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The quantum fluctuations of horizons in Robertson-Walker universes and in Schwarzschild spacetime are
discussed. The source of the metric fluctuations is taken to be quantum linear perturbations of the gravitational
field. Light cone fluctuations arise when the retarded Green’s function for a massless field is averaged over
these metric fluctuations. This averaging replaces thed function on the classical light cone with a Gaussian
function, the width of which is a measure of the scale of the light cone fluctuations. Horizon fluctuations are
taken to be measured in the frame of a geodesic observer falling through the horizon. In the case of an
expanding universe, this is a comoving observer either entering or leaving the horizon of another observer. In
the black hole case, we take this observer to be one who falls freely from rest at infinity. We find that
cosmological horizon fluctuations are typically characterized by the Planck length. However, black hole hori-
zon fluctuations in this model are much smaller than Planck dimensions for black holes whose mass exceeds
the Planck mass. Furthermore, we find black hole horizon fluctuations which are sufficiently small as not to
invalidate the semiclassical derivation of the Hawking process.@S0556-2821~97!00316-0#

PACS number~s!: 04.70.Dy, 04.62.1v, 04.60.-m

I. INTRODUCTION

One of the characteristics of classical gravitation is the
existence of horizons, surfaces which divide spacetime into
causally distinct regions. The most striking example is the
black hole horizon, the boundary which hides the events
within from the outside world. Cosmological models also
possess horizons of a different sort; a given observer gener-
ally cannot see all of the other observers in the universe at a
given time. If the expansion rate in comoving time is less
than linear, then previously unseen objects enter the observ-
er’s horizon. If it is faster than linear~inflationary expan-
sion!, then objects leave the horizon. Horizons are of course
light cones, and the notion of an event being within or with-
out a horizon means being at a timelike or a spacelike sepa-
ration, respectively.

It is expected that quantum metric fluctuations should
smear out this precise distinction and, hence, smear out the
classical concept of a horizon. Information could presumably
leak across the horizon in a way that is not allowed by clas-
sical physics. Bekenstein and Mukhanov@1# have suggested
that horizon fluctuations could lead to discreteness of the
spectrum of black holes. Several other authors@2,3# have
recently made proposals for models which describe the hori-
zon fluctuations. In this paper, we will propose a different
model, in which quantized linear perturbations of the gravi-
tational field act as the source of the underlying metric fluc-
tuations. Our analysis will be based on the formalism for the
study of light cone fluctuations proposed in Ref.@4# and
further developed in Ref.@5#.

The necessary formalism will be reviewed and extended

in Sec. II. It will be applied to the case of cosmological
horizons in Sec. III, and to black hole horizons in Sec. IV.
Our results will be summarized and discussed in Sec. V. We
will also give a critical assessment of the previous attempts
@2,3# to estimate the horizon fluctuations.

II. BASIC FORMALISM

In Ref. @4#, henceforth I, a model of light cone fluctua-
tions on a flat background was developed. It was assumed
that the quantized gravitational field is in a squeezed vacuum
state. This is the natural quantum state for gravitons pro-
duced by quantum particle creation processes, as, for ex-
ample, in the early universe. Here we wish to generalize this
formalism to the case of curved background spacetimes.
Consider an arbitrary background metricgmn

(0) with a linear
perturbationhmn , so that the spacetime metric is@6#

ds25~gmn
~0!1hmn!dxmdxn. ~1!

For any pair of spacetime pointsx and x8, let s(x,x8) be
one-half of the squared geodesic separation in the full metric
and s0(x,x8) be the corresponding quantity in the back-
ground metric. We can expands(x,x8) in powers ofhmn as

s5s01s11s21•••, ~2!

wheres1 is first order inhmn , etc. We now suppose that the
linearized perturbationhmn is quantized and that the quantum
stateuc& is a ‘‘vacuum’’ state in the sense that we can de-
composehmn into positive and negative frequency parts
hmn

1 andhmn
2 , respectively, such that

hmn
1 uc&50, ^cuhmn

2 50. ~3!

It follows immediately that
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^hmn&50 ~4!

in state uc&. In general, however,̂(hmn)2&Þ0, where the
expectation value is understood to be suitably renormalized.
This reflects the quantum metric fluctuations.

We now wish to average the retarded Green’s function
Gret(x,x8) for a massless field over the metric fluctuations. In
a curved spacetime,Gret(x,x8) can be nonzero inside the
future light cone as a result of backscattering off of the
spacetime curvature. However, its asymptotic form near the
light cone is the same as in flat spacetime:

Gret~x,x8!;
u~ t2t8!

4p
d~s!, s→0. ~5!

We will ignore the backscattered portion and average this
d-function term over the fluctuations, following the method
of I. The result is

^Gret~x,x8!&5
u~ t2t8!

8p2 A p

2^s1
2&

expS 2
s0

2

2^s1
2& D . ~6!

The effect of the averaging has been to replace thed function
by a Gaussian with a finite width determined by the magni-
tude of the quantitŷ s1

2&, which is the measure of the light
cone fluctuations.

The operational meaning of the smeared light cone can be
understood by considering a source and a detector of pho-
tons. If we ignore the finite sizes of photon wavepackets,
then in the absence of light cone fluctuations, all photons
should traverse the interval between the source and the de-
tector in the same amount of time. The effect of the light
cone fluctuations is to cause some photons to travel slower
than the classical light speed and others to travel faster. The
Gaussian function in Eq.~6! is symmetrical about the classi-
cal light cone,s050, and so the quantum light cone fluctua-
tions are equally likely to produce a time advance as a time
delay.

In order to find the magnitude of the light cone fluctua-
tions in a particular situation, it is necessary to calculates0

for the metric in question, as well as^s1
2& in the appropriate

quantum state. This enables one to findDt, the mean time
delay or advance~measured in a suitable reference frame!.
This is an ensemble-averaged quantity, not necessarily the
expected variation in flight time of two photons emitted in
rapid succession. To find the latter quantity, one must exam-
ine a correlation function. This is the topic of Ref.@5#. In the
present paper, we will not be concerned with correlation
functions and will use Eq.~6! to estimate the magnitude of
the horizon fluctuations.

We may find a general expression for^s1
2&, which is the

curved space generalization of the result obtained in I. Let us
first consider timelike geodesics. If we adopt a timelike met-
ric, then in Eq.~1! we have thatds2.0. Let um5dxm/dt be
the tangent to the geodesic andt be the proper time. We will
define^s1

2& by integrating along the unperturbed geodesic, in
which caseum is normalized to unity in the background met-
ric:

gmn
~0!umun51. ~7!

The geodesic interval in the unperturbed metric is given by

s05
1

2
~Dt!2, ~8!

whereDt is the proper time elapsed along the geodesic. We
have

ds

dt
5A11hmnumun'11

1

2
hmnumun, ~9!

and hence the geodesic length between a pair of points in the
perturbed metric isDs5Dt1Ds1, where

Ds15
1

2E dt hmnumun. ~10!

Thus

s5
1

2
~Ds!25

1

2
~Dt!21DtDs11O~h2!, ~11!

and hences15DtDs1. If we average over the metric fluc-
tuations, the result is

^s1
2&5

1

2
s0E dt1dt2 u1

mu1
nu2

ru2
s^hmn~x1!hrs~x2!&,

~12!

where u1
m5dxm/dt1 and u2

m5dxm/dt2. An analogous ex-
pression holds for the case of a spacelike geodesic, in which
the integrations are over the proper length parameter of the
geodesic:

^s1
2&52

1

2
s0E dl1dl2 u1

mu1
nu2

ru2
s^hmn~x1!hrs~x2!&,

~13!

where nowu1
m5dxm/dl1 is the tangent to the geodesic and

l is the proper length. Here we haves052 1
2 (Dl)2.

As noted previously, the quantitŷs1
2& is formally diver-

gent and needs to be renormalized. This may be done by
defining the graviton two-point function̂hmn(x1)hrs(x2)&
using, for example, the Hadamard renormalization scheme
proposed by Brown and Ottewill@7#. These authors give a
detailed prescription for expanding the singular, state-
independent parts of the scalar and vector two-point func-
tions in an arbitrary curved spacetime. Hadamard renormal-
ization consists of subtracting this expansion from a given
two-point function. This procedure seems not to have been
developed in detail for the graviton two-point function, but
there seems to be no barrier in principle to doing so. Allen
et al. @8# have applied the Hadamard renormalization method
to the graviton two-point function in the vicinity of a cosmic
string. In this paper, we will be content with simple approxi-
mations or order of magnitude estimates and will not require
the full renormalization machinery.

III. COSMOLOGICAL HORIZONS

Consider a spatially flat Robertson-Walker universe, for
which the metric may be written as
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ds25a2~h!~dh22dx2!. ~14!

In general, this spacetime has ‘‘particle horizons’’ associated
with the comoving observers across which other observers
may appear or disappear. In the case of a radiation- or
matter-dominated universe with an initial singularity (a}h
or a}h2, respectively!, a given observer at a given time has
not yet received any light signals from distant observers,
who are said to be outside of the first observer’s horizon. In
the case of de Sitter space (a}h21), a given observer even-
tually ceases to receive signals from other comoving observ-
ers and views them as having moved outside of the horizon.
Clearly, these cosmological horizons are observer dependent
in a way that black hole event horizons are not and are ba-
sically the past light cone of a given observer at a given time.
Nonetheless, it will be of interest to estimate the magnitude
of the quantum fluctuation of these horizons in various mod-
els.

We must first study timelike and spacelike geodesics in
the limits in which these approach null geodesics over some
interval. Because the light cone fluctuations are symmetrical,
we may focus our attention on the timelike case. The geode-
sic equations for a timelike observer moving in thex direc-
tion in the metric of Eq.~14! may be expressed as

a2
dx

dt
5

1

A2a
~15!

and

d2h

dt2
1

a8

a S dh

dt D1
a8

2aa5
50, ~16!

wheret is the proper time along the geodesic,a85da/dh,
and a is a constant. In the flat space limit (a51), we find
from Eq. ~15! thata5(12v2)/(2v2) wherev is the magni-
tude of the three-velocity. Thus, in the null limit,a→0. The
geodesic for a particle which starts ath5h0 at x50 may be
expressed as

x5h2h02 f ~h,h0!, ~17!

where f→0 in the null limit. For nearly null geodesics, we
may assumeu f u!1. To first order inf , the solution of Eqs.
~15! and ~16!, corresponding to a properly normalized four-
velocity, is

f ~h,h0!5aE
h0

h
a2~h8!dh8. ~18!

From Eq.~14!, we can write

ds5A12S dx

dh D 2

adh'A2aa2dh, ~19!

from which we find

Dt5A2aE
h0

h1
a2~h!dh ~20!

and

s05
1

2
~Dt!2. ~21!

Gravitons propagating on a Robertson-Walker back-
ground may be quantized in the transverse, trace-free gauge,
which eliminates all of the gauge freedom@9#. Only the
purely spatial components ofhn

m are nonzero, and they each
satisfy the wave equation for a massless, minimally coupled
scalar field in this metric. Thus the graviton two-point func-
tion can be expressed in terms of the scalar two-point func-
tion ^w(x)w(x8)& as

^hi j ~x!hkl~x8!&52
1

3
a2~h!a2~h8!S d i j dkl2

3

2
d ikd j l

2
3

2
d i l d jkD ^w~x!w~x8!&. ~22!

We may use this result to write

^s1
2&5

s0

6aEh0

h1
dhE

h0

h1
dh8^w~x!w~x8!&, ~23!

Note that in this expression we can replace the unsymme-
trized two-point function̂ w(x)w(x8)& by the symmetrized
form ~the Hadamard function!

G~x,x8!5
1

2
^w~x!w~x8!1w~x8!w~x!&. ~24!

The latter function is real and is, hence, more convenient. To
proceed further, we must designate the quantum state of the
gravitons. In the following two subsections, some particular
examples will be considered.

A. Gravitons in a radiation-dominated universe

A radiation-dominated universe, for which

a~h!5a0h, ~25!

is presumably a reasonably good description of a significant
fraction of the history of our universe. Let us consider a
thermal bath of gravitons in such a universe, for which the
temperature is always high compared to the scale set by the
local radius of curvature; i.e., the thermal wavelength is
much less than the horizon size. In this case, the minimally
coupled scalar field two-point function is approximately
equal to that for the conformally coupled field,Gcc(x,x8).
However, the latter is conformally related to the flat space
Hadamard functionG0(x,x8), and so we have

G~x,x8!'Gcc~x,x8!5a21~h!a21~h8!G0~x,x8!. ~26!

We now need the flat space renormalized thermal Green’s
function on the light cone. This was calculated in Appendix
A of Ref. @5#, where it was shown that in the high tempera-
ture limit this function is given by

G0~x,x8!'
1

8pbr
, b!r, ~27!
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whereb is the inverse temperature andr5ux2x8u. We may
now use Eqs.~23!–~27! to write

^s1
2&5

s0

48paba0
2Eh0

h1
dhE

h0

h1
dh8

1

hh8uh2h8u
. ~28!

Unfortunately, this integral diverges because of the singular-
ity of the integrand ath5h8. This is due to the fact that Eq.
~27! is not valid for smallr. We can remedy this by exclud-
ing the rangeuh2h8u,e, wheree is a cutoff which will be
taken to be of orderb. Thus, the relevant integral is, in the
limit of h1@h0,

^s1
2&5

s0

48paba0
2Eh0

h1
dhS E

h0

h2e

1E
h1e

h1 D dh8
1

hh8uh2h8u

'
s0@ ln~h0 /e!11#

24pabh0a0
2

. ~29!

In this same limit, one finds

s0'
1

9
aa0

2h1
6 . ~30!

We now wish to defineac as that value ofa for which the
argument of the exponential in Eq.~6! is unity; that is,

s0
2

2^s1
2&

51. ~31!

Thusac describes a geodesic whose deviation from the light
cone characterizes the fluctuations. From Eqs.~29!, ~30!, and
~31!, we find that

ac5
A3@ ln~h0 /e!11#

A4pabh0a0
3h1

3
. ~32!

We need to define a physical measure of the magnitude of
the light cone fluctuations. This may be taken to be the mean
time delay or advanceDh for a photon emitted ath0 and
detected ath1. Equivalently, we can think ofDh as the
characteristic interval aroundh0 within which photons could
be emitted and still reach a detector at a coordinate distance
of Dx5h12h0 at timeh1. ~See Fig. 1.! From Eqs.~17! and
~18!, we have thatDh is related toac by

Dh5 f ~h1 ,h0!5acE
h0

h1
a2~h8!dh8'

1

3
aca0

2h1
3 . ~33!

It is perhaps more convenient to express this time delay or
advance as a coordinate time intervalDt5a(h0)Dh, which
is given by

Dt5S 2t0

a0
D 1/4A3@ ln~h0 /e!11#

6Apb
, ~34!

wheret05 1
2 a0h0

2 is the coordinate time ath0.
We may interpret this formula by noting that in an ex-

panding universeb21 is a coordinate temperature, not, in
general, the physical temperature. It is, however, the physical

temperature at a time at whicha51. Let us take that time to
be t0, the time of emission, at which time the physical tem-
perature isT0. This leads to

Dt

t0
5

A6

6
Aln~h0 /e!11S T0

TP
D S tP

t0
D , ~35!

where TP is the Planck temperature andtP is the Planck
time. The logarithmic factor can be taken to be of order one,
and so we see that ifT05TP and t05tP , then we have
Dt/t0'1. Otherwise, withT0!TP and t0>tP , we have
Dt/t0!1, and the fractional light cone fluctuations are small.
This is what we should perhaps expect; a bath of gravitons
with the Planck temperature at the Planck time~which would
correspond to a few degrees kelvin today! results in large
horizon fluctuations, but otherwise the fluctuations are small
at much lower temperatures.

B. Gravitons in de Sitter space

If we represent de Sitter space as a spatially flat
Robertson-Walker metric, then the metric is of the form of
Eq. ~14! with a(h)52H/h5H/uhu, whereH is a constant
and2`,h,0. These coordinates cover one-half of the full
de Sitter spacetime, but that is sufficient for our purposes.
Gravitons are again represented as a pair of massless, mini-
mally coupled scalar fields. However, in this case there is a
subtlety in that there is no de Sitter–invariant vacuum state
which is free of infrared divergences@10–12#. The Had-
amard function may be represented as@12#

G~x,x8!5
1

~2p!3
ReE d3kck~h!ck* ~h8!ei ~k2k8!•x,

~36!

FIG. 1. A photon is received by a detector at conformal time
h1. In the absence of metric fluctuations, it has traveled along the
classical light cone~dashed line! from a source at a coordinate
distanceuDxu5h12h0 and was emitted at conformal timeh0. In
the presence of metric fluctuations, it could have been emitted a
characteristic timeDh before or afterh0 and traveled along a mean
trajectory which is either timelike or spacelike, respectively~dotted
lines!.
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where the time part of the mode function is expressible in
terms of Hankel functions as

ck~h!5
Ap

2
Huhu3/2@c1H3/2

~1!~kh!1c2H3/2
~2!~kh!#. ~37!

Herec1 andc2 are functions ofk which are required to have
the properties

c1→0, c2→1 as k→` ~38!

and

uc11c2u→0 as k→0. ~39!

These functions define the quantum state in question. Equa-
tion ~38! ensures that the very high frequency modes are free
of particles, whereas Eq.~39! is the condition that the state
be free of infrared divergences.

The Hadamard function given by Eqs.~36! and~37! is the
unrenormalized function which is singular on the light cone.
In principle, one should evaluate the integral for the given
choice ofc1 and c2, and then extract the state-independent
singular terms to obtain the renormalized Hadamard func-
tion. Unfortunately, this would be very difficult to do explic-
itly. However, in the late time limits (h→0 or h8→0) it is
possible to give some approximate forms for the renormal-
ized function. It was shown by several authors that the coin-
cidence limit grows logarithmically@11–14#

G~x,x!;2 ~H2/4p2! lnHuhu, ~40!

as h5h8→0. The fact that this asymptotic form is state
independent may be understood as a consequence of the ex-
ponential expansion having redshifted away any memory of
the quantum state.

We may use a similar procedure to investigate the behav-
ior ash→0 with h8 fixed. If we insert Eq.~37! into Eq.~36!
and then change the variable of integration toq5uh2h8u k,
we have

G~x,x8!5
H2uhh8u3/2

32p2uh2h8u3
ReE d3qFc1H3/2

~1!S 2
uhu

uh2h8u
qD

1c2H3/2
~2!S 2

uhu

uh2h8u
qD G

3Fc1* H3/2
~2!S 2

uh8u

uh2h8u
qD

1c2* H3/2
~1!S 2

uh8u

uh2h8u
qD Geiv•q, ~41!

where v5(x2x8)uh2h8u21. Now assume thath is suffi-
ciently small that the dominant contribution to the integral
comes from values ofq for which the magnitude of the ar-
guments of the Hankel functions in the first factor are small
compared to unity. In this case, we can use the small argu-
ment forms

H3/2
~1!~2x!'H3/2

~2!~2x!'A2/p x23/2, 0,x!1, ~42!

in this factor and find

G~x,x8!;
A2H2

32p5/2
ReE d3q q23/2~c11c2!@c1* H3/2

~2!~2q!

1c2* H3/2
~1!~2q!#eiv•q. ~43!

Note that the dependence upon bothh andh8 has dropped
out. The integral in Eq.~43! has a logarithmic ultraviolet
divergence on the light cone, but the leading quadratic diver-
gence has disappeared. A similar disappearance of divergent
parts occurs in the derivation of Eq.~40!. ~See, for example,
Ref. @12#.! The renormalization of this logarithmic diver-
gence requires a subtraction of a term proportional to the
scalar curvatureR512H2. We expect the result to be a con-
stant which is of order ofH2. By symmetry, we obtain the
same result ifh8→0 with h fixed, so that

G~x,x8!'H2, h→0 or h8→0. ~44!

The integral in Eq.~23! requires us to knowG(x,x8) in the
square illustrated in Fig. 2, which also illustrates the regions
in which either Eq.~40! or Eq. ~44! is applicable. For the
purposes of obtaining an order of magnitude estimate for
^s1

2&, we will assume thatG(x,x8) is of the form

G~x,x8!'H2F~h,h8! ~45!

throughout this region, whereF is either a constant of order
unity or else a logarithmic function which will contribute
multiplicative constants of order unity to the integral in Eq.
~23!.

FIG. 2. The domain of integration for^s1
2& is the interior of the

square. The integrandG(x,x8) is known in the shaded regions to be
approximatelyH2 and in the crosshatched region to be approxi-
mately2(H2lnHuhu)/4p2.
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The result of the evaluation of this integral is

^s1
2&5k

H2s0

a
~h12h0!2, ~46!

wherek is a constant of order unity. From Eq.~20! we find

s05
a~h12h0!2

H4h1
2h0

2
. ~47!

The value ofa which is characteristic of the light cone fluc-
tuations is

ac'A2kH3h1h0 . ~48!

If we follow the line of reasoning in the previous subsection,
we find that the characteristic time associated with the de
Sitter horizon fluctuations is

Dt'A2k. ~49!

This is of order unity, and hence again the horizon fluctua-
tions are of Planck dimensions.

We may useDt to find the frequency fluctuations ob-
served ath1 from a constant frequency source. Suppose that
the source is emitting photons with a constant frequency
n0. In the absence of metric fluctuations, the photons will be
detected at frequencyn5n0a(h0)/a(h1). The effect of the
metric fluctuations is equivalent to a drift in the source fre-
quency whose magnitude isDn05n0

2Dt. Consequently, the
fractional variation of frequency at the detector is

Dn

n
5n0Dt. ~50!

However, this is an ensemble-averaged frequency variation,
not necessarily the drift in frequency that would be observed
in any one trial. The reason for this is that pulses emitted
close together in time tend to have correlated time delays or
advances@5#. Thus, Eq.~50! should be interpreted as giving
an upper bound in the frequency drift seen by the detector.

IV. BLACK HOLE HORIZONS

Here we wish to discuss the fluctuations of the event ho-
rizon of a Schwarzschild black hole, for which the metric is

ds25S 12
2M

r Ddt22S 12
2M

r D 21

dr22r 2~du2

1sin2udf2!. ~51!

Timelike radial geodesics in this metric satisfy@16#

S dr

dt D 2

5Ẽ22C~r ! ~52!

and

dt

dt
5Ẽ/C, ~53!

where C(r )5122M /r and Ẽ is a constant of the motion
which is equal to the energy per unit rest mass of the particle,
as measured at infinity. From these relations, one may show
that

S dr

dt D
2

5C2S 12
C

Ẽ2D ~54!

and that

S dr*

dt D 2

512
C

Ẽ2
~55!

where

dr

dr*
5C. ~56!

From Eq.~53!, we see that the proper time elapsed along a
segment of a geodesic is

Dt5Ẽ21E
t0

t1
C~r !dt, ~57!

wherer is understood to be a function oft along the geode-
sic. We are primarily interested in the case of nearly null
outgoing geodesics, for whichẼ5Ẽ0@1. In this limit

dr

dt
'C~r !. ~58!

Thus,uDtu'uDr u/Ẽ0 and

s0'
~Dr !2

2Ẽ0
2

, ~59!

where Dr is the radial coordinate interval traversed. An
analogous treatment may be given for spacelike geodesics.
The constant of the motionẼ no longer has a simple physical
interpretation, but we can expresss0 in this case as

s0'2
~Dr !2

2Ẽ0
2

. ~60!

We now turn to the task of estimating^s1
2& near the ho-

rizon of a Schwarzschild black hole. From Eq.~12! and the
fact that

dr

dt
'Ẽ0 ~61!

for nearly null outgoing timelike geodesics, we have that

^s1
2&'

1

2
s0Ẽ0

22E dr1dr2u1
mu1

nu2
ru2

s^hmn~x1!hrs~x2!&.

~62!

If we are interested in a black hole radiating into empty
space, then the relevant quantum state for the quantized
graviton field is the Unruh state. It would be a rather formi-
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dable task to explicitly compute the renormalized graviton
two-point function in the state. Instead, we will content our-
selves with an order of magnitude estimate. First we must
choose a convenient gauge. Again we wish to impose the
transverse, tracefree gauge, which eliminates all gauge free-
dom. Because all of the modes of the graviton field are
propagating waves which either originate atI2 or reach
I1, we can impose the requirement that these modes satisfy
the flat space transverse, tracefree gauge condition atr 5`.

We now make the assumption that in this gauge the renor-
malized two-point function measured in the frame of an in-
falling observer who starts from infinity at rest can be esti-
mated by dimensional considerations. Near the horizon at
r 52M , the geometry and the quantum state are character-
ized by a single scaleM . If we were to reinstate explicit
factors of Newton’s constantG, then hmn}G21/2}mP ,
wheremP is the Planck mass. However,hmn is dimension-
less in any set of units, and so our assumption tells us that
the two-point function should be proportional tomP

2 /M2.
However, the actual values of the components of this biten-
sor depend upon the choice of frame. Our assumption is that
infalling observers withẼ5Ẽi'1 should be regarded as
preferred in the sense that they do not introduce any very
large or very small dimensionless redshift or blueshift fac-
tors. Let vm be the four-velocity of such an observer. Our
assumption may be expressed as

v1
mv1

nv2
rv2

s^hmn~x1!hrs~x2!&'
mP

2

M2
~63!

near the horizon. The components of the infalling observer’s
four-velocity are

v t5C21, v r52A12C'21, ~64!

and those for an outgoing observer are

ut5Ẽ0C21, ur5AẼ0
22C'Ẽ0 . ~65!

Thus uumu5Ẽ0uvmu and we can write

u1
mu1

nu2
ru2

s^hmn~x1!hrs~x2!&approxẼ0
4

mP
2

M2
. ~66!

Our basic assumption receives some support from the work
of York @15# who estimates the magnitude of the quantum
fluctuations of the lowest modes of vibration of a Schwarzs-
child black hole. He treats these modes as quantum-
mechanical harmonic oscillators and calculates their root-
mean-square fluctuation amplitudes. The amplitudes of the
first few modes yield a result consistent with Eq.~63! or
~66!. Of course, this is heuristic support and by no means a
proof of our assumption. A full proof would require one to
sum over an infinite number of degrees of freedom and then
extract any ultraviolet-divergent parts.

The graviton two-point function in this approximation is a
constant in the vicinity of the horizon. It must also fall off to
zero at large distances from the black hole. Thus the integral
in Eq. ~62! gets its dominant contribution over an interval in
r of the order ofM , regardless of the upper limit of the

integration. In any case, we can stop the integration at a
maximum value ofr which is just a few timesM . Whether
the outgoing photons emitted in the vicinity of the horizon
are detected atr 54M or at a much larger value ofr has
little effect on the discussion of the horizon fluctuations.
Thus we may let

^s1
2&'s0Ẽ0

2 ~Dr !2

M2
. ~67!

In analogy to the discussion in the previous section, we wish
to define a characteristic valueẼc , which is the value of
Ẽ0 at which Eq.~31! holds. From Eqs.~59! and~67! we find

Ẽc'AM . ~68!

We may find the associated time delay or advanceDt, from
Eq. ~55!, which tells us that, whenẼ0@1,

dt'dr* 1
C

2Ẽ0
2

dr* 5dr* 1
1

2Ẽ0
2

dr. ~69!

A radial null geodesic in the classical background geometry
covers an r * distance of Dr * in a coordinate time
Dt5Dr * . The second term on the right-hand side of the
above equation tells us the extra amount of time required by
a timelike particle. Analogous expressions hold for spacelike
geodesics and yield the same magnitude of time variation.
Thus we are led to an expression for the characteristic time
delay or advance due to horizon fluctuations:

Dt'
Dr

M
. ~70!

As discussed above, we can takeDr to be of orderM , al-
though we might also want to consider the possibility of
taking it to be much smaller. Thus let

Dr 5gM , ~71!

whereg is a constant of the order of or less than unity. Now
we have

Dt'g, ~72!

and so the time delay, measured in coordinate time, is of
Planck dimensions. However, a more physical measure is
obtained by expressing this time interval in terms of the
proper time of a local observer. Let the photons be emitted at
r 5r 052M (11e), with e!1, and letC05C(r 0)'e. The
time interval in the frame of a static~nongeodesic! observer
at rest atr 5r 0 is

Dts'gAC0, ~73!

that in the frame of an infalling observer withẼ51 is

Dt i'gC0'ge, ~74!

and that in the frame of an outgoing geodesic observer with
Ẽ51 is
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Dt0'g. ~75!

One might regardDt i , the characteristic time as mea-
sured by an infalling observer, to be the best measure of the
magnitude of the horizon fluctuations. Such an observer can
cross and continue beyond the classical event horizon at
r 52M . Suppose that an outgoing photon emitted by this
observer reaches infinity. An observer at infinity who detects
this photon and who is unaware of the light cone fluctuations
might trace the history of this photon backwards in the clas-
sical Schwarzschild geometry and infer that it was emitted at
a proper time oft0 on the infalling observer’s world line. In
fact, it could have been emitted anywhere in a band of width
Dt i centered aroundt0. ~See Fig. 3.! The remarkable feature
of the result~74! is thatDt i→0 ast0→tH , the proper time
at which the infalling observer reachesr 52M . In the cos-
mological models discussed in Sec. III, the fluctuation in
emission time was typically of the order of the Planck time.
In the black hole case, the horizon fluctuations are more
strongly suppressed. Note that the proper time required for
the infalling observer to pass fromr 5r 052M (11e) to
r 52M is T'2eM . This is always large compared toDt i for
large black holes:

Dt i

T
'g

mp

M
. ~76!

Thus the only outgoing photons which manage to cross the
classical horizon are part of an extreme tail of a Gaussian
distribution.

As in Sec. III B, we may express the time delay or ad-
vance in terms of the variation in frequency seen by the
observer at infinity. In the black hole case, the analogue of
Eq. ~50! is

Dn

n
5n0Dt i'n0ge. ~77!

Thus, as the source approachesr 52M , the fractional varia-
tion in frequency observed at infinity goes to zero, and the
observed frequency approaches that predicted by classical
relativity.

Let us now turn to the question of whether horizon fluc-
tuations are capable of invalidating the semiclassical deriva-
tion of the Hawking effect. First let us recall the essential
features of this derivation, as given in Hawking’s original
paper@17#. Consider the spacetime of a black hole formed by
gravitational collapse~Fig. 4!. The null ray which forms the
future horizon leavesI2 at advanced timev5v0. The modes
into which the outgoing thermal radiation will be created
leaveI2 at values ofv slightly less thanv0, pass through the
collapsing body, and reachI1 as outgoing rays, on which
the retarded timeu is constant. Hawking shows that the re-
lation between the values ofv and ofu is

u524M lnS v02v
A D , ~78!

whereA is a constant. Thusu→` asv→v0. As seen by an
observer at infinity, these outgoing rays must hover ex-
tremely close to the horizon for a very long time. If one starts
with a black hole with a massM large compared to the
Planck mass, the semiclassical description should hold for
the time required for the black hole to lose most of its origi-
nal mass. Let

FIG. 3. An observer falling across the future horizonH1 of a
black hole emits photons which reachI1. In the presence of metric
fluctuations, these photons need not follow the classical light cone
~solid line!, but rather may follow timelike or spacelike paths in the
background geometry~dotted lines!. The characteristic variation in
emission time, as measured in the frame of the infalling observer, of
photons which reachI1 at the same point isDt i .

FIG. 4. The spacetime for a black hole formed by gravitational
collapse. The shaded region is the interior of the collapsing star. A
null ray which leavesI2 with advanced timev0 becomes the future
horizonH1. A ray which leaves at an earlier timev passes through
the collapsing body and reachesI1 at retarded timeu. The dashed
line is the world line of a observer who falls into the black hole
after its formation.
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tevap5M35M S M

mP
D 2

~79!

be this characteristic evaporation time. The basic problem
posed by the horizon fluctuations is that they may cause an
outgoing ray to either fall back into the black hole or else to
prematurely escape. In either case, the semiclassical picture
of black hole radiance would need to be modified at times
less thantevap.

At a large distance from the black hole,
u5t2r * 't2r . If the observer at ‘‘infinity’’ is at a fixed
value of r ~e.g., 100M ), then u't for most of the black
hole’s lifetime. Thus, in order not to invalidate the semiclas-
sical treatment, outgoing rays withu,umax5tevapneed to be
uninfluenced by the horizon fluctuations. In order to investi-
gate this question, let us consider an infalling observer with
Ẽ5Ẽi51. From Eq.~54!, we have that, nearr 52M ,

dt

dr
'2C21 ~80!

and, hence,

du

dr
5

dt

dr
2

dr*

dr
'22C21. ~81!

This equation may be integrated to yield

u~r !524M lnS r 22M

A8
D , ~82!

whereA8 is a constant. This relation tells us the value ofr at
which the infalling observer crosses a given constantu line.
The constantA8 is determined by which infalling observer
we consider. Here we are interested in observers who fall
into the black hole not long after its formation, and we can
set A8'M . Let r c be the value ofr at which this observer
crosses theu5umax line, given by

r c22M5Me2umax/4M. ~83!

Near the horizon, Eq.~52! tells us thatdr/dt'21 along the
world line of the infalling observer. Thus the proper time
required for this observer to cross fromu5umax to the clas-
sical horizon atr 52M is

dt'r c22M5Me2umax/4M'Me2M2/mP
2
. ~84!

We should compare this quantity withDt i , where C0 is

evaluated atr 5r c , and soC05 1
2 e2umax/4M. Thus,

Dt i5
gmP

2M
dt, ~85!

and hence, as long asM@mP , Dt i!dt. From this result,
we conclude that the horizon fluctuations do not invalidate
the semiclassical derivation of the Hawking effect until the
black hole’s mass approaches the Planck mass. This is the
point at which we would expect the semiclassical treatment
to fail.

The presence of frequencies far above the Planck scale, in
the form of the modes leavingI2, has concerned numerous
authors. There have been suggestions that one might be able
derive the Hawking effect in a way that transplanckian fre-
quencies do not arise, using some form of ‘‘mode regenera-
tion’’ @18,19#. So far, it has not been possible to implement
these suggestions in detail. As seen from the our analysis of
horizon fluctuations, the semiclassical treatment is remark-
ably robust.

V. SUMMARY AND CONCLUSIONS

In the preceding sections, we have analyzed the horizon
fluctuation problem using a formalism which takes account
of the effects of quantized linear perturbations of the gravi-
tational field upon light cones. In the case of the cosmologi-
cal models treated in Sec. III, the resulting horizon fluctua-
tions were found to be of Planck dimensions for both de
Sitter space and a radiation-filled universe with a Planck den-
sity of gravitons at the Planck time. These fluctuations are
measured as fluctuations in the time of emission of a photon
as measured in the frame of a comoving observer. The order
of magnitude of the results is what one might have guessed
before doing the calculation.

In the case of black hole horizon fluctuations, the results
are somewhat more subtle. Whether the time scale which
characterizes the horizon fluctuations~the time delay or ad-
vance! is of Planck dimensions or not depends crucially upon
the frame of reference. It is indeed of Planck dimensions as
measured by an observer at infinity. However, as measured
by an infalling observer, this time is much less than the
Planck scale and vanishes as the infalling observer ap-
proaches the classical event horizon atr 52M . We further
found that this suppression of the horizon fluctuations is ex-
actly what is needed to preserve Hawking’s semiclassical
derivation of black hole radiance for black holes of mass
large compared to the Planck mass.

Our result seems to conflict with the arguments of Sorkin
@2# and of Casheret al. @3#. These authors claim that the
horizon fluctuations are much larger than found in the
present paper. It should be noted, however, that the physical
mechanisms being postulated in Refs.@2# and @3# are quite
different from that of the present paper. Furthermore, in our
opinion, the physical basis of both of these calculations
seems to be open to question. Casheret al. obtain large
gravitational perturbations of the horizon by postulating an
‘‘atmosphere’’ of particles near the horizon in large angular
momentum modes. This arises by decomposing the physical
quantum state of an evaporating black hole~the Unruh
vacuum! into two pieces which separately have divergent
stress tensors on the horizon, the contribution from the Boul-
ware vacuum state, and a term which these authors call the
‘‘atmosphere’’ of particles. The large stress tensor fluctua-
tions arise in the analysis of Casheret al. when this ‘‘atmo-
sphere’’ undergoes thermal fluctuations. Our objection to
this procedure is that the fluctuations of the Boulware
vacuum energy density are not being considered. The split-
ting of the finite Unruh vacuum energy density into two sin-
gular parts seems rather artificial. If one chooses such a split-
ting, then care must be taken to prove that fluctuations in one
part are not canceled by correlated fluctuations in the other
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part. Casheret al. have not done this.
Sorkin @2# uses a Newtonian treatment to estimate the

gravitational field of a mass fluctuation near the horizon and
its effects on the Schwarzschild geometry. One can certainly
question whether a Newtonian analysis can be trusted in
black hole physics. However, our primary objection to Sor-
kin’s treatment is that the dominant contribution to the hori-
zon fluctuations comes from modes whose wavelength is
very small compared to the size of the black hole. The same
line of reasoning would seem to lead to large stress tensor
fluctuations and, hence, large light cone fluctuations, in all
spacetimes including flat spacetime. In our view, a more rea-
sonable result is one in which significant fluctuations arise
only on scales characterized either by the spacetime geom-
etry or else the chosen quantum state. An approach to defin-
ing stress tensor fluctuations on a flat background which has
this property was given in Ref.@20#. Here the stress tensor
fluctuations are defined in terms of products of operators
which are normal ordered with respect to the Minkowski
vacuum state.

Recently, the fluctuations of the Hawking flux, as mea-
sured in the asymptotic region, have been computed@21# by
a similar approach. It was found that this flux undergoes
fluctuations of the same order as its average value over time
scales of the order ofM . This average flux is of order
M 22, and so the characteristic associated black hole mass
fluctuation is of orderM 21. The corresponding metric fluc-
tuation near the horizon is then of orderdh'M 22. For mac-

roscopic black holes, this is much smaller than the metric
fluctuations due to the quantized linear perturbation, esti-
mated in Eq.~63! to be of orderM 21. This analysis does not
rule out the possibility of much larger stress tensor fluctua-
tions in the vacuum energy near the horizon. However, the
diagonal and off-diagonal components of the expectation
value of the stress tensor in the Unruh state near the horizon
are of the same order@22#. It is thus plausible that the fluc-
tuations in these various components near the horizon are
also of the same order. If so, then the effects of quantized
linear perturbations of the gravitational field dominate over
those of stress tensor fluctuations.

It must be emphasized that all of the conclusions obtained
in the present manuscript are in the context of a model of
linearized quantum gravity. Furthermore, much of our dis-
cussion is of a heuristic, order of magnitude nature. If the
basic picture of horizon fluctuations which we have drawn is
correct, much work remains to be done to make the picture
more precise.

ACKNOWLEDGMENTS

We would like to thank Tom Roman, Alex Vilenkin, and
Serge Winitzky for helpful discussions. This work was sup-
ported in part by the National Science Foundation under
Grant No. PHY-9507351 and by Conselho Nacional de
Desevolvimento Cientifico e Tecnolo´gico do Brasil~CNPq!.

@1# J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B360, 7
~1995!.

@2# R. D. Sorkin, ‘‘Two Topics concerning Black Holes: Extrem-
ality of the Energy, Fractality of the Horizon,’’ Report No.
gr-qc/9508002~unpublished!; ‘‘How Wrinkled is the Surface
of a Black Hole?,’’ Report No. gr-qc/9701056~unpublished!.

@3# A. Casher, F. Englert, N. Itzhaki, and R. Parentani, Nucl. Phys.
B484, 419 ~1997!.

@4# L. H. Ford, Phys. Rev. D51, 1692~1995!.
@5# L. H. Ford and N. F. Svaiter, Phys. Rev. D54, 2640~1996!.
@6# Units in which \5c516pG51 will be used in this paper.

Thus the units of mass, length, and time differ by factors of
A16p from the usual definitions of the Planck mass, Planck
length, and Planck time. As most of the discussion in this
paper deals with order of magnitude estimates, this should not
cause any confusion. The metric signature will be
(1,21,21,21).

@7# M. R. Brown and A. C. Ottewill, Phys. Rev. D34, 1776
~1986!.

@8# B. Allen, J. G. McLaughlin, and A. C. Ottewill, Phys. Rev. D
45, 4486~1992!.

@9# L. H. Ford and L. Parker, Phys. Rev. D16, 1601~1977!.
@10# L. H. Ford and L. Parker, Phys. Rev. D16, 245 ~1977!.
@11# A. Vilenkin and L. H. Ford, Phys. Rev. D26, 1231~1982!.
@12# L. H. Ford and A. Vilenkin, Phys. Rev. D33, 2833~1986!.
@13# A. Linde, Phys. Lett.116B, 335 ~1982!.
@14# A. A. Starobinsky, Phys. Lett.117B, 175 ~1982!.
@15# J. W. York, Phys. Rev. D28, 2929~1983!.
@16# C. W. Misner, K. Thorne, and J. A. Wheeler,Gravitation

~Freeman, San Francisco, 1973!, Sec. 25.5.
@17# S. W. Hawking, Commun. Math. Phys.43, 199 ~1975!.
@18# T. Jacobson, Phys. Rev. D48, 728 ~1993!; 53, 7028~1996!.
@19# W. G. Unruh, ‘‘Dumb Holes and the Effects of High Frequen-

cies on Black Hole Evaporation,’’ Report No. gr-qc/9409008
~unpublished!.

@20# C.-I. Kuo and L. H. Ford, Phys. Rev. D47, 4510~1993!.
@21# C. H. Wu and L. H. Ford~in preparation!.
@22# B. P. Jensen, J. G. McLaughlin, and A. C. Ottewill, Phys. Rev.

D 43, 4142~1991!.

56 2235COSMOLOGICAL AND BLACK HOLE HORIZON FLUCTUATIONS


