F25F2
~a!1F2

~g!

5
as

p F12CF1S 1

2e IR
1
1

2
2
1

2
ln
m

m DCAG1
as

p

q2

m2F 112CF

1S 1

2e IR
1

1

12
2
1

2
ln
m

m DCAG . ~31!

The total form factorF1(0) is unity, since gauge invariance
is preserved by the background field method.

The scattering amplitude for a low-momentum heavy
quark off a background vector potential can be computed by
expanding Eq.~9!, and multiplying byAm/E for the incom-
ing and outgoing quarks. Ifp is the three-momentum of the
incoming quark,p8 is the three-momentum of the outgoing
quark, andq5p82p, one finds that the effective interaction
is

2 igTauNR
† ~p8!@A0aj 02Aa

• j #uNR~p!, ~32!

where

j 05F1~q
2!H 12

1

8m2 uqu21
i

4m2 s•~p83p!J
1F2~q

2!H 2
1

4m2 uqu21
i

2m2 s•~p83p!J , ~33!

and

j5F1~q
2!H 1

2m
~p1p8!1

i

2m
s3q2

i

8m3 ~ upu21up8u2!s

3q2
i

16m3 ~ up8u22upu2!s3~p1p8!

2
1

8m3 ~ up8u21upu2!„p1p8…2
1

16m3~ up8u22upu2!qJ
1F2~q

2!H i

2m
s3q2

i

16m3 uqu2s3q

2
1

16m3 uqu2„p81p…2
1

16m3 ~ up8u22upu2!q

2
i

8m3 ~ up8u22upu2!s3~p81p!

1
i

8m3 s•~p81p!~p83p!J . ~34!

Comparing Eqs.~33! and ~34! with the scattering ampli-
tude in the effective theory from the Lagrangian, Eq.~6!,
gives

cF5F11F2, ~35!

cD5F112F218F18, ~36!

cS5F112F2, ~37!

cW15F11
1
2 F214F1814F28, ~38!
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cW25
1
2 F214F1814F28, ~39!

cp8p5F2, ~40!

cM52 1
2 F224F18, ~41!

where

Fi[Fi~0!, Fi8[
dFi

d~q2/m2!
uq250 . ~42!

Note that the nine parameters~including c2 and c4) in the
effective Lagrangian, Eq.~6!, are determined in terms of
only three independent constants,F2, F18 , and F28 , since
F151. Reparametrization invariance@16# gives six linear
relations among the coefficients. This will be discussed in
more detail in the next section.

The explicit expressions for the coefficients are obtained
using Eqs.~30! and ~31!:

cF511
as

p F12CF1S 122
1

2
ln
m

m DCAG , ~43!

cD511
as

p F S 83 lnmm DCF1S 121
2

3
ln
m

m DCAG , ~44!

cS511
as

p FCF1S 12 ln
m

m DCAG , ~45!

cW1511
as

p F S 1121
4

3
ln
m

m DCF1S 132
17

12
ln
m

m DCAG ,
~46!

cW25
as

p F S 1121
4

3
ln
m

m DCF1S 132
17

12
ln
m

m DCAG , ~47!

cp8p5
as

p F12CF1S 122
1

2
ln
m

m DCAG , ~48!

cM5
as

p F S 142
4

3
ln
m

m DCF2S 712lnmm DCAG . ~49!

The results for NRQED can be obtained by settingCA50
andCF51, and agree with those found in@9#, with the re-
placement

lnm→ ln2L2 5
6 . ~50!

The difference in finite parts is because the NRQED integrals
were evaluated in Ref.@9# using a momentum space cutoff,
instead of using dimensional regularization. The results for
the 1/m operators agree with known results for HQET@4,5#.
The 1/m2 matching conditions at tree level, and them depen-
dence at one loop also agree with known results@6–8#. Note
thatcF is independent ofm in QED. This is easy to see if one
computes the renormalization of the magnetic moment op-
erator in the effective theory in Coulomb gauge, in which all
transverse photon interactions are suppressed by 1/m. The
renormalization is only due to vertex corrections from Cou-
lomb photons. These vanish, because all poles in the loop
integral over the energyk0 are on one side of the real axis.

The effective Lagrangian has been computed using back-
ground field Feynman gauge and matching with on-shell
quarks, but with an off-shell gluon. This fixes the coefficients
in the Lagrangian Eq.~6!. One can still redefine terms in the
effective Lagrangian using the gluon equations of motion,
which does not changeS-matrix elements. For example, one
can use the equations of motion to convert the Darwin term
to a linear combination of four-quark operators. It is only the
sum of Eq.~6! and the four-quark terms that gives conven-
tion independentS-matrix elements.

The discussion so far has concentrated on the fermion part
of the effective Lagrangian. There is, in addition, the pure
gauge field part of the effective action. The one-loop correc-
tion to the gluon propagator is shown in Figs. 4 and 5. The
gluon diagram is the same in QCD and in HQET, so the
one-loop matching condition is from the quark vacuum po-
larization diagram. This gives the effective action@17–19#

L52
1

4
d1Gmn

A GAmn1
d2
m2Gmn

A D2GAmn

1
d3
m2g fABCGmn

A G a
Bm GCna1OS 1

m4D , ~51!

with

d1512
as

3p
TFlnm

2/m2,d25
as

60p
TF ,d35

13as

360p
TF ,

~52!

where

TF51/2

is the index of the quark representation. The identity

FIG. 4. Quark contribution to the vacuum polarization.

FIG. 5. Gluon contribution to the vacuum polarization.
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05E 2DmGma
A DnG

naA12g fABCGmn
A G a

Bm GCna

1Gmn
A D2GAmn

has been used to eliminateDmGma
A DnG

naA from Eq. ~51!.

V. REPARAMETRIZATION INVARIANCE

The coefficients of operators in the HQET Lagrangian are
constrained by reparametrization invariance@16#. The re-
parametrization invariant spinor fieldCv is given by

Cv5L~w,v !cv , ~53!

wherecv is the conventional heavy quark field that satisfies

v”cv5cv , ~54!

L(w,v) is the Lorentz transformation matrix

L~w,v !5
11w” v”

A2~11w•v !
~55!

and

wm5
vm1 iDm/m

uvm1 iDm/mu
. ~56!

One needs to choose a particular operator ordering for the
covariant derivatives; different orderings are related to each
other by field redefinitions.

It is simplest to consider the consequences of reparametri-
zation invariance whenDm→]m in Eq. ~53!. Then there is no
operator ordering ambiguity, and the fieldCv can be written
as

Cv5F 1

2A~m1 i ]•v !21~ i ]'!2~m1 i ]•v1A~m1 i ]•v !21~ i ]'!2!
G 1/2@m1 i ]•v1 i ]”'1A~m1 i ]•v !21~ i ]'!2#cv ,

~57!

where

]'
m5]m2vm]•v. ~58!

If one uses Eq.~57!, replacescv by the spinoruNRe
2 ip•x,

with p25m2, g0uNR5uNR, ūNR
† uNR51, andv5(1,0,0,0),

the fieldCv reduces to the spinorue2 ip•x, that satisfies the
Dirac equationp”u5mu, and is normalized so thatūu51.
This shows that reparametrization invariance will determine
the coefficients of the 1/m suppressed operators which are
fixed by relativistic invariance.

The reparametrization invariant kinetic term is

C̄vi ]”Cv5 c̄ v@A~m1 i ]•v !21~ i ]'!22m#cv . ~59!

This is not the same as the terms in the Lagrangian, Eq.~6!.
The reparametrization invariant field, Eq.~53!, does not au-
tomatically produce a Lagrangian in the ‘‘standard’’
NRQCD form. However, one can convert Eq.~59! to this
form by making a field redefinition

cv5FA~m1 i ]•v !21~ i ]'!21m

m1 i ]•v1A2~ i ]'!21m2G 1/2cv8 . ~60!

The kinetic energy term in the primed field is

c̄ v8@m1 i ]•v2A2~ i ]'!21m2#cv8 , ~61!

which, when expanded, gives Eq.~6! with c25c451. Thus
c25c451 follows from reparametrization invariance. The
transformation factor in Eq.~60! when applied to on-shell
spinors~instead of fields! reduces toAm/E. This is the same
as the flux factor for the incoming and outgoing particles
which was included in Eq.~32!.

To determine the constraints of reparametrization invari-
ance on the effective Lagrangian, consider Eq.~57! with the
gauge fields included, i.e., with]→D. Expanding to order
1/m3 gives

Cv5F11A1
iD”'

2m
BGcv , ~62!

where

A512
~ iD'!2

8m2 1
~ iD'!2~ iv•D !

4m3 ,

B512
iv•D
m

2
3~ iD'!2

8m2 1
~ iv•D !2

m2 . ~63!

A particular ordering has been chosen for the operators in
Eq. ~62!. A different ordering gives an effective Lagrangian
that is related by a field redefinition.

The most general reparametrization invariant Lagrangian
is a linear combination of invariant terms, such as
C̄v(v”1 iD” /m)Cv , C̄vs

abGabCv , etc. The effective La-
grangian obtained in this way is not in the form Eq.~7!, but
it can be converted into that form by field redefinitions that
preservev”cv5cv . One finds by a straightforward~but not
very enlightening computation! that the effective Lagrangian
is a linear combination of the invariant linear combinations

iv•D1O21O41OF1OD1OS1OW1 ,

2OF14OD14OS1OW11OW212Op8p2OM ,

OW11OW2 ,2OD1OW11OW22OM ,

OA1 ,OA2 ,OA3 ,OA4 ,OB1 ,OB2 , ~64!
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up to terms of order 1/m4. HereOF , etc., are the operator
coefficients ofcF , etc., in Eq.~7!. The above linear combi-
nations imply the constraints

c251,

c451,

cS52cF21,

cW25cW121,

cp8p5cF21,

2cM5cF2cD , ~65!

which are satisfied by Eqs.~35! and ~43!.

VI. CONCLUSIONS

The HQET and NRQCD Lagrangian has been computed
to one loop and order 1/m3, and has been shown to be re-

parametrization invariant to orderas /m
3. The original form

of the NRQCD propagator, Eq.~2!, cannot be used to com-
pute the effective Lagrangian by matching to QCD. Instead,
one must treat the propagator as an infinite series, and resum
the seriesafter doing the loop integral. As a result, the
matching computations for NRQCD and HQET are the
same. It is straightforward to obtain the effective Lagrangian
~in the one-quark sector! to higher orders in 1/m by expand-
ing the form factorsF1,2 and the spinors in the computation
of Eqs.~32! and ~33! to higher orders. No further Feynman
graphs need to be evaluated.
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