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Gauge independence in terms of the functional integral
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A gauge-invariant formulation in quantum electrodynamics, characterized by an arbitrary fupg(ion is
reconsidered. Operators in a covariant case, however, are ill defined becauge,(©f) & 7, /C]-type singu-
larity in Minkowski space. We then build up a Euclidean path integral formula, starting with a noncovariant but
well-defined canonical operator formalism. The final expression is covariant, free from the pathology, and
shows that the model can be interpreted asd¢hegauge fixing. Utilizing this formula we prove the gauge
independence of the free energy as well asSheatrix. We also clarify the reason why it is so simple and
straightforward to perform gauge transformations in the path intel8b56-282197)04416-0

PACS numbsds): 11.15.Bt, 12.20.Ds

I. INTRODUCTION _

‘I’(X)Eexp[—ief dy ¢#(x—y)AL(Y) |#(X), ¥ (x)
Gauge transformations in quantum mechanics may be un-

derstood as a unitary transformation so that proving gauge =¥y, (1.2

invariance corresponds to proving the unitary equivalence

between two theoriefl]. However, in quantum field theo- With ¢#(x) being a real functiordistribution strictly speak-

ries, it is well known that canonical commutation relationsing) satisfying

require gauge fixing; that is, each gauge has its own Hilbert

space. Consequently, in order to show that a _result is gauge 3, b*(x)=54(x). 1.3

independent, we usually compare results which have been K

obtained in different gauge@_]. (Some _approachesz how- Therefore, by noting

ever, treat gauge transformations even in quantum field theo-

ries [3].) Therefore, models with an explicit gauge depen-

dence may be suitable, for instanae,in the Nakanishi- FHAY=gFAY— " AK, (1.4

Lautrup formalism(4],
all the equations of motion become gauge invariant:

1 o, IF (=€, (0), (15
L= F, F*'—A"9,B+ B2 (1.1)

(=MW 0=y [ dyg -y Py E(0).
(Throughout the paper, repeated indices imply summation (1.6)
unless otherwise statgdCovariance is extremely useful in
perturbation theories but requires a negative metric whiciThey performed perturbative calculations but did not men-
makes it hard to imagine the dynamics. On the other handjon that the method is nothing by, gauge fixing, which
noncovariant gauges, such as the Coulomb gauge, can kan be seen as followd0]: Consider am-point function
formulated in an ordinary Hilbert space with a positive met-
ric, which is more useful in physical situatiofts]. Therefore N N
it is desirable for a model to include both cases. For example, (O[T*AM(Xy; ) - - AM(Xn; B)W (Y1) - - - W (Ym)
Chan and Halperii6] invented one which bridges between YW (Z0)- P 0 1
the temporal and the Coulomb gauge. (1) (2m)[0), (&9

Meanwhile, following the idea of DiraE7], d’Emilio and with T* designating the covarian™* product, where

_Mmtc_hev [8] and th_en Steinmani9)] co_n3|dered gauge- AX(X; ¢) is physical, that is, a gauge-invariant photon field,
invariant operators in terms of an arbitrary real function _.

. . . given by
which can specify any gauge whether noncovariant or cova®
riant: In QED, operatorg), ¢, andA, in the Gupta-Bleuler

formalism give Au(xi‘ﬁ)z_f d*y " (x—Y)F 4, (Y). 1.8

*Electronic address: tarolscp@mbox.nc.kyushu-u.ac.jp By a perturbative calculation we can see that the original
"Electronic address: thmrlscp@mbox.nc.kyushu-u.ac.jp photon propagator
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D*(p)= ;—2'( Oy pgf“ (19
must be replaced by #,-dependent one
D(p; )= ;—Zi{g“”+ip’*'<?>”(p)—i'$"*(p)p”
+p*p"[,(p)|%} (1.10

in the ordinaryn-point function

(O TAM(Xy) - + - AM(X0) (Y1) - - (Y ¥(Z0) - - - (2| 0).

(1.11
Here'qzﬁ(p) is the Fourier transform o ,(x):
dp
— —ipx
b u(X) f (Zw)4e ¢.(P). (1.12
Since ¢,(x) is real and obeys Eq1.3),
$5(P)=3,(—p), Pup)=i. (113

[The fact that their model can be regarded asdhegauge
fixing will be more clearly seen below at E¢R.29.] The
choices

¢“<x>=(016(x°)) (o X 5(x°>)
Ve a0 )

?q“wp):(o,—i%)’ (119
[p|
#*(x)=(0,0,08(x%) 8(x*) 8(x?) 6(x3)), @3(D)=pgii€'
(1.15
., > ip*
PO=g. FO=5 (1.16
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value prescriptiond ,(p)=[ip,/(p*+ie)+ip,/(p>*—i€)l/

2, on the other hand, violates microcausality because of the
acausal pan’tpM/(pz— i €). The issue can also be recognized
when looking at the propagat¢t.10. We must define the
dipole 1p* part, which is, however, impossible without in-
troducing a negative metric. There is another issue in view of
the invariant operatof1.2): The support of¢,,(x) must be
spacelike. Under the timelike support &f,(x), there is an
ordering problem for the operatorg / ¢ and A, which
spoils the definition of the invariant operator.

Therefore we are almost forced to adopt a Coulomb-type,
spacelikes ,(x) for a well-defined operator formalism. We
follow the canonical procedure finding a well-defined Hamil-
tonian with which we can build up the Euclidean path inte-
gral expressiorf12] for the trace formula of an imaginary
time evolution operator. The expression is of course far from
covariant but may be made covariant by reviving the redun-
dant variables into the path integral formylE3]. The final
form is free from the difficulty mentioned above. These are
the contents of Sec. Il. In Sec. Ill, the proof of gauge inde-
pendence of the free energy and Bmatrix is presented. In
Sec. IV, we clarify the reason why we can discuss the gauge
invariance more straightforwardly in the functional ap-
proach, since despite the many discussions on gauge trans-
formations using the path integral, there seems to have been
no close examination of the justification. The final Sec. V is
devoted to a discussion.

II. EUCLIDEAN PATH INTEGRAL EXPRESSION

As was mentioned in the Introduction, we must work with
a noncovariant, to have a well-defined operator theory.
Covariance, however, is useful in perturbation theory. In this
section we build up a path integral formula starting with a
canonical theory obtained from the noncovarignt, since
we expect that path integral expressions would be covariant
all the time. We rely on the Euclidean formalism since the
path integral becomes well defined and much more effective
even for performing nonperturbative treatments, such as the
WKB approximation, instantons, etc. We follow a step-by-
step procedure to obtain a path integral expression because a
rough argument utilizing a continuum representation would
spoil the plausibility of our path integral formuta.

We first decomposé* such that

A*(X)=A*(X; d) + d*w(X), (2.1

give us the Coulomb, the axial, and the covariant Landau

gauges, respectively.
There are, however, problems.

The axial case: the infrared singularity is severe. In the
cannot be handled even if
the well-defined?éﬂ(p), Eq.(1.15, is used. To have a well-

photon propagatof1.10, |$,|?

where

A )= [ V{81 y) — ok gL I
(2.2

defined axial gauge theory, we must rely on a negative met-

ric [11].

The covariant case: in Minkowski space it is problematic
to divide by p2 If the ie prescription is employed,

$,(p)=ip,/(p?+ie€), ¢,(x) becomes complexp(p)
iﬁqbﬂ(—p). If then @,(p)=ip,/(p*+iepy) or
¢M(p):ipﬂl(p2—iepo) is employed,pg< — pg Symmetry

w(X)Ef d*yH(x=y)ALY). (2.3

IFor example, a nonlocal bilinear term, which must be present in
the holomorphic representation under a discretigedll-defined

is broken, yielding time-reversal violation. The principal measure, goes away in the continugihdefined measurd 14].
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Relation (2.2) is nothing but Eq.(1.8) with the use of Eq. where nt‘a)(p) (@=1,2) are an orthonormal base with
(1.9 as yvell as Eq(1.3). In order to discuss the path integral nl((s)(P), obeying
the Schrdinger picture is employed so that the time argu-
ment of the fields is omitted, and thég‘(x) is used for the 3
time being. j* k _ ik ki (N ok o
Now to avoid the infrared singularity as well as the op- azl M) (PIN(a)(P)= 0% N(a(P) =Ny (=P, (2.9
erator ordering problem, we taked,(x) whose support is
three dimensional and spacelike:

dH(x)=(0,f(x)8(x0)), ¢*(p)=(0,T'(p), (2.9
k _ ml m
which converts Eqgs2.1)—(2.3) into Ny (P =€) (PIN3)(P),

Al(x)=Al(X; )+ Vo (x), (2.5 _ _
nky, (P ={ip*+ PP TX P} VPP T(p)[2- 1),

and explicitly given by

Al(x; )= f d3y{ 81 8%(x—y) — Vi fl(x—y)}Al(y),

(2.6) nts,(p)=ip¥/|pl. (2.10
w(X)=J dyfl(x—y)Al(y). (2.7 ThereforeAl(x; ¢) in Eq. (2.6) can be given by
Since the number of genuine physical components is 2, say, L : ] L
A® (a=1,2), we must select them out fromAi(x) A () == TV)AD () +[ 81 =V TI(=iV)]
(i=1,2,3). After a brief calculatiof15], we find an;)(_iV)A(Z)(X). 2.19)
A=, (—1V)AKX)= f 9Pk, (A p)
() (2m)° (@) ’ The action, with the source terdt, can be expressed in

(2.8)  terms of Al®(x) such that

szf d4x{—1FWF +JHA ]
4 nv v

2
=J d4x{%2 A(“)(X)VZA(“)(X)Jr%[A(l)(x)]z— %'A<2>(x)v2|T(—iV)|2A<2>(x)
a=1

= . 1
— A%(x; $)N VAV F(—i1V)| 2+ DA (x) + SLVA%6 )24+ 3(0A%(X; ) = I(X) [A )| (212
|
whose last term{ A(x;¢)] implies that A(x;¢) has been Now gquantization can be carried out:
given by A®) and A through the relatior(2.11). We are A )
still in a constrained system becaus&(x; ¢) is not a dy- [A@(x),ITP) (y)]=i6F83(x—y),
namipal .variable. Solving the constraint, we obtain the . A
Hamiltonian [A@(x), AP (y)]=[TT®(x), 1P (y)]=0, (2.14
2
1
H(t):J' d3x[§2 [[TI@(x)]?+[ VA (x)]?] where a caret denotes an operator. Consider the quantity
a=1
- Z:[J]=lim Tr[(I—A7H\) (I —A7HN_1)- - - (I—A7H )],
VYAV T(=iV)[2+1) Nosco

+Jo(x) I1®(x) (2.15

V2

1 where A7=T/N, Hj=H(jAr), and the sourcd,(x) has

+ 23,00 F(=iV)[20(3) + I - [A(X: , been assumed to be analytically continuable. Here Tr can be
2 oI T( 13000 +30) - [AG )] taken for any complete set, but a functional representation,

213 A [{AD =AC ) [{A}),
wherex=(t,x) andII{® is the canonical conjugate momen- ~ -
tum of A(®). Note that the Hamiltonian explicitly depends on [0 {11} =T (x) [{11}), (2.16

time through the source term. with completeness,
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| paclapail-r [ ojmgmi-r, (AN = Nex;{—l [ xS, merpaein)
(2.17
is employed, yielding the Euclidean path integral representa-
tion [13]
N 1
Z+[J]= lim /\/ZNJ 11 pA@DII® N=11 o (2.19
N— oo k=1 X ar
XeXF{ATkEl [ f dSXigl Hﬁa) Because of the trace, the boundary condition is periodic
“ AL (x)=A{(x). (This is a formal expression and is ill de-

A0~ AL(X)
X ()1 —H(IE AL

fined actually. To mak&+[J] well defined, it is also neces-
sary to discretize the space part and to put the system in a
box [13]. But hereafter we use the continuum representation
(2.18 for notational simplicity).
where N is the normalization factor defined in Therefore we write

2
zT[J]szAWDHWex;“ d4xE[iE H(“>A(“)—H(H,A)H
a=1

= f DAW)DHWex{ f d4xE

2 2

i Zl 9 (7,x)A@(7,x) - %21 {[I@(7,x)2+[A@(7,x)]%

22| F (i 2
ity T 'féz'w +1)H<2><T,x>+%Mr,x)l'f'(—iV>|ZJ4<r,x>—J<r,x>-[A(zx;d))]]],
(2.20
|
where we finally arrive at
a _ [T 3 —i
f d XE= deTf d X, J4=IJ0. (2.21) ZT[J]ZJ 'DA(Q)'DA“(T,X;(f))[dE(—VZ)]l/z
::’t];egrating with respect tbl(¥, inserting the Gaussian iden- xexp{ _f 4 Lll E (T BF p(7X: B)
IZJ DA4(T,X)[de(_V2)]1/2 +‘J/.L(T1X)AH,(TIX;¢)]:|1 (224)
xexp{—f d4xE%A4(7,x)(—V2)A4(7,X) , where Fu(mX)=0d,A(7.X;¢) —d,A,(T.X;$)
(u,v=1,2,3,4).A'(7,x;¢) is now defined(in view of Eq.

(2.22 (2.11] by

and then introducing the new integration variable such that .
Al(1,x;¢)=n(3 (=1 V)AD(7,x) +[ 81 =V TI(=iV)]

VVAVAT(=iV)[2+1).
VZ

xnl3 (—iV)A®(7,x). (2.25

AY(7,x; ) =A% (7, x) + AP (7,x)

1 In Eq. (2.24), almost everything has been recovered but

+ = J,(7,X), (2.23  the functional measure which still consists of three compo-
V2 nents. To cure this, the gauge degree of freedgraq. (2.7),
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(However, there still remains the infrared singularity in the
w(T,X)=J dyf(x—y)-A(Ty) axial gauge. We therefore do not take the case into acdount.
So far we have concentrated only on the photon sector but
:’f“(_iV).A(T,X), (2.2 it is a rather simple task to include fermions in the path
integral[16,17). The total path integral expression is, there-
is revived by means of thé function, giving fore,
ZT[”—J DALS(T(=1V)-A(mX)) 2[3,7.7)= f DA,LDwa( f d%y_ b, (x—Y)A,(Y)

1
1
Xexf{‘f‘ﬁ LFMFMJFJ A ] Xexp{—fd“ {4 F ot (D +m)g
(2.27)

where use has been made of the relation of the functional
measure

+3,A,+ gt gy

}, -

where antiperiodic boundary conditions for fermions must be
DA = DAY D[ del — V?)]*?, (2.28  understood.We call Eq.(2.33 the generating functional.

obtained from Egs(2.25 and(2.26).
Going back to the original notatiof2.4) we find the co-
variant expression In this section, gauge independence of ER.33 is
proved by showing that any choice gf, leads to the same
result in the case of the free energy as well asShwuatrix.
ZT[J]ZJ DA,ﬁ( f d4yE¢M(x—y)A#(y)) To this end, let us first study how a gauge transformation
affects the expressiof2.33: The gauge transformation from
Xex;{—fd“ HFWFWH A ]

A, to A, is given by
In view of Eq. (2.29, we can recognize that the d’Emilio- .
Mintchev-Steinmann model is nothing butds,-gauge fix-  'he gauge conditions are taken to be
ing. It is a straightforward task to check that the propagator
is correctly given by Eq(1.10.
In the Coulomb case, Eql.14), that is, f (—iV)=V/V? f dy_¢,.(x—y)A,(y)=0 and
in Eq. (2.27), a familiar expression,

Ill. PROOF OF GAUGE INDEPENDENCE

(2.29 AL ()= AL(X)=A(X) +3,0(X). 3.9

z$°“'[J]=f DA, 8(V-A)|de( —V?)] f d*yed, (x—y)A,(y)=0, (3.2
Xexp{—fd“ riFWFMH A ]
(2.30

is obtained. Furthermore, the troubles of the covariant case
are avoided, since the expression has no singularity at all in

the Landau gauge: =f d*y b (X=Y)AL(Y)

respectively. The second relation can be rewritten as

= f dly_¢.(x—y)A/(Y)

¢M(X):é—’;, Ue=0d,d,, (2.3) +f d*y AL (x—Y)ALY)+ 6(x), (3.3

by use of Eqs(3.1) and(1.3), where
z'aq 3]= f DA, 5(d,A,)|de(—Og)|

1
XeX[{—Jd“ [4FWFW+J A ]

2Again, for notational simplicity, we have employed a continuum
representation which is, however, valid only in perturbation theory:
For example, the so-called Wilson term is necessary under the well-
(2.32 defined fermionic measufd7,18.
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1
xex;{—fd"’x -
E

4F’”

Therefore, under the gauge conditidBs?), 6(x) is given by
F o+ (D+m)y

000-— [ dysd0-nam. 39 o
+I (A, +3,0)+ ne'®y+ e "® 77”

. (3.7)
Therefore, if the sourced, 7, and 5 are absent, the relation
Z'=Z(=Tre ™) (3.9

From Eq. (2.33, the generating functional in the
gauge is

Z'[3,7.9]= | DALDY' DY 8| | d*y . (x—y)A! . . .
2. 7.7] f WPUDY (j yEd)#(x VALY) implies that the free energy of QED is gauge independent.

1 Moreover, it can be recognized that expectation values of a
Xexr{—J d*x [_F’VF’V_F ' (D' +m)y’ gauge invariant operator, such as the Belinfante energy-
B4 H momentum tensof{n}|® ,,(x)|{n}), are gauge invariart,
where|{n}) denotes states of fermions and photons. In this
, (3.6)  way, the path integral gives us a quick and intuitive deriva-
tion of gauge independence, whose meaning is clarified in
— . _ the next section.
whereA , ¢/, andy’ are related to their analogous quanti-  |n order to discuss gauge independence ofShmatrix,
ties in the ¢, gauge, A,, ¢, and ¢, through however, we need a further consideration: Supp@se is
' (X)=€"Ny(x), ¥ (X)=¢(x)e ™ and Eq(3.1). Then infinitesimal so that the difference betwe®nJ, 7, »] and
a simple change of variables with a trivial JacoBilmads to ~ Z[J,7, 7] is

+JMA;L+ '+’ 77]

AZ[3,7,7=2'[3, 2,91~ Z[3, 7, 7]
= [ oa,pumid] [ a0y, [ dix 09,3, +ieotn-7]

. (3.9

1 — -
xex;{ - f dAXE(ZFMVFMV—'— (D +m) Y+, ALYty

The S matrix is given, after rotating back to the Minkowski space, by cutting external legs and multiplying the wave
functions of fermions and photons, that is, multiplying the Green’s function by

p—m  u(p,s) u(ps) p-m . -2 &)
- . - for fermions, —— ————=for photons. (3.10
Nz, N2m%2p, * N(2m2ps 1Nz, P

iVzs V(2m)%2q

31t reads|6A, /A, | =|det(5,,—d,A¢,)|, according to Eqs(3.1) and (3.5), and is unity: Consider the determinant of the matrix,
Mj;=&;;+A;B;, with Z;A;B;=0, to find deM =exd Trin(1+AB)] =1, since TrAB)"=0, Yn.

4Putting 0,,(x) into the right-hand side of Eq(2.33 and letting all sources zero, we obtain a gauge invariant gquantity
T 0, (x)e” "M== ({n}O,,(x)|{n})e” TEn. Then, T—o picks up the expectation value between the vacyQpm which is gauge
invariant. Next, puff—o in the quantity T[r(@MV(x)—<0|@,”(x)|0>)e‘TH] to give the expectation value between the first excited state,
which is again gauge invariant. Repeating these steps, we find the expectation value between any state is gauge invariant. Q.E.D.

St is troublesome to write out the Lehmann-Symanzik-Zimmerrtiz8iz)-asymptotic state for fermions in this way; since in a noncova-
riant gaugez, is matrix valued acting differently on each spinor ind&2]. However, there are additional renormalization conditions, since
the self-energy is not merely a function jof It depends orpyy, as well aspyy, in the Coulomb gauge, for instance. Here we assume that
Z, has already been diagonalized by utilizing these additional degrees.
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Here the photon polarizatio&})(q) fulfills the transversal condition”£!)(q)=0. Because of this, théd,J, term in Eq.
(3.9 (now #4*J,) drops out so that it is enough to concentrate only on the fermion legsS-Tinatrix element of the fermion
sectors Sy, reads

i U_(IO‘,S-’) pj—m ki—-m u(k;,s;)
=S,(2,,G2M) = (| 1 G (py,- - pnike, k) J 1) (3.11
S5z N T T R L T L) U =T
and whose difference under the gauge transformation is
S, IS
=S -5 = (2n)__ 3 -9
ASy=S;—§;=AG e +Az, s (3.12

where

AG(Zn)(pla R !pn;kla L !kn) Ka=pPnt g (pj_kj)
j=1

n-1 n—-1
= J1;[1 (d“xjd“yj)d“xnex;{JE1 (ipjX;—ik;y;) +ipnXn

52!’1
X X0 n(%) 37(YD) -~ 87(Yn_1)67(0)

AZ[J,7,79]

J=77=0

n—-1 n—-1
= j]:[l (d“xjd“yj)d“xnex;{;l (ipjX;—ikjy;) +ipaXn

n—-1
T{ ,21 [6(x)— 6(y;)]+[6(xy)— 0<0>]J P(Xg) - - - p(Xn) h(yq) - - ~Z(ynl>$<0)0> (3.13

><ie< 0
and Az, is the change ok,. In order to findAz,, taken=1 in Eq.(3.13,

AGP(x,y)=ie(0|T(8(x) — 6(y))¥(x) (y)|0), (3.14

which is depicted in Fig. 1. By noting that

iz,

G(Z)(p)|pole:p_m! (3.19
) — iz, iz, Az,
AG! )(p)|pole: A(p) - A(p) = , (3.1
o bm pem | Tpem

where

_FT _ FT _
A(p)=fd42 ie(0[ TO(X) ¢ (x) $(2)[0)(G'?) ~H(z,y), A(p)=fd4Zie(G(2))_1(X,Z)<0|T9(Y)¢(2)¢(y)|0>,
(3.17

since there are no poles Hp) andA(p) at p=m.
As a result of p;—m) or (k;—m) in Eq.(3.11), the surviving part oA G>™ must have 2 one-particle poles. Graplisee
Fig. 2), in which the photon ir, Eq. (3.5, is attached to its original fermion line, that is, graphs includﬁgp) andA(p),
have the same pole structure@€™ and do contribute, but those in which the photon goes somewhere other than its original
fermion line change the pole structure and do not contribute tqEf). Therefore we write the surviving part as@ to
find
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2Py, .. PniKes e oK)
=AG®(py, ... pnikKe, ... Kn)l2n poles

n
=2, (APlp=nC ™ (1, Priks, - ko)

_G(Zn)(pl, P ,pn;kl, P ,kn)A(kJ)|éI:m)

Az nAz
—Z 2G<2”> R R 26 (py, ... prikyy . k).
2 5
(3.18
Thus EQq.(3.12 becomes
" u(p.s)  p— Tok-m o u(ki,s) ( J )
AGP(py, ... Pk, ... K "(zhS,)=0.
S=L s 15, AP ik kL e e, A% % | (B

(3.19

There is thus no gauge dependence inShaatrix. [Aj(x) M (y)]=i 8 8(x—Y)

A(x),A =[1T;(x),I1 =0, (j,k=1,2,3.
IV. FUNCTIONAL METHOD AS AN EFFICIENT TOOL LA AW =G0 )] ( )(4_1)

FOR HANDLING GAUGE THEORIES
Again the caret signifies operators. The physical state condi-
In this section we give a detailed discussion of why wetion is given as
can perform a gauge transformation so easily and intuitively
in the functional representation. As was mentioned in the .
Introduction, gauge transformations cannot be allowed at all @ (x)|phys = gl (1)) + 3o(x) | Iphy9 =0,
in the canonical operator formalism. In this sense, it is in- 4.2
structive to study thé\,=0 gauge in the conventional treat-
ment[20], since there we need a supplementary condition, avhereJ (x) is supposed to be @number current. First this
so-called physical state condition, implying thphysical ~ should be read such thtitere is no gauge transformation in
states must be gauge invariarifhis statement apparently the physical spacsince® is the generator of gauge trans-
contradicts the above situation.
In the A;=0 gauge, all three componemsare assumed
to be dynamical and to obey the commutation relations

3

§

T Y
(b) (b)
FIG. 1. (@) The two-point function in Eq(3.14): the circle de- FIG. 2. (a) Graphs that do contributéb) Those do not contrib-

notes thed insertion. The blob ina@) graphs is collections of the ute. Large circles at the center of each graph denote the amputated
full propagators and the vertex, seen(im. Green'’s functions.
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formations. However, the usual Hilbert space consisting only . _ S
of normalizable states does not alloi(x) to exist, since ({AH®(x)|phys = _'V(;A(X) ~Jo(X) | Wpnyd A]=0,
d(x) is a local operator to result id(x)=0 due to the (4.10

theorem of Federbush and Johng@d]. Therefore we can-
not obtain the physical state. Nevertheless, the state can méereW ,, [ Al=({A}|phys.

expressed in the functionalSchralingen representation Therefore physical states can be obtained under the func-
[22]: tional representation, implying that gauge transformations
are permissible. Now we can see the reason: Within a single

A(x)|{A})=A(x)|{A}), ﬁ(x)|{n}>zn(x)|{n}>, Ifock state the physical state conditi@h2) merely implies

®(x)=0. However, we should bear the following fact in

. .6 mind: The functional representation consists of infinitely
({AHTI(x) = —i T(X)HAH RERY (4.3 many collections of inequivalent Fock spacsisce the inner
product of|[{A}), Eq. (4.7), to the Fock vacuum is found to

To see why this is true, consider the staal), which ~ be
can be constructed in terms of the Fock states as follows:

The creation and annihilation operators are given by ({A}|O>~exp{ _ Ej d3xd3yA(x)K(x—y)A(y)}
A(X):fd—gk[a(k)eik'“aT(k)e“k'X] 1 d3k Ao
(2m)%2\/2|K] :exp[—ELK<A(2W)3|k|A(k)A(—k)1 — 0.

[ai(k),a] (k)] = &;8(k—K"), [ai(k),a;(k')]=0,
(4.9

(4.11

This happens for any value &(x): A(k), giving a finite
and the vacuum|0) obeys a(k)|0)=0. Now recall the integral in Eq.(4.1), is O(|k|~*?). While the whole func-
guantum-mechanical ca§23] tional space contains a huge number of classes such as non-
Fourier integrable one or nondifferentiable stochastic one,
~ 1 . letting the above class measure zero. Thus the functional
ala)=alg), gq= E(a+a ), a0)=0; (4.9 representation foany A(x) is orthogonal to the Fock state,
that is, inequivalent to the Fock state.
then This fact, that the functional representation contains an
' infinite set of Fock states, enables us to perform an explicit
gauge transformation and prove gauge independence without
)|o>_ (4.6)  recourse to any physical state conditions in the path integral.
[Recall that Eq(2.16 and (2.17) are essential in obtaining
the path integral representatipn.

1 q2 ; (aT)Z
a)= ﬁexp< -5 +\2qa"-—

These bring us to the expression

1 V. DISCUSSION
|{A}>29XF{ - EJ dxd®yA(X) K (x—y)A(Y) In this paper, we have built up the path integral formula of
the model with an arbitrary functiosp, which has been
2[K] ‘ introduced to obtain gauge-invariant operators. In the opera-
+f d3xf d®k\/ ——A(x)-a' (k)e kX tor formalism the support of the function must be spacelike,
(2m)3 and thus generality is lost, but there is no restriction in the

Euclidean path integral expression, and so we are able to
move, for instance, from the Coulomb to the Landau gauge
(but the axial case has a severe infrared singulatityview
of the formula, the model can be recognized ag agauge
where fixing and gauge independence of the free energy is quickly
understoodalthough that of thé& matrix needed closer con-
3 . sideration. Furthermore, a closer inspection reveals the rea-
K(x)zf 3 |k|e™kx, (4.8  son why gauge transformations are so easily managed in the
(27) path integral.
As was seen in the discussion of Benatrix, multiplying
by wave functions, that is, the on-shell condition, is indis-

0), (4.7

1
- EJ d3ka’(k)-a'(—k)

which is apparently divergent:

) pensable for the proof of gauge independence. The on-shell
K(x)=0 A_ (4.9 condition belongs to one of the physical state conditions.
[x|? ’ ' Hence, in scattering theories or in perturbation theories, the

usual(LSZ-)asymptotic statef24], Eq. (3.10, are known to
whereA is some cutoff. The physical state in the functional behave like the physical states. However, it is not so easy to
representation is thus found as find out the form of the physical state in a nonperturbative
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manner. The initial intention of d’Emilio-Mintchev and small region, the Coulomb gauge is well defined; that is, no
Steinmann seems to explore this: Indeed, the physical fegauge degrees of freedom are left, owing to the asymptotic
mion (1.2) upon taking the Coulomip,, , Eq.(1.14), freedom. In a larger region, however, more nontrivial de-
grees of freedom come into pld28]. Since gauge invari-
ance is essential to comprehend quark confinement, the path
integral must be useful. Therefore in order for theory to be
well defined the integration region of the gauge fields must
is the one introduced by Dird@,25], which is locally gauge bPe connected with that of the Lagrangian, which would fi-
invariant as well as globally charged. The existence of such 8ally give us a compact integration of gauge fields given by
state implies an evidence of electron as a real parfiztg the lattice QCD[29]. Work in this direction is in progress.

The issue should then be generalized to the non-Abelian
gauge cas€QCD). In order to study the dynamics of quark
confinement, it is important to examine whether physical
charged state can be constructed or not. The key to this prob- The authors thank to I. Ojima for guiding them to the

P(X),

V-A
> (5.9

V2

‘IfD(x)zex;{ie
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