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We construct a chiral Lagrangian containing, in addition to the usual pion field (p), also its first radial
excitation (p8). The Lagrangian is derived in the large-Nc limit from a Nambu–Jona-Lasinio~NJL! quark
model with separable nonlocal interactions, with form factors corresponding to three-dimensional ground- and
excited-state wave functions. Chiral symmetry breaking is governed by the NJL gap equation. The effective
Lagrangian forp andp8 mesons shows the decoupling of the Goldstone pion and the vanishing of thep8
leptonic decay constantf p8 in the chiral limit, as required by axial-vector current conservation. We derive the
excited-state contribution to the axial-vector current of the model using Noether’s theorem. For a finite pion
mass andp8 masses in the range of 750–1300 MeV,f p8 / f p is found to be of the order of 1%.
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I. INTRODUCTION

Radial excitations of light mesons are currently a topic of
great interest in hadronic physics. During the next years, fa-
cilities at the Continuous Electron Beam Acclerator Facility
~CEBAF! and IHEP ~Protvino! will provide improved ex-
perimental information about excited states in the few-GeV
region, e.g., on thep8 meson. The resonance usually identi-
fied as the first radial excitation of the pion has a mass of
(13006100)MeV @1#. Also, indications of a light resonance
in the diffractive production of 3p states have led to specu-
lations that the mass of thep8 may be considerably lower at
;750 MeV @2#.

A theoretical description of radially excited pions poses
some interesting challenges. The physics of normal pions is
governed by the spontaneous breaking of chiral symmetry. A
convenient way to derive the predictions of chiral symmetry
for soft pions is the use of an effective Lagrangian based on
a nonlinear realization of chiral symmetry@3#. When at-
tempting to introduce higher resonances to extend the effec-
tive Lagrangian description to higher energies, one must en-
sure that the introduction of new degrees of freedom does
not spoil the low-energy theorems for pions, which are uni-
versal consequences of chiral symmetry. In the case of vector
resonances (r,v,A1) this problem can be solved by intro-
ducing them as gauge bosons. Such ‘‘gauged’’ chiral
Lagrangians have proven very successful in describing me-
son phenomenology up to energies of;1 GeV @4#. When
trying to include 02 resonances as elementary fields, how-
ever, there is no simple principle to restrict the form of in-
teractions — thep8 has the same spin-parity quantum num-

bers as the normal pion itself. Nevertheless, the normal pion
field must decouple from the ‘‘hard’’ degrees of freedom in
the chiral limit in order to describe a Goldstone boson. At the
same time, thep8 contributes to the axial-vector hadronic
current, and is thus itself affected by chiral symmetry: when
the axial-vector current is conserved~chiral limit!, one ex-
pects thep8 weak decay constant to vanish@5#.

A useful guideline in the construction of effective meson
Lagrangians is the Nambu–Jona-Lasinio~NJL! model,
which describes the spontaneous breaking of chiral symme-
try at quark level using an effective four-fermion interaction
@6,7#. After bosonization of this model, integration over the
quark fields, and derivative expansion of the resulting fer-
mion determinant one obtains the Lagrangian of the linear
s model, which embodies the physics of soft pions, as well
as higher-derivative terms, including the Wess-Zumino term
with correct coefficient@8#. Effects of the U(1)A anomaly
(h8 mass, etc.! @9# are described by including a
U(1)A-breaking ’t Hooft term in the effective quark interac-
tion @10#. With appropriate couplings the model allows us to
derive also a Lagrangian for vector mesons. This approach
not only gives the correct structure of the terms of the La-
grangian as required by chiral symmetry, one also obtains
quantitative predictions for the coefficients, such as,f p ,
gr , etc., which are in good agreement with phenomenology.

The main motivation for the use of the NJL model comes
from the large-Nc limit of QCD @11#. At large Nc , quark
loops are suppressed~‘‘quenched’’ QCD!, and mesons may
be viewed as consisting of ‘‘constituent’’ quarks and anti-
quarks, which acquire a dynamical mass due to chiral sym-
metry breaking. In the NJL model one assumes an effective
interaction of quarks, which in a region of low energies can
be characterized by two parameters, its strength and range
~momentum cutoff!. Parametrically, this interaction is short
range. Generally speaking, one may view this interaction as
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the result of an integration over~hard! gluon degrees of free-
dom @13#.1 It should be noted, however, that the large-Nc

arguments on which this picture of mesons is based are not
restricted to low energies but hold for excited states as well.
Thus, it seems possible to describe also radially excited me-
sons in NJL-like models, provided one allows for more gen-
eral effective interactions of quarks.

When attempting to construct an effective Lagrangian in-
cluding thep8 meson, it is natural to consider as a starting
point a generalization of the NJL model, with an effective
quark interaction of finite range which can support excited
states. Many nonlocal generalizations of the NJL model have
been proposed, using either covariant-Euclidean@14# or in-
stantaneous~potential-type! @15,16# four-fermion interac-
tions. For the purpose of deriving an effective Lagrangian
including thep8 meson we are not interested in the full
momentum dependence of the effective quark interaction.
Rather, we would like to have a ‘‘minimal’’ extension of the
NJL model, which includes the first radially excited states
while preserving as far as possible the generic NJL descrip-
tion of chiral symmetry breaking and of the ground-state
mesons. This can be achieved if one considers effective
quark interactions of separable form@17#. A finite-rank sepa-
rable interaction allows one to introduce a limited number of
excited states, and only in a given channel. Furthermore, any
two-body interaction can in principle be approximated by a
separable form of finite rank~at least for not too large exci-
tation energies!, so the results obtained with this restricted
form of interaction are general as far as the lowest excited
states are concerned.

There are a number of advantages in taking effective
quark interactions of separable form when trying to derive an
effective meson Lagrangian. First, separable interactions can
be bosonized by introducing local meson fields, just as in the
usual NJL model. One can thus derive an effective meson
Lagrangian directly in terms of local fields and their deriva-
tives. In contrast, general nonlocal interactions of the type
considered in @14–16# require bilocal meson fields for
bosonization, which makes it difficult to perform a derivative
expansion leading to an effective Lagrangian.2 Second, the
separable interaction can be defined in Minkowski space in a
three-dimensional~yet covariant! way, with form factors de-
pending only on the component of the quark-antiquark rela-
tive momentum transverse to the meson momentum@16,20#.3

This is essential for a correct description of excited states, as
it ensures the absence of spurious relative-time excitations
@21#. Finally, as we shall see, the form factors of the sepa-
rable interaction can be chosen in such a way that the
vacuum~gap equation! of the generalized NJL model coin-
cides with the one of the usual NJL model. It is thus possible
to describe radially excited mesons above the usual NJL

vacuum. Aside from the technical simplifications this means
that the separable generalization contains the successful re-
sults of the usual NJL model for the vacuum and ground-
state meson properties with slight modifications.

In this paper, we derive an effective chiral Lagrangian
describingp andp8 mesons from a generalized NJL model
with separable interactions. In Sec. II, we introduce the ef-
fective quark interaction in the separable approximation and
describe its bosonization. We discuss the choice of form fac-
tors necessary to describe excited states. In Sec. III, we solve
the gap equation defining the vacuum in the large-Nc limit,
derive the effective Lagrangian of the 02 meson fields, and
perform the diagonalization leading to the physicalp and
p8 states. The effective Lagrangian describes the vanishing
of the p mass~decoupling of the Goldstone boson! in the
chiral limit, while thep8 remains massive. In Sec. IV, we
derive the axial-vector current of the effective Lagrangian,
using the Gell-Mann–Levy method, and obtain a generaliza-
tion of the PCAC~partial conservation of axial-vector cur-
rent! formula which includes the contribution of thep8 to
the axial-vector current. The leptonic decay constants of the
p andp8 mesonsf p and f p8 are discussed in Sec. V. It is
shown thatfp8 vanishes in the chiral limit as expected. In
Sec. VI, we fix the parameters of the model and evaluate the
ratio f p8 / f p as a function of thep8 mass.

We stress that we are using the separable generalization
of the NJL model only to derive an effective Lagrangian for
excited mesons, in which the coupling constants and fields
are defined at zero four-momentum~derivative expansion!.
We do not consider an on-shell description of bound states
~Bethe-Salpeter equation!. For this reason the lack of quark
confinement of this model, i.e., the presence of a quark-
antiquark continuum for momenta larger than twice the
quark mass, is not an issue here. The dynamical effects of
confinement — the occurrence of radially excited states —
are, however, included in the form factors of the separable
quark interaction.

For deriving an effective Lagrangian containing thep8
meson we consider the simplest generalized NJL model with
SU~2! flavor group. The approach developed here can easily
be extended to include strange mesons as well as flavor-
singlet mesons. In this case one should include an effective
interaction describing the U(1)A anomaly@9,10#.

While there is noa priori proof of the quantitative reli-
ability of an effective Lagrangian description of excited
states, such an approach allows us to investigate a number of
principal aspects, such as the contribution of excited states to
the axial-vector current, in a simple way. Moreover, the fact
that effective Lagrangians work well for vector mesons gives
some grounds to hope that this approach may be of some
relevance also for excited states.

II. NAMBU –JONA-LASINIO MODEL
WITH SEPARABLE INTERACTIONS

In the usual NJL model, the spontaneous breaking of chi-
ral symmetry is described by a local~current-current! effec-
tive quark interaction. The model is defined by the action

S@c̄,c#5E d4xc̄~x!~ i ]”2m0!c~x!1Sint , ~1!

1Effects of soft gluons, i.e., the gluon condensate, can be incorpo-
rated in this description by way of a background field, as proposed
in @12#.
2An exception to this are heavy-light mesons, in which the heavy

quark can be taken as static. An effective Lagrangian for excited
heavy mesons was derived from bilocal fields in@18#.
3This three-dimensional form of interaction is used also in appli-

cations of this model to finite temperature@19#.
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Sint5gE d4x@ j s~x! j s~x!1 j p
a ~x! j p

a ~x!#, ~2!

where j s,p(x) denote, respectively, the scalar-isoscalar and
pseudoscalar-isovector currents of the quark field@SU(2)
flavor#:

j s~x!5c̄~x!c~x!,

j p
a ~x!5c̄~x!ig5t

ac~x!. ~3!

This model can be bosonized in the standard way by repre-
senting the four-fermion interaction as a Gaussian functional
integral over scalar and pseudoscalar meson fields@6,7#.
Since the interaction, Eq.~2!, has the form of a product of
two local currents, the bosonization is achieved through local
meson fields. The effective meson action, which is obtained
by integration over the quark fields, is thus expressed in
terms of local meson fields. By expanding the quark deter-
minant in derivatives of the local meson fields one then de-
rives the chiral meson Lagrangian.

The NJL interaction, Eq.~2!, describes only ground-state
mesons. To include excited states one has to introduce effec-
tive quark interactions with a finite range. In general, such
interactions require bilocal meson fields for bosonization
@14,16#. A possibility to avoid this complication is the use of
a separable interaction, which is still of current-current form,
Eq. ~2!, but allows for nonlocal vertices~form factors! in the
definition of the quark currents, Eq.~3!:

S̃int5gE d4x(
i51

N

@ j s,i~x! j s,i~x!1 j p,i
a ~x! j p,i

a ~x!#, ~4!

j s,i~x!5E d4x1E d4x2c̄~x1!Fs,i~x;x1 ,x2!c~x2!, ~5!

j p,i
a ~x!5E d4x1E d4x2c̄~x1!Fp,i

a ~x;x1 ,x2!c~x2!. ~6!

Here, Fs,i(x;x1 ,x2),Fp,i
a (x;x1 ,x2), i51, . . . ,N, denote a

set of nonlocal scalar and pseudoscalar fermion vertices~in
general momentum and spin dependent!, which will be
specified below. Upon bosonization Eq.~4! leads to an action

Sbos@c̄,c;s1 ,p1 , . . . ,sN ,pN#

5E d4x1E d4x2c̄~x1!H ~ i ]” x22m0!d~x12x2!

1E d4x(
i51

N

@s i~x!Fs,i~x;x1 ,x2!

1p i
a~x!Fp,i

a ~x;x1 ,x2!#J c~x2!

2
1

2gE d4x(
i51

N

@s i~x!s i~x!1p i
a~x!p i

a~x!#. ~7!

It describes a system of local meson fields
s i(x),p i

a(x), i51, . . . ,N which interact with the quarks

through nonlocal vertices. We emphasize that these fields are
not yet to be associated with physical particles
(s,s8, . . . ,p,p8, . . . ); physical fields will be obtained af-
ter determining the vacuum and diagonalizing the effective
meson action.

To define the vertices of Eqs.~5! and ~6! we pass to the
momentum representation. Because of translational invari-
ance, the vertices can be represented as

Fs,i~x;x1 ,x2!5E d4P

~2p!4
E d4k

~2p!4
expi F12 ~P1k!•~x2x1!

1
1

2
~P2k!•~x2x2!GFs,i~kuP!, ~8!

and similarly forFp,i
a (x;x1 ,x2). Here k and P denote, re-

spectively, the relative and total momentum of the quark-
antiquark pair. We take the vertices to depend only on the
component of the relative momentum transverse to the total
momentum:

Fs,i~kuP![Fs,i~k'uP!, etc.,

k'[k2
P•k

P2 P. ~9!

Here,P is assumed to be timelike,P2.0. Equation~9! is the
covariant generalization of the condition that the quark-
meson interaction be instantaneous in the rest frame of the
meson~i.e., the frame in whichP50). Equation~9! ensures
the absence of spurious relative-time excitations and thus
leads to a consistent description of excited states@21#.4 In
particular, this framework allows us to use three-dimensional
‘‘excited state’’ wave functions to model the form factors for
radially excited mesons.

The simplest chirally invariant interaction describing sca-
lar and pseudoscalar mesons is defined by the spin-
independent vertices 1 andig5t

a. We want to include
ground-state mesons and their first radial excitation
(N52), and, therefore, take

Fs,1~k'uP!

Fp,1
a ~k'uP!J 5H 1

ig5t
aJ 3Q~L32uk'u!, ~10!

Fs,2~k'uP!

Fp,2
a ~k'uP!J 5H 1

ig5t
aJ 3Q~L32uk'u! f ~k'!, ~11!

f ~k'!5c~11duk'u2!,

uk'u[A2k'
2 . ~12!

The step functionQ(L32uk'u), whereL3 is a cutoff param-
eter, is nothing but the covariant generalization of the usual
three-momentum cutoff of the NJL model in the meson rest

4In bilocal field theory, this requirement is usually imposed in the
form of the so-called Markov-Yukawa condition of covariant in-
stanteneity of the bound-state amplitude@16#. An interaction of
transverse form, Eq.~9!, automatically leads to meson amplitudes
satisfying the Markov-Yukawa condition.
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frame @16#. The form factor f (k') has for d,2L3
22 the

form of an excited-state wave function, with a node in the
interval 0,uk'u,L3. Equations~10!, ~11!, and~12! are the
first two terms in a series of polynomials ink'

2 ; inclusion of
higher excited states would require polynomials of higher
degree. Note that the normalization of the form factor
f (k'), the constantc, determines the overall strength of the
coupling of thes2 andp2 fields to the quarks relative to the
usual NJL coupling ofp1 ands1.

We remark that the most general vertex could also include

spin-dependent structuresP” andg5P” which in the terminol-
ogy of the NJL model correspond to the induced vector and
axial-vector component of thes and p mesons (s-r and
p-A1 mixing!. These structures should be considered if vec-
tor mesons are included. Furthermore, there could be struc-
tures k”' ,P” k”' and g5k”' ,g5P” k”' , respectively, which de-
scribe bound states with orbital angular momentumL51.
We shall not consider these components here.

With the form factors defined by Eqs.~10!, ~11!, and~12!,
the bosonized action, Eq.~7!, in momentum representation
takes the form

Sbos@c̄,c;s1 ,p1 ,s2 ,p2#5E d4k

~2p!4
c̄~k!~k”2m0!c~k!1E d4P

~2p!4
E

L3

d4k

~2p!4
c̄S k1

1

2
PD

3$s1~P!1 ig5t
ap1

a~P!1@s2~P!1 ig5t
ap2

a~P!# f ~k'!%cS k2
1

2
PD

2
1

2gE d4P

~2p!4(i51

2

@s i~2P!s i~P!1p i
a~2P!p i

a~P!#. ~13!

Here it is understood that a cutoff in three-dimensional trans-
verse momentum is applied to thek integral, as defined by
the step function of Eqs.~10! and ~11!.

III. EFFECTIVE LAGRANGIAN FOR p AND p8 MESONS

We now want to derive the effective Lagrangian describ-
ing physicalp andp8 mesons. Integrating over the fermion
fields in Eq. ~13!, one obtains the effective action of the
s1 ,p1 ands2 ,p2 fields:

W@s1 ,p1 ,s2 ,p2#52
1

2gE ~s1
21p1

21s2
21p2

2!

2 iNcTrlog@ i ]”2m01s11 ig5t
ap1

a

1~s21 ig5t
ap2

a! f #. ~14!

This expression is understood as a shorthand notation for
expanding in the meson fields. In particular, we want to de-
rive the free part of the effective action for thep1 andp2
fields

W5W~0!1W~2!, ~15!

W~2!5
1

2E d4P

~2p!4 (
i , j51

2

p i
a~2P!Ki j

ab~P!p j
b~P!, ~16!

where it is understood that we restrict ourselves to timelike
momentaP2.0. Note that in the large-Nc limit meson
masses areO(Nc

0), while meson-meson interactions arise
only in the next-to-leading order of the 1/Nc expansion.

Before expanding in thep1 andp2 fields, we must deter-
mine the vacuum, i.e., the mean scalar field, which arises in
the dynamical breaking of chiral symmetry. The mean-field

approximation corresponds to the leading order of the 1/Nc
expansion. The mean field is determined by the set of equa-
tions

dW

ds1
52 iNctrE

L3

d4k

~2p!4
1

k”2m01s11s2f ~k'!
2

s1

g
50,

~17!

dW

ds2
52 iNctrE

L3

d4k

~2p!4
f ~k'!

k”2m01s11s2f ~k'!
2

s2

g
50.

~18!

Due to the transverse definition of the interaction, Eq.~9!,
the mean field inside a meson depends in a trivial way on the
direction of the meson four-momentumP. In the following
we consider these equations in the rest frame where
P50, k'5(0,k), andL3 is the usual three-momentum cut-
off.

In general, the solution of Eqs.~17! and~18! would have
s2Þ0, in which case the dynamically generated quark mass
2s12s2f (k)1m0 becomes momentum dependent. How-
ever, if we choose the form factorf (k) such that

24mI1
f[2 iNc trE

L3

d4k

~2p!4
f ~k!

k”2m

5 i4Nc mE
L3

d4k

~2p!4
f ~k!

m22k2
50,

m[2s11m0, ~19!

Eqs.~17! and~18! admit a solution withs250 and thus with
a constant quark massm52s11m0. In this case, Eq.~17!
reduces to the usual gap equation of the NJL model
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28mI1[28miNcE
L3

d4k

~2p!4
1

k22m2 5
m02m

g
. ~20!

Obviously, condition~19! can be fulfilled by choosing an
appropriate value of the parameterd defining the ‘‘excited
state’’ form factor, Eq.~12!, for given values ofL3 andm.
Equation ~19! expresses the invariance of the usual NJL
vacuums15const with respect to variations in the direction
of s2. In the following, we shall consider the vacuum as
defined by Eqs.~19! and ~20!, i.e., we work with the usual
NJL vacuum. We emphasize that this choice is a matter of
convenience, not of principle. The qualitative results below
could equivalently be obtained with a different choice of
form factor; however, in this case one would have to rederive
all vacuum and ground-state meson properties with the
momentum-dependent quark mass. Preserving the NJL
vacuum makes formulas below much more transparent and
allows us to carry over the parameters fixed in the old NJL
model.

With the mean field determined by Eqs.~19! and~20!, we
now expand the action to quadratic order in the fieldsp1 and
p2. The quadratic formKi j

ab(P), Eq. ~16!, is obtained as

Ki j
ab~P![dabKi j ~P!,

Ki j ~P!52 iNctrE
L3

d4k

~2p!4F 1

k”1~1/2!P” 2m
ig5f i

3
1

k”2~1/2!P” 2m
ig5f j G2d i j

1

g
,

f 1[1,

f 2[ f ~k'!. ~21!

A graphical representation of the loop integrals in Eq.~21! is
given in Fig. 1. The integral is evaluated by expanding in the
meson field momentumP. To orderP2, one obtains

K11~P!5Z1~P
22m1

2!,

K22~P!5Z2~P
22m2

2!,

K12~P!5K21~P!5AZ1Z2GP2, ~22!

where

Z154I 2 , ~23!

Z254I 2
f f , ~24!

m1
25Z1

21~28I 11g21!5
m0

Z1gm
, ~25!

m2
25Z2

21~28I 1
f f1g21!, ~26!

G5
4

AZ1Z2
I 2
f . ~27!

Here, I n , I n
f , andI n

f f denote the usual loop integrals arising
in the momentum expansion of the NJL quark determinant,
but now with zero, one, or two factorsf (k'), Eq. ~12!, in the
numerator. We may evaluate them in the rest frame
k'5(0,k):

I n
f ••• f[2 iNcE

L3

d4k

~2p!4
f ~k!••• f ~k!

~m22k2!n
. ~28!

The evaluation of these integrals with a three-momentum
cutoff is described, e.g., in Ref.@22#. The integral overk0 is
performed by contour integration, and the remaining three-
dimensional integral regularized by the cutoff. Only the di-
vergent parts are kept; all finite parts are dropped. We point
out that the momentum expansion of the quark loop inte-
grals, Eq.~21!, is an essential part of this approach. The NJL
model is understood here as a model only for the lowest
coefficients of the momentum expansion of the quark loop,
not its full momentum dependence~singularities, etc.!.

Note that a mixing between thep1 andp2 fields occurs
only in the kinetic@O(P2) –# terms of Eq.~22!, but not in the
mass terms. This is a direct consequence of the definition of
the vacuum by Eqs.~19! and ~20!, which ensures that the
quark loop with one form factor has noP2-independent part.
The ‘‘softness’’ of thep1-p2 mixing causes thep1 field to
decouple atP2→0. This property is crucial for the appear-
ance of a Goldstone boson in the chiral limit.

To determine the physicalp- and p8-meson states we
have to diagonalize the quadratic part of the action, Eq.~16!.
If one knew the full momentum dependence of the quadratic
form, Eq. ~22!, the masses of the physical states would be
given as the zeros of the determinant of the quadratic form:

detKi j ~P
2!50 for P25mp

2 ,mp8
2 . ~29!

This would be equivalent to the usual Bethe-Salpeter~on-
shell! description of bound states: the matrixKi j (P

2) is di-
agonalized independently on the respective mass shells
P25mp

2 ,mp8
2 @15,23,24#. In our approach, however, we

know the quadratic form, Eq.~22!, only as an expansion in
P2 at P250. It is clear that a determination of the masses

FIG. 1. The quark loop contribution to the quadratic form
Ki j (P), Eq. ~21!, of the effective action of thep1 andp2 fields.
The solid lines denote the NJL quark propagator. Thep1 field
couples to the quarks with a local vertex, thep2 field through the
form factor f (k') represented here by a shaded blob.
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according to Eq.~29! would be incompatible with the
momentum expansion, as the determinant involvesO(P4)
terms which are neglected in Eq.~22!. To be consistent with
the P2 expansion we must diagonalize the kinetic term and
the mass term in Eq.~16! simultaneously, with a
P2-independent transformation of the fields. Let us write Eq.
~22! in matrix form:

Ki j ~P
2!5S Z1 AZ1Z2G

AZ1Z2G Z2
D P22S Z1m1

2

Z2m2
2D .

~30!

The transformation which diagonalizes both matrices here
separately is given by

AZ1p1
a5

cosf

AZp

pa1
m2

m1

sinf

AZp8

p8a,

AZ2p2
a5

m1

m2

sinf

AZp

pa2
cosf

AZp8

p8a, ~31!

where

tan2f52G
m1

m2
S 12

m1
2

m2
2D 21

, ~32!

Zp5cos2f1
m1
2

m2
2sin

2f12G
m1

m2
cosfsinf, ~33!

Zp85cos2f1
m2
2

m1
2sin

2f22G
m2

m1
cosfsinf. ~34!

In terms of the new fieldsp,p8 the quadratic part of the
action, Eq.~16!, reads

W~2!5
1

2E d4P

~2p!4
@pa~2P!~P22mp

2 !pa~P!1p8a~2P!

3~P22mp8
2

!p8a~P!#. ~35!

Here,

mp
25

m1
2

Zp
,

mp8
2

5
m2
2

Zp8
. ~36!

The fieldsp and p8 can thus be associated with physical
particles.

Let us now consider the chiral limit, i.e., vanishing cur-
rent quark massm0→0. From Eqs.~23!–~27! we see that
this is equivalent to takingm1

2→0. @Here and in the follow-
ing, when discussing the dependence of quantities on the
current quark massm0 we keep the constituent quark mass
fixed and assume the coupling constantg to be changed in
accordance withm0, such that the gap equation~20! remains
fulfilled exactly. In this way, the loop integrals and Eq.~19!

remain unaffected by changes of the current quark mass.#
Expanding Eqs.~36! in m1

2}m0, one finds

mp
25m1

21O~m1
4!, ~37!

mp8
2

5
m2
2

12G2F11G2
m1
2

m2
2 1O~m1

4!G . ~38!

Thus, in the chiral limit the effective Lagrangian~35! indeed
describes a massless Goldstone pionp and a massive par-
ticle p8. Furthermore, in the chiral limit the transformation
of the fields, Eq.~31!, becomes

AZ1p1
a5S 12G2

m1
2

m2
2Dpa1

G

A12G2F11~12G2!
m1
2

m2
2Gp8a,

AZ2p2
a5G

m1
2

m2
2pa2

1

A12G2
p8a. ~39!

At m1
250 one observes thatp has only a component along

p1. This is a consequence of the fact that thep1-p2 coupling
in the original Lagrangian, Eq.~22!, is of orderP2. We re-
mark that, although we have chosen to work with a particular
choice of excited-state form factor, Eq.~19!, the occurrence
of a Goldstone boson in the chiral limit in Eq.~14! is general
and does not depend on this choice. This may easily be es-
tablished using the general gap equations~17! and ~18!, to-
gether with Eq.~21!.

IV. THE AXIAL-VECTOR CURRENT

In order to describe the leptonic decays of thep andp8
mesons we need the axial-vector current operator. Since our
effective action contains besides the pion a field describing
an ‘‘excited state’’ with the same quantum numbers, it is
clear that the axial-vector current of our model is, in general,
not carried exclusively by thep field, and is thus not given
by the standard PCAC formula. Thus, we must determine the
conserved axial-vector current of our model, including the
contribution of thep8, from first principles.

In general, the construction of the conserved current in a
theory with nonlocal~momentum-dependent! interactions is
a difficult task. This problem has been studied extensively in
the framework of the Bethe-Salpeter equation@25# and vari-
ous three-dimensional reductions of it such as the quasipo-
tential and the on-shell reduction@26#. In these approaches
the derivation of the current is achieved by ‘‘gauging’’ all
possible momentum dependence of the interaction through
minimal substitution, a rather cumbersome procedure in
practice. In contrast, in a Lagrangian field theory a simple
method exists to derive conserved currents, the so-called
Gell-Mann–Levy method@27#, which is based on Noether’s
theorem. In this approach the current is obtained as the varia-
tion of the Lagrangian with respect to the derivative of a
space-time-dependent symmetry transformation of the fields.
We now show that a suitable generalization of this technique
can be employed to derive the conserved axial-vector current
of our model with quark-meson form factors depending on
transverse momentum.

To derive the axial current we start at quark level. The

226 56M. K. VOLKOV AND C. WEISS



isovector axial-vector current is the Noether current corre-
sponding to infinitesimal chiral rotations of the quark fields:

c~x!→~ 12 i«a 1
2 tag5!c~x!. ~40!

Following the usual procedure, we consider the parameter of
this transformation to be space-time dependent,«a[«a(x).
However, this dependence need not be completely arbitrary.
To describe the decays ofp andp8 mesons, it is sufficient to
know the component of the axial-vector current parallel to
the meson four-momentumP. It is easy to see that this com-
ponent is obtained from chiral rotations whose parameter
depends only on the longitudinal part of the coordinate

«a~x!→«a~xuu!,

xuu[
x•P

AP2
, ~41!

since]m«a(xuu)}Pm . In other words, transformations of the
form Eq. ~41! describe a transfer of longitudinal momentum
to the meson, but not of transverse momentum. This has the
important consequence that the chiral transformation does
not change the direction of transversality of the meson-quark
interaction, cf. Eq.~9!. When passing to the bosonized rep-
resentation, Eq.~7!, the transformation of thep1 ,s1 and
p2 ,s2 fields induced by Eqs.~40! and ~41! is therefore of
the form

p i
a~x!→p i

a~x!1«a~xuu!s i~x!,

s i~x!→s i~x!2«a~xuu!p i
a~x!, ~ i51,2!. ~42!

This follows from the fact that, for fixed direction ofP, the
vertex Eq.~9! describes an instantaneous interaction inxuu .
Thus, the special chiral rotation Eq.~41! does not mix the
components of the meson fields coupling to the quarks with
different form factors.

With the transformation of the chiral fields given by Eqs.
~42!, the construction of the axial-vector current proceeds
exactly as in the usual linears model. We write the variation
of the effective action, Eq.~14!, in momentum representa-
tion:

dW5E d4Q

~2p!4
«a~Q!Da~Q!, ~43!

where«a(Q)5 «̃a(Quu)d
(3)(Q') is the Fourier transform of

the transformation Eq.~41! andDa(Q) is a function of the
fieldss i ,p i , i51, . . . ,2,given in the form of a quark loop
integral,

Da~Q!52 iNctrE d4k

~2p!4F 1

k”2m
dab1

1

k”2
1

2
Q” 2m

ig5t
a

3
1

k”1 1
2 Q” 2m

ig5t
bs1G

3@p1
b~Q!1 f ~k'!p2

b~Q!#. ~44!

Here we have already used thats250 in the vacuum, Eq.
~19!. Expanding now in the momentumQ, making use of
Eq. ~19! and the gap equation~20! and settings152m ~it is
sufficient to consider the symmetric limit,m050), this be-
comes

Da~Q!52Q2m@4I 2p1
a~Q!14I 2

fp2
a~Q!#

52Q2m@Z1p1
a~Q!1AZ1Z2Gp2

a~Q!#. ~45!

The fact thatDa(Q2) is proportional toQ2 is a consequence
of the chiral symmetry of the effective action~14!. Because
of this property,Da(Q2) may be regarded as the divergence
of a conserved current:

Am
a ~Q!5Qmm@Z1p1

a~Q!1AZ1Z2Gp2
a~Q!#. ~46!

Equation ~46! is the conserved axial-vector current of our
model. It is of the usual ‘‘PCAC’’ form, but contains also a
contribution of thep2 field. The above derivation was rather
formal. However, the result can be understood in simple
terms, as is shown in Fig. 2: Both thep1 andp2 field couple
to the local axial-vector current of the quark field through
quark loops; thep2 field enters the loop with a form factor
f (k'). The necessity to pull out a factor of the meson field
momentum~derivative! means that only theO(P2) parts of
the loop integralsI 2 andI 2

f survive, cf. Eq.~28!. Chiral sym-
metry ensures that the corresponding diagrams for the diver-
gence of the current have noP2-independent part.

The results of this section are an example for the technical
simplifications of working with separable quark interactions.
The fact that they can be bosonized by local meson fields
makes it possible to apply methods of local field theory, such
as Noether’s theorem, to the effective meson action. Further-
more, we note that the covariant~transverse! definition of the
three-dimensional quark interaction, Eq.~9!, is crucial for
obtaining a consistent axial-vector current. In particular, with
this formulation there is no ambiguity with different defini-
tions of the pion decay constant as with noncovariant three-
dimensional interactions@15#.

V. THE WEAK DECAY CONSTANTS
OF THE p AND p8 MESON

We now use the axial current derived in the previous sec-
tion to evaluate the weak decay constants of the physicalp
andp8 mesons. They are defined by the matrix element of
the divergence of the axial-vector current between meson
states and the vacuum:

^0u]mAm
a upb&5mp

2 f pdab, ~47!

FIG. 2. The axial-vector current of thep1 andp2 fields, Eq.
~46!, as it follows from Noether’s theorem. The cross denotes the
local axial-vector current of the quark field, to which thep1 and
p2 fields couple through quark loops. Notation is the same as in
Fig. 1.
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^0u]mAm
a up8b&5mp8

2 f p8d
ab. ~48!

In terms of the physical fieldsp and p8 the axial-vector
current takes the form

Am
a5PmmAZ1S pa1GA12G2

m1
2

m2
2p8aD 1O~m1

4!. ~49!

Here, we have substituted the transformation of the fields,
Eq. ~39!, in Eq. ~46!. The decay constants of the physical
p andp8 states are thus given by

f p5AZ1m1O~m1
4!, ~50!

f p85AZ1mGA12G2
m1
2

m2
2 1O~m1

4!. ~51!

The corrections tof p due to the inclusion of excited states
are of ordermp

4 . Thus, within our accuracyf p is identical to
the value obtained with the usual NJL modelAZ1m which
follows from the Goldberger-Treiman relation at quark level
@6#. On the other hand, thep8 decay constant vanishes in the
chiral limit m0;m1

2→0, as expected. We stress that for this
property to hold it is essential to consider the full axial-
vector current, Eq.~46!, including the contribution of the
p2 component. As can be seen from Eqs.~39! and~46!, use
of the standard PCAC formulaAm

a}]mp1
a would lead to a

nonvanishing result forfp8 in the chiral limit.
The ratio of thep8 to thep decay constants can directly

be expressed in terms of the physicalp and p8 masses.
From Eqs.~50! and ~51! one obtains, using Eqs.~37! and
~38!,

fp8
f p

5GA12G2
m1
2

m2
2 5

G

A12G2

mp
2

mp8
2 . ~52!

This is precisely the dependence which was derived from
current algebra considerations in a general ‘‘extended
PCAC’’ framework @5#. We note that the same behavior of
f p8 in the chiral limit is found in models describing chiral
symmetry breaking by nonlocal interactions@15,23#.

The effective Lagrangian illustrates in a compact way the
different consequences of axial-vector current conservation
for the pion and its excited state. Both matrix elements of
]mA

m, Eqs.~47! and~48!, must vanish form0→0. The pion
matrix element, Eq.~47!, does so bymp

2→0, with f p re-
maining finite, while for the excited pion matrix element the
opposite takes place,f p8→0 with mp8 remaining finite.

VI. NUMERICAL ESTIMATES AND CONCLUSIONS

We can now estimate numerically the excited pion decay
constantf p8 in this model. We take a value of the constitu-
ent quark mass ofm5300 MeV and fix the three-momentum
cutoff at L35671 MeV by fitting the normal pion decay
constant f p593 MeV in the chiral limit, as in the usual
NJL model without excited states, cf.@22#. With these
parameters one obtains the standard value of the quark
condensatê q̄q&52(253 MeV)3 and g50.82, m2259.1
GeV22, m055.1 MeV. With the constituent quark mass

and cutoff fixed, we can determine the parameterd of the
‘‘excited-state’’ form factor, Eq.~12!, from the condition
~19!. We find d521.83L3

22524.06 GeV22, correspond-
ing to a form factorf (k') with a radial node in the range
0<uk'u<L3. With this value we determine thep1-p2 mix-
ing coefficientG, Eq. ~27!, as

G50.41. ~53!

Note thatG is independent of the normalization of the form
factor f (k'), Eq. ~12!. In fact, the parameterc enters only
the mass of thep8 meson, cf. Eqs.~26! and~38!; we do not
need to determine its value since the result can directly be
expressed in terms ofmp8. Thus, Eq.~52! gives

fp8
f p

50.45
mp
2

mp8
2 . ~54!

For the standard value of thep8 massmp851300 MeV this
comes to f p850.48 MeV, while for a low mass of
mp85750 MeV one obtainsfp851.46 MeV. The excited
pion leptonic decay constant is thus very small, which is a
consequence of chiral symmetry. Note that, as opposed to the
qualitative results discussed above, the numerical values here
depend on the choice of form factor, Eq.~19!, and should
thus be regarded as a rough estimate.

We remark that the numerical values of the ratiofp8 / f p

obtained here are comparable to those found in chirally sym-
metric potential models@23#. However, models describing
chiral symmetry breaking by a vector-type confining poten-
tial ~linear or oscillator! usually underestimate the normal
pion decay constant by an order of magnitude@15#. Such
models should include a short-range interaction~NJL type!,
which is mostly responsible for chiral symmetry breaking.

The small value offp8 does not imply a small width of
thep8 resonance, since it can decay hadronically, e.g., into
3p or rp. Such hadronic decays emerge in the next order of
the 1/Nc expansion and can also be investigated in the chiral
Lagrangian framework set up here. This problem, which re-
quires the evaluation of quark loops with external meson
fields of different four-momenta, will be left for a future
investigation.

In conclusion, we have outlined a simple framework for
including radial excitations in an effective Lagrangian de-
scription of mesons. The Lagrangian obtained by bosoniza-
tion of an NJL model with separable interactions exhibits all
qualitative properties expected on general grounds: a Gold-
stone pion with a finite decay constant, and a massive ‘‘ex-
cited state’’ with vanishing decay constant in the chiral limit.
Our model shows in a simple way how chiral symmetry
protects the pion from modifications by excited states, which
in turn influences the excited-state contribution to the axial-
vector current. These features are general and do not depend
on a particular choice of quark-meson form factor. Further-
more, they are preserved if the derivative expansion of the
quark loop is carried to higher orders.

In the investigations described here we have remained
strictly within an effective Lagrangian approach, where the
coupling constants and field transformations are defined at
zero-momentum. We have no way to check the quantitative
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reliability of this approximation for radially excited states in
the region of;1 GeV, i.e., to estimate the momentum de-
pendence of the coupling constants, within the present
model.~For a general discussion of the range of applicability
of effective Lagrangians, see@28#.! This question can be ad-
dressed in generalizations of the NJL model with quark con-
finement, which in principle allow both a zero-momentum as
well as an on-shell description of bound states. Recently, first

steps were taken to investigate the full momentum depen-
dence of correlation functions in such an approach@29#.
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