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We analyze the generalized point-splitting method and Jo’s result for the commutator anomaly. We find that
certain classes of general regularization kernels satisfying integral conditions provide auniqueresult, which,
however,differs from Faddeev’s cohomological result.@S0556-2821~97!03516-9#

PACS number~s!: 11.10.Gh

I. INTRODUCTION

There is now an elegant cohomological theory—the so-
called Stora-Zumino chain of descent equations@1,2#—
established which describes the anomalies of quantum field
theory ~for a recent overview see@3,4#!. The one-cocycle is
identified with the anomaly in the covariant divergence of
the non-Abelian chiral fermion current@1,2#, the two-cocycle
with the anomalous term—the Schwinger term@5#—in the
commutator of the gauge group generators occurring in the
same anomalous theory@6–8# ~for an overview see@9,10#!. It
is this anomalous~equal time! commutator we are concerned
with:

i @Ga~x!,Gb~y!#5 f abcGcd3~x2y!1Sab~x2y!. ~1.1!

The generator—Gauss-law operator—consists of two parts:

Ga~x!5da~x!1ra~x!, ~1.2!

the generatorda(x) of gauge transformations for the gauge
potentials and the generatorra(x) of the gauge transforma-
tions for the fermionic fields,

da~x!52~D•E!a~x!5 iD i
ba d

dAi
b
~x!, ~1.3!

ra~x!52 ic†~x!Ta
12g5

2
c~x!. ~1.4!

Ei
a is the non-Abelian electric field,Di

ab5dab] i1 f abcAi
c the

covariant derivative; the group matricesTa are anti-
Hermitian satisfying

@Ta,Tb#5 f abcTc, ~1.5!

and finallyg5 is chosen asg55 ig0g1g2g3.
The solution for this additional anomalous term in the

commutator—which causes difficulties when quantizing the
theory—has been found by Faddeev@7# on a cohomological
basis:

Sab~x,y!52
i

24p2
« i jk tr$Ta,Tb%] iAj]kd

3~x2y!.

~1.6!

This cohomological result has been verified by computing
the commutator with the Bjorken-Johnson-Low procedure
@11–14#, or by working with geometric methods@15–21#.
However, as Jo@11# discovered, a generalized point-splitting
method where the time is fixeddoes notprovide Faddeev’s
cohomological result~1.6!, contrary to claims in the litera-
ture @22#. Furthermore, Jo located an inherent ambiguity in
the procedure due to the specific choice of the regularization
kernels.~Note that we consider here the case of 113 dimen-
sions; in 111 dimensions there occur no problems and all
methods agree.! Reinvestigating the procedure we clarify
this ambiguity and show how to overcome this problem. In
fact, we find that a whole class of regularization kernels sat-
isfying an integral condition provides a unique result.

II. GENERALIZED POINT-SPLITTING METHOD

In order to define an operator

J~ f !52 i E d3xc†~x! f ~x!
12g5

2
c~x!, ~2.1!

which has a singular behavior, we introduce a family of the
smooth kernels:

F~x,y!5 f S x1y

2 D f m f
~ ux2yu!, ~2.2!

where

lim
m f→0

f m f
~ ux2yu!5d3~x2y!. ~2.3!

The limit is understood in a distributional sense, so the
f m f

(ux2yu) ared-like functions and thef @(x1y)/2# contain
matrices of the internal symmetry space. For each such ker-
nel F(x,y) we define the operator

J~F !52 i E d3xd3yc†~x!F~x,y!
12g5

2
c~y!. ~2.4!

We also need the Fourier transformations
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F̃~p8,p!5E d3xd3yeip8•~x1y!/2eip•~x2y!F~x,y! ~2.5!

5 f̃ ~p8! f̃ m f
~ upu!, ~2.6!

f̃ ~p8!5E d3xeip8•xf ~x!, ~2.7!

f̃ m f
~ upu!5E d3xeip•xf m f

~ uxu!. ~2.8!

F̃(p8,p) has the local limit

lim
m f→0

F̃~p8,p!5 f̃ ~p8!, ~2.9!

since

lim
m f→0

f̃ m f
~ upu!51. ~2.10!

These smeared operatorsJ(F) are well defined in Hilbert
space and satisfy the familiar commutation relations

i @J~F !,J~G!#5J~@F,G# !, ~2.11!

where the commutator@F,G# means

@F,G#~x,y!5E d3z@F~x,z!G~z,y!2G~x,z!F~z,y!#.

~2.12!

However, in order to be able to perform the local limit we
have to subtract the fixed-time vacuum expectation value
~VEV! of J(F):

^J~F !&A5E d3xd3ytrP~x,y!F~y,x!5TrFP, ~2.13!

where

P~x,y!5 i
12g5

2
^c~x!c†~y!&A . ~2.14!

In the local limit we needP(x,y) for x'y, which diverges
for x→y. We extractPinf5P(x,y)x→y so thatP2Pinf has a
local limit. Then we obtain the well-defined operatorJ( f )
from the local limit of a such regularized quantity:

J~ f !5 lim
m f→0
Jreg~F !, ~2.15!

with

Jreg~F !5J~F !2TrFPinf. ~2.16!

On the other hand, we also need an operatorT( f ) defined by

T~ f !5E d3x fa~x!da~x!52 i E d3x@Di f ~x!#b
d

dAi
b~x!

.

~2.17!

Now, in order to investigate the commutator~1.1! we have to
consider

i @T~ f !1Jreg~F !,T~g!1Jreg~G!#

5T~@ f ,g# !1Jreg~@F,G# !1S~F,G!, ~2.18!

and we have to compute the Schwinger term in the local
limit:

S~F,G!5 i @T~ f !,Jreg~G!#1 i @Jreg~F !,T~g!#1J~@F,G# !

2Jreg~@F,G# !, ~2.19!

S~ f ,g!5 lim
m f ,mg→0

S~F,G!. ~2.20!

III. JO’S RESULT FOR THE COMMUTATOR ANOMALY

For symmetric regularization kernels the following com-
mutators vanish:

@T~ f !,Jreg~G!#5@Jreg~F !,T~g!#50, ~3.1!

and we have, for the Schwinger term@11#,

S~F,G!5Tr@F,G#Pinf ~3.2!

5
1

2E d3q

~2p!3
trBi~q!E d3p8

~2p!3

3@x i~F,G;p8,q!

2x i~G,F;p8,q!#, ~3.3!

where Bi(q) is the Fourier transformation ofBi@(x1y)/2#
and

Bi~x!5« i jk~] jAk1AjAk!~x!. ~3.4!

The function

x i~F,G;p8,q!5E d3p

~2p!3

pi

upu3
F̃ S p8,p1

q

2
1

p8

2 D
3G̃S 2p82q,p1

p8

2 D ~3.5!

after expandingF̃ andG̃ can be rewritten as

x i~F,G;p8,q!5E d3p

~2p!3

pi

upu3
@ F̃~p8,p!G̃~2p82q,p!#

1
p8 j

2 E d3p

~2p!3

pi

upu3
]

]pj

3@ F̃~p8,p!G̃~2p82q,p!#

1
qj

2 E d3p

~2p!3

pi

upu3F ]

]pj
F̃~p8,p!G

3G̃~2p82q,p!

1higher-order derivative terms. ~3.6!
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The first integral is zero because the integrand is antisymetric
under the change ofp→2p. The higher-order derivative
terms vanish after the local limit.1

Then the functionx i can be separated into two parts:

x i~F,G;p8,q!5x1
i ~F,G;p8,q!1x2

i ~F,G;p8,q!, ~3.7!

where

x1
i ~F,G;p8,q!5

p8 j

2 E d3p

~2p!3

pi

upu3

]

]pj

3@ F̃~p8,p!G̃~2p82q,p!#, ~3.8!

x2
i ~F,G;p8,q!5

qj

2 E d3p

~2p!3

pi

upu3F ]

]pj
F̃~p8,p!G

3G̃~2p82q,p!. ~3.9!

Whereas the first term is independent of the applied regular-
ization kernels—the d-like functions f̃ m f

(upu),

g̃mg
(upu)—providing the unique result

x1
i ~F,G;p8,q!52

p8 i

12p2
f̃ ~p8! g̃~2p82q! ~3.10!

in the local limit m f , mg→0, the second term is not. It
strongly depends on the kernels and for Jo’s choice of Gauss-
ian regularization kernels

F~x,y!5 f S x1y

2 D 1

~4pm f !
3/2

e2~x2y!2/4m f , ~3.11!

G~x,y!5gS x1y

2 D 1

~4pmg!3/2
e2~x2y!2/4mg, ~3.12!

or in momentum space

F̃~p8,p!5 f̃ ~p8!e2m fp
2
, ~3.13!

G̃~p8,p!5 g̃~p8!e2mgp2
, ~3.14!

the result is

x2
i ~F,G;p8,q!52

1

11m

qi

12p2
f̃ ~p8! g̃~2p82q!,

~3.15!

where we have introduced the parameterm[mg /m f .
Clearly, the local limit ofx2

i depends on howm f and mg

approach zero. With this ambiguity, the final expression for
the Schwinger term becomes

S~F,G!5
2 i

24p2
« i jkE d3xtrF ~] jAk1AjAk!~] i f g2] ig f !

1] i~AjAk!S 1

11m
f g2

m

11m
g f D G . ~3.16!

As emphasized by Jo using different regularization kernels
may give rise to a different approach dependence; to a dif-
ferent dependence onm. This is indeed the case as we shall
demonstrate below.

IV. POWERLIKE REGULARIZATION KERNELS

Let us choose a new set ofd-like functions$ f m f
(uxu,b)%,

the power functions@23#

f m f
~ ux2yu,b!5

1

N

m f
2b23

~ ux2yu21m f
2!b

, ~4.1!

with the normalization (b function!

N52pB~3/2,b23/2!52p
G~3/2!G~b23/2!

G~b!
, ~4.2!

andb>3, bPR. The Fourier transforms are

f̃ m f
~ upu,b!5

1

Ñ
~m f upu!b23/2Kb23/2~m f upu!, ~4.3!

with

Ñ52b25/2G~b23/2!, ~4.4!

andKb23/2(t) is a Bessel function. In this case we obtain for
the ambiguous term@24#

x2
i ~F,G;p8,q!52

qi

12p2
f̃ ~p8! g̃~2p82q!

m2b23

2

3F~2b23,b21/2;2b22;12m2!,

~4.5!

whereF(a,b;c;z) denotes the hypergeometric function with
the integral representation (Rec.Reb.0)

F~a,b;c;z!5
1

B~b,c2b!
E

0

1

dttb21~12t !c2b21~12zt!2a.

~4.6!

Clearly, for the two parameter values2 m50 andm→` we
recover—for all values ofb—Jo’s result~this must be the

1This is valid for all renormalization kernels and not only for the
Gaussian ones used by Jo@11#.

2For the casem50 it is better to use the expression

x2
i ~F,G;p8,q!52

qi

12p2
f̃ ~p8! g̃~2p82q!

3
mb23/2

22b25G2~b23/2!
•I ~b,m!, ~4.7!

where

I~b,m!5E
0

`

dtt2b23Kb25/2~ t !Kb23/2~mt !. ~4.8!

2238 56R. A. BERTLMANN AND TOMÁŠ SÝKORA



case for general reasons as we shall demonstrate below!. But
also form51 the result~4.5! agrees with Jo’s result derived
with the Gaussian kernels. Of course, for a general value of
m this is not so. For example, forb53 we get

x2
i ~F,G;p8,q!52

3m11

~11m!3

qi

12p2
f̃ ~p8! g̃~2p82q!.

~4.9!

Next we combine differentd-like functions. For example, let
us choose the Gaussian kernel~3.11! to regularize the opera-
tor J( f ) and the above power kernel~4.1! for J(g) then we
obtain a differentm f ,mg dependence of the integral@24#

x2
i ~F,G;p8,q!52

qi

12p2
f̃ ~p8! g̃~2p82q!

3S b2
3

2D jb23/2U~b21/2,b21/2,j!,

~4.10!

wherej[mmg/4 andU(a,b,z) denotes the Whittaker func-
tion with integral representation (Rea.0)

U~a,b,z!5
1

G~a!
E

0

`

dte2ztta21~11t !b2a21. ~4.11!

If we interchange the kernels then we obtain again an other
m f ,mg dependence

x2
i ~F,G;p8,q!52

qi

12p2
f̃ ~p8! g̃~2p82q!

3jb23/2U~b23/2,b23/2,j!. ~4.12!

We have plotted3 the results~4.10! and~4.12! on Fig. 1@25#.
Again, forj50 andj→` we recover the previous cases but
now the desired agreement with the previous results, the

3Up to the common factor2(qi /12p2) f̃ (p8) g̃(2p82q).

FIG. 1. The combination of Gaussian and power kernels, Eqs.~4.10! and ~4.12! ~see footnote 3!, are plotted versusj for the values of
b53 andb54.
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value 1/2 where both functions~4.10! and ~4.12! coincide
~see footnote 3!, is given at differentj depending on the
value ofb. This corresponds to taking a different limit pro-
cedure for each value ofb. The severalj values we have
collected in Table I@25#. Of course, for general values ofj
the results differ from the previous ones. So the above dem-
onstrated dependence of the integralx2

i (F,G;p8,q) on the
applied regularization kernels proves Jo’s conjecture.

V. INTEGRAL CONDITION

We can overcome the above ambiguity in a quite natural
way. Let us consider again the Schwinger term expression
~3.3! for general regularization kernels. Since it is antisym-
metric under interchange off andg the final integral in the
term

x2
i ~F,G;p8,q!5

qi

12p2
f̃ ~p8! g̃~2p82q!

3 lim
m f ,mg→0

E
0

`

dupu
]

]upu
f̃ m f

~ upu!• g̃mg
~ upu!

~5.1!

must be invariant under this interchange, so

lim
m f ,mg→0

E
0

`

dupu
]

]upu
f̃ m f

~ upu!• g̃mg
~ upu!

5 lim
m f ,mg→0

E
0

`

dupu f̃ m f
~ upu!•

]

]upu
g̃mg

~ upu!. ~5.2!

After partial integration,

2 lim
m f ,mg→0

E
0

`

dupu
]

]upu
f̃ m f

~ upu!• g̃mg
~ upu!

5 lim
m f ,mg→0

@ f̃ m f
~ upu! g̃mg

~ upu!#0
`521, ~5.3!

sinced-like functions satisfy

f̃ m f
~`!5 g̃mg

~`!50

and

lim
m f→0

f̃ m f
~0!5 lim

mg→0
g̃mg

~0!51. ~5.4!

Another way of getting the condition on the regularization is
to use the normalization of thed-like functions:

lim
m f ,mg→0

E
0

`

dupuF ]

]upu
f̃ m f

~ upu!• g̃mg
~ upu!

1 f̃ m f
~ upu!•

]

]upu
g̃mg

~ upu!G
5 lim

m f ,mg→0
E

0

`

dupu
]

]upu @ f̃ m f
~ upu!• g̃mg

~ upu!#

5 lim
m f ,mg→0

@ f̃ m f
~ upu!• g̃mg

~ upu!#0
`521 ~5.5!

and to respect the antisymmetry of the Schwinger term
which implies the equality of the first two terms@see Eq.
~5.2!#. So the antisymmetry of the Schwinger term already
restricts the general possibilities for regularization and we
are led to the following theorem.

Theorem 1. The classes ofd-like functions$ f m f
(ux2yu)%

and $gmg
(ux2yu)% which satisfy the integral conditions

lim
m f ,mg→0

E
0

`

dupu
]

]upu
f̃ m f

~ upu!• g̃mg
~ upu!52

1

2
, ~5.6!

lim
m f ,mg→0

E
0

`

dupu
]

]upu
g̃mg

~ upu!• f̃ m f
~ upu!52

1

2
, ~5.7!

where both limits are of the same type, will provide a unique
result for the Schwinger term S( f ,g).

This is the above-mentioned integral condition on the
classes of regularization kernelsand it also gives a condition
on how m f and mg have to approach zero. For example, in
the above described Gaussian or power kernel case the inte-
gral condition is satisfied for the valuem51, which is actu-
ally the most natural regularization, whereas in a combina-
tion of Gaussian and power kernels we must choose a special
value ofj depending on the value ofb. Theorem 1 gives us
the possibility to use every combination of regularization
kernels and to define howm f andmg have to approach zero.

Finally, arriving in this way at a unique result, the
Schwinger term of the Gauss-law commutator is given by

Sab~x2y!5
2 i

24p2
« i jk trH ~] jAk1AjAk!$T

a,Tb%] id
3~x2y!

1
1

2
] i~AjAk!d

3~x2y!@Ta,Tb#J . ~5.8!

Note that precisely the terms proportional toAjAk break Fad-
deev’s cohomological result, Eq.~1.6! ~as found by Jo@11#!.

VI. CONCLUSION

When working with a generalized point-splitting method
for the calculation of the Schwinger term in the commutator
of Gauss-law operators, the occurring ambiguity due to the
choice of regularization kernels can be overcome. The asym-
metry of the Schwinger term restricts the possibilities for
regularization allowing such that classes of regularization

TABLE I. The combination of Gaussian and power kernels.
Values ofj are given which show us how the limit procedures must
be done for different values ofb to satisfy integral conditions~5.6!
and ~5.7!.

b 3 4 5 6 7

j 1.07748 2.04837 3.03504 4.02744 5.02194
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kernels which satisfy the integral conditions~5.6! and ~5.7!
lead to a unique result. A result, however, which differs from
Faddeev’s cohomology solution~1.6!.

Note added. When calculating the commutator of the
Gauss law operator and the Hamiltonian@G,H#, or equiva-
lently the time derivative of the Gauss law operator, we
should obtain the anomaly in the divergence of the chiral
current @26#. However, the generalized point-splitting

method used here does not work and must be altered. This
we will present in a forthcoming publication@27#.
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