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Chiral Lagrangian for excited pions
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We construct a chiral Lagrangian containing, in addition to the usual pion fie)d &lso its first radial
excitation (@'). The Lagrangian is derived in the largg-limit from a Nambu—Jona-LasiniéNJL) quark
model with separable nonlocal interactions, with form factors corresponding to three-dimensional ground- and
excited-state wave functions. Chiral symmetry breaking is governed by the NJL gap equation. The effective
Lagrangian form and 7' mesons shows the decoupling of the Goldstone pion and the vanishing af the
leptonic decay constarfit,, in the chiral limit, as required by axial-vector current conservation. We derive the
excited-state contribution to the axial-vector current of the model using Noether’s theorem. For a finite pion
mass andw’ masses in the range of 750-1300 Me¥,, /f, is found to be of the order of 1%.
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[. INTRODUCTION bers as the normal pion itself. Nevertheless, the normal pion
field must decouple from the “hard” degrees of freedom in
Radial excitations of light mesons are currently a topic ofthe chiral limit in order to describe a Goldstone boson. At the
great interest in hadronic physics. During the next years, fasame time, ther’ contributes to the axial-vector hadronic
cilities at the Continuous Electron Beam Acclerator Facility current, and is thus itself affected by chiral symmetry: when
(CEBAF) and IHEP (Protving will provide improved ex- the axial-vector current is conservéchiral limit), one ex-
perimental information about excited states in the few-GeVpects ther’ weak decay constant to vanigh.
region, e.g., on ther’ meson. The resonance usually identi- A useful guideline in the construction of effective meson
fied as the first radial excitation of the pion has a mass of agrangians is the Nambu-—Jona-Lasin{dlJL) model,
(1300+100)MeV[1]. Also, indications of a light resonance which describes the spontaneous breaking of chiral symme-
in the diffractive production of & states have led to specu- try at quark level using an effective four-fermion interaction
lations that the mass of the’ may be considerably lower at [6,7]. After bosonization of this model, integration over the
~750 MeV]2]. quark fields, and derivative expansion of the resulting fer-
A theoretical description of radially excited pions posesmion determinant one obtains the Lagrangian of the linear
some interesting challenges. The physics of normal pions is- model, which embodies the physics of soft pions, as well
governed by the spontaneous breaking of chiral symmetry. A&s higher-derivative terms, including the Wess-Zumino term
convenient way to derive the predictions of chiral symmetrywith correct coefficien{8]. Effects of the U(1) anomaly
for soft pions is the use of an effective Lagrangian based ol mass, etd. [9] are described by including a
a nonlinear realization of chiral symmetf8]. When at-  U(1),-breaking 't Hooft term in the effective quark interac-
tempting to introduce higher resonances to extend the effegion [10]. With appropriate couplings the model allows us to
tive Lagrangian description to higher energies, one must erderive also a Lagrangian for vector mesons. This approach
sure that the introduction of new degrees of freedom doesaot only gives the correct structure of the terms of the La-
not spoil the low-energy theorems for pions, which are uni-grangian as required by chiral symmetry, one also obtains
versal consequences of chiral symmetry. In the case of vectgjuantitative predictions for the coefficients, such fsg,
resonancesg,»,A;) this problem can be solved by intro- g, etc., which are in good agreement with phenomenology.
ducing them as gauge bosons. Such *“gauged” chiral The main motivation for the use of the NJL model comes
Lagrangians have proven very successful in describing mefrom the largeN, limit of QCD [11]. At large N, quark
son phenomenology up to energiesofl GeV [4]. When  loops are suppressétiqguenched” QCD), and mesons may
trying to include O resonances as elementary fields, how-be viewed as consisting of “constituent” quarks and anti-
ever, there is no simple principle to restrict the form of in- quarks, which acquire a dynamical mass due to chiral sym-
teractions — ther’ has the same spin-parity quantum num-metry breaking. In the NJL model one assumes an effective
interaction of quarks, which in a region of low energies can
be characterized by two parameters, its strength and range
*Electronic address: volkov@thsundi.jinr.dubna.su (momentum cutoff Parametrically, this interaction is short
Electronic address: weiss@hadron.tp2.ruhr-uni-bochum.de range. Generally speaking, one may view this interaction as
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the result of an integration ovéhnard gluon degrees of free- vacuum. Aside from the technical simplifications this means
dom [13].2 It should be noted, however, that the lafgg- that the separable generalization contains the successful re-
arguments on which this picture of mesons is based are néults of the usual NJL model for the vacuum and ground-
restricted to low energies but hold for excited states as welistate meson properties with slight modifications.

Thus, it seems possible to describe also radially excited me- In this paper, we derive an effective chiral Lagrangian
sons in NJL-like models, provided one allows for more gen-describingrm and ' mesons from a generalized NJL model
eral effective interactions of quarks. with separable interactions. In Sec. Il, we introduce the ef-

When attempting to construct an effective Lagrangian inf€Ctive quark interaction in the separable approximation and
cluding thes’ meson, it is natural to consider as a Startingdescrlbe its bosomzatlo_n. We (_Jllscuss the choice of form fac-
point a generalization of the NJL model, with an effective 1Ors necessary to des.cr.lbe excited state;. In Sec. III_, we solve
quark interaction of finite range which can support excitediN® 9ap equation defining the vacuum in the largetimit,
states. Many nonlocal generalizations of the NJL model havderive the effective Lagrangian of the Gmeson fields, and
been proposed, using either covariant-Euclidgs4] or in- perform the dlagonal_lzatlon Iead_lng to thg physm:alan(_j _
stantaneous(potential-typ¢ [15,16 four-fermion interac- 7' states. The effectlvg Lagrangian describes thg vanishing
tions. For the purpose of deriving an effective Lagrangiar®f the = mass(decoupling of the Goldstone bosoim the
including the =’ meson we are not interested in the full chiral limit, while the 7' remains massive. In Sec. IV, we
momentum dependence of the effective quark interactiorderive the axial-vector current of the effective Lagrangian,
Rather, we would like to have a “minimal” extension of the USing the Gell-Mann—Levy method, and obtain a generaliza-
NJL model, which includes the first radially excited statestion of the PCAC(partial conservation of axial-vector cur-
while preserving as far as possible the generic NJL descrig€n? formula which includes the contribution of the’ to
tion of chiral symmetry breaking and of the ground—statethe axial-vector current. The Iepto_nlc decay_ constants of_ the
mesons. This can be achieved if one considers effectiv@ and =’ mesonsf, andf ., are discussed in Sec. V. Itis
quark interactions of separable foft7]. A finite-rank sepa- shown thatqu, vanishes in the chiral limit as expected. In
rable interaction allows one to introduce a limited number ofS€c. VI, we fix the parameters of the model and evaluate the
excited states, and only in a given channel. Furthermore, anf@tio f/f; as a function of ther’ mass. o
two-body interaction can in principle be approximated by a We stress that we are using the separable generalization
separable form of finite rantat least for not too large exci- Of the NJL model only to derive an effective Lagrangian for
tation energies so the results obtained with this restricted €xcited mesons, in which the coupling constants and fields
form of interaction are general as far as the lowest excitedre defined at zero four-momentuferivative expansion
states are concerned. We do not consider an on-shell description of bound states

There are a number of advantages in taking effectivdBethe-Salpeter equatipnFor this reason the lack of quark
quark interactions of separable form when trying to derive arfonfinement of this model, i.e., the presence of a quark-
effective meson Lagrangian. First, separable interactions ca@ntiquark continuum for momenta larger than twice the
be bosonized by introducing local meson fields, just as in théluark mass, is not an issue here. The dynamical effects of
usual NJL model. One can thus derive an effective mesofonfinement — the occurrence of radially excited states —
Lagrangian directly in terms of local fields and their deriva-are, however, included in the form factors of the separable
tives. In contrast, general nonlocal interactions of the typeluark interaction.
considered in[14-16 require bilocal meson fields for ~ For deriving an effective Lagrangian containing thé
bosonization, which makes it difficult to perform a derivative Meson we consider the simplest generalized NJL model with
expansion leading to an effective LagrangfaBecond, the SU(2) flavor group. The approach developed here can easily
separable interaction can be defined in Minkowski space in B¢ extended to include strange mesons as well as flavor-
three-dimensionalyet covariant way, with form factors de- singlet mesons. In this case one should include an effective
pending only on the component of the quark-antiquark relainteraction describing the U(})anomaly[9,10].
tive momentum transverse to the meson momerjtiLé20. While there is noa priori proof of the quantitative reli-
This is essential for a correct description of excited states, a@bility of an effective Lagrangian description of excited
it ensures the absence of spurious relative-time excitationgtates, such an approach allows us to investigate a number of
[21]. Finally, as we shall see, the form factors of the sepaprincipal aspects, such as the contribution of excited states to
rable interaction can be chosen in such a way that théhe axial-vector current, in a simple way. Moreover, the fact
vacuum(gap equationof the generalized NJL model coin- that effective Lagrangians work well for vector mesons gives
cides with the one of the usual NJL model. It is thus possiblesome grounds to hope that this approach may be of some
to describe radially excited mesons above the usual NJrelevance also for excited states.

II. NAMBU —JONA-LASINIO MODEL

‘Effects of soft gluons, i.e., the gluon condensate, can be incorpo- WITH SEPARABLE INTERACTIONS
rated in this description by way of a background field, as proposed ) )
in [12]. In the usual NJL model, the spontaneous breaking of chi-

2An exception to this are heavy-light mesons, in which the heavyr@l Symmetry is described by a localurrent-currenteffec-
quark can be taken as static. An effective Lagrangian for excitediVe quark interaction. The model is defined by the action
heavy mesons was derived from bilocal field{1@].

3This three-dimensional form of interaction is used also in appli-
cations of this model to finite temperatUred].

S y]= f d*%p(X) (i 0—mO) p(x)+ S, ()
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. ) A a through nonlocal vertices. We emphasize that these fields are
Sint:gJ ™[] o(X)] (X)) +]5(X)5(3)], (2 not yet to be associated with physical particles
(o,0',...,m,7", ...); physical fields will be obtained af-

wherej, .(x) denote, respectively, the scalar-isoscalar ander determ?ning the vacuum and diagonalizing the effective
pseudoscalar-isovector currents of the quark fledJ(2)  meson action.

flavor]: To define the vertices of Eq$5) and (6) we pass to the
_ momentum representation. Because of translational invari-
Jo(X)=h(X) h(X), ance, the vertices can be represented as
SR — i a d*p d*k |1
]7(X)—¢(X)I’y57 lﬂ(x) (3) F(r,i(X;Xl1X2): (27)4'[ Wexp E(P-|—|().()(—)(l)

This model can be bosonized in the standard way by repre-
senting the four-fermion interaction as a Gaussian functional
integral over scalar and pseudoscalar meson fig&)g|.
Since the interaction, Eq2), has the form of a product of
two local currents, the bosonization is achieved through loca@nd similarly for FZ ;(x;x;,%,). Herek and P denote, re-
meson fields. The effective meson action, which is obtaine@pectively, the relative and total momentum of the quark-
by integration over the quark fields, is thus expressed irgntiquark pair. We take the vertices to depend only on the
terms of local meson fields. By expanding the quark detercomponent of the relative momentum transverse to the total
minant in derivatives of the local meson fields one then demomentum:

rives the chiral meson Lagrangian.

Fo.i(kIP), ®

1
+ E(P—k)-(x—xz)

The NJL interaction, Eq(2), describes only ground-state Foi(kP)=F (k. [P), etc.,
mesons. To include excited states one has to introduce effec- b.K
tive quark interactions with a finite range. In general, such e
five qua tions :  su ko =k— 57 P. ©
interactions require bilocal meson fields for bosonization P

[14,16]. A possibility to avoid this complication is the use of ) L ) )
a separable interaction, which is still of current-current form,Here.P is assumed to be timelik&">0. Equation(9) is the

Eq. (2), but allows for nonlocal verticeorm factorg in the ~ covariant generalization of the condition that the quark-
definition of the quark currents, E¢g): meson interaction be instantaneous in the rest frame of the

meson(i.e., the frame in whiclP=0). Equation(9) ensures
- the absence of spurious relative-time excitations and thus
Singf d4x2 [joi(x jo,(X)-i-jm(X)Jﬂ_l(X)] (4) leads to a consistent description of excited stagdd.* In
particular, this framework allows us to use three-dimensional
“excited state” wave functions to model the form factors for
jri (0= f d', f d'Xp(x1)F (XX Xo)Y(x), (5)  fadially excited mesons. "
’ ' The simplest chirally invariant interaction describing sca-
lar and pseudoscalar mesons is defined by the spin-
1A (v — 4 4y, 0 a [y independent vertices 1 andys7®. We want to include
Jix) fd le A" (X)) FZ (X X1, X2) h(Xz). (6) ground-state mesons and their first radial excitation
(N=2), and, therefore, take

Here, F,i(X;X1,%2),F5 i(X;X1,X2), i=1,... N, denote a
set of nonlocal scalar and pseudoscalar fermion vertices Fo (k. |P) 1
general momentum and spin dependenthich will be F2 (k,|P) = i e As—1k.]), (10
specified below. Upon bosonization E¢g) leads to an action m I s
— F, ok, |P) 1
Sboilzbiwra'liﬂ-l!""o-N!ﬂ-N] o2 = X @ —
F:-,z(kL|P) i’)/57'a .(A3 |kJ_|)f(kJ_)a (11)
zf d"’xlf d4x2¢/f(x1)[(iﬁxz—mo)b‘(xl—xz) f(k,)=c(1+d[k, |?),

N Ik, |=V—K2. (12)
+ f A% 2 [0100F 5, (XiX1,Xz) ) .

The step functior® (A3;— |k, |), whereA 5 is a cutoff param-

eter, is nothing but the covariant generalization of the usual
+ 3 (X)F2 (x; Xl,Xz)]} P(Xo) three-momentum cutoff of the NJL model in the meson rest
d4x2 [ai(X) o (X) + 7Ta(X)7Ta(X)] ) “In bilocal field theory, this requirement is u.s.ually imposgd in .the

29 form of the so-called Markov-Yukawa condition of covariant in-

stanteneity of the bound-state amplitufs]. An interaction of
It describes a system of local meson fieldstransverse form, Eq9), automatically leads to meson amplitudes
ai(x),m(x), i=1,... N which interact with the quarks satisfying the Markov-Yukawa condition.



224 M. K. VOLKOV AND C. WEISS 56

frame [16]. The form factorf(k,) has ford<—A,? the  spin-dependent structur@and ysP which in the terminol-
form of an excited-state wave function, with a node in theogy of the NJL model correspond to the induced vector and
interval 0<|k, | <A 5. Equations(10), (11), and(12) are the axial-vector component of the and = mesons ¢-p and

first two terms in a series of polynomials k? ; inclusion of a-A; mixing). These structures should be considered if vec-

. . ) - . tor mesons are included. Furthermore, there could be struc-
higher excited states would require polynomials of higher,

S tures k, ,Pk, and ysk, ,ysPk, , respectively, which de-
degree. Note that the normalization of the form factorg..."po stateésvéithysorbiltal angular mgmenmml.
f(k,), the constant, determines the overall strength of the \y/e shall not consider these components here.
coupling of thea? and 7, fields to the quarks relative to the With the form factors defined by Eq&lL0), (11), and(12),
usual NJL coupling ofr; and o;. the bosonized action, Eq7), in momentum representation

We remark that the most general vertex could also includéakes the form

” dk — 0 d*P [ d% 1
Sbos[l/f,l/fio'l,ﬁlyﬂ'z,ﬂz]:jW(//(k)(k—m )1/;(k)+f(27)4f —E(k—{-EP)

Ag(2m)?

1
X{o1(P)+iysTmi(P)+[op(P) +i YSTan(P)]f(kL)}lp( k— EP)

1 d4P 2 a a
29 (277)4;1[Ui(—P)U'i(P)"‘Tfi(_P)Tri(P)]' (13

Here it is understood that a cutoff in three-dimensional transapproximation corresponds to the leading order of th. 1/
verse momentum is applied to theintegral, as defined by expansion. The mean field is determined by the set of equa-

the step function of Eq€10) and (11). tions
lll. EFFECTIVE LAGRANGIAN FOR @ AND @' MESONS oW _ d*k 1 01
oy Tl Cm k—mC 4o+ ayf(k,) 9
We now want to derive the effective Lagrangian describ- (17
ing physical7r and 7’ mesons. Integrating over the fermion
fields in Eq.(13), one obtains the effective action of the SW dk f(k,) oy
oy, and o, fields: —— = —iNgtr . - ——=t=
o0, 22T k—mP+ oy +oof(k,) O
1 (18)

_ 2, 2, 2, 2
Wloy,71,0,,m]=— f(0'1+771+(72+772)

29 Due to the transverse definition of the interaction, £,
—iN_Trlog[i #— m°+ oy +i ysrom? the mean field inside a meson depends in a trivial way on the
direction of the meson four-momentukh In the following
+ (o +iys?md)f]. (14  we consider these equations in the rest frame where

P=0, k, =(0k), andA is the usual three-momentum cut-
This expression is understood as a shorthand notation faff.
expanding in the meson fields. In particular, we want to de- In general, the solution of Eq$17) and(18) would have
rive the free part of the effective action for thg and =, o,# 0, in which case the dynamically generated quark mass
fields —o,—0,f(k)+m° becomes momentum dependent. How-
ever, if we choose the form factd(k) such that

W=WO + W2, (15
2 amif=—iN, tr d f(k)
11 d*P T e 27 k—m
W | G 2, TH-PIKFPIIP). (a6 e
W d*k  f(k)

=idN.m| ——7—>—7=0,
where it is understood that we restrict ourselves to timelike ¢ A3(27T)4 m*“—k

momentaP2>0. Note that in the largéd, limit meson
masses are’J(NS), while meson-meson interactions arise m=—o,+m°, (19
only in the next-to-leading order of theN/ expansion.

Before expanding in ther; and, fields, we must deter- Eqgs.(17) and(18) admit a solution withr,=0 and thus with
mine the vacuum, i.e., the mean scalar field, which arises im constant quark mass= —o;+mC. In this case, Eq(17)
the dynamical breaking of chiral symmetry. The mean-fieldreduces to the usual gap equation of the NJL model
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Kya(P)=2Z,(P?—m?),
Koo P)=Z5(P2—m)),
K1 P)=Ky(P)=Z,Z,I'P?, (22

where

O O

Z,=41%, (24)
0
2_5-1,_ -1y

FIG. 1. The quark loop contribution to the quadratic form my=2; (=8l1+977) Z,gm’ (25)
Kij(P), Eg. (21), of the effective action of ther, and m, fields.

The solid lines denote the NJL quark propagator. The field mgzzgl(_gﬁlf_;_g*l), (26)
couples to the quarks with a local vertex, the field through the

form factor f(k,) represented here by a shaded blob. 4
I=——I}. (27)
8ml,=—8miN d 1 _mP-m (20) e
—8ml;=—-8mi = .
! ¢Jas(2m)* KP—m? g Here, I,, If, andI " denote the usual loop integrals arising

in the momentum expansion of the NJL quark determinant,

Obviously, condition(19) can be fulfilled by choosing an PUt now with zero, one, or two factofgk, ), Eq.(12), in the
appropriate value of the parametérdefining the “excited nur_nerato.r. We may evaluate them in the rest frame
state” form factor, Eq(12), for given values ofA; andm. kp=(0k):
Equation (19) expresses the invariance of the usual NJL d*k f(k)---f(k)

— i At ; P ; fo..f .
vacuumo; = const with respect to variations in the direction | =—iN
of o5. In the following, we shall consider the vacuum as

defined by Eqs(19) and(20), i.e., we work with the usual The evaluation of these integrals with a three-momentum
NJL vacuum. We emphasize that this choice is a matter Ocutoﬁ is described, e.g., in ReR22]. The integral ovek, is

convenience, not of principle. The qualitative results below : ; o
could equivalently be obtained with a different choice of performed by contour integration, and the remaining three-

form factor; however, in this case one would have to rederivedimenSional integral regula_ri;ed by the cutofi. Only the d'
all vacuum and ground-state meson properties with thé/ergent parts are kept; all finite parts are dropped. We point

momentum-dependent quark mass. Preserving the Nﬁut that the momentum expansion of the quark loop inte-

vacuum makes formulas below much more transparent an%rals, Eq.(21), is an essential part of this approach. The NJL
model is understood here as a model only for the lowest

allows us to carry over the parameters fixed in the old NJL - )
model. coef_flments of the momentum expansmn_qf the quark loop,
With the mean field determined by Ed49) and(20), we not its full momentum dependenésingularities, etg.

now expand the action to quadratic order in the fieldsand the that. a mixing E)etween the, and, fields oceurs
. ab . : only in the kinetid O(P<)—] terms of Eq(22), but not in the
7,. The quadratic fornK{°(P), Eq. (16), is obtained as L g L
] mass terms. This is a direct consequence of the definition of

the vacuum by Eqs(19) and (20), which ensures that the
K2°(P)=8%K;;(P), quark loop with one form factor has i?-independent part.
The “softness” of thew;-7, mixing causes ther; field to
decouple aP?>—0. This property is crucial for the appear-
ance of a Goldstone boson in the chiral limit.

To determine the physicair- and 7'-meson states we

have to diagonalize the quadratic part of the action,(E6).
If one knew the full momentum dependence of the quadratic
form, Eq. (22), the masses of the physical states would be
given as the zeros of the determinant of the quadratic form:

c A3(27T)4 (m2_k2)n . (28)

1 .
¥sfi

Kii(P ——'Ntf d'
(PN o ke (2P—m.

N Y
k—(1/2P—-m

1
_6”6'

f,=1, deK;(P?)=0 for P?=mZ,m’,. (29

This would be equivalent to the usual Bethe-Salpéter-
fa=f(k,). (21 shel) description of bound states: the matkx (P?) is di-
agonalized independently on the respective mass shells
A graphical representation of the loop integrals in Bf) is ~ P?=mZ,m2, [15,23,24. In our approach, however, we
given in Fig. 1. The integral is evaluated by expanding in theknow the quadratic form, Eq22), only as an expansion in
meson field momentur®. To orderP?, one obtains P2 at P?=0. It is clear that a determination of the masses
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according to EQ.(29) would be incompatible with the remain unaffected by changes of the current quark rhass.
momentum expansion, as the determinant invol@¢$*) Expanding Eqs(36) in m?smP, one finds

terms which are neglected in E@2). To be consistent with

the P2 expansion we must diagonalize the kinetic term and m2=m3+0(m}), (37

the mass term in EQ.(16) simultaneously, with a

P2Z-independent transformation of the fields. Let us write Eq. 5 2 5 mf 4
(22) in matrix form: m_,= 1= Fg 1+T % Oo(mj)]|. (39
7 > 2
K.(P?) Zy Z,Z,I p2_ Zymy Thus, in the chiral limit the effective Lagrangi&B5) indeed
! VZ,Z,T Z, Z,m5 describes a massless Goldstone piorand a massive par-

(30 ticle #'. Furthermore, in the chiral limit the transformation
of the fields, Eq(31), becomes
The transformation which diagonalizes both matrices here

separately is given by m? r m?
JZimi=|1-T2— | m2+ 1+(1-T2)—5|7'8,
. mz 1-T7 mj
\/_ cosp a, M2 S|n¢ aa
7Tl o
\/_17 my \} 77' \E a_rmi a 1 'a 39
2Ty= Hgﬂ' 1_F27'r . (39
ml sing Ccosp
VZpmi=— =7~ =", (3D) )
\/Z— VZ, At m;=0 one observes that has only a component along
1. This is a consequence of the fact that the, coupling
where in the original Lagrangian, Eq22), is of orderP?. We re-

mark that, although we have chosen to work with a particular
choice of excited-state form factor, EG.9), the occurrence
of a Goldstone boson in the chiral limit in E.4) is general
and does not depend on this choice. This may easily be es-
mi m, tablished using the general gap equati¢hd and (18), to-
Z,=coSo+ stin2¢+ 2T —cospsing, (33)  gether with Eq.(21).
2 2

2\ —1
ml) , (32

tan2¢=2I" 1-—
- 2( m2

IV. THE AXIAL-VECTOR CURRENT
,—c032¢+ sm2¢ 2r —co&;&smq’) (34

In order to describe the leptonic decays of theand =’
mesons we need the axial-vector current operator. Since our
In terms of the new fieldsr, =’ the quadratic part of the €ffective action contains besides the pion a field describing
action, Eq.(16), reads an “excited state” with the same quantum numbers, it is

clear that the axial-vector current of our model is, in general,
s s o 4 ' not carried exclusively by ther field, and is thus not giyen
Ef W[Tf (=P)(PE=my)7*(P)+7'%(—=P) by the standard PCAC formula. Thus, we must determine the
conserved axial-vector current of our model, including the
x(p2—mi,)77’a(p)], (35 contribution of thew’, from first principles.
In general, the construction of the conserved current in a
Here, theory with nonlocalmomentum-dependeéninteractions is
a difficult task. This problem has been studied extensively in
m3 the framework of the Bethe-Salpeter equatji@b] and vari-
mz=>, ous three-dimensional reductions of it such as the quasipo-
tential and the on-shell reductid@6]. In these approaches
2 the derivation of the current is achieved by “gauging” all
m2, = . (36) possible momentum dependence of the interaction through
, minimal substitution, a rather cumbersome procedure in
practice. In contrast, in a Lagrangian field theory a simple
The fields7 and 7' can thus be associated with physical method exists to derive conserved currents, the so-called
particles. Gell-Mann-Levy method27], which is based on Noether's

Let us now consider the chiral limit, i.e., vanishing cur- theorem. In this approach the current is obtained as the varia-
rent quark massn®—0. From Egs.(23)- (27) we see that tion of the Lagrangian with respect to the derivative of a
this is equivalent to takingn3— 0. [Here and in the follow-  space-time-dependent symmetry transformation of the fields.
ing, when discussing the dependence of quantities on the/e now show that a suitable generalization of this technique
current quark masm® we keep the constituent quark mass can be employed to derive the conserved axial-vector current
fixed and assume the coupling constgnio be changed in  of our model with quark-meson form factors depending on
accordance witm®, such that the gap equati¢®0) remains  transverse momentum.
fulfilled exactly. In this way, the loop integrals and Eq9) To derive the axial current we start at quark level. The
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isovector axial-vector current is the Noether current corre-
sponding to infinitesimal chiral rotations of the quark fields: T X 8, Q + m x 9y ---Q
() —(1=ie2} 7y5) Y(x). (40)

Following the usual procedure, we consider the parameter of F!G- 2. The axial-vector current of the, and , fields, Eq.

this transformation to be space-time dependeft 3(x). (46), as it follows from Noether’'s theorem. The cross denotes the
However, this dependence need not be completely arbitrar;llocal axial-vector current of the quark field, to which the and

To describe the decays afand ' mesons, it is sufficient to 7, fields couple through quark loops. Notation is the same as in

. ' Fig. 1.

know the component of the axial-vector current parallel to
the meson four-momentuf. It is easy to see that this com-
ponent is obtained from chiral rotations whose paramete

depends only on the longitudinal part of the coordinate

Here we have already used thaj=0 in the vacuum, Eq.

(19) Expanding now in the momentu®, making use of

Eqg. (19) and the gap equatiai20) and settingr;= —m (it is

£3(x)—e3(x)), sufficient to consider the symmetric limith°=0), this be-
comes

x-P
=
sinced,e%(x))<P, . In other words, transformations of the

form Eq. (41) describe a transfer of longitudinal momentum The fact thatD?(Q?) is proportional toQ? is a consequence
to the meson, but not of transverse momentum. This has thef the chiral symmetry of the effective actig¢h4). Because
important consequence that the chiral transformation doesf this property,D3(Q?) may be regarded as the divergence

not change the direction of transversality of the meson-quarlf a conserved current:
interaction, cf. Eq(9). When passing to the bosonized rep-

(41) DA(Q) = — Qm[41,7%(Q) +41573(Q)]
=—Q’M[Z,mH(Q)+Z,Z,T 74(Q)]. (45

X||=

resentation, Eq(7), the transformation of ther;,o; and A%(Q)=Q,M[Z73(Q)+VZ,Z,I' n5(Q)].  (46)
T, ,0, fields induced by Eqs(40) and (41) is therefore of
the form Equation (46) is the conserved axial-vector current of our
a a a model. It is of the usual “PCAC” form, but contains also a
i (X) = i (X) + £5(x)) (X)), contribution of therr, field. The above derivation was rather

a a _ formal. However, the result can be understood in simple
0i(X) = oi(X) =& (X)) mi(x),  (1=1,2). (42 terms, as is shown in Fig. 2: Both the and, field couple
to the local axial-vector current of the quark field through
quark loops; therr, field enters the loop with a form factor
f(k,). The necessity to pull out a factor of the meson field
rmomentum(derlvatlve) means that only th©(P?) parts of

This follows from the fact that, for fixed direction &, the
vertex Eq.(9) describes an instantaneous interactiorxjn
Thus, the special chiral rotation E¢41) does not mix the

f th fiel li h k
components of the meson fields coupling to the quarks wit the loop integrals, andl2 survive, cf. Eq(28). Chiral sym-

different form factors.

With the transformation of the chiral fields given by Egs. metry ensures that the corresp_ondlng diagrams for the diver-
(42), the construction of the axial-vector current proceedd€nce of the current have RF-independent part, ,
exactly as in the usual linear model. We write the variation 1€ results of this section are an example for the technical
of the effective action, Eq(14), in momentum representa- simplifications of working with separable quark interactions.
tion: The fact that they can be bosonized by local meson fields

makes it possible to apply methods of local field theory, such
as Noether’s theorem, to the effective meson action. Further-
f(z )48 (Q)D¥Q), (43)  more, we note that the covariaftitansversgedefinition of the
three-dimensional quark interaction, E®), is crucial for
where(Q)=3%(Q) 5(Q, ) is the Fourier transform of obtaining a consistent axial-vector current. In particular, with

the transformation Eq41) and D3(Q) is a function of the this formulation there is no ambiguity with different defini-
tions of the pion decay constant as with noncovariant three-

fieldso;,m;, i=1,...,2,given in the form of a quark loop " . ) ’
integral, dimensional interactionil5].
a . d*k 1 b 1 ) a V. THE WEAK DECAY CONSTANTS
D (Q)=—IthrJ 2 k——méa t 1T OF THE @ AND 7’ MESON
k—-0Q-—m i . . .
2 @ We now use the axial current derived in the previous sec-

tion to evaluate the weak decay constants of the physical
% 1 i ye o and Tr_’ mesons. They are defined by the matrix element of
kK+1Q-m st the divergence of the axial-vector current between meson
states and the vacuum:

X[7UQ)+f(k,)75(Q)]. (44) (0]g#A2| 7Py =m2f 6, (47)
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and cutoff fixed, we can determine the parametesf the
“excited-state” form factor, Eq.(12), from the condition
(19). We find d=—1.83\;?=—4.06 GeV 2, correspond-
ing to a form factorf(k,) with a radial node in the range
0<|k, |<A5. With this value we determine the;-m, mix-
ing coefficientI’, Eq. (27), as

(0] g#A2|m'Py=mZ, £ ., 6% (48)

In terms of the physical fieldsr and ' the axial-vector
current takes the form

2
A%=P,m\Z, na+r\/1—r2%w'a +0(mj). (49)
2 r'=0.41. (53)
Here, we have substituted the transformation of the fields,
Eq. (39), in Eq. (46). The decay constants of the physical Note thatl" is independent of the normalization of the form
7 and 7' states are thus given by factor f(k, ), Eq. (12). In fact, the parameter enters only

the mass of ther’ meson, cf. Eqs(26) and(38); we do not

f.=\Zym+0(mj), (500 need to determine its value since the result can directly be
) expressed in terms of ;. Thus, Eq.(52) gives
m
f_=\Z,m'V1— rzm—i +0o(m?). (51) )
2

m7T
= 045—2

’

fo 54
. (54

The corrections td . due to the inclusion of excited states g
are of ordermj‘,. Thus, within our accuracy,, is identical to
the value obtained with the usual NJL mod&;m which
follows from the Goldberger-Treiman relation at quark leve
[6]. On the other hand, the’ decay constant vanishes in the
chiral limit m°~m?—0, as expected. We stress that for this
property to hold it is essential to consider the full axial-
vector current, Eq(46), including the contribution of the
7, component. As can be seen from E(R9) and(46), use

of the standard PCAC formula? 4,77 would lead to a
nonvanishing result fof ., in the chiral limit.

The ratio of ther’ to the = decay constants can directly
be expressed in terms of the physicaland =' masses.
From Egs.(50) and (51) one obtains, using Eq$37) and
(39),

For the standard value of the’ massm,_.,=1300 MeV this

jcomes to f ,,=0.48 MeV, while for a low mass of
m_.=750 MeV one obtaing .,=1.46 MeV. The excited
pion leptonic decay constant is thus very small, which is a
consequence of chiral symmetry. Note that, as opposed to the
qualitative results discussed above, the numerical values here
depend on the choice of form factor, E4.9), and should
thus be regarded as a rough estimate.

We remark that the numerical values of the rdtio /f .
obtained here are comparable to those found in chirally sym-
metric potential model$23]. However, models describing
chiral symmetry breaking by a vector-type confining poten-
tial (linear or oscillatoy usually underestimate the normal
pion decay constant by an order of magnitydé&]. Such
models should include a short-range interactiNdL type),
which is mostly responsible for chiral symmetry breaking.

The small value off ., does not imply a small width of
the ' resonance, since it can decay hadronically, e.g., into
This is precisely the dependence which was derived fron8= or par. Such hadronic decays emerge in the next order of
current algebra considerations in a general “extendedhe 1N, expansion and can also be investigated in the chiral
PCAC” framework[5]. We note that the same behavior of Lagrangian framework set up here. This problem, which re-
f . in the chiral limit is found in models describing chiral quires the evaluation of quark loops with external meson
symmetry breaking by nonlocal interactiofis5,23. fields of different four-momenta, will be left for a future

The effective Lagrangian illustrates in a compact way theinvestigation.
different consequences of axial-vector current conservation In conclusion, we have outlined a simple framework for
for the pion and its excited state. Both matrix elements ofincluding radial excitations in an effective Lagrangian de-

2
T

r
2

— 52
1_F2 m,n./ ( )

d,A*, EQs.(47) and(48), must vanish fom®—0. The pion
matrix element, Eq(47), does so byme—>O, with f_ re-

scription of mesons. The Lagrangian obtained by bosoniza-
tion of an NJL model with separable interactions exhibits all

maining finite, while for the excited pion matrix element the qualitative properties expected on general grounds: a Gold-

opposite takes placé,.,—0 with m_, remaining finite.

stone pion with a finite decay constant, and a massive “ex-

cited state” with vanishing decay constant in the chiral limit.
Our model shows in a simple way how chiral symmetry
protects the pion from modifications by excited states, which
We can now estimate numerically the excited pion decayn turn influences the excited-state contribution to the axial-
constantf . in this model. We take a value of the constitu- vector current. These features are general and do not depend
ent quark mass ah=300 MeV and fix the three-momentum on a particular choice of quark-meson form factor. Further-
cutoff at A;=671 MeV by fitting the normal pion decay more, they are preserved if the derivative expansion of the
constantf .=93 MeV in the chiral limit, as in the usual quark loop is carried to higher orders.
NJL model without excited states, cf22]. With these In the investigations described here we have remained
parameters one obtains the standard value of the quasirictly within an effective Lagrangian approach, where the
condensate(qq)=—(253 MeV)® and g=0.82, m~2=9.1  coupling constants and field transformations are defined at
GeV 2, m°=5.1 MeV. With the constituent quark mass zero-momentum. We have no way to check the quantitative

VI. NUMERICAL ESTIMATES AND CONCLUSIONS
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reliability of this approximation for radially excited states in steps were taken to investigate the full momentum depen-
the region of~1 GeV, i.e., to estimate the momentum de-dence of correlation functions in such an approg29i.
pendence of the coupling constants, within the present

model.(For a general discussion of the range of applicability ACKNOWLEDGMENTS
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