PHYSICAL REVIEW D VOLUME 56, NUMBER 4 15 AUGUST 1997

Point-splitting method of the commutator anomaly of Gauss law operators
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We analyze the generalized point-splitting method and Jo’s result for the commutator anomaly. We find that
certain classes of general regularization kernels satisfying integral conditions prowidgue result, which,
however differs from Faddeev's cohomological resyl§0556-282197)03516-9

PACS numbd(s): 11.10.Gh

I. INTRODUCTION

Sab(x,y): - 5 Sijktr{Ta,Tb}é’iAj O')kéG(X_y)

There is now an elegant cohomological theory—the so- 4ar?
called Stora-Zumino chain of descent equatidis2]— 1.6
established which describes the anomalies of quantum fiel
theory (for a recent overview s€e,4]). The one-cocycle is
identified with the anomaly in the covariant divergence o
the non-Abelian chiral fermion currefit,2], the two-cocycle
with the anomalous term—the Schwinger teff}—in the
commutator of the gauge group generators occurring in th
same anomalous theo§—8| (for an overview seg9,10]). It
is this anomalougequal time@ commutator we are concerne
with:

?his cohomological result has been verified by computing
fthe commutator with the Bjorken-Johnson-Low procedure
[11-14, or by working with geometric methods5-21.
However, as J§11] discovered, a generalized point-splitting
Qwethod where the time is fixedoes notprovide Faddeev’'s
cohomological resultl1.6), contrary to claims in the litera-

g ture [22]. Furthermore, Jo located an inherent ambiguity in
the procedure due to the specific choice of the regularization
kernels.(Note that we consider here the case #f3ldimen-

oA b _ fabcc _ ab/y sions; in 1 dimensions there occur no problems and all

I[G(x),G°N]= 129G (x=y) + Sx=y). (1.0 methods agrep.Reinvestigating the procedure we clarify

this ambiguity and show how to overcome this problem. In

fact, we find that a whole class of regularization kernels sat-

GA(x) = 6%(X) + p(X), (1.2) isfying an integral condition provides a unique result.

The generator—Gauss-law operator—consists of two parts

the generatow?(x) of gauge transformations for the gauge Il. GENERALIZED POINT-SPLITTING METHOD
potentials and the generatpf(x) of the gauge transforma-

tions for the fermionic fields, In order to define an operator

. 1-vs
5 f=—|fd3xTxfx X), 2.1
e T MR s yOoTg T2
i
which has a singular behavior, we introduce a family of the
- 1-ys smooth kernels:
pP(X)= =1 (0T ——¢h(X). (1.4
o=t 52 s @2
X,y)=f| —— x=y|), .
E? is the non-Abelian electric field?2°= 525+ f3°°A° the Y 2 | lm Y
covariant derivative; the group matrice§?® are anti-
Hermitian satisfying where
[T2,T°]=f2bere, (1.5 lim £, (x=y)=8*x=y). 2.3

wi—0
and finally ys is chosen ags=iy%y*y%>. o . o
The limit is understood in a distributional sense, so the

The solution for this additional anomalous term in thef Silike T X d thd /2 .
commutator—which causes difficulties when quantizing the' «(IX—Y]) are &-like functions and thé[ (x+y)/2] contain

theory—has been found by Faddd@] on a cohomological Matrices of the internal symmetry space. For each such ker-
basis: nel F(x,y) we define the operator

1_
AF)=—i [ eyl 0F oy 52wy, 24

*On leave from the Department of Nuclear Centre of Faculty of
Mathematics and Physics, Charles University, Prague. Electronic
address: sykora@HP03.TROJA.MFF.CUNI.CZ We also need the Fourier transformations
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F(p'.p)= f d*xdy P’ V2gP TVE(x ) (2.5)

=T(p")T,,pD), (2.6
"f'(p')zf d3xeP *f(x), (2.7)
T o= [ axemt,0x). @9
F(p’,p) has the local limit
lim F(p’,p)=T(p"), (2.9
ui—0
since
lim .. (Iph=1. (2.10
ui—0

These smeared operataigF) are well defined in Hilbert
space and satisfy the familiar commutation relations
i[J(F),J(G)]=T[F,G], (2.11)

where the commutatdi=,G] means

[F.Gl(x,y)= f d*Z[F(x,2)G(zy) — G(x,2)F(z,y)].
(2.12

2237

Now, in order to investigate the commutatarl) we have to
consider

I[7(f) + Tred F), 7(9) + Tred G)]
=T([f, gD+ Ted[F.GD+S(F,G), (2.1
and we have to compute the Schwinger term in the local
limit:
S(F,G)=i[T(1), Ted G) 1 +i[ Tred F), 7(9) 1+ T F,G])
—Jred[F.,G1), (2.19

S(f,g)= lim S(F,G). (2.20

Mt 1/”9"0
I1I. JO’S RESULT FOR THE COMMUTATOR ANOMALY

For symmetric regularization kernels the following com-
mutators vanish:

[7(f),Tred G) 1= [ Tred F), 7(9) ]=0, (3.9)
and we have, for the Schwinger tefrl],
S(F,G)=Ti[F,G]P™ (3.2
3 3R’
=l G [ G
X[x'(F,G;p’,q)
~X'(G,F;p’,)], 3.3

However, in order to be able to perform the local limit we WhereB'(q) is the Fourier transformation d'[ (x+y)/2]
have to subtract the fixed-time vacuum expectation valu@nd

(VEV) of J(F):

(j(F))Azf d3xd3ytrP(x,y)F(y,x)=TrFP, (2.13

where

1_
POY=I =00 ()a. (214

In the local limit we needP(x,y) for x~y, which diverges
for x—y. We extractt™™=P(x,y),_., so thatP—P™ has a
local limit. Then we obtain the well-defined operatgtf)
from the local limit of a such regularized quantity:

J(F)= lim JegF),

mi—0

(2.19

with
Tred F)=J(F)—TrEP™. (2.16

On the other hand, we also need an operd{dy defined by

J'de’xfa )83 (X) = —|fd3x[Df (x)]° 5Ab( 0

(2.17

B'(x)=e&'*(9;Ac+AjAD (X). (3.4

The function

i~ , q pr
X'(F.G;p’,q)= j(z B |3F<p,p+§+3)

p
—p'-a.pts5 (3.5

after expandindg= andG can be rewritten as

A d*p p
x'(F,G;p',q):f P P E o pB-p —ap)]

(2m)3 |pl®
pl d p' 9
2) @m3[pP ap!
x[F(p’.p)G(—
d3p p[

p'—a,p)]

qJ
"2 f<2w)3|p|3 prinl p)l

ap!
XG(-p' —a.p)

+ higher-order derivative terms. (3.6)
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The first integral is zero because the integrand is antisymetric 1 M
under the change op— —p. The higher-order derivative +ai(AAD| 7 fg— gf
terms vanish after the local limit.
Then the functiony' can be separated into two parts:  As emphasized by Jo using different regularization kernels
may give rise to a different approach dependence; to a dif-
X'(F.Gip’,a)= Xl(F Gip’ q)+X2(F Gip".a), (3.7 ferent dependence gm. This is indeed the case as we shall
demonstrate below.

I

where
p'J d3p pi 9 IV. POWERLIKE REGULARIZATION KERNELS
Xi(F.Gip’,0)= PRI : .
(2m)® |p|® op’ Let us choose a new set éflike functions{f,, (|x|,b)},
=~ = the power function$23]
X[F(p",p)G(—-p'~a,p)], (B8
Mbe_S
- qu dp p' fu(Ix=ylb)= & ———— (4.9)
»(F,G;p',q)= = N (|x—y|?+
X2(F.Gp",a)= 2 o ap] F(p'.p) ([x=y[*+
~ ) with the normalization 8 function)
XG(=p'—q.,p). 3.9
i . ) I'(3/2T'(b—3/2)
Whereas the first term is independent of the applied regular- N:27TB(3/2b—3/2):27TT, 4.2
ization  kernels—the &-like  functions Tﬂf(|p|),
’g’ﬂ (|p|)—providing the unique result andb=3,be R. The Fourier transforms are
9
‘ /i 7 1 b—3/2
xi(F,G;p’,q)= (3.10 fﬂf(|p|,b)=ﬁ(ﬂf|p|) Ko-almeelpl), (4.3

in the local limit u;, ug—0, the second term is not. It with
strongly depends on the kernels and for Jo’s choice of Gauss- ~ e
ian regularization kernels N=2°"%2T(b—-3/2), (4.4

+y 1 andKy_g(t) is a Bessel function. In this case we obtain for
F(x, y)—f( ) 3/2e‘<x‘y)2’4”f, (3.11)  the ambiguous terri24]
(A7 pr)
) 2b—3
| ’ !
X+ 1 x2(F.G;p’,0)=— f(pHa(—p'—a)
G(X'y):g( _zy><4 e s, (31 122
au
Ha XF(2b—3b—1/2:20—2:1— u?),
or in momentum space 45
Tin’ _F A \a— 2
F(p',p)=Tf(p")e ", (813 \whereF(a,b;c;z) denotes the hypergeometric function with
- - o, the integral representation (Re Reb>0)
G(p'.p)=g(p’)e *a, (3.14
: P b—-1 c—b-1 a
the result is F(a,b;c;z)= B(b c—b) f dtt® *(1-1t) (1—zt)~
_ i (4.9
2(F.Gip"\a)=— 57— ——T(p)g(—p'—aq),
Xl P.a) 1+p 1242 (Phe(=p"~—a) Clearly, for the two parameter valifes =0 andu— o we

(3.15 recover—for all values ob—Jo’s result(this must be the

where we have introduced the parameters= ug/us.

Clearly, the local limit of, depends on howu, and Mg %For the casqu=0 it is better to use the expression
approach zero. With this ambiguity, the final expression for i
the Schwinger term becomes XAF.Gip',q)= — T(p')3(—p'—q)
Y 1272
-
S(F,G)Z Zsljkf dgxtr (aJAk+AJAk)(C7|fg_t?|gf) % /Lb73/2 (b @7
24m Bsrap g O '
where

This is valid for all renormalization kernels and not only for the I(b ,u)=rdttzb_st_s/z(t)Kb—s/z(:“t)- 4.9

Gaussian ones used by [It]. 0
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FIG. 1. The combination of Gaussian and power kernels, Eg%0 and(4.12 (see footnote B are plotted versug for the values of
b=3 andb=4.

case for general reasons as we shall demonstrate beBotv ~ where = uuy/4 andU(a,b,z) denotes the Whittaker func-
also foru=1 the result4.5 agrees with Jo’s result derived tion with integral representation (Re-0)

with the Gaussian kernels. Of course, for a general value of

this is not so. For example, fdr=3 we get 1 (=

H P g U(a,b,z)= mf dteiZttail(l-Ft)biail. (4.11
3u+tl d - - °
3 o5 (P)HI(=p' —0). : : :

(1+um)° 127 If we interchange the kernels then we obtain again an other

(4.9  ui,uq dependence

X5(F,G;p’,q)=—

Next we combine differené-like functions. For example, let i
us choose the Gaussian kerf@l11) to regularize the opera- Yo(F.Gip’',q)=—
tor J(f) and the above power kerngl.1) for J(g) then we 1272

obtain a differentu,u, dependence of the integri4] w320 (b—3/2b—3/2). (4.12)

f(p)g(—p'—a)

i
Xo(F,G;p’,q)=— d Sf(p)g(-p'~q) We have plottedithe resultg4.10 and(4.12 on Fig. 1[25].
127 Again, for =0 andé— o we recover the previous cases but

now the desired agreement with the previous results, the

X

3
b— 5) £782y(b—1/2b—1/24),

(4.10 3Up to the common factor- (q'/1272) T (p')g(—p’' —q).
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TABLE I. The combination of Gaussian and power kernels. %
Values of¢ are given which show us how the limit procedures must lim J d|p|[(9| | M(| pl)- 9M9(|p|)
be done for different values df to satisfy integral conditioné5.6) s ug—07 0 P
and(5.7).
+7
N 2 2 : 6 . uiIPD- a||O|@J,Lg Ipl)}

3 1.07748 2.04837 3.03504 4.02744 5.02194

. * (9 T -~
= lim fd|p|m[fﬂf<|p|>-gﬂg<|pl>]

e pug—0
value 1/2 where both functiong.10 and (4.12 coincide _
(see footnote B is given at different¢ depending on the thun:—»o[f”f (IpD)- g# (IPhJo= (5.9

value ofb. This corresponds to taking a different limit pro-
cedure for each value df. The severak values we have and to respect the antisymmetry of the Schwinger term
collected in Table [25]. Of course, for general values f  which implies the equality of the first two ternjsee Eq.

the results differ from the previous ones. So the above demb.2)]. So the antisymmetry of the Schwinger term already
onstrated dependence of the integya(F,G;p’,q) on the restricts the general possibilities for regularization and we

applied regularization kernels proves Jo’s conjecture. are led to the following theorem.
Theorem 1The classes ob-like functions{f, (|x—y|)}
V. INTEGRAL CONDITION and{gﬂg(|x—y|)} which satisfy the integral conditions

We can overcome the above ambiguity in a quite natural
way. Let us consider again the Schwinger term expression

‘ d ~ 1
(3.9 for general regularization kernels. Since it is antisym- lim f dip| 5= f . (IpD- gM (lph=-5, (5.6
metric under interchange dfandg the final integral in the wug—07 0 Jp | g 2
term

) d 1
im [t G 16D T = 5. 67
fp)a(-p'-0) Hirig =0

where both limits are of the same type, will provide a unique
) °° J ~ ~ result for the Schwinger term(§,g).
X lim j d|p| mfm(m)‘ 9u,(IPl) This is the above-mentioned integral condition on the
Hiottg =0 classes of regularization kerneladit also gives a condition
(5.7 on how u; and u4 have to approach zero. For example, in
. . o the above described Gaussian or power kernel case the inte-
must be invariant under this interchange, so gral condition is satisfied for the valye=1, which is actu-
ally the most natural regularization, whereas in a combina-
lim f d|p| = |p|) 9 (IpD tion of Gaussian a}nd power kernels we must choos_e a special
| | Fo value of¢ depending on the value &f Theorem 1 gives us
the possibility to use every combination of regularization
23 (o). (5.2 kern_els and to C!efin(_a hoys_tf anduq have to_approach zero.
| ¥ #g ' Finally, arriving in this way at a unique result, the
Schwinger term of the Gauss-law commutator is given by

Xo(F.Gip' )=

M ,,ug—>0

~ im [ “dlp[T,. (o)

e pug—0

&Ip

After partial integration,

2 lim f dlp| | | (P, (D SPh(x—y)= Zs”ktr[ (G A+AAN (T, T8, 8%(x—y)
Kfotg—0 P 24T
= 1
9
since &-like functions satisfy Note that precisely the terms proportionaltpA, break Fad-

_ _ deev’s cohomological result, E€L.6) (as found by J¢11)).
T (*)=0,(*)=0

VI. CONCLUSION
and

When working with a generalized point-splitting method

lim T, (0)= I|m 9 (0): (5.4) for the calculation of the Schwinger term in the commutator
0 of Gauss-law operators, the occurring ambiguity due to the
choice of regularization kernels can be overcome. The asym-
Another way of getting the condition on the regularization ismetry of the Schwinger term restricts the possibilities for
to use the normalization of thélike functions: regularization allowing such that classes of regularization

ns—0 g
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kernels which satisfy the integral conditiofs.6) and (5.7) method used here does not work and must be altered. This
lead to a unique result. A result, however, which differs fromwe will present in a forthcoming publicatidi27].
Faddeev’'s cohomology solutigi..6).
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