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A Galilean Chern-Simons field theory is formulated for the case of two interacting spin-1/2 fields of distinct
massesM andM 8. A method for the construction of states containingN particles of massM andN8 particles
of massM 8 is given which is subsequently used to display equivalence to the spin-1/2 Aharonov-Bohm effect
in the N5N851 sector of the model. The latter is then studied in perturbation theory to determine whether
there are divergences in the fourth order~one-loop! diagram. It is found that the contribution of that order is
finite ~and vanishing! for the case of parallel spin projections while the antiparallel case displays divergences
which are known to characterize the spin-0 case in field theory as well as in quantum mechanics.
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PACS number~s!: 11.10.Kk, 03.65.Bz, 11.15.Bt

I. INTRODUCTION

The Aharonov-Bohm~AB! effect @1# has been studied
extensively in recent years both in the context of quantum
mechanics as well as in quantum field theory. As an appli-
cation of wave mechanics it is customarily idealized to the
discussion of the scattering of charged particles from a mag-
netized filament of arbitrarily small radius. Since the exterior
of such a filament is a field-free region, there can be no
classical force on the particles. The fact that a nontrivial
scattering cross section is found thus provides a forceful
demonstration of the significance of the vector potential in
the quantum mechanical description of scattering.

Although not used in the original AB work the partial
wave description of this phenomenon is of considerable in-
terest. For the partial wavef m(r ) the relevant equation is
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where a is the flux parameter andk252ME with M the
particle mass andE its nonrelativistic energy. Standard tech-
niques allow one to obtain that the phase shiftsdm are given
by
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so that for smalla one finds the nonanalytic form
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Since in them50 partial wave the potential is proportional
to a2, this suggests that a perturbative approach may en-
counter considerable difficulty@2#. Aharonovet al. demon-
strated the existence of singularities in such an expansion
using as a model an impenetrable solenoid of finite radiusR
@3#. Although the limit R→0 was found to yield the usual
AB scattering amplitude, to any finite order ina the solution
consisted of a complicated expansion in powers of
a ln(kR/2).

Similar studies have been carried out in the context of
field theory. One prerequisite to such a study was the con-
struction of the so-called pure Chern-Simons~or photonless!
gauge theory as carried out by this writer@4#. It was subse-
quently shown@5# that the Galilean limit of such a theory
allows one to formulate what is the only Galilean-invariant
gauge theory known at this time. It is in fact the field theory
of the AB effect, a result which has made possible the study
of this phenomenon in perturbation theory. Calculations
which have been carried out for spinless particles have found
that unless an additional~contact! interaction is introduced
into the theory, divergences similar to those encountered in
quantum mechanical calculations will occur@6#.

An extension of the AB effect to include spin has also
been carried out in the context of the Dirac equation@7#. This
has led to a recognition of the fact that there must exist
solutions of the wave equation which are singular at the ori-
gin in the case that the spin orientation of the scattered par-
ticles is such that the Zeeman interaction is attractive. How-
ever, a remarkable feature of the spin-1/2 case is the absence
of divergences of the type which characterize perturbation
theory in the spinless case@8#. Clearly, it would be of interest
to determine whether the corresponding spin-1/2 Galilean
field theory is also free of perturbative singularities. It is in
fact the goal of the present work to demonstrate this result to
fourth order in the coupling~second order ina!.

In the following section a brief summary of the necessary
field theoretic tools is given, including a demonstration of
how one proceeds from the Hamiltonian of the field theory to
a wave equation in the two particle sector. Section III intro-
duces the fourth order diagram and carries out its evaluation
in the limit of very large mass for one of the two particles
participating in the scattering process. Using this result it is
possible to carry out in Sec. IV the evaluation of the scatter-
ing amplitude in the general mass case and to determine the
effect of the particle spins on the overall result. Some con-
cluding remarks are offered in Sec. V.

II. SPIN-1/2 CHERN-SIMONS GALILEAN FIELD THEORY

Since the case of a spinless field in interaction with a
Chern-Simons field described by three componentsf and
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f i ( i 51,2) has been discussed in some detail in Ref.@5#, it
will be sufficient to present a somewhat brief review of this
subject, giving principal attention to those features associ-
ated with the spin of the charged particle. It is convenient to
begin with a single spin-1/2 particle of massM . As shown
by Lévy-Leblond @9# a first order wave equation requires a
four component spin-1/2 field operator in three spatial di-
mensions. For two spatial dimensions, however, a two com-
ponent field operator suffices for the description of a single
spin component~just as in the case of the Dirac equation in
two spatial dimensions!. For the free field case such an op-
erator can be taken to satisfy the equation

F ~1/2!~11s3!i
]

]t
1 i s•“1M ~12s3!Gc50, ~1!

wheres3 is the usual third Pauli matrix while the matrices
s i( i 51,2) are the set (s1 ,ss2) where s is twice the spin
projection~11 for spin ‘‘up’’ and 21 for spin ‘‘down’’!.

The combined system of interacting spinor and Chern-
Simons field can be described by the Lagrangian
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which implies the equations of motion
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In the radiation gauge

“•f50,

Eq. ~2! has the solution

f i52ge i j ¹ jE d2x8D~x2x8!r~x8!, ~5!

whereD(x) is defined by
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or more explicitly by
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Upon insertion of Eq.~5! into Eq. ~3!, one obtains for
f(x) the result

f~x!5gE d2xj ~x8!3“D~x2x8!. ~6!

It is worth emphasizing here the well-known fact that there
are no independent degrees of freedom associated with the
gauge fields (f,f i) since they are expressible as explicit
functions of the charged spin-1/2 fields@4# as is clearly seen
from Eqs.~5! and ~6!.

Also of interest is a more explicit display of the content of
Eq. ~4!. Denoting the upper and lower components byw and
x, respectively, one has forw the result

S i
]

]t
2gf Dw5~P12 isP2!x, ~7!

whereP i52 i¹ i2gf i . Because of the presence of the time
derivative in Eq.~7! it is a true equation of motion as op-
posed to the equation forx which is of the form

2Mx5~P11 isP2!w.

Thus,x is a dependent field operator which is locally defined
in terms ofw and the gauge field operators.

Application of the action principle allows one to infer the
equal time anticommutation relation

$w~x!,w†~x8!%5d~x2x8! ~8!

and the form of the conserved mass operator of the theory

M5ME d2xw†w.

Since it will be convenient to consider the AB scattering of
dissimilar spin-1/2 particles in this work, the foregoing
analysis will henceforth be understood to include two fields
c andc8 of massesM andM 8, respectively, each of which
has identical coupling to the Chern-Simons gauge field, and
~possibly different! spin projectionss ands8. Thus the com-
mutation relation~8! is assumed to apply to the fieldsw and
w8 separately while the mass operator becomes

M5E d2x@Mw†w1M 8w8†w8#.

The form of the interaction implies the existence of an
additional~global! symmetry which leads to the conclusion
that each of the two terms inM is separately conserved.
This allows the states of the system to be divided into sectors
each of which is characterized by non-negative integersN
andN8 which denote the numbers of particles of massesM
and M 8, respectively. These states can be denoted by
uN,N8& and are constructed according to
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uN,N8&5E d2x1•••d2xNd2x18•••d
2xN8

8 w†~x1!•••w†~xN!

3w8†~x18!•••w8†~xN8
8 ! f ~x1•••xN ;x18•••xN8

8 !u0&,

whereu0& is the vacuum or zero particle state

Mu0&50 ~9!

and f (x1•••xN ;x18•••xN8
8 ) is the N1N8 particle wave func-

tion. The consistency of Eq.~9! clearly requires thatw and
w8 annihilate the vacuum: i.e.,

w~x!u0&50,

w8~x!u0&50.

The energy operator is inferred to have the form

H5E d2xF 1

2M
w†~P11 isP2!~P12 isP2!w

1
1

2M 8
w8†~P11 is8P2!~P12 is8P2!w8G

and allows the formulation of the eigenvalue equation

HuN,N8&5EuN,N8&. ~10!

One solves Eq.~10! by considering separately the various
combinations ofN andN8. Thus one clearly has the vacuum
state for N5N850 while the choicesN51, N850 and
N50, N851 yield the trivial results

S E1
1

2M
¹2D f ~x!50

and

S E1
1

2M 8
¹82D f ~x8!50,

respectively. The caseN5N851 is the sector which de-
scribes the AB scattering of dissimilar fermions. Application
of Eq. ~10! in this case is found to imply the wave equation

E f~x,x8!52H 1
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~11!

with similar results following for the casesN52,N850 and
N50,N852 which describe the AB scattering of identical
particles of massesM andM 8, respectively. Worth noting in
Eq. ~11! is the explicit appearance of the spin-dependent
terms proportional tos ands8. These are of the contact type
and describe the Zeeman interaction of the magnetic mo-
ments of the particles. Since the system described by Eq.

~11! allows one to avoid the inessential complication of the
Pauli principle and has the further advantage of allowing the
simultaneous consideration of parallel and antiparallel spins,
the remainder of this paper will focus exclusively on the
unequal mass case.

One solves Eq.~11! in the usual way by separation into
the center-of-mass coordinates and the relative coordinates
r5x2x8. This leads to the reduced equation for the wave
function f (r ),

F @¹ i2 iae i j r j /r 2#22amS s

M
1

s8

M 8D 1

r
d~r !1k2G f ~r !50,

~12!

wherek2 is the wave number in the center-of-mass frame,m
is the reduced mass

m5
MM 8

M1M 8
,

and use has been made of the definitiong2/2p5a. ~It is to
be noted that negative values ofa can be obtained by con-
sideration of a Chern-Simons theory which is identical in all
respects except for a change in the sign of the terms in the
Lagrangian which are quadratic in the gauge fields.! The
result ~12! in the cases5s8 reduces to

F @¹ i2 iae i j r j /r 2#22as
1

r
d~r !1k2G f ~r !50

and is the basis for the quantum mechanical description of
spin-1/2 AB scattering@7#. Since it is in the unique case
s5s8 that one has a divergence-free perturbation expansion
in quantum mechanics@8#, the goal of the remainder of this
paper is to provide a corresponding demonstration that to the
one-loop order it is only in this special case that the corre-
sponding field theoretic perturbation calculation is also
divergence-free.

III. FOURTH ORDER AB SCATTERING

In order to carry out the desired field theoretic perturba-
tion expansion it is necessary to prescribe the propagators
and vertices associated with the model. The free field equa-
tion ~1! for the fieldc implies the momentum space equation
for the massM fermion propagator

@ 1
2 ~11s3!E2s•p1M ~12s3!#G~p,E!51,

which has the solution

G~p,E!5@M ~11s3!1s•p1 1
2 ~12s3!E#

3@2ME2p21 i e#21.

With respect to the gauge fields it is convenient to introduce
a notation such thatfa denotes the set (f0,f i) with f0

identified withf. By standard means one then infers@4# that
the Chern-Simons propagator is given by
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Gab~k!5 i eab j kj

1

k2 .

Inspection of the form ofL allows one to infer the fact that
the vertex matrices Ga are given by the set

@ 1
2 (11s3),s i #.

To second order ing one has only the singlef exchange
diagram displayed in Fig. 1. It is proportional to

F1

2
~11s3!~1!s i

~2!2
1

2
~11s3!~2!s i

~1!Ge i j kj

1

k2 , ~13!

whereki is the momentum transfer for the fermion of mass
M of incoming momentumpi and outgoing momentum
pi8 . A superscript notation has been used to specify the ma-
trices of the two particles so that Eqs.~1! and ~2! refer,
respectively, to massM and M 8 particles. It is to be noted
that Eq.~13! is to be evaluated betweenu(p)(1)u(2p)(2) and
u* (p8)(1)u* (2p8)(2) ~working in the center-of-mass frame!,
where theu’s are the relevant free particle spinors. From Eq.
~1!, one infers these to be of the form

u~p!5S 1
p11 isp2

2M
D .

Denoting the angle betweenp andp8 by u one finds that an
evaluation of Eq.~13! between the indicated spinors yields a
scattering amplitude proportional to

g2

m sin~u/2! Fcos~u/2!2 imS s

M
1

s8

M 8D sin~u/2!G ,
which reduces in thes5s8 case to

g2

m sin~u/2!
e2 isu/2,

in agreement with the ordera result which one obtains from
an expansion of the exact scattering amplitude@7#. Similar
results have been obtained to this order using covariant per-
turbation theory in the infiniteM 8 limit @10#.

Since the spin-1/2 scattering amplitude is known@7# to
have no O(a2) corrections, one seeks to verify that the
fourth order ing result is both finite and null. The specific
diagram is displayed in Fig. 2 and is formally given by

E dkdE

~2p!3 $Ga@M ~11s3!2s•k2 1
2 E~12s3!#Gb%~1!

3H GkFM 8~11s3!1s•k1 1
2 S E1

p2

2m D ~12s3!GGlJ ~2!

3Gbl~p1k!Gak~p81k!
1

22ME2k21 i e

3
1

2M 8S E1
p2

2m D2k21 i e

. ~14!

Although the integration overE is superficially quadratically
divergent, in actuality the divergence is only a logarithmic
one. This can be seen by noting that the antisymmetry ofGab
in a andb implies that at least one of the factors ofE in the
numerator of Eq.~14! is necessarily multiplied by the prod-
uct of (11s3) with (12s3) and thus vanishes. The remain-
ing divergence must be regulated in a Galilean-invariant
manner and requires some care.

It will be convenient to classify contributions to Eq.~14!
according to whether the vertex indices are spatial (a5 i ) or
temporal (a50). Referring to Eq.~14!, one sees that the
casea being a temporal~spatial! index requires thatk be a
spatial ~temporal! one ~and similarly forb and l!. Thus it
follows that Eq.~14! decomposes in a natural way according
to whether a given fermion line has only temporal vertices,
only spatial vertices, or mixed vertices. Contribution 1 will
thus be that part of Eq.~14! which has purely spatial vertices
in the massM propagator~temporal vertices in the massM 8
propagator!, contribution 2 will be the corresponding case in
which M andM 8 are exchanged, and contribution 3 will be
the two parts in which mixed vertices occur. It is to be noted
that there is no divergence in theE integration for contribu-
tion 3.

In the limit of largeM 8 only contribution 1 survives. This
is a consequence of the fact that terms of the form
(11s3)s iu(p)(2) vanish for largeM 8. It is worth noting
that the surviving term is precisely what one would consider
in the case of scattering from a fixed flux tube source. Regu-
larization is accomplished by the replacement

1

22ME2k21 i e
→

1

22ME2k21 i e

2
1

22M ~E1U !2k21 i e
,

and subsequently taking the limitU→`. This is a Galilean-
invariant regularization scheme since it consists of the addi-
tion of an internal energy term to the Galilean-invariant

FIG. 1. The second order scattering diagram.
FIG. 2. The fourth order scattering diagram.
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quantity in the fermion propagator. Upon performing the in-
tegration overE one finds that Eq.~14! reduces to

2 i E dk

~2p!2

1

~p1k!2

1

~p81k!2

1

p22k21 i e
s3~p81k!

3@M ~11s3!2s•k1 1
2 ~12s3!~p2/2M !#s3~p1k!,

~15!

which is seen by simple power counting to be finite. Thus the
AB scattering of spin-1/2 particles by a fixed flux tube is
finite in this order. This is to be contrasted with the spin-zero
case which is, of course, rendered finite at the one-loop level
only by the addition of a suitable contact term.

It remains to be seen whether the result~15! vanishes on
the ‘‘internal energy shell,’’ i.e., when

@ 1
2 ~11s3!~p2/2M !2s•p1M ~12s3!#u~p!50. ~16!

On applying Eq.~16!, it is found that Eq.~15! becomes

2 is iE dk
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3
1

~p1k!2

1

~p81k!2 J .

Symmetry considerations imply that the integral in this ex-
pression can be written in terms of two scalar functions
A(p,p8) andB(p,p8) as

A~p,p8!~p1p8! i1B~p,p8!e i j ~p2p8! j~p3p8!. ~17!

Since the matrix element ofs i is given by

u* ~p8!s iu~p!5
1

2M
@~p1p8! i1 ise i j ~p2p8! j #,

it is necessary to contract Eq.~17! with (p1p8) i and
e i j (p2p8) j . In the former case one obtains, after some al-
gebra,

A~p,p8…„p1p8!222B~p,p8!~p3p8!2

5E dk

~2p!2 H 4~p3k!~p83k!
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1
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1

p22k21 i e J . ~18!

Upon comparison with Ref.@6#, one sees that the result~18!
plus the corresponding expression withp8→2p8 is propor-
tional to the scattering amplitude for identical spinless par-
ticles for the case in which a contact term of the appropriate
magnitude has been included. Since the latter was specifi-
cally constructed so as to give a vanishing result, it is plau-
sible that the right-hand side of Eq.~18! also vanishes. This
can in fact be verified by direct calculation. Worth empha-
sizing here is the fact that the calculation of Ref.@6# required
that the noncovariant cutoffs of thek integrals for both the
Chern-Simons interaction and the contact term be taken to be
the same. No such assumption is required here since the
integral in Eq.~15! is finite.

To complete the argument it is also necessary to verify
that contraction ofe i j (p2p8) j with Eq. ~17! gives a vanish-
ing result. Calculation shows that one again obtains the right-
hand side of Eq.~18! up to an overall kinematic factor,
thereby establishing that the one-loop correction vanishes in
the spin-1/2 case forM 8→`. The removal of this latter con-
dition is accomplished in the following section.

IV. THE GENERAL MASS CASE

In order to consider the case of AB scattering with general
massesM andM 8 one returns to Eq.~14!. Upon regulating
the divergence in the energy integration in contributions 1
and 2 as previously described, one obtains

2 i

M1M 8
E dk

~2p!2

1

~p1k!2

1

~p81k!2

1

p22k21 i e S M 8Hs3~p81k!FM ~11s3!2s•k

1 1
2 ~12s3!S p2

2m
2

k2

2M 8D Gs3~p1k!J~1!
1
2 ~11s3!~2!1M 1

2 ~11s3!~1!

3H s3~p81k!FM 8~11s3!1s•k1S p2

2m
2

k2

2M D Gs3~p1k!J~2!

2 1
2 $ 1

2 ~11s3!@M ~11s3!2s•k#s3~p1k!%~1!

3$s3~p81k!@M 8~11s3!1s•k# 1
2 ~11s3!%~2!2 1

2 $s3~p81k!@M ~11s3!2s•k# 1
2 ~11s3!%~1!

3$ 1
2 ~11s3!@M 8~11s3!1s•k#s3~p1k!%~2!D . ~19!
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The integrand of this expression contains four separate
terms, of which the first is the type 1 contribution, the second
is the type 2, and the last two are the~mixed! type 3 contri-
bution. Considerable simplification of the former is achieved
by applying the condition~16! and the corresponding one for
the massM 8 part together with the result established in the
preceding section concerning the vanishing of the type 1
~type 2! contribution in the infiniteM 8 ~infinite M ! limit.
One finds that the type 1 and type 2 contributions to the large
parentheses in Eq.~19! thereby reduce to

~p22k2! 1
2 ~11s3!~1! 1

2 ~11s3!~2!

3 1
2 $@s3~p81k!s3~p1k!#~1!

1@s3~p81k!s3~p1k!#~2!%,

which can be written as

~p22k2! 1
2 ~11s3!~1! 1

2 ~11s3!~2!

3F ~p1k!•~p81k!2
i

2
~s1s8!~p1k!3~p81k!G .

The type 3 contributions also undergo considerable sim-
plification when Eq.~16! is invoked. One finds that these
reduce to

2 1
2

1
2 ~11s3!~1! 1

2 ~11s3!~2!$@2k3p2 is~p1k!2#

3@2p83k2 is8~p81k!2#1@2k3p2 is8~p1k!2#

3@2p83k2 is~p81k!2#%,

which can be written as

1
2 ~11s3!~1! 1

2 ~11s3!~2!$4~p3k!~p83k!1ss8~p1k!2

3~p81k!22 i ~s1s8!

3@~k3p8!~p1k!22~k3p!~p81k!2#%.

It is seen by inspection that the terms linear ins and s8
vanish upon doing the angular integration so that one obtains
upon combining all these results the reduction of~19! to

2
i

M1M 8

1

2
~11s3!~1!

1

2
~11s3!~2!E dk

~2p!2

3H 4~p3k!~p83k!

~p1k!2~p81k!2

1

p22k21 i e
1

ss8

p22k21 i e

1
~p1k!•~p81k!

~p1k!2~p81k!2 2
i

2
~s1s8!

~p1k!3~p81k!

~p1k!2~p81k!2 J .

Again, it can be shown that the term which is linear in
s1s8 vanishes upon performing the angular integration. This
leaves one with a result which is remarkably similar to~18!.

Since the latter is known to vanish, one readily finds that the
one-loop correction to spin-1/2 AB scattering is given by

2 i

M1M 8

1

2
~11s3!~1!

1

2
~11s3!~2!

3E dk

~2p!2

~ss821!

~p22k21 i e!
,

which is the final result of this calculation. Forss851 ~i.e.,
parallel spins!, the result is thus seen to be both finite and
vanishing to ordera2. In this case one has equivalence to the
s5s8 limit of Eq. ~12! which is known @8# to have a
divergence-free perturbative expansion. Conversely, for the
antiparallel spin configuration one has either a magnetic mo-
ment which vanishes (M5M 8) or one which has ag factor
less than 2~generalM ,M 8! and is thus not equivalent to the
spin-1/2 AB scattering system studied in Ref.@7#. In each of
these latter cases one expects divergences in perturbative cal-
culations in agreement with the results obtained here.

V. CONCLUSION

This work has succeeded in restoring a certain symmetry
between spin-zero and spin-1/2 work on the AB effect.
While the quantum mechanical AB effect had been solved
for both the scalar@1# and spinor@7# cases and their pertur-
bative expansions studied in both applications@2,3,8#, only
the scalar theory had been studied previously as a perturba-
tion expansion in field theory. Although the technical com-
plications associated with the matrix algebra are quite sig-
nificant in the spin-1/2 field theory, it has in fact been found
possible to carry through the calculation of the AB scattering
amplitude to fourth order in the coupling constant and
thereby reestablish the aforementioned balance between the
scalar and spinor theories.

It is certainly gratifying that the results of this study con-
form with those which have been found in Ref.@8#. Beyond
that, however, is the very useful set of rewards which have
followed from the use of nonidentical particles in this study.
First of all, it allowed one to begin the calculation with the
much more manageable examination of AB scattering from a
fixed flux tube~i.e., theM 8→` limit !, obtaining in the pro-
cess a result which greatly facilitated the treatment of the
more general case. Second, it allowed one to avoid the ex-
traneous complication arising from the Pauli principle. Fi-
nally, and perhaps most significant of all, it allowed the si-
multaneous consideration of the parallel and antiparallel spin
cases. It has been found that in the former case the result is
both finite and vanishing at the fourth order while in the
latter one encounters the divergences known to characterize
the spin-zero theory. All of these results are in conformity
with calculations which have been carried out in the context
of quantum mechanics.

Finally, mention should be made of the fact that it must be
regarded as encouraging that calculations such as those pre-
sented here can be effectively carried out. This is a signifi-
cant point since the spin-1/2 theory has a crucial advantage
over the corresponding scalar theory by virtue of its being
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finite in perturbation theory without thead hocinclusion of
additional coupling terms. As has already been mentioned,
the fact that the spin-1/2 theory already implies such contact
terms through the magnetic moment interaction serves to
eliminate ambiguities in the regularization of divergent inte-
grals. It may thus be possible that such features will cause

spin-1/2 perturbative calculations to see greater application
in the future.
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