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Cosmological and black hole horizon fluctuations
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The quantum fluctuations of horizons in Robertson-Walker universes and in Schwarzschild spacetime are
discussed. The source of the metric fluctuations is taken to be quantum linear perturbations of the gravitational
field. Light cone fluctuations arise when the retarded Green’s function for a massless field is averaged over
these metric fluctuations. This averaging replacesdtienction on the classical light cone with a Gaussian
function, the width of which is a measure of the scale of the light cone fluctuations. Horizon fluctuations are
taken to be measured in the frame of a geodesic observer falling through the horizon. In the case of an
expanding universe, this is a comoving observer either entering or leaving the horizon of another observer. In
the black hole case, we take this observer to be one who falls freely from rest at infinity. We find that
cosmological horizon fluctuations are typically characterized by the Planck length. However, black hole hori-
zon fluctuations in this model are much smaller than Planck dimensions for black holes whose mass exceeds
the Planck mass. Furthermore, we find black hole horizon fluctuations which are sufficiently small as not to
invalidate the semiclassical derivation of the Hawking procg88556-282(197)00316-0

PACS numbegps): 04.70.Dy, 04.62+v, 04.60.-m

I. INTRODUCTION in Sec. Il. It will be applied to the case of cosmological
horizons in Sec. lll, and to black hole horizons in Sec. IV.
One of the characteristics of classical gravitation is theOur results will be summarized and discussed in Sec. V. We
existence of horizons, surfaces which divide spacetime intvill also give a critical assessment of the previous attempts
causally distinct regions. The most striking example is thd2,3] to estimate the horizon fluctuations.
black hole horizon, the boundary which hides the events
within from the outside world. Cosmological models also Il. BASIC FORMALISM
possess horizons of a different sort; a given observer gener-

ally cannot see all of the other observers in the universe at{':\ In Ref. [éfll],tht()anclfforth (Ij a moddel (I)f I|g(;1t Ictj‘one fluctua- d
given time. If the expansion rate in comoving time is less lons on a fiat background was developed. 1t was assume

than linear, then previously unseen objects enter the obser\t}jat the q_ua_ntized gravitational field is in a squeezgd vacuum
er's horizon. If it is faster than lineafinflationary expan- state. This is the natural quantum state for gravitons pro-

sion), then objects leave the horizon. Horizons are of coursguced by quantum p_artlcle creation processes, as,.for ex-
light cones, and the notion of an event being within or Wi,[h_ample, in the early universe. Here we wish to generalize this

out a horizon means being at a timelike or a spacelike Sepa(grmql|sm to thg case of curved backgr)ound spgcetlmes.
ration, respectively. Con5|der. an arbitrary background rnetg(fv V'\/Itljl a linear

It is expected that quantum metric fluctuations shoulgPerturbationh,,, so that the spacetime metric[6]
smear out this precise distinction and, hence, smear out the 0
classical concept of a horizon. Information could presumably dszz(giw)’L h.,)dx*dx”. @)
leak across the horizon in a way that is not allowed by clasi:
sical physics. Bekenstein and Mukharidy have suggested
that horizon fluctuations could lead to discreteness of th
spectrum of black holes. Several other authi@s] have
recently made proposals for models which describe the hor
zon fluctuations. In this paper, we will propose a different o=0gt o tast ., 2)
model, in which quantized linear perturbations of the gravi-
tational field act as the source of the underlying metric flucwhereo, is first order inh,,,, etc. We now suppose that the
tuations. Our analysis will be based on the formalism for thginearized perturbatiohluv is quantized and that the quantum
study of light cone fluctuations proposed in Rg4] and  state|) is a “vacuum” state in the sense that we can de-

or any pair of spacetime pointsandx’, let o(x,x’') be
one-half of the squared geodesic separation in the full metric
Gnd oo(x,x") be the corresponding quantity in the back-
iground metric. We can expandx,x") in powers ofh,, as

further developed in Ref5]. composeh,,, into positive and negative frequency parts
The necessary formalism will be reviewed and extendeqﬁ;y andh,,,, respectively, such that
+ — - _
h,u.l/| Ir//>_0’ <¢/|h,u.1/_o' (3)
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(h,.,)=0 (4)  The geodesic interval in the unperturbed metric is given by
in state|). In general, however((h,w)z)qﬁo, where the o ZE(AT)Z @)
expectation value is understood to be suitably renormalized. 072 '

This reflects the quantum metric fluctuations. ) ) )

We now wish to average the retarded Green’s functiovhereA is the proper time elapsed along the geodesic. We
GeX,X’) for a massless field over the metric fluctuations. Inhave
a curved spacetime3,(x,x’) can be nonzero inside the ds 1
future light cone as a result of backscattering off of the —=\1+h, u*u’~1+ —h u*u’, (9)
spacetime curvature. However, its asymptotic form near the dr . 2"

light cone is the same as in flat spacetime: . . L
g P and hence the geodesic length between a pair of points in the

0(t—t’)5 perturbed metric iAs=A7+As,;, where

Gret(xix,)NT (o), o0—0. ®)

Asl=%j dr h,uu”. (10
We will ignore the backscattered portion and average this

o-function term over the fluctuations, following the method 11, ;5
of I. The result is

et—t) = o’ a=%(AS)2=%(AT)2+A7A31+O(h2), (11)
<Gret(xvx )>: 8772 2<0€> ex _m . (6)

and hencer;=A7As;. If we average over the metric fluc-

The effect of the averaging has been to replacesthenction  tuations, the result is
by a Gaussian with a finite width determined by the magni-

. I . 1

tude of the quantity o), which is the measure of the light D=~ f dridr, URUPURUS(h (xR, (X,)

cone fluctuations. (01)= 500 | d7ydrs UfuTURUZ(h (X h,e(X2))
The operational meaning of the smeared light cone can be (12

understood by considering a source and a detector of pho- h o b o
tons. If we ignore the finite sizes of photon wavepackets V1€7€ Ut =dx*/d, and u;=dx"/d7,. An analogous ex-

then in the absence of light cone fluctuations, all photon res_sion hollds for the case of a spacelike geodesic, in which
should traverse the interval between the source and the d&€ integrations are over the proper length parameter of the

tector in the same amount of time. The effect of the IightgeOdeS'C:
cone fluctuations is to cause some photons to travel slower 1
than the classical light speed and others to travel faster. The (g%)=— —a'of dxqdh, ufugusug(h,,(X1)h,,(X2)),
Gaussian function in Eq6) is symmetrical about the classi- 2

cal light cone,oy=0, and so the quantum light cone fluctua- (13

tions are equally likely to produce a time advance as a timgore nowu®=dx*/d\, is the tangent to the geodesic and

delay. is th lenath have= — L(AX)2
In order to find the magnitude of the light cone fluctua- M 1S the proper gngt - Here we .a’“’%z___i( N .
tions in a particular situation, it is necessary to calcutage As noted previously, the quantity) is formally diver-

for the metric in question, as well &%) in the appropriate gent and needs to be renormalized. This may be done by

quantum state. This enables one to filitj the mean time defining the graviton two-point functioth,,,(x1)h,o(x2))
delay or advancémeasured in a suitable reference frame USIng, for example, the Hadamard renormalization scheme
This is an ensemble-averaged quantity, not necessarily tHyOPosed by Brown and Ottewill7]. These authors give a
expected variation in flight time of two photons emitted in detailed prescription for expanding the singular, state-
rapid succession. To find the latter quantity, one must exanildependent parts of the scalar and vector two-point func-
ine a correlation function. This is the topic of RE§). Inthe ~ tions in an arbitrary curved spacetime. Hadamard renormal-
present paper, we will not be concerned with correlationZation Consists of subtracting this expansion from a given

functions and will use Eq(6) to estimate the magnitude of tWo-point function. This procedure seems not to have been
the horizon fluctuations. developed in detail for the graviton two-point function, but

there seems to be no barrier in principle to doing so. Allen

We may find a general expression f(m‘f), which is the . s
curved space generalization of the result obtained in I. Let u§t al.[8] ha_ve applied _the Had_ama_ird renqrr_ngllzatlon method
to the graviton two-point function in the vicinity of a cosmic

first consider timelike geodesics. If we adopt a timelike met-"- . _ ; o X
ric, then in Eq.(1) we have thatls?>0. Letu”=dx*/dr be string. In this paper, we will be content with simple approxi-

the tangent to the geodesic antbe the proper time. We wil mations or order of magnitude estimates and will not require

define(ai) by integrating along the unperturbed geodesic, inthe full renormalization machinery.

which casau* is normalized to unity in the background met-

ric: Ill. COSMOLOGICAL HORIZONS

O s v Consider a spatially flat Robertson-Walker universe, for
g, ufu"=1. (7)  which the metric may be written as
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— a2 2 2
ds’=a?(n)(dn?—dx?). (14) UO:;(M)Z. 21
In general, this spacetime has “particle horizons” associated
with the comoving observers across which other qbgervers Gravitons propagating on a Robertson-Walker back-
may appear or disappear. In the case of a radiation- 0fqnd may be quantized in the transverse, trace-free gauge,
matter-dominated universe with an initial singularitye{z which eliminates all of the gauge freedoffl]. Only the
or ax 52, respectively, a given observer at a given time has purely spatial components of* are nonzero, and they each

not yet received any light signals from distant ObserVerssatisfy the wave equation for a massless, minimally coupled

who are said to be outside of the first observer's horizon. Iy 5|1 fielq in this metric. Thus the graviton two-point func-

. 71 .
the case of de S|tter_spaqao(n ). agiven observgr EVEN" tion can be expressed in terms of the scalar two-point func-
tually ceases to receive signals from other comoving observﬁon (e(X) (X)) as
ers and views them as having moved outside of the horizon.
Clearly, these cosmological horizons are observer dependent 1
in a way that black hole event horizons are not and are ba-  (h;jhy(x"))=— 532( n)aZ(,?f)( 5ij5k|—§5ik5j|

sically the past light cone of a given observer at a given time.

Nonetheless, it will be of interest to estimate the magnitude 3
of the quantum fluctuation of these horizons in various mod- - 55” Sik |[{e(X) @(X)). (22
els.

We must first study timelike and spacelike geodesics ir\N
the limits in which these approach null geodesics over some
interval. Because the light cone fluctuations are symmetrical, o [ -
we may focus our attention on the timelike case. The geode- (02)= —Of dnf dn'{(e(X)e(X")), (23
sic equations for a timelike observer moving in thelirec- 6at,, 0
tion in the metric of Eq(14) may be expressed as

e may use this result to write

Note that in this expression we can replace the unsymme-
,dx 1 trized two-point functior{ ¢(x) ¢(x')) by the symmetrized

as—=— 15 form (the Hadamard functign
T (15 ( 0
1
and G(xx")=5(e(x)e(X') +¢(x") o(x)). (24)
d?» a'(d a’'
—727 il :=0, (16)  The latter function is real and is, hence, more convenient. To
dr a\dr/ 2qa proceed further, we must designate the quantum state of the

_ _ . gravitons. In the following two subsections, some particular
where 7 is the proper time along the geodesi¢,=da/d7, examples will be considered.

and « is a constant. In the flat space limia€1), we find
from Eq.(15) thata=(1—v?)/(2v?) wherev is the magni-
tude of the three-velocity. Thus, in the null limi#— 0. The
geodesic for a particle which startsa& 7, atx=0 may be A radiation-dominated universe, for which
expressed as

A. Gravitons in a radiation-dominated universe

a(n)=ap7, (25)
x=n=no—f(7,70), an L o
is presumably a reasonably good description of a significant
wheref—0 in the null limit. For nearly null geodesics, we fraction of the history of our universe. Let us consider a
may assumef|<1. To first order inf, the solution of Egs. thermal bath of gravitons in such a universe, for which the
(15) and(16), corresponding to a properly normalized four- temperature is always high compared to the scale set by the
velocity, is local radius of curvature; i.e., the thermal wavelength is
much less than the horizon size. In this case, the minimally

_ T, , coupled scalar field two-point function is approximately
f(”’%)_aﬁma (n")dn’. (18 equal to that for the conformally coupled fiel@.(x,x").
However, the latter is conformally related to the flat space
From Eq.(14), we can write Hadamard functiorGy(x,x’), and so we have

2 G,’%GCC,,:il 71/G ,,.26
oo /1_(3_7x7 adnZasidy, (19 (xX)=Geelx,x')=a~H(m)a*(7')Go(xX'). (26)

We now need the flat space renormalized thermal Green’s
from which we find function on the light cone. This was calculated in Appendix
A of Ref. [5], where it was shown that in the high tempera-
ture limit this function is given by

Ar=\Za f "8 (mdy (20
70

1
Go(X,X")~g—~, B<p, (27)

and 8mwBp’
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where g is the inverse temperature ape-|x—x'|. We may
now use Eqs(23)—(27) to write

( 2> o) fnld fﬂld , 1 29)
g)=—— n n—.
! 4877(1,8a3 70 70 nn'[n— 7'l

Unfortunately, this integral diverges because of the singular-
ity of the integrand aty= #’. This is due to the fact that Eq.
(27) is not valid for smallp. We can remedy this by exclud-
ing the rangg »— 7’| <e, wheree is a cutoff which will be

taken to be of ordepB. Thus, the relevant integral is, in the A
limit of 7> 7, An
' x
<0_2>_ oo f’lld J‘?)*e+fﬂ1 )d , 1
V" sgmapadle | o el g
O'o[|n( 7]0/6) +1] Source Detector
=~ 2417a/3770a3 (29 FIG. 1. A photon is received by a detector at conformal time
71. In the absence of metric fluctuations, it has traveled along the
In this same limit, one finds classical light congdashed ling from a source at a coordinate
distance|Ax| = 7,— 7, and was emitted at conformal timg,. In
1 - the presence of metric fluctuations, it could have been emitted a
g0~ 9 aan7; . (30 characteristic timé\ 7 before or afterpy and traveled along a mean

trajectory which is either timelike or spacelike, respectivelgtted

We now wish to definey, as that value of for which the ~ lines-

argument of the exponential in E(p) is unity; that is,

, temperature at a time at whieh=1. Let us take that time to

05 betg, the time of emission, at which time the physical tem-
2<0§> =1. 31 perature isT,. This leads to
Thusa, describes a geodesic whose deviation from the light At 6 To\ [ tp
cone characterizes the fluctuations. From E28), (30), and i FV'”( Mol €) + 1(1-—) t_) : (35
(31), we find that 0 PILTo
3[IN(7o/€) +1] where T is the Planck temperature angd is the Planck
a.= 2 T3 (32)  time. The logarithmic factor can be taken to be of order one,
VamaBnoagny and so we see that iTy=Tp andty=tp, then we have

d to defi hvsical  th itud t/to=1. Otherwise, withT,<T, and to=tp, we have
We need to define a physical measure of the magnitude g t/ty<<1, and the fractional light cone fluctuations are small.

the light cone fluctuations. This may be takgn to be the Meakis is what we should perhaps expect: a bath of gravitons
time delay or advanca » for a photon emitted a, and it the Planck temperature at the Planck titwéich would
detected aty,. Equivalently, we can think o7 as the  cyesnond to a few degrees kelvin toglagsults in large

characteristic interval aroungl, within which photons could 470 fluctuations, but otherwise the fluctuations are small
be emitted and still reach a detector at a coordinate dlstangﬁ much lower temperatures.

of Ax= 5, — 7 at time »,. (See Fig. 2. From Eqs.(17) and

(18), we have that 7 is related toa, by ) ) )
B. Gravitons in de Sitter space

— - o2 ,NE 2.3 If we represent de Sitter space as a spatially flat
An—f(m,??o)—acfno )’ ~zacdyn;. (33 Robertson-V\F;aIker metric, then thEe) metric is of 51e fo?/m of
Eq. (14) with a(#)=—H/»=H/| 75|, whereH is a constant
It is perhaps more convenient to express this time delay osnd—« < 7<0. These coordinates cover one-half of the full
advance as a coordinate time interdl=a(70)A 7, which  de Sitter spacetime, but that is sufficient for our purposes.

is given by Gravitons are again represented as a pair of massless, mini-
U4 mally coupled scalar fields. However, in this case there is a
A= 2to| " V3[In(7o/€) +1] (34  Subtlety in that there is no de Sitter—invariant vacuum state
ap 6\ B ’ which is free of infrared divergencgd0-12. The Had-
amard function may be represented 48]
wherety= %aong is the coordinate time af,. 1
W(_a may_mterpr?t1 t_h|s formula by noting that in an ex- G(x,x')= BRef A3k n)wikc(nr)ei(k—k')x,
panding universe3~ "~ is a coordinate temperature, not, in T)

general, the physical temperature. It is, however, the physical (36
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where the time part of the mode function is expressible in
terms of Hankel functions as

¢k<n)=ngn|3’2[c1Hé}5<kn>+czHg%(kn)]. (37) - "

Herec, andc, are functions ok which are required to have
the properties

c;—0, c,—1 as k—w (38

and

lc,+¢y|—0 as k—0. (39) \\\\\\\\

These functions define the quantum state in question. Equa- & |
tion (38) ensures that the very high frequency modes are free > = qn,
of particles, whereas E@39) is the condition that the state
be free of infrared divergences.

The Hadamard function given by Eq86) and(37) is the
unrenormalized function which is singular on the light cone.
In principle, one should evaluate the integral for the given
choice ofc, andc,, and then extract the state-independent FIG. 2. The domain of integration fdwr?) is the interior of the
singular terms to obtain the renormalized Hadamard funcsquare. The integran@(x,x’') is known in the shaded regions to be
tion. Unfortunately, this would be very difficult to do explic- approximatelyH? and in the crosshatched region to be approxi-
itly. However, in the late time limits 4—0 or ' —0) itis  mately — (H?InH|])/472.
possible to give some approximate forms for the renormal-
ized function. It was shown by several authors that the coinin this factor and find
cidence limit grows logarithmically11-14

G(X,X)~ — (H%/472) InH| 7, (40) . \2n? B
71 G(x,x")~ - Re| d%q g~ ¥ ci+cy) [T HEY(—a)
as = 17n'—0. The fact that this asymptotic form is state ™
independent may be understood as a consequence of the ex- +cEH(—q)1ev e, (43)

ponential expansion having redshifted away any memory of
the quantum state. ,

We may use a similar procedure to investigate the behayNOte _that the dependence upon botfand 7" has dropped
ior as 7— 0 with 7' fixed. If we insert Eq(37) into Eq.(36) out. The integral in Eq(43) has a logarithmic ultraviolet

and then change the variable of integratiomte| 7— 7’| k, divergence on the light cone, b_ut thg leading quadratic_ diver-
we have gence has disappeared. A similar disappearance of divergent

parts occurs in the derivation of EGL0). (See, for example,

H2|7777'|3/2 El Ref. [12].) The renormalization of this logarithmic diver-
G(x,x’)z—ReJ' d3q| ¢ HSH| — q) gence requires a subtraction of a term proportional to the
32 n—n'|? |n—n'| scalar curvatur®=12H2. We expect the result to be a con-
stant which is of order oH2. By symmetry, we obtain the
+c2H(3§2)< _ |7l )l same result ify’ —0 with 7 fixed, so that
|7—7'|
| G(x,x")~H? 5»—0 or 7' —0. (44)
etmi - 7L
7= 7| The integral in Eq(23) requires us to knov(x,x’) in the
7] square illustrated in Fig. 2, which also illustrates the regions
+ciHY| — q) giva (41  in which either Eq.(40) or Eq. (44) is applicable. For the
|n—7'l purposes of obtaining an order of magnitude estimate for

) i (0?), we will assume thaG(x,x’) is of the form
wherev=(x—x')|p— 7’| 1. Now assume thay, is suffi-

ciently small that the dominant contribution to the integral , ) ,

comes from values aoff for which the magnitude of the ar- G(x,x")~H"F(7,7") (45
guments of the Hankel functions in the first factor are small

compared to unity. In this case, we can use the small arguhroughout this region, wheré is either a constant of order
ment forms unity or else a logarithmic function which will contribute

multiplicative constants of order unity to the integral in Eq.
H (=) ~HZ(—x)~V2/m x 32 0<x<1, (42 (23
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The result of the evaluation of this integral is whereC(r)=1-2M/r andE is a constant of the motion
H2 which is equal to the energy per unit rest mass of the particle,
oo o .
<Ui>= P (71— 70)% (46) ?hsa:neasured at infinity. From these relations, one may show
wherek is a constant of order unity. From E@0) we find dr\2 C
—| =C¥ 1-= (54)
5 dt E?
o :a'(771_ 70) 47)
O HAR2 and that
The value ofa which is characteristic of the light cone fluc- ﬂ 2_ _ E 55
tuations is dt | E2 (59
ac~=\2kH*n17,. (48 where
If we follow the line of reasoning in the previous subsection, dr
we find that the characteristic time associated with the de - =C. (56)
Sitter horizon fluctuations is dr
At~\2x. (49) From Eq.(53), we see that the proper time elapsed along a

segment of a geodesic is

This is of order unity, and hence again the horizon fluctua- 4
tions are of Planck dimensions. Ar=E1 C(r)dt, (57)
We may useAt to find the frequency fluctuations ob- to

served atp, from a constant frequency source. Suppose that

the source is emitting photons with a constant frequenC)‘/\{herer is understood to be a function bfalong the geode-

vg. In the absence of metric fluctuations, the photons will be>!®- We are primarily interested in the case of nearly null

detected at frequency= vya(no)/a(7,). The effect of the ~outgoing geodesics, for whida=Eq>1. In this limit
metric fluctuations is equivalent to a drift in the source fre- dr

quency whose magnitude sv,=v3At. Consequently, the —~C(r). (58)
fractional variation of frequency at the detector is dt

Av Thus,|A7|~|Ar|/E, and
However, this is an ensemble-averaged frequency variation, ° ZES '

not necessarily the drift in frequency that would be observed

in any one trial. The reason for this is that pulses emittedvhere Ar is the radial coordinate interval traversed. An
close together in time tend to have correlated time delays cinhalogous treatment may be given for spacelike geodesics.
advances5]. Thus, Eq.(50) should be interpreted as giving The constant of the motiol no longer has a simple physical
an upper bound in the frequency drift seen by the detector.interpretation, but we can expresg in this case as

2
IV. BLACK HOLE HORIZONS — (Ar)
(0o}t ZEZ . (60)
Here we wish to discuss the fluctuations of the event ho- 0

rizon of a Schwarzschild black hole, for which the metric is  \ya now turn to the task of estimatirig?) near the ho-

rizon of a Schwarzschild black hole. From E§2) and the

-1
ds’= 1—m)dt2—<1—ﬂ) dr2—r?(dé? fact that
r r
2 2 dr _
+sirf6d ¢?). (51) 4, ~Eo (61

Timelike radial geodesics in this metric sati o .
g 6] for nearly null outgoing timelike geodesics, we have that

dr\? _
(—) =E?-C(r) (52

1
dr (a@wzaoEozf drydroufusubuz(h,,(x1)h,o(X2)).

and (62)

If we are interested in a black hole radiating into empty
E=E/C (53) space, then the relevant quantum state for the quantized
' graviton field is the Unruh state. It would be a rather formi-
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dable task to explicitly compute the renormalized gravitonintegration. In any case, we can stop the integration at a
two-point function in the state. Instead, we will content our-maximum value of which is just a few timedvi. Whether
selves with an order of magnitude estimate. First we musthe outgoing photons emitted in the vicinity of the horizon
choose a convenient gauge. Again we wish to impose thare detected at=4M or at a much larger value af has
transverse, tracefree gauge, which eliminates all gauge fredittle effect on the discussion of the horizon fluctuations.
dom. Because all of the modes of the graviton field ar€Thus we may let
propagating waves which either originate At or reach

, We can impose the requirement that these modes satisfy
the flat space transverse, tracefree gauge condition- at.

We now make the assumption that in this gauge the renor-
malized two-point function measured in the frame of an in-In analogy to the discussion in the previous section, we wish
falling observer who starts from infinity at rest can be esti-yg gefine a characteristic valig,, which is the value of

mated by dimensional considerations. Near the horizon . '
r=2M, the geometry and the quantum state are Charac'[eaf:fo at which Eq.(31) holds. From Eqs(59) and(67) we find

ized by a single scald. If we were to reinstate explicit E~yM 69)
factors of Newton's constanG, then h,,xG™"%xmg, ¢ '

wheremp is the Planck mass. However,,, is dimension- \ye may find the associated time delay or advatgfrom
less in any set of units, and so our assumption tells us thaé (55), which tells us that, wheB> 1

the two-point function should be proportional mﬁ,/MZ. 9 ' ' ==
However, the actual values of the components of this biten- C 1

sor depend upon the choice of frame. Our assumption is that dt~dr* + —dr* =dr* + —dr. (69)
infalling observers withE=E;~1 should be regarded as 2Ey 0

preferred in the sense that they do not introduce any very

large or very small dimensionless redshift or blueshift fac- radial null geodesic in the classical background geometry
covers anr* distance of Ar* in a coordinate time

tors. Letv* be the four-velocity of such an observer. Our >~"~'> X X
assumption may be expressed as At=Ar*, Th_e second term on the rlght-hand side Qf the
above equation tells us the extra amount of time required by

—. (Ar)?
(oh)=aoEg VR

(67)

m2 a timelike particle. Analogous expressions hold for spacelike
vh IUZUQ'(hW(Xl)hpa(Xz»”—Z (63 geodesics and yield the same_magnitude of time \_/ariati_on.
M Thus we are led to an expression for the characteristic time

] ) ] delay or advance due to horizon fluctuations:
near the horizon. The components of the infalling observer’'s

four-velocity are Ar
At= IR (70)
v'=C! '=-yJ1-C~-1, (64)

. As discussed above, we can take to be of orderM, al-
and those for an outgoing observer are

though we might also want to consider the possibility of

W—E,Cl u— \/ESTNEO. (65 taking it to be much smaller. Thus let
Ar=yM, (71
Thus|u”|=Ey|v*| and we can write
wherey is a constant of the order of or less than unity. Now
2 we have

., m3
ugurusuz(h,,(X)h,e(X2))approxgg—. (66
1412 2< ,M( 1) P ( 2)> pp %MZ ( ) At%fy’ (72)

Our basic assumption receives some support from the worlind so the time delay, measured in coordinate time, is of
of York [15] who estimates the magnitude of the quantumPlanck dimensions. However, a more physical measure is
fluctuations of the lowest modes of vibration of a Schwarzs-obtained by expressing this time interval in terms of the
child black hole. He treats these modes as quantumproper time of a local observer. Let the photons be emitted at
mechanical harmonic oscillators and calculates their rootr =r,=2M (1+¢€), with e<1, and letC,=C(ry)~e€. The
mean-square fluctuation amplitudes. The amplitudes of théime interval in the frame of a statimongeodesicobserver
first few modes yield a result consistent with E§3) or  at rest atr=r is

(66). Of course, this is heuristic support and by no means a

proof of our assumption. A full proof would require one to A7g~y4/Cy, (73

sum over an infinite number of degrees of freedom and then

extract any ultraviolet-divergent parts. that in the frame of an infalling observer witf=1 is
The graviton two-point function in this approximation is a

constant in the vicinity of the horizon. It must also fall off to ATi=yCo=~ ve, (79

zero at large distances from the black hole. Thus the integral _ _ _ _
in Eq. (62) gets its dominant contribution over an interval in @nd that in the frame of an outgoing geodesic observer with
r of the order ofM, regardless of the upper limit of the E=1 is
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r=0

Infalling
Observer

FIG. 3. An observer falling across the future horiZdi of a
black hole emits photons which reagh. In the presence of metric
fluctuations, these photons need not follow the classical light cone
(solid line), but rather may follow timelike or spacelike paths in the
background geometridotted line$. The characteristic variation in
emission time, as measured in the frame of the infalling observer, of
photons which reacF* at the same point id ;.

Arp=~y. (79 FIG. 4. The spacetime for a black hole formed by gravitational
. L collapse. The shaded region is the interior of the collapsing star. A
One might regardA 7, the characteristic time as mea- ny|| ray which leave€ ™ with advanced time , becomes the future
sured by an infalling observer, to be the best measure of thgorizonH*. A ray which leaves at an earlier timepasses through
magnitude of the horizon fluctuations. Such an observer caghe collapsing body and reach®s at retarded timer. The dashed

cross and continue beyond the classical event horizon ahe is the world line of a observer who falls into the black hole
r=2M. Suppose that an outgoing photon emitted by thisafter its formation.
observer reaches infinity. An observer at infinity who detects

this photon and who is unaware of the light cone fluctuationsl-hus as the source approaches2M, the fractional varia-
might trace the history of this photon backwards in the class; - in frequency observed at infinit),/ goes to zero, and the

sical Schvyarzschild geometry-and infer that it was gmitted 3bbserved frequency approaches that predicted by classical
a proper time ofry on the infalling observer’s world line. In relativity

fact, it could have been emitted anywhere in a band of width | i \\s now turn to the question of whether horizon fluc-
A centered arqundo. (See Fig. 3. The remarkable fe"%‘t“fe tuations are capable of invalidating the semiclassical deriva-
of the result(74) is thatA7,—0 as7o— 74, the proper time 45, of the Hawking effect. First let us recall the essential
at Wh'Fh the mfallmg Obsef"ef reaches-2M. In the COS- " features of this derivation, as given in Hawking’s original
mological models discussed in Sec. lll, the fluctuation 'npaper[17]. Consider the spacetime of a black hole formed by
emission time was typically of the order of the Planck time. ;o i=+ional collapséFig. 4. The null ray which forms the

In the black hole case, the horizon fluctuations are morg . e horizon leaveg at advanced time =v,. The modes
strongly suppressed. Note that the proper time required 0, \yhich the outgoing thermal radiation will be created

th_e ‘”f"?""“g observer to pass from=ro=2M(1+€) 10 |05y67 atvalues ob slightly less than o, pass through the
Ir_ZMbIIS -LNhZ'IEM_' This is always large compared for; for collapsing body, and reach® as outgoing rays, on which
arge black holes: the retarded timei is constant. Hawking shows that the re-

A lation between the values of and ofu is
Ti mp
T W 78
Uop— VU
Thus the only outgoing photons which manage to cross the u=-—4Mm |”( A ) (78)
classical horizon are part of an extreme tail of a Gaussian

distribution.

As in Sec. Ill B, we may express the time delay or ad-whereA is a constant. Thus—»~ asv—uv,. As seen by an
vance in terms of the variation in frequency seen by theobserver at infinity, these outgoing rays must hover ex-
observer at infinity. In the black hole case, the analogue ofremely close to the horizon for a very long time. If one starts

Eq. (50) is with a black hole with a mas# large compared to the
Planck mass, the semiclassical description should hold for
Av _ the time required for the black hole to lose most of its origi-
P VoA Ti=vyye. (77

nal mass. Let
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5 M\ 2 The presence of frequencies far above the Planck scale, in
tevag= M =M| — (79 the form of the modes leaving~, has concerned numerous
P authors. There have been suggestions that one might be able

be this characteristic evaporation time. The basic probler§lerive the Hawking effect in a way that transplanckian fre-
posed by the horizon fluctuations is that they may cause afuéncies do not arise, using some form of “mode regenera-
outgoing ray to either fall back into the black hole or else totion” [18,19. So far, it has not been possible to implement
prematurely escape. In either case, the semiclassical pictuf@ese suggestions in detail. As seen from the our analysis of
of black hole radiance would need to be modified at timed0rizon fluctuations, the semiclassical treatment is remark-
less tharte,qp. ably robust.

At a large distance from the black hole,
u=t—r*~t—r. If the observer at “infinity” is at a fixed
value ofr (e.g., 100/), thenu~t for most of the black
hole’s lifetime. Thus, in order not to invalidate the semiclas- In the preceding sections, we have analyzed the horizon
sical treatment, outgoing rays with<up,=teapneed to be  fluctuation problem using a formalism which takes account
uninfluenced by the horizon fluctuations. In order to investi-of the effects of quantized linear perturbations of the gravi-
gate this question, let us consider an infalling observer withational field upon light cones. In the case of the cosmologi-
E:Eizl. From Eq.(54), we have that, near=2M, cal models treated in Sec. lll, the resulting horizon fluctua-

tions were found to be of Planck dimensions for both de
dt _ Sitter space and a radiation-filled universe with a Planck den-
aN_C (80 sity of gravitons at the Planck time. These fluctuations are
measured as fluctuations in the time of emission of a photon
and, hence, as measured in the frame of a comoving observer. The order
of magnitude of the results is what one might have guessed
du dt dr* . before doing the calculation.

ar-dar ar =% (82) In the case of black hole horizon fluctuations, the results
are somewhat more subtle. Whether the time scale which

This equation may be integrated to yield characterizes the horizon fluctuatioftke time delay or ad-
vance is of Planck dimensions or not depends crucially upon
—ZM) the frame of reference. It is indeed of Planck dimensions as

V. SUMMARY AND CONCLUSIONS

u(r)y=—4M In

(82 measured by an observer at infinity. However, as measured
by an infalling observer, this time is much less than the
. , . Planck scale and vanishes as the infalling observer ap-
whereA' is a constant. This relation tells us the valug @t 5aches the classical event horizonr at2M. We further
which the infalling observer crosses a given constafite.  fqnq that this suppression of the horizon fluctuations is ex-

The constan®\” is determined by which infalling observer ac1ly what is needed to preserve Hawking’s semiclassical
we consider. Here we are interested in observers who fallerivation of black hole radiance for black holes of mass

into the black hole not long after its formation, and we canjgrge compared to the Planck mass.

setA’~M. Letr. be the value of at which this observer Our result seems to conflict with the arguments of Sorkin
crosses thel=up,y line, given by [2] and of Casheet al. [3]. These authors claim that the
M e UM horizon fluctuations are much larger than found in the
Fe—=2M=Me "ma, (83 present paper. It should be noted, however, that the physical
mechanisms being postulated in Rdf2] and[3] are quite
different from that of the present paper. Furthermore, in our
opinion, the physical basis of both of these calculations
seems to be open to question. Caskeal. obtain large
gravitational perturbations of the horizon by postulating an
M e UpnafAM M2/ “atmosphere” of particles near the horizon in large angular
o1=r.—2M=Me "ma~Me P (84 momentum modes. This arises by decomposing the physical
guantum state of an evaporating black hdtee Unruh
vacuun) into two pieces which separately have divergent

!

Near the horizon, Eq52) tells us thadr/d7=~ — 1 along the
world line of the infalling observer. Thus the proper time
required for this observer to cross fram u,,, to the clas-
sical horizon atr =2M is

We should compare this quantity withr;, whereC, is

evaluated at=r, and soCy= 3 “ma/*M Thus, stress tensors on the horizon, the contribution from the Boul-
ware vacuum state, and a term which these authors call the
Ag— YMp Sr 85) “atmosphere” of particles. The large stress tensor fluctua-
oM T tions arise in the analysis of Cashedral. when this “atmo-

sphere” undergoes thermal fluctuations. Our objection to
and hence, as long ad>mp, A7;<57. From this result, this procedure is that the fluctuations of the Boulware
we conclude that the horizon fluctuations do not invalidatevacuum energy density are not being considered. The split-
the semiclassical derivation of the Hawking effect until theting of the finite Unruh vacuum energy density into two sin-
black hole’s mass approaches the Planck mass. This is tlgalar parts seems rather artificial. If one chooses such a split-
point at which we would expect the semiclassical treatmenting, then care must be taken to prove that fluctuations in one
to fail. part are not canceled by correlated fluctuations in the other
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part. Casheet al. have not done this. roscopic black holes, this is much smaller than the metric
Sorkin [2] uses a Newtonian treatment to estimate thefluctuations due to the quantized linear perturbation, esti-
gravitational field of a mass fluctuation near the horizon andnated in Eq(63) to be of ordeM ~1. This analysis does not
its effects on the Schwarzschild geometry. One can certainlyule out the possibility of much larger stress tensor fluctua-
question whether a Newtonian analysis can be trusted ifions in the vacuum energy near the horizon. However, the
black hole physics. However, our primary objection to Sor-gjagonal and off-diagonal components of the expectation
kin's treatment is that the dominant contribution to the hori-ygjue of the stress tensor in the Unruh state near the horizon
zon fluctuations comes from modes whose wavelength igre of the same ordéR2]. It is thus plausible that the fluc-
very small compared to the size of the black hole. The samgations in these various components near the horizon are
line of reasoning would seem to lead to large stress tensqf|so of the same order. If so, then the effects of quantized
fluctuations and, hence, large light cone fluctuations, in allinear perturbations of the gravitational field dominate over
spacetimes including flat spacetime. In our view, a more reagose of stress tensor fluctuations.
sonable result is one in which significant fluctuations arise |t must be emphasized that all of the conclusions obtained
only on scales characterized either by the spacetime geony the present manuscript are in the context of a model of
etry or else the chosen quantum state. An approach to defifinearized quantum gravity. Furthermore, much of our dis-
ing stress tensor fluctuations on a flat background which hagyssijon is of a heuristic, order of magnitude nature. If the
this property was given in Ref20]. Here the stress tensor pasic picture of horizon fluctuations which we have drawn is

fluctuations are defined in terms of products of operatorgorrect, much work remains to be done to make the picture
which are normal ordered with respect to the Minkowskimore precise.

vacuum state.

Recently, the fluctuations of the Hawking flux, as mea-
sured in the asymptotic region, have been comp(2ddiby
a similar approach. It was found that this flux undergoes
fluctuations of the same order as its average value over time We would like to thank Tom Roman, Alex Vilenkin, and
scales of the order oM. This average flux is of order Serge Winitzky for helpful discussions. This work was sup-
M~2, and so the characteristic associated black hole magsorted in part by the National Science Foundation under
fluctuation is of ordeM ~. The corresponding metric fluc- Grant No. PHY-9507351 and by Conselho Nacional de
tuation near the horizon is then of ordéiti~M ~2. For mac- Desevolvimento Cientifico e Tecn@zo do Brasil(CNPQ.
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