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A gauge-invariant formulation in quantum electrodynamics, characterized by an arbitrary functionfm(x), is
reconsidered. Operators in a covariant case, however, are ill defined because of afm(x);]m /h-type singu-
larity in Minkowski space. We then build up a Euclidean path integral formula, starting with a noncovariant but
well-defined canonical operator formalism. The final expression is covariant, free from the pathology, and
shows that the model can be interpreted as thefm-gauge fixing. Utilizing this formula we prove the gauge
independence of the free energy as well as theS matrix. We also clarify the reason why it is so simple and
straightforward to perform gauge transformations in the path integral.@S0556-2821~97!04416-0#

PACS number~s!: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

Gauge transformations in quantum mechanics may be un-
derstood as a unitary transformation so that proving gauge
invariance corresponds to proving the unitary equivalence
between two theories@1#. However, in quantum field theo-
ries, it is well known that canonical commutation relations
require gauge fixing; that is, each gauge has its own Hilbert
space. Consequently, in order to show that a result is gauge
independent, we usually compare results which have been
obtained in different gauges@2#. ~Some approaches, how-
ever, treat gauge transformations even in quantum field theo-
ries @3#.! Therefore, models with an explicit gauge depen-
dence may be suitable, for instance,a in the Nakanishi-
Lautrup formalism@4#,

L52
1

4
FmnFmn2Am]mB1

a

2
B2. ~1.1!

~Throughout the paper, repeated indices imply summation
unless otherwise stated.! Covariance is extremely useful in
perturbation theories but requires a negative metric which
makes it hard to imagine the dynamics. On the other hand,
noncovariant gauges, such as the Coulomb gauge, can be
formulated in an ordinary Hilbert space with a positive met-
ric, which is more useful in physical situations@5#. Therefore
it is desirable for a model to include both cases. For example,
Chan and Halpern@6# invented one which bridges between
the temporal and the Coulomb gauge.

Meanwhile, following the idea of Dirac@7#, d’Emilio and
Mintchev @8# and then Steinmann@9# considered gauge-
invariant operators in terms of an arbitrary real function
which can specify any gauge whether noncovariant or cova-
riant: In QED, operatorsc, c, andAm in the Gupta-Bleuler
formalism give

C~x![expF2 ieE d4yfm~x2y!Am~y!Gc~x!,C~x!

[C†g0 , ~1.2!

with fm(x) being a real function~distribution strictly speak-
ing! satisfying

]mfm~x!5d4~x!. ~1.3!

Therefore, by noting

Fmn[]mAn2]nAm, ~1.4!

all the equations of motion become gauge invariant:

]nFmn~x!5e jm~x!, ~1.5!

~ i ]”2m!C~x!5egmE d4yfn~x2y!Fmn~y!C~x!.

~1.6!

They performed perturbative calculations but did not men-
tion that the method is nothing butfm gauge fixing, which
can be seen as follows@10#: Consider ann-point function

^0uT* Al1~x1 ;f!•••Aln~xn ;f!C~y1!•••C~ym!

3C~z1!•••C~zm!u0&, ~1.7!

with T* designating the covariantT* product, where
Am(x;f) is physical, that is, a gauge-invariant photon field,
given by

Am~x;f![2E d4yfn~x2y!Fmn~y!. ~1.8!

By a perturbative calculation we can see that the original
photon propagator
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Dmn~p![
2 i

p2 S gmn2
pmpn

p2 D ~1.9!

must be replaced by afm-dependent one

Dmn~p;f![
2 i

p2
$gmn1 ipmf̃n~p!2 i f̃m* ~p!pn

1pmpnuf̃r~p!u2% ~1.10!

in the ordinaryn-point function

^0uTAl1~x1!•••Aln~xn!c~y1!•••c~ym!c~z1!•••c~zm!u0&.

~1.11!

Here f̃m(p) is the Fourier transform offm(x):

fm~x!5E d4p

~2p!4
e2 ipxf̃m~p!. ~1.12!

Sincefm(x) is real and obeys Eq.~1.3!,

f̃m* ~p!5f̃m~2p!, pmf̃m~p!5 i . ~1.13!

@The fact that their model can be regarded as thefm-gauge
fixing will be more clearly seen below at Eq.~2.29!.# The
choices

fm~x!5S 0,
¹

¹2
d~x0!D [S 0,

x

4puxu3
d~x0!D ,

f̃m~p!5S 0,2 i
p

upu2D , ~1.14!

fm~x!5„0,0,0,d~x0!d~x1!d~x2!u~x3!…, f̃3~p!5
i

p31 i e
,

~1.15!

fm~x!5
]m

h
, f̃m~p!5

ipm

p2
, ~1.16!

give us the Coulomb, the axial, and the covariant Landau
gauges, respectively.

There are, however, problems.
The axial case: the infrared singularity is severe. In the

photon propagator~1.10!, uf̃mu2 cannot be handled even if
the well-definedf̃m(p), Eq. ~1.15!, is used. To have a well-
defined axial gauge theory, we must rely on a negative met-
ric @11#.

The covariant case: in Minkowski space it is problematic
to divide by p2. If the i e prescription is employed,
f̃m(p)5 ipm /(p21 i e), fm(x) becomes complex,f̃m* (p)

Þf̃m(2p). If then f̃m(p)5 ipm /(p21 i ep0) or
f̃m(p)5 ipm /(p22 i ep0) is employed,p0↔2p0 symmetry
is broken, yielding time-reversal violation. The principal

value prescriptionf̃m(p)5@ ipm /(p21 i e)1 ipm /(p22 i e)#/
2, on the other hand, violates microcausality because of the
acausal partipm /(p22 i e). The issue can also be recognized
when looking at the propagator~1.10!. We must define the
dipole 1/p4 part, which is, however, impossible without in-
troducing a negative metric. There is another issue in view of
the invariant operator~1.2!: The support offm(x) must be
spacelike. Under the timelike support offm(x), there is an
ordering problem for the operatorsc / c and Am which
spoils the definition of the invariant operator.

Therefore we are almost forced to adopt a Coulomb-type,
spacelikefm(x) for a well-defined operator formalism. We
follow the canonical procedure finding a well-defined Hamil-
tonian with which we can build up the Euclidean path inte-
gral expression@12# for the trace formula of an imaginary
time evolution operator. The expression is of course far from
covariant but may be made covariant by reviving the redun-
dant variables into the path integral formula@13#. The final
form is free from the difficulty mentioned above. These are
the contents of Sec. II. In Sec. III, the proof of gauge inde-
pendence of the free energy and theS matrix is presented. In
Sec. IV, we clarify the reason why we can discuss the gauge
invariance more straightforwardly in the functional ap-
proach, since despite the many discussions on gauge trans-
formations using the path integral, there seems to have been
no close examination of the justification. The final Sec. V is
devoted to a discussion.

II. EUCLIDEAN PATH INTEGRAL EXPRESSION

As was mentioned in the Introduction, we must work with
a noncovariantfm to have a well-defined operator theory.
Covariance, however, is useful in perturbation theory. In this
section we build up a path integral formula starting with a
canonical theory obtained from the noncovariantfm , since
we expect that path integral expressions would be covariant
all the time. We rely on the Euclidean formalism since the
path integral becomes well defined and much more effective
even for performing nonperturbative treatments, such as the
WKB approximation, instantons, etc. We follow a step-by-
step procedure to obtain a path integral expression because a
rough argument utilizing a continuum representation would
spoil the plausibility of our path integral formula.1

We first decomposeAm such that

Am~x!5Am~x;f!1]mv~x!, ~2.1!

where

Am~x;f![E d4y$dn
md4~x2y!2]x

mfn~x2y!%An~y!,

~2.2!

v~x![E d4yfm~x2y!Am~y!. ~2.3!

1For example, a nonlocal bilinear term, which must be present in
the holomorphic representation under a discretized~well-defined!
measure, goes away in the continuum~ill-defined! measure@14#.
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Relation ~2.2! is nothing but Eq.~1.8! with the use of Eq.
~1.4! as well as Eq.~1.3!. In order to discuss the path integral
the Schro¨dinger picture is employed so that the time argu-
ment of the fields is omitted, and thusAm(x) is used for the
time being.

Now to avoid the infrared singularity as well as the op-
erator ordering problem, we take afm(x) whose support is
three dimensional and spacelike:

fm~x!5„0,f i~x!d~x0!…, f̃m~p!5„0, f̃ i~p!…, ~2.4!

which converts Eqs.~2.1!–~2.3! into

Ai~x!5Ai~x;f!1¹iv~x!, ~2.5!

Ai~x;f!5E d3y$d i j d3~x2y!2¹x
i f j~x2y!%Aj~y!,

~2.6!

v~x!5E d3y f j~x2y!Aj~y!. ~2.7!

Since the number of genuine physical components is 2, say,
A(a) (a51,2), we must select them out fromAi(x)
( i 51,2,3). After a brief calculation@15#, we find

A~a!~x![n~a!
k ~2 i¹!Ak~x![E d3p

~2p!3
eip•xn~a!

k ~p!Ãk~p!,

~2.8!

where n(a)
k (p) (a51,2) are an orthonormal base with

n(3)
k (p), obeying

(
a51

3

n~a!
j* ~p!n~a!

k ~p!5d jk, n~a!
k* ~p!5n~a!

k ~2p!, ~2.9!

and explicitly given by

n~1!
k ~p![eklmn~2!

l ~p!n~3!
m ~p!,

n~2!
k ~p![$ ipk1p2 f̃ k~p!%/Ap2~p2u f̃ ~p!u221!,

n~3!
k ~p![ ipk/upu. ~2.10!

ThereforeAi(x;f) in Eq. ~2.6! can be given by

Ai~x;f!5n~1!
i* ~2 i¹!A~1!~x!1@d i j 2¹i f̃ j~2 i¹!#

3n~2!
j* ~2 i¹!A~2!~x!. ~2.11!

The action, with the source termJm, can be expressed in
terms ofA(a)(x) such that

S5E d4xH 2
1

4
FmnFmn1JmAnJ

5E d4xH 1

2 (
a51

2

A~a!~x!¹2A~a!~x!1
1

2
@Ȧ~1!~x!#22

1

2
Ȧ~2!~x!¹2u f̃ ~2 i¹!u2Ȧ~2!~x!

2A0~x;f!A¹2
„¹2u f̃ ~2 i¹!u211…Ȧ~2!~x!1

1

2
@¹A0~x;f!#21J0~x!A0~x;f!2J~x!•@A~x;f!#J , ~2.12!

whose last term@A(x;f)# implies that A(x;f) has been
given by A(1) and A(2) through the relation~2.11!. We are
still in a constrained system becauseA0(x;f) is not a dy-
namical variable. Solving the constraint, we obtain the
Hamiltonian

H~ t !5E d3xH 1

2 (
a51

2

@@P~a!~x!#21@¹A~a!~x!#2#

1J0~x!
A¹2

„¹2u f̃ ~2 i¹!u211…

¹2
P~2!~x!

1
1

2
J0~x!u f̃ ~2 i¹!u2J0~x!1J~x!•@A~x;f!#J ,

~2.13!

wherex[(t,x) andP (a) is the canonical conjugate momen-
tum of A(a). Note that the Hamiltonian explicitly depends on
time through the source term.

Now quantization can be carried out:

@Â~a!~x!,P̂~b!~y!#5 idabd3~x2y!,

@Â~a!~x!,Â~b!~y!#5@P̂~a!~x!,P̂~b!~y!#50, ~2.14!

where a caret denotes an operator. Consider the quantity

ZT@J#[ lim
N→`

Tr@~ I2DtĤN!~ I2DtĤN21!•••~ I2DtĤ1!#,

~2.15!

where Dt[T/N, H j[H( j Dt), and the sourceJm(x) has
been assumed to be analytically continuable. Here Tr can be
taken for any complete set, but a functional representation,

Â~a!~x!u$A%&5A~a!~x!u$A%&,

P̂~a!~x!u$P%&5P~a!~x!u$P%&, ~2.16!
with completeness,

56 2283GAUGE INDEPENDENCE IN TERMS OF THE . . .



E DA~a!u$A%&^$A%u5I , E DP~a!u$P%&^$P%u5I ,

~2.17!

is employed, yielding the Euclidean path integral representa-
tion @13#

ZT@J#5 lim
N→`

N2NE )
k51

N

DAk
~a!DPk

~a!

3expFDt(
k51

N H E d3xi (
a51

2

Pk
~a!

3~x !
Ak

~a!~x !2Ak21
~a! ~x !

Dt
2Hk~Pk

~a! ,Ak
~a!!J G ,

~2.18!
whereN is the normalization factor defined in

^$P%u$A%&[NexpF2 i E d3x (
a51

2

P~a!~x !A~a!~x !G :

N5)
x

1

2p
. ~2.19!

Because of the trace, the boundary condition is periodic
A0

(a)(x)5AN
(a)(x). ~This is a formal expression and is ill de-

fined actually. To makeZT@J# well defined, it is also neces-
sary to discretize the space part and to put the system in a
box @13#. But hereafter we use the continuum representation
for notational simplicity.!

Therefore we write

ZT@J#5E DA~a!DP~a!expF E d4x
EH i (

a51

2

P~a!Ȧ~a!2H~P,A!J G
5E DA~a!DP~a!expF E d4x

EH i (
a51

2

P~a!~t,x !Ȧ~a!~t,x !2
1

2 (
a51

2

$@P~a!~t,x !#21@A~a!~t,x !#2%

1 iJ4~t,x !
A¹2

„¹2u f̃ ~2 i¹!u211…

¹2
P~2!~t,x !1

1

2
J4~t,x !u f̃ ~2 i¹!u2J4~t,x !2J~t,x !•@A~t,x;f!#J G ,

~2.20!

where

E d4x
E
[E

0

T

dtE d3x, J4[ iJ0 . ~2.21!

Integrating with respect toP (a), inserting the Gaussian iden-
tity

I 5E DA4~t,x !@det~2¹2!#1/2

3expF2E d4x
E

1

2
A4~t,x !~2¹2!A4~t,x !G ,

~2.22!

and then introducing the new integration variable such that

A4~t,x;f![A4~t,x !1
A¹2

„¹2u f̃ ~2 i¹!u211…

¹2
Ȧ~2!~t,x !

1
1

¹2
J4~t,x !, ~2.23!

we finally arrive at

ZT@J#5E DA~a!DA4~t,x;f!@det~2¹2!#1/2

3expF2E d4x
EH 1

4
Fmn~t,x;f!Fmn~t,x;f!

1Jm~t,x !Am~t,x;f!J G , ~2.24!

where Fmn(t,x;f)[]mAn(t,x;f)2]nAm(t,x;f)
(m,n51,2,3,4).Ai(t,x;f) is now defined@in view of Eq.
~2.11!# by

Ai~t,x;f![n~1!
i* ~2 i¹!A~1!~t,x !1@d i j 2¹ i f̃ j~2 i¹!#

3n~2!
j* ~2 i¹!A~2!~t,x !. ~2.25!

In Eq. ~2.24!, almost everything has been recovered but
the functional measure which still consists of three compo-
nents. To cure this, the gauge degree of freedomv, Eq.~2.7!,
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v~t,x!5E d3yf~x2y!•A~t,y!

5 f̃ ~2 i¹!•A~t,x!, ~2.26!

is revived by means of thed function, giving

ZT@J#5E DAmd„ f̃ ~2 i¹!•A~t,x!…

3expF2E d4x
EH 1

4
FmnFmn1JmAmJ G ,

~2.27!

where use has been made of the relation of the functional
measure

DAi5DA~a!Dv@det~2¹2!#1/2, ~2.28!

obtained from Eqs.~2.25! and ~2.26!.
Going back to the original notation~2.4! we find the co-

variant expression

ZT@J#5E DAmdS E d4y
E
fm~x2y!Am~y! D

3expF2E d4x
EH 1

4
FmnFmn1JmAmJ G .

~2.29!

In view of Eq. ~2.29!, we can recognize that the d’Emilio-
Mintchev-Steinmann model is nothing but afm-gauge fix-
ing. It is a straightforward task to check that the propagator
is correctly given by Eq.~1.10!.

In the Coulomb case, Eq.~1.14!, that is, f̃ (2 i¹)[¹/¹2

in Eq. ~2.27!, a familiar expression,

ZT
Coul@J#5E DAmd~¹•A!udet~2¹2!u

3expF2E d4x
EH 1

4
FmnFmn1JmAmJ G

~2.30!

is obtained. Furthermore, the troubles of the covariant case
are avoided, since the expression has no singularity at all in
the Landau gauge:

fm~x!5
]m

hE
, hE[]m]m , ~2.31!

ZT
land@J#5E DAmd~]mAm!udet~2hE!u

3expF2E d4x
EH 1

4
FmnFmn1JmAmJ G .

~2.32!

~However, there still remains the infrared singularity in the
axial gauge. We therefore do not take the case into account.!

So far we have concentrated only on the photon sector but
it is a rather simple task to include fermions in the path
integral @16,17#. The total path integral expression is, there-
fore,

Z@J,h,h#5E DAmDcDcdS E d4y
E
fm~x2y!Am~y! D

3expF2E d4x
EH 1

4
FmnFmn1c~D” 1m!c

1JmAm1hc1chJ G , ~2.33!

where antiperiodic boundary conditions for fermions must be
understood.2 We call Eq.~2.33! the generating functional.

III. PROOF OF GAUGE INDEPENDENCE

In this section, gauge independence of Eq.~2.33! is
proved by showing that any choice offm leads to the same
result in the case of the free energy as well as theS matrix.
To this end, let us first study how a gauge transformation
affects the expression~2.33!: The gauge transformation from
Am to Am8 is given by

Am~x!°Am8 ~x!5Am~x!1]mu~x!. ~3.1!

The gauge conditions are taken to be

E d4y
E
fm~x2y!Am~y!50 and

E d4yEfm8 ~x2y!Am8 ~y!50, ~3.2!

respectively. The second relation can be rewritten as

05E d4y
E
fm8 ~x2y!Am8 ~y!

5E d4y
E
fm~x2y!Am~y!

1E d4y
E
Dfm~x2y!Am~y!1u~x!, ~3.3!

by use of Eqs.~3.1! and ~1.3!, where

2Again, for notational simplicity, we have employed a continuum
representation which is, however, valid only in perturbation theory:
For example, the so-called Wilson term is necessary under the well-
defined fermionic measure@17,18#.
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Dfm~x![fm8 ~x!2fm~x!, ]mDfm~x!50. ~3.4!

Therefore, under the gauge conditions~3.2!, u(x) is given by

u~x!52E d4y
E
Dfm~x2y!Am~y!. ~3.5!

From Eq. ~2.33!, the generating functional in thefm8
gauge is

Z8@J,h,h#5E DAm8Dc8Dc8dS E d4y
E
fm8 ~x2y!Am8 ~y! D

3expF2E d4x
EH 1

4
Fmn8 Fmn8 1c8~D” 81m!c8

1JmAm8 1hc81c8hJ G , ~3.6!

whereAm8 , c8, andc8 are related to their analogous quanti-
ties in the fm gauge, Am , c, and c, through
c8(x)5eiu(x)c(x), c8(x)5c(x)e2 iu(x), and Eq.~3.1!. Then
a simple change of variables with a trivial Jacobian3 leads to

Z8@J,h,h#5E DAmDcDcdS E d4y
E
fm~x2y!Am~y! D

3expF2E d4x
EH 1

4
FmnFmn1c~D” 1m!c

1Jm~Am1]mu!1heieuc1ce2 ieuhJ G .
~3.7!

Therefore, if the sourcesJ, h̄, andh are absent, the relation

Z85Z~5Tre2TH! ~3.8!

implies that the free energy of QED is gauge independent.
Moreover, it can be recognized that expectation values of a
gauge invariant operator, such as the Belinfante energy-
momentum tensor̂$n%uQmn(x)u$n%&, are gauge invariant,4

whereu$n%& denotes states of fermions and photons. In this
way, the path integral gives us a quick and intuitive deriva-
tion of gauge independence, whose meaning is clarified in
the next section.

In order to discuss gauge independence of theS matrix,
however, we need a further consideration: Supposeu(x) is
infinitesimal so that the difference betweenZ8@J,h̄,h# and
Z@J,h̄,h# is

DZ@J,h,h#5Z8@J,h,h#2Z@J,h,h#

5E DAmDcDcdS E d4y
E
fm~x2y!Am~y! D E d4x

E
@u]mJm1 ieu~ch2hc!#

3expF2E d4x
EH 1

4
FmnFmn1c~D” 1m!c1JmAm1hc1chJ G . ~3.9!

The S matrix is given, after rotating back to the Minkowski space, by cutting external legs and multiplying the wave
functions of fermions and photons, that is, multiplying the Green’s function by5

p”2m

iAz2

u~p,s!

A~2p!32p0

,
ū~p,s!

A~2p!32p0

p”2m

iAz2

for fermions,
2q2

iAz3

jm
~ i !~q!

A~2p!32q0

for photons. ~3.10!

3It reads udAm8 /dAnu5udet(dmn2]mDfn)u, according to Eqs.~3.1! and ~3.5!, and is unity: Consider the determinant of the matrix,
Mi j 5d i j 1AiBj , with ( iAiBi50, to find detM5exp@Trln(11AB)] 51, since Tr(AB)n50, ;n.

4Putting Qmn(x) into the right-hand side of Eq.~2.33! and letting all sources zero, we obtain a gauge invariant quantity
Tr@Qmn(x)e2TH#5($n%^$n%uQmn(x)u$n%&e2TE$n%. Then,T→` picks up the expectation value between the vacuumu0&, which is gauge
invariant. Next, putT→` in the quantity Tr@(Qmn(x)2^0uQmn(x)u0&)e2TH# to give the expectation value between the first excited state,
which is again gauge invariant. Repeating these steps, we find the expectation value between any state is gauge invariant. Q.E.D.

5It is troublesome to write out the Lehmann-Symanzik-Zimmerman-~LSZ!-asymptotic state for fermions in this way; since in a noncova-
riant gaugez2 is matrix valued acting differently on each spinor index@19#. However, there are additional renormalization conditions, since
the self-energy is not merely a function ofp” : It depends onp0g0 as well aspkgk in the Coulomb gauge, for instance. Here we assume that
z2 has already been diagonalized by utilizing these additional degrees.
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Here the photon polarizationjm
( i )(q) fulfills the transversal conditionqmjm

( i )(q)50. Because of this, theu]mJm term in Eq.
~3.9! ~now u]mJm) drops out so that it is enough to concentrate only on the fermion legs. TheS-matrix element of the fermion
sectors,Sg , reads

Sg5Sg~z2 ,G~2n!!5)
j 51

n ū~pj ,sj8!

A~2p!32~pj !0

p” j2m

iAz2

G~2n!~p1 ,•••,pn ;k1 ,•••,kn!)
j 51

n
k” j2m

iAz2

u~kj ,sj !

A~2p!32~kj !0

~3.11!

and whose difference under the gauge transformation is

DSg5Sg82Sg5DG~2n!
]Sg

]G~2n!
1Dz2

]Sg

]z2
, ~3.12!

where

DG~2n!~p1 , . . . ,pn ;k1 , . . . ,kn!Ukn5pn1 (
j 51

n
~pj 2kj !

[E )
j 51

n21

~d4xjd
4yj !d

4xnexpF (
j 51

n21

~ ip jxj2 ik jy j !1 ipnxnG
3

d2n

dh̄~x1!•••dh̄~xn!dh~y1!•••dh~yn21!dh~0!
DZ@J,h̄,h#U

J5h̄5h50

5E )
j 51

n21

~d4xjd
4yj !d

4xnexpF (
j 51

n21

~ ip jxj2 ik jy j !1 ipnxnG
3 ieK 0UTH (

j 51

n21

@u~xj !2u~yj !#1@u~xn!2u~0!#J c~x1!•••c~xn!c~y1!•••c~yn21!c~0!U0L ~3.13!

andDz2 is the change ofz2. In order to findDz2, taken51 in Eq. ~3.13!,

DG~2!~x,y!5 ie^0uT„u~x!2u~y!…c~x!c~y!u0&, ~3.14!

which is depicted in Fig. 1. By noting that

G~2!~p!upole5
iz2

p”2m
, ~3.15!

DG~2!~p!upole5 Ā~p!U
p”5m

iz2

p”2m
2

iz2

p”2m
A~p!U

p”5m

[
iDz2

p”2m
, ~3.16!

where

Ā~p!5
FTE d4z iê 0uTu~x!c~x!c~z!u0&~G~2!!21~z,y!, A~p!5

FTE d4zie~G~2!!21~x,z!^0uTu~y!c~z!c~y!u0&,

~3.17!

since there are no poles inĀ(p) andA(p) at p”5m.
As a result of (p” i2m) or (k” i2m) in Eq. ~3.11!, the surviving part ofDG(2n) must have 2n one-particle poles. Graphs~see

Fig. 2!, in which the photon inu, Eq. ~3.5!, is attached to its original fermion line, that is, graphs includingĀ(p) andA(p),
have the same pole structure asG(2n) and do contribute, but those in which the photon goes somewhere other than its original
fermion line change the pole structure and do not contribute to Eq.~3.18!. Therefore we write the surviving part asDḠ(2n) to
find
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DḠ~2n!~p1 , . . . ,pn ;k1 , . . . ,kn!

5DG~2n!~p1 , . . . ,pn ;k1 , . . . ,kn!u2n poles

5(
j 51

n

~ Ā~pj !up” j 5mG~2n!~p1 , . . . ,pn ;k1 , . . . ,kn!

2G~2n!~p1 , . . . ,pn ;k1 , . . . ,kn!A~kj !uk” j 5m!

5(
j 51

n
Dz2

z2
G~2n!~p1 , . . . ,pn ;k1 , . . . ,kn!5

nDz2

z2
G~2n!~p1 , . . . ,pn ;k1 , . . . ,kn!.

~3.18!

Thus Eq.~3.12! becomes

DSg5)
j 51

n ū~pj ,sj8!

A~2p!32~pj !0

p” j2m

iAz2

DḠ~2n!~p1 , . . . ,pn ;k1 , . . . ,kn!)
j 51

n
k” j2m

iAz2

u~kj ,sj !

A~2p!32~kj !0

1Dz2S ]

]z2
z2

2nD ~z2
nSg!50.

~3.19!

There is thus no gauge dependence in theS matrix.

IV. FUNCTIONAL METHOD AS AN EFFICIENT TOOL
FOR HANDLING GAUGE THEORIES

In this section we give a detailed discussion of why we
can perform a gauge transformation so easily and intuitively
in the functional representation. As was mentioned in the
Introduction, gauge transformations cannot be allowed at all
in the canonical operator formalism. In this sense, it is in-
structive to study theA050 gauge in the conventional treat-
ment@20#, since there we need a supplementary condition, a
so-called physical state condition, implying thatphysical
states must be gauge invariant.This statement apparently
contradicts the above situation.

In the A050 gauge, all three componentsA are assumed
to be dynamical and to obey the commutation relations

@Âj~x!,P̂k~y!#5 id jkd~x2y!,

@Âj~x!,Âk~y!#5@P̂ j~x!,P̂k~y!#50, ~ j ,k51,2,3!.
~4.1!

Again the caret signifies operators. The physical state condi-
tion is given as

F̂~x!uphys&[F (
k51

3

~]kP̂k~x!!1J0~x!G uphys&50 ,

~4.2!

whereJm(x) is supposed to be ac-number current. First this
should be read such thatthere is no gauge transformation in

the physical spacesinceF̂ is the generator of gauge trans-

FIG. 1. ~a! The two-point function in Eq.~3.14!: the circle de-
notes theu insertion. The blob in~a! graphs is collections of the
full propagators and the vertex, seen in~b!.

FIG. 2. ~a! Graphs that do contribute.~b! Those do not contrib-
ute. Large circles at the center of each graph denote the amputated
Green’s functions.
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formations. However, the usual Hilbert space consisting only
of normalizable states does not allowF̂(x) to exist, since
F̂(x) is a local operator to result inF̂(x)50 due to the
theorem of Federbush and Johnson@21#. Therefore we can-
not obtain the physical state. Nevertheless, the state can be
expressed in the functional~Schrödinger! representation
@22#:

Â~x!u$A%&5A~x!u$A%&, P̂~x!u$P%&5P~x!u$P%&,

^$A%uP̂~x!52 i
d

dA~x!
^$A%u,•••. ~4.3!

To see why this is true, consider the stateu$A%&, which
can be constructed in terms of the Fock states as follows:
The creation and annihilation operators are given by

Â~x!5E d3k

~2p!3/2A2uku
@a~k!eik,•x1a†~k!e2 ik•x#

[ai~k!,aj
†~k8!] 5d i j d~k2k8!, @ai~k!,aj~k8!#50,

~4.4!

and the vacuumu0& obeys a(k)u0&50. Now recall the
quantum-mechanical case@23#

qûq&5quq&, q̂5
1

A2
~a1a†!, au0&50; ~4.5!

then,

uq&5
1

p1/4
expS 2

q2

2
1A2qa†2

~a†!2

2 D u0&. ~4.6!

These bring us to the expression

u$A%&.expF2
1

2E d3xd3yA~x!K~x2y!A~y!

1E d3xE d3kA 2uku

~2p!3
A~x!•a†~k!e2 ik•x

2
1

2E d3ka†~k!•a†~2k!G u0&, ~4.7!

where

K~x![E d3k

~2p!3
ukueik•x, ~4.8!

which is apparently divergent:

K~x!5OS L2

uxu2D , ~4.9!

whereL is some cutoff. The physical state in the functional
representation is thus found as

^$A%uF̂~x!uphys&5S 2 i¹
d

dA~x!
2J0~x! DCphys@A#50,

~4.10!

whereCphys@A#[^$A%uphys&.
Therefore physical states can be obtained under the func-

tional representation, implying that gauge transformations
are permissible. Now we can see the reason: Within a single
Fock state the physical state condition~4.2! merely implies
F̂(x)50. However, we should bear the following fact in
mind: The functional representation consists of infinitely
many collections of inequivalent Fock spaces, since the inner
product ofu$A%&, Eq. ~4.7!, to the Fock vacuum is found to
be

^$A%u0&;expF2
1

2E d3xd3yA~x!K~x2y!A~y!G
5expF2

1

2Euku,L

d3k

~2p!3
ukuA~k!A~2k!G →L→`

0.

~4.11!

This happens for any value ofA(x): A(k), giving a finite
integral in Eq.~4.11!, is O(uku23/2). While the whole func-
tional space contains a huge number of classes such as non-
Fourier integrable one or nondifferentiable stochastic one,
letting the above class measure zero. Thus the functional
representation forany A(x) is orthogonal to the Fock state,
that is, inequivalent to the Fock state.

This fact, that the functional representation contains an
infinite set of Fock states, enables us to perform an explicit
gauge transformation and prove gauge independence without
recourse to any physical state conditions in the path integral.
@Recall that Eq.~2.16! and ~2.17! are essential in obtaining
the path integral representation.#

V. DISCUSSION

In this paper, we have built up the path integral formula of
the model with an arbitrary functionfm which has been
introduced to obtain gauge-invariant operators. In the opera-
tor formalism the support of the function must be spacelike,
and thus generality is lost, but there is no restriction in the
Euclidean path integral expression, and so we are able to
move, for instance, from the Coulomb to the Landau gauge
~but the axial case has a severe infrared singularity!. In view
of the formula, the model can be recognized as afm-gauge
fixing and gauge independence of the free energy is quickly
understood~although that of theS matrix needed closer con-
sideration!. Furthermore, a closer inspection reveals the rea-
son why gauge transformations are so easily managed in the
path integral.

As was seen in the discussion of theS matrix, multiplying
by wave functions, that is, the on-shell condition, is indis-
pensable for the proof of gauge independence. The on-shell
condition belongs to one of the physical state conditions.
Hence, in scattering theories or in perturbation theories, the
usual~LSZ-!asymptotic states@24#, Eq. ~3.10!, are known to
behave like the physical states. However, it is not so easy to
find out the form of the physical state in a nonperturbative
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manner. The initial intention of d’Emilio-Mintchev and
Steinmann seems to explore this: Indeed, the physical fer-
mion ~1.2! upon taking the Coulombfm , Eq. ~1.14!,

CD~x!5expF ie
¹•A

¹2 Gc~x!, ~5.1!

is the one introduced by Dirac@7,25#, which is locally gauge
invariant as well as globally charged. The existence of such a
state implies an evidence of electron as a real particle@26#.

The issue should then be generalized to the non-Abelian
gauge case~QCD!. In order to study the dynamics of quark
confinement, it is important to examine whether physical
charged state can be constructed or not. The key to this prob-
lem comes from noticing the Gribov ambiguity@27#: In a

small region, the Coulomb gauge is well defined; that is, no
gauge degrees of freedom are left, owing to the asymptotic
freedom. In a larger region, however, more nontrivial de-
grees of freedom come into play@28#. Since gauge invari-
ance is essential to comprehend quark confinement, the path
integral must be useful. Therefore in order for theory to be
well defined the integration region of the gauge fields must
be connected with that of the Lagrangian, which would fi-
nally give us a compact integration of gauge fields given by
the lattice QCD@29#. Work in this direction is in progress.
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