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Heavy quark effective theory and nonrelativistic QCD Lagrangian to order as/m?
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The HQET and NRQCD Lagrangian is computed to ordefm?®. The computation is performed using
dimensional regularization to regulate the ultraviolet and infrared divergences. The results are consistent with
reparametrization invariance to ordent/ Some subtleties in the matching conditions for NRQCD are dis-
cussed[S0556-282197)00813-9

PACS numbds): 12.39.Hg, 12.20-m, 12.38.Bx

[. INTRODUCTION HQET propagator isn independent, the HQET power count-
ing is manifest — one counts powers ofridirectly from
Heavy quark effective theofHQET) [1] and nonrelativ- the vertex factors. This means that graphs with a vertex of
istic QCD (NRQCD) [2,3] are two effective theories that order 1m" do not make any contributions to terms of order
describe the interactions of almost on-shell heavy quarksl/m®, with s<r to any order in the loop expansion.
HQET describes the interactions of quarks of massn The use of NRQCD as an effective field theory is more
which the momentum transferis much smaller tham. The  subtle. NRQCD with the propagator, E@), cannot be used
HQET Lagrangian has an expansion in powers poim. as an effective Lagrangian to compute matching corrections,
HQET is typically applied to hadrons containing a singlesince the velocity power counting breaks doWwhhe match-
heavy quark, such as tf& meson, in whichp~Aqcp, the  ing conditions for NRQCD should be computed using the
scale of the strong interactions. The HQET expansion is thuslQET power counting, by expanding ip*/m. After the
an expansion in powers &focp/m. NRQCD describes the HQET Lagrangian has been computed, it can be used for
interactions of nonrelativistic quarks, and is typically appliedcomputing bound state properties using the NRQCD velocity
to QQ bound states such as the The NRQCD Lagrangian Power counting rules. In other words, the NRQCD propaga-
also has an expansion in powers ofnl/The momentum tor Eqg. (2) should be thought of as the infinite series
transfer in NRQCD is of ordemv, so that the small expan- 1 1 K2
sion parameter in NRQCD is the velocity The size of a T — =5+ 5ot
term in the NRQCD Lagrangian can be estimated using ve- kK*—k“2m+ie k*  2m(k")
locity counting rules[3]. The basic difference between _ o . .
HQET and NRQCD can be seen from the first two terms inWhere one uses the nght-han_d s_lde inside any ultraviolet di-
the effective Lagrangian: vergent ngnmap graph. Th!s is necessary when a cutoff
such as dimensional regularization is used to regulate the
2 Feynman graphs. NRQED matching conditions have previ-
£=Q'(iD%Q+ QTﬁQ- (1)  ously been computed using a momentum space c[8hfin
this case, there is no difference between using the left- or
In HQET, the first term is of ordeA ocp, and the second right-hand sides of Eq(3). However, a momentum space
term is of order/\éCD/m, whereas in NRQCD both terms are cutoff cannot be used in NRQCD, since it breaks gauge in-

f ord 2 A It, th k tor in HOET i variance: . |
iO/(EgjLeireTvand Sinal\;ESQuCD iteisquar propagator in HQET is The difference between using the two forms of E3).in

a loop graph can be illustrated by a simple example. Con-
i sider the integral

(K°—k?2m+ie)” @

()

2 _
o (K*+md)(k®+m3) sinma mi—mj

J“ . (k*)? m (M- (m})? @
The HQET and NRQCD Lagrangian is computed in this '

paper to one loop and ordemiy. Only the terms bilinear in ) .

fermions are considered here. There are also four-quark og-"€ zdenc2>m|nator of a typical NRQCD loop graph has poles
erators in the effective Lagrangian. Their coefficients are ordl k™~p°, where p is the external momentumand at
der as, and can be obtained simply from tree-level match-k“~m” wherem is the quark mass. The graph can be written
ing. in the form Eq.(4), where the scalesy; andm, in Eq. (4)

can be taken to be of orderandm, respectively. The power

Il. MATCHING CONDITIONS AND POWER COUNTING a increases as one considers more and more divergent loop
The HQET effective theory matching computation is a

straightforward generalization of known results to order % would like to thank M. Luke for extensive discussions on this

1/m? [4—8]. One can compute diagrams in the full and effec-point. Some of these issues will be discussed in a future publication.

tive theories, and match to a given order im1/Since the See alsd15].
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graphs in the effective theory. One can see immediately thgtowers of the high momentum scate~m, and leads to an
the NRQCD power counting breaks down. Loop graphs withacceptable effective field theory. Thus NRQCD and HQET
insertions of higher dimension operators are divergent, anghatching conditions are computed in the same way, and the

can be proportional to positive powers f because of the
(m3)2 term in Eq.(4). The positive powers ofn from the
loop integral can compensate for inverse powermah the

coefficient, and the entire effective Lagrangian expansion

two Lagrangians are the same.

Ill. THE LAGRANGIAN

breaks down. Now consider the same integral, but first ex-

pand

2
m;
W

1
k2+m3

1
=2

The continuum NRQED effective Lagrangian at one loop
has previously been computé¢€l] using a photon mass to
regulated the infrared divergences, and a momentum space
cutoff. This procedure cannot be used in a non-abelian gauge
theory such as QCD. The kinetic terms in the NRQCD La-

evaluate the integral, and then resum the series. The answgrangian at one loop have previously been computed by

is

(m?)2

sinra m{—mj;’

(k?)2 3
(k2+m))(k2+m3)

v

f dk?
0

The integral is missing ther‘r@)a term since it is nonanalytic
at the origin fora#integer, which is where the integral is
evaluated in 4 € dimensions. Equatio(b) only has inverse

©)

Morningstar[10] using a lattice regulator. The computations

in this article will be done in the continuum using dimen-
sional regularization for the infrared and ultraviolet diver-
gences, and for on-shell external states. This has the advan-
tage that one can freely use the equations of motion to reduce
the number of operators in the effective Lagrandibhl. The

most general effective Lagrangian to ordemi/(up to field
redefinitions is

2

o D D* o-B [D-E] o (DXE—EXD) {D?% 0B} D'o-BD!
‘C Q ID + CZ m + C4 8m3 + CFg 2m + CDg 8m2 + ICSg 8m2 Cng 8m3 - CWZQ 4m3
o-DB-D+D-Beo-D D~[D><B]+[D><B]-D ,B°—E? E? ,— [B*—E?
+Cppd 8m3 +iCy 8m3 +cp10° B Ca20” 16m3 T3 T Casg Tr Bme
X E? _ ,0-(BXB—EXE) , 0 (EXE)
—CaagTr 16m3 +1Cg10 am3 ~1Ce0 g Q, (6)

which is the HQET-NRQCD Lagrangian in the special frame (1,0,0,0), and the notation dB] has been used. The
covariant derivative i©*= g*+igA*2T3= (D% — D). Covariant derivatives in square brackets act only on the fields within
the brackets. The other covariant derivatives act on all fields to the right. The subseriftsand D stand for Fermi,
spin-orbit, and Darwin, respectively. The last seven terms in(@qwere not given in Refl9], since they were not required
for the computation done there. The last four terms can be omitted for QED.

In an arbitrary frame, Eq6) can be written as

G"‘B
ch 4m

D? D4

v)\T,5DY, G
£ QU iD-v— C22m+C48m A ﬁ{ > }

8m?

{D?,0,5G*}
16m°

v[DFG,p] .

8m2 +C

—Cpg sg w19

D} 0sG**D .\ 7*#(D}GoD . g+ D, 4GroD} —~D1GopD 1)) D.o[D.sG*1+[D, sG**1D,
_CWZQ—Sh_l—Cp’pg 8m3 —licywg 8m3
+Ca10° 1/63m3aﬁ+CA29 Cu 1G6m e Asngr(Glgri:B +CA492TV(%>4031 Uaﬁ[fgr:sGMﬁ]
—itas UaB[GMlaér(ing]vﬂv N o
where

D{=D#-v*v-D. (©)]

The tree-level matching conditions can be obtained by integrating out the antiquark components, and making a field redefi-
nition to eliminate terms witly - D acting on the quark fields. The “standard” form of the HQET Lagrangian after integrating

out the antiquark fields is
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—. . 1 . —. 1 1 . 1 .
ﬁv:QU{IU'Dﬁ-IDLmIDL}QU:QU IU'D—%DLDL'FWDL(IU-D)DL—WDL(IU‘D)ZDL]QU.
The field redefinition

. DI 048" Di(iv-D)Diy, go\D,G™ 0D (iv-D)DF  guy0ugDIGH
Q| 1~ g2 ™ 16m? 16m° 16m° 16m° 16m° Q

[the o matrices are understood to Beo P, , whereP,= (1+¢)/2] can be used to eliminate the time derivative terms, and put
the Lagrangian into the “NRQCD” form. The result is E¢7) with c,=c,=Cr=Cp=Cg=Cy;=Ca1=Cg1=1, and
Cw2=Cprp=CMm=Cp2=Caz3=Cas=Cpgp=0. Thec, andcg terms are quadratic in the field strengths, and are ogdefhe
one-loop corrections to these terms will not be computed here.

IV. QUARK FORM FACTORS AND MATCHING CONDITIONS

A loop diagram in QCD is a functiofr ({p},m,u,€) where{p} are the external momenta is the quark massy is the
scale parameter of dimensional regularization, and the computation is ddredin- € dimensions. As an example, consider
the diagram in Fig. 1in background field gaugewhich gives radiative corrections to the quark-gluon three-point vertex. This
vertex is conventionally expressed in terms of two form faciy&g?) andF,(g?) defined by

14
*'q,

2\ op 29
Fa(@%) y*+iF2(9%)—

Ir®=—igT2u(p’) u(p), 9)

whereq=p’ —p, andT'® is the irreducible three-point function. In dimensional regularization, the diagram Biyesd
F, as functions of the fornf g% m? u/m,€). The F, form factor can be expanded as a power serieg?im? at fixed
e, followed by the limite—0

Ao  Bo M
F.= Fl(O) a-Fa-l—(AO—F BO)InE+DO

- zﬁ(0) ﬁ+5+(A +ByIne D, |+ (10)
q do? oy €n 1Byl '

and similarly for theF, form factor. It is conventional to difference of the graph in the full and effective theory. All

label € as eithereyy, or €,r, depending on whether the inte- the 1k terms in the difference are ultraviolet divergences

gral is ultraviolet or infrared divergent. Ultraviolet diver- (which are cancelled by renormalization countertgrragice

gences are cancelled by renormalization counterterms. Infrahere are no infrared divergences in matching conditions. To

red divergences cancel when a physically measurablsee this more explicitly, one can evaluate integrals such as

quantity is computed. Expanding the form factorghiand  Eq. (11) by breaking them up into the sum of two integrals,

then taking the limite—0 gives an expression that is ana- one only ultraviolet divergent, and the other only infrared

lytic in g2, and misses terms which are nonanalyticgf divergent. For example,

The nonanalytic terms are not needed for the calculation of

the coefficients in the effective theory, since the effective dik 1 ddk 1 m2

Lagrangian is analytic in momentum. The coefficients of the f —4=f YTY Ry Ny viw, R

effective Lagrangian are determined by computifay ex- (2mk (Zw)d[k (k*=m?)  KH(k"=m")

ample the difference ofF; in the full theory and effective i 71 1

theories. The nonanalytic terms iy cancel in the differ- 8l e o

ence, and the analytic terms determine the unknown param- v TR

eterscg- - - Cg, in the effective Lagrangian. ) ) o )
Loop diagrams in HQET are functiof&({p},u,€) times ~ SiNC@eyy=€r=¢€. A given quantity in the effective theory

powers of the coefficients; in the effective Lagrangian, IS of the form

where {p} are the external momenta. All on-shell loop

graphs vanish when expanded in powerspofollowed by ( 1 1 )

eff .

=0, (12

e—0. This is because the coefficient of any powepds a - (13

. . : €uv  €R
dimensionally regulated integral of the form

ddk There can be no finite part§the analogs of the
f (2—7T)c[f(k2,k- v). (11 (A+B)Inuw/mandD terms in Eq.(lQ)], since the net integral
is zero. A typical matching condition is of the form
There is no dimensionful parameter in the integrand, so the

integral vanishes. The matching condition is then trivial: one graphs in full theorygraphs in effective theoryc;,
takes Eq.(10), and throws away the &/terms to obtain the (19
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. FIG. 1. Non_—Angian con_tribl_Jtion to .the one-loop vertex correg- FIG. 3. Abelian one-loop vertex correction. The contribution of
tion. The contribution of this diagram is denoted by a superscrip,iq diagram is denoted by a superscrig} (

(9).

wherec; is a coefficient in the effective Lagrangian. Using B(p?)=— fldXF(GIZ)(Z—e)
Eqg. (10) and Eq.(13), the matching condition can be written 0
as _ 2v_n2 _ —€l2
X(1=x)[m°X=pX(1=x)]" %, (19
B A+BIN D= A+ 15
o ( )in—+D= eff g T Ci- (19  where
The Al ey, andAq«/ €,y terms are canceled by the renormal- Cp=TAT2=3%

ization counterterms in the full and effective theories, respec-

tively. The coefficients in the effective Lagrangian have nois the quadratic Casimir of the quark representatioot to
infrared divergences, which implidd= — A4 so that infra-  be confused withcg, the coefficient of the Fermi interac-
red divergences in the full theory are related to ultraviolettion). The on-shell wave-function renormalization correction

and infrared divergences in the effective theory, and is
K a JA 0B
¢i=(A+B)In=+D. (16 —_C. 8 2 2l 74 T
[ m oz CF47T B(m°)+2m ap2+ PR -
Thus ¢; is obtained from Eq.10) by keeping the finite ad 1

. (20)

1 3 m
+—+1-5In—
o

pieces, and omitting the &/, and 1kz terms. The proce- =CF? P " 5
uv IR

dure described here has been used previously in computing
matching condition$4,12,13. h hell Abeli ion f i b
The coefficients of th&'(D2/2m)Q and QT(D*/8m3)Q The on-shell Abelian vertex correction from Fig. 3 can be

are fixed by the dispersion relatide?=p?+m? of QCD, expressed in terms of the form factdts and F:
c,=c,=1. The other terms, which all contain at least one

power of the gauge field*, are obtained by computing the F@(q?)= ﬁ( Ce— ECA
one-loop QTQA on-shell scattering amplitude. The wave- ' 21 2
function renormalization graph Fig. 2 and the “Abelian”

2

9
m2

i'f'i(z_ )I(qzlmz)

€uv  €R

2
vertex correction Fig. 3 can be found in many textbooks on +[3= q_2> 1(q2/m2)— lJ(qZ/mz)
guantum field theor{14]. In dimensional regularization, one m 2
finds that the wave-function graph is o
—(1—W>K(q2/m2)—l} (21)
—i3(p)=—iCr AP )M+B(pH)Pl, (17
and
1
A(p?)= JO dxT'(€/2) (4= e)[m*x—p?x(1=X)] ", coraz— % o Yo Vg2 ’s
(18 2(Q)—Z F™50A (9/m9), (22
where
QGGGG 00077 i
an 2/ 2 _Jl
gé A, QP = | i (23
S A
” ” ” M 1 m?—g?x(1—x)
_ o J(qzlmz)zf dxin—————, (24)
FIG. 2. One-loop wave-function renormalization. 0 M
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L m? m?—g?x(1-x) Fo=F@+F
K(g?*/m? =J dx In , 2702 2
(q ) 0 mZ_qZX(l_X) /.LZ

ad 1 1 1 1 m as 9°[ 1
25 et —_ — s
(25 —5Cr +<2 IR+2 5in )cA + mz{lch
and + ! 1 1| M e 31
Zem 12 2 )CA) (3Y)

The total form factoiF,(0) is unity, since gauge invariance
is the quadratic Casimir of the adjoint representation. Exis preserved by the background field method.
panding to ordeg?/m? gives The scattering amplitude for a low-momentum heavy
quark off a background vector potential can be computed by
expanding Eq(9), and multiplying by\/m/E for the incom-
Fuv . ing and outgoing quarks. i is the three-momentum of the
incoming quark,p’ is the three-momentum of the outgoing

B 3I m g2 B 11 B 1 1I 26 quark, andq=p’ —p, one finds that the effective interaction
2 n HZ 3 €IR 8 3 n ’ ( ) is
. L —igTulR(p')[A%] 0= A [Jung(P), (32
(@) S —
F w(CF ZCA) 2 12m4' @D \where
. . . ) . . ) 1 i
_ The flna_l d!agram is the non Abelian vert_ex correction, 0=F1(q2)( 2|q| + 50 (p' Xp)
Fig. 1. This is computed in background field Feynman

gauge, which preserves gauge invariance. The resulting dia-

gram can also be evaluated in terms of theandF, form + Fz(qz)( |q|2 | 527 (p'xp)t, (33
factors:

1-x and
F<9>=—cAf dxf dy(—T'(1+ €/2){20%(x+Y)

i=F 1(q2)[—(p p)+—cr q- 3(|p|2+|p|2)cr
+2mA(1—x—y)[2(x+Y)+(4—€)(1—x—Yy)]}

X[M2(x+y—1)2—qg’xy] 1"+ (2— )T (el2)

i
Xq- m§(|P’|2—|ID|2)0'><(FJ+ p’)
X[mA(x+y—1)2—g?xy]~?)

o (2 4 2 e P e ) —a(P 2= 1pIP)g
:_S _+__|_4 6l q_z 8m3 :|.6I'T'I3
87T EUV €|R m
3 m +F(q2)[ oXq— ql?oxq
X —6——1+3In;)+ -, (29) ? 16m3| |
IR

- |al*(p"+p)— = (Ip'1?=1Ipl*)q
as 1 [1-x 16m° 16m°
F(29)=—ECAm2F(l+e/2)J de dy(1—x—y)[e
0 0

(2= (x+y)TImAx+y— 1) gxy] - g [P P (7 p)

4 m g%/ 4 i , '
CA—+6 e P A+ T gme @ (P P)(pXP) (34
87 €R M
(29 Comparing Eqs(33) and (34) with the scattering ampli-

tude in the effective theory from the Lagrangian, E6),
The total on-shell form factors at one loop are given by gives

Fi=1— 6Z+F@+F Ce=F1tFo, (35
as q2 1 1 1 m CD:F1+2F2+8F1, (36)
1+ = -~ S+ in—|C
m 3€|R 8 3 M
CS:F1+2F2, (37)

(30

cwi=F1+35 Fo+4F | +4F), (39
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Cwe=3 Fp+4F)+4F), (39
Cp/p:Fz, (40)
Cy=—1F,—4F], (41 6000060t 06600060
where
, dF;
Fi=Fi(0), Fi= gz lee-o- 42

FIG. 4. Quark contribution to the vacuum polarization.
Note that the nine parametefimcluding ¢, andc,) in the
effective Lagrangian, Eq(6), are determined in terms of  The effective Lagrangian has been computed using back-
only three independent constants,, F;, andF5, since ground field Feynman gauge and matching with on-shell
F,=1. Reparametrization invariandd6] gives six linear quarks, but with an off-shell gluon. This fixes the coefficients
relations among the coefficients. This will be discussed inn the Lagrangian Eq6). One can still redefine terms in the

more detail in the next section. effective Lagrangian using the gluon equations of motion,
The explicit expressions for the coefficients are obtainedvhich does not changg-matrix elements. For example, one
using Eqgs(30) and(31): can use the equations of motion to convert the Darwin term

to a linear combination of four-quark operators. It is only the

1 1 m sum of Eq.(6) and the four-quark terms that gives conven-
CF_1+ CF 2 2In;) Cal, (43 tion independenS-matrix elements.
The discussion so far has concentrated on the fermion part
L aq (8 m 1 2 m of the effective Lagrangian. There is, in addition, the pure
co=1+ . §In; Cet §+§In; Cal, (44 gauge field part of the effective action. The one-loop correc-
tion to the gluon propagator is shown in Figs. 4 and 5. The
m gluon diagram is the same in QCD and in HQET, so the
Cs—1+ 2 Ce+ —In; Cal, (45 one-loop matching condition is from the quark vacuum po-
larization diagram. This gives the effective actidiy—19
—14 2 +4Imc+1 17ImC
Cwi= ? 1_2 § n; F § 1_2 n; Al L=— _d GA GA;LV+ d GA ZGA,uV
(46) !
[ 4| PO L 4 + 3 9fascGL,G™ G+ 0O i) (51)
Cw2= 12 3 5_1_2 N—/Cal, ( 7) 7 ABCY uv 4
agll 1 1 m with
Corp=—| 5Crt (2 2In—) Cal, (48)
1 4 m m Gi=1 TN 2ty = 2 Ty Ggm a7
1=+ 9 'F e e e e Y~ Te ML o]
cM— 3 Cem| 3y Cal @9 3w 60m 360m
4 3 127w (52)

The results for NRQED can be obtained by settbg=0
andCg=1, and agree with those found 8], with the re-
placement

where

TF = 1/2
Inu—In2A—2. (50)
The difference in finite parts is because the NRQED integrals s the index of the quark representation. The identity
were evaluated in Ref9] using a momentum space cutoff,
instead of using dimensional regularization. The results for
the 1 operators agree with known results for HQERS]. 666-6@6\0\0\
The 1/m? matching conditions at tree level, and thedepen- a\
dence at one loop also agree with known regifits8]. Note
thatce is independent oft in QED. This is easy to see if one P@“G'G‘G‘G‘G‘G& ?6‘6‘6‘6‘6‘6‘6“
computes the renormalization of the magnetic moment op-
erator in the effective theory in Coulomb gauge, in which all \\00
transverse photon interactions are suppressed oy The \_0\9 0 _9999
renormalization is only due to vertex corrections from Cou- 20,
lomb photons. These vanish, because all poles in the loop
integral over the energi® are on one side of the real axis. FIG. 5. Gluon contribution to the vacuum polarization.
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A(w,v) is the Lorentz transformation matrix
o:f 2D*GY,,D,G"**+2gfag Gl , G, GO (W)

A 2~A A(w,v) 1+ (55
nv W,0)= ————
+GuD76 J2(1rw-v)
has been used to eIiminaDz“GﬁaDVG”“A from Eq. (51). and
V. REPARAMETRIZATION INVARIANCE v#+iD*/m (56)

Wf‘:—# — .
The coefficients of operators in the HQET Lagrangian are [o#+iD#/m]

constrained by reparametrization invariand]. The re-  ope needs to choose a particular operator ordering for the

parametrization invariant spinor fieldl, is given by covariant derivatives; different orderings are related to each
_ other by field redefinitions.

V=AM W), (53 It is simplest to consider the consequences of reparametri-

where, is the conventional heavy quark field that satisfiesZation invariance whed*— g* in Eq. (53). Then there is no
operator ordering ambiguity, and the field, can be written

v llbl) = lylfv ’ (54) as

1/2

- [Mtid-v+id, +(mTia-0)2% (19,210, .

B 2(m+id-v)2+(id,)2(m+id-v+(m+id-v)?+(id,)?)

v

(57)
|
where To determine the constraints of reparametrization invari-
ance on the effective Lagrangian, consider &) with the
d=o"—v*d-v. (58 gauge fields included, i.e., with—D. Expanding to order
_ , 1/m?® gives
If one uses Eq(57), replacesy, by the spinoruyge™'P,
W|th p2: mz, ’)’OUNR: UNR UfNRuNR: 1, andl} = (1,0,0,0), IDL
: - i L =|1+A+ —
the field ", reduces to the spinare™'P "%, that satisfies the Yo=|11A 2m By, (62
Dirac equationpu=mu, and is normalized so thatu=1. h
This shows that reparametrization invariance will determing’/"€"®
t_he coefﬁuems qf t_he m suppressed operators which are (iD,)? (iD,)¥iv-D)
fixed by relativistic invariance. A=1- amZ T e ,
The reparametrization invariant kinetic term is m m
—. — : : iv-D 3(iD,)? (iv-D)?
W,id®, =y, [V(m+id-v)?+(id)*—m]y,. (59 B=1— _X é) - ( 5 ) : (63)

m 8m m
This is not the same as the terms in the Lagrangian(&q. i ) .
The reparametrization invariant field, EG3), does not au- A Particular ordering has been chosen for the operators in
tomatically produce a Lagrangian in the “standard” Eq. (_62). A different Qrderlng gives an effective Lagrangian
NRQCD form. However, one can convert E§9) to this  thatis related by a field redefinition. .
form by making a field redefinition The most general reparametrization invariant Lagrangian

is a linear combination of invariant terms, such as

Jimtig-v)? (a2 +m|"? V,(+iD/mV,, V,0%G,,V,, etc. The effective La-
W, = RPN s b, - (60)  grangian obtained in this way is not in the form Eg), but
‘v N — n

it can be converted into that form by field redefinitions that
preservesd ¢, = i, . One finds by a straightforwar@ut not
very enlightening computatigrihat the effective Lagrangian

— . . is a linear combination of the invariant linear combinations
plIm+ig-v—+—(id,)*+m?]y) (61)
iU'D+02+O4+OF+OD+Os+OWl,

The kinetic energy term in the primed field is

which, when expanded, gives E@) with c,=c,=1. Thus

c,=c,=1 follows from reparametrization invariance. The 20 +40p+ 405+ Owi+ Owyp+20,,—Op,
transformation factor in Eq(60) when applied to on-shell
spinors(instead of fieldsreduces to/m/E. This is the same Owi+Ow2,20p+ O+ Opwo— O,

as the flux factor for the incoming and outgoing particles
which was included in Eq32). Oa1,042,043,044,081,05>, (64)
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up to terms of order W*. HereOg, etc., are the operator parametrization invariant to order,/m3. The original form
coefficients ofcg, etc., in Eq.(7). The above linear combi- of the NRQCD propagator, E@2), cannot be used to com-
nations imply the constraints pute the effective Lagrangian by matching to QCD. Instead,
one must treat the propagator as an infinite series, and resum
the seriesafter doing the loop integral. As a result, the
matching computations for NRQCD and HQET are the
same. It is straightforward to obtain the effective Lagrangian
cs=2cr—1, (in the one-quark sectpto higher orders in b by expand-
ing the form factors, , and the spinors in the computation
of Egs.(32) and(33) to higher orders. No further Feynman
graphs need to be evaluated.

C2:1,

C4:1,

Cwz2=Cwi—1,
Cprp=CF_1,

ZCM:CF_CD y (65)
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