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New proof of the generalized second law
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The generalized second law of black-hole thermodynamics was proved by Frolov andPRggeRev. Lett.
71, 3902(1993] for a quasistationary eternal black hole. However, realistic black holes arise from gravita-
tional collapse, and in this case their proof does not hold. In this paper we prove the generalized second law for
a guasistationary black hole that arises from gravitational colld8€556-282197)03116-0

PACS numbes): 04.70.Dy

[. INTRODUCTION density matrix cannot decrease under a physical evolution.
(It is a generalization of a result by SorKi8].) To apply it to
The generalized second law of black-hole thermodynamthe system with a black hole and derive the generalized sec-
ics insists that the entropy of a black hole plus the thermoond law as its consequence we need to establish a property of
dynamic entropy of fields outside the horizon does not dephysical evolution of matter fields around the black hole.
crease[1], where the black-hole entropy is defined as aThus, for concreteness, we investigate a real massless scalar
quarter of the area of the horizon. Namely, it says that thdi€ld semiclassically in a curved background that describes

entropy of the whole system does not decrease. It interests @avitational collapse and calculate conditional probabilities
in a quite physical sense since it links the world inside athat, as a whole, have almost all the information about the

black hole and our thermodynamic world. In particu|ar it behaviors of the scalar field after the formation of the hori-

gives physical meaning to black-hole entropy indirectly sincezon. (The probability we seek is a generalization of one cal-
it concerns the sum of black-hole entropy and ordinary therculated by Panangaden and Wgdd.) Using the result of the
modynamic entropy and the physical meaning of the latter i€alculation, it is shown that a thermal density matrix of the
well known by statistical mechanics. scalar field at the past null infinity evolves to a thermal den-
Frolov and Pagé2] proved the generalized second law Sity matrix with the same temperature and the same chemical
for a quasistationary eternal black hole by assuming that th@otential at the future null infinity, provided that the initial
state of matter fields on the past horizon is thermal and thd€mperature and chemical potential are special values speci-
the set of radiation modes on the past horizon and that on tHéed by the background geometry. Finally, we prove the gen-
past null infinity are quantum-mechanically uncorrelated.€ralized second law by using these results.
The assumption is reasonable for the eternal case since a The restof the paper is organized as follows. In Sec. Il we
black hole emits a thermal radiati¢the Hawking radiation consider a real massless scalar field in a background of a
When we attempt to apply their proof to a noneternal blackgravitational collapse to show a thermodynamic property of
hole that arises from gravitational collapse, we might expecit:- A thermal state with special values of temperature and
that things would go well by simply replacing the past hori- chemical potential evolves to a thermal state with the same
zon with a null surface at the moment of the formation of thetemperature and the same chemical potential. These special
horizon (the v =v, surface in Fig. 1 However, the expec- values are determined by the background geometry. In Sec.
tation is disappointing since the assumption becomes proﬂi.i, first the generalized second law is rewritten as an in-
lematic in this case. The reason is that on a collapsing baclequality that states that there is a nondecreasing functional of
ground the thermal radiation is observed not at the momerft density matrix of matter fields. After that we give a theo-
of the horizon formation but at the future null infinity and rem that shows an inequality between functionals of density
that any modes on the future null infinity have a correlationmatrices. Finally, we apply it to the scalar field investigated
with modes on the past null infinity located after the horizonin Sec. Il to prove the generalized second law for the qua-
formation. The correlation can be seen explicitly in E25  Sistationary background. In Sec. IV we summarize this pa-
of this paper. Thus their proof does not hold for the case irP€r-
which a black hole arises from gravitational collapse. Since

astrophysically a black hole is thought to arise from gravita- |, MASSLESS SCALAR FIELD IN BLACK-HOLE
tional collapse, we want to prove the generalized second law BACKGROUND
in this case.

In this paper we prove the generalized second law for a In this section we consider a real massless scalar field in a
quasistationary black hole that arises from gravitational colcurved background that describes the formation of a quasi-
lapse. For this purpose we concentrate on an inequality bestationary black hole. Let us denote a past null infinity by
tween functionals of a density matrix since the generalized , a future null infinity byZ"™, and a future event horizon
second law can be rewritten as an inequality between fundy H™. We introduce the usual null coordinatesy and
tionals of a density matrix of matter fields as shown in Secsuppose that the formation of the event horizéh is atv
Ill. We seek a method to prove that a special functional of a=v, (see Fig. 1L At 7~ andZ", by virtue of the asymptotic
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excitation atv <wv,). A space of all such states is a subspace
of F(H;-) and we denote it by:I_(U>vo) . We would like to

derive a thermal property of a scattering process of the scalar
field by the quasistationary black hole. Hence we consider
density matrices OF 7 (y>4,) and F(Hz+). Denote a space

of all density matrices orff(v>~,)0) by P and a space of all
density matrices otF(Hz+) by P.

Let us discuss an evolution of a stateZat to the future.
SinceZ" is not a Cauchy surface because of the existence of
H*, F(H;-) is mapped not toF(H7+) but to F(Hz+)
® F(Hy+) by a unitary evolution, wheré{,+ is a Hilbert
space of mode functions on the horizon with a positive fre-
guency andF(Hy-+) is a Hilbert space of all states dth*
defined as a symmetric Fock space constructed from
Hy+[see the definition ofF(H=)]. Although there is no
natural principle to determine the positivity of the frequency
(equivalently, there is no natural definition of the particle
concep}, the detailed definition of{,,+ does not affect the
result since we shall trace out the degrees of freedom of
F(Hy+) [see Eq(2.1)]. To describe the evolution of a quan-
tum state of the scalar field fronF(H;-) to F(Hz+)
® F(Hy~+) an S matrix is introduced5]. For a given initial
state |¢) in F(H;-), the corresponding final state in
F(Hz+)® F(Hy+) is S). Then the corresponding evolu-

_ tion from F7-(,~, ) to F(Hz+)® F(Hyu+) is obtained by
FIG. 1. Conformal diagram of a background geometry that de'restrictingS to fzf(u>uo) and we denote it b too. In this

scribes a gravitational collapsg. andZ* are the past null infini . . .
g P P b4 section we show a thermal property of the scalar field in the

and the future null infinity, respectively, amdl* is the future event ; | :
horizon. The shaded region represents collapsing materials th2ckground by using th&matrix elements given by Wald

form the black hole. In addition to the collapsing matter, we con- 5]

sider a real massless scalar field and investigate a scattering prob-

lem by the black hole after its formatiom £v,). Thus we specify

possible initial states & to those states that are excited from the A. Definition of T

vacuum by only modes whose support is withir v, (elements of e .

F1-(v=v) @nd possible mixed states constructed from thefe- Let the initial state of the scalar field bé@

ments ofP). In the diagramA ; (i=1,2, . ..) is anode function L€ Fi-(s>vy] @nd observe the corresponding final staté at

corresponding to a wave packet whose peak issab, onZ~ and  [see the argument after the definition BfH,+)]. Formally

ip (i=1,2,...) is anode function corresponding to a wave packet the observation corresponds to a calculation of a matrix ele-

onZ'. ment ($|S'T0S ¢), whereS is the S matrix that describes
the evolution of the scalar field frorﬁr}(puo) to F(Hz+)

flatness, there is a natural definition of the Hilbert spacesgy r(H,,+) andO is a self-adjoint operator off(Hz+) cor-
Hz- and Hz+ of mode functions with positive frequencies responding to the quantity we want to observe. The matrix

[5]. The Hilbert spaces”(H-) of all asymptotic states are element can be rewritten in a convenient fashion as
defined as follows with a suitable completigaymmetric

Fock spaces

(¢]S'0Y ¢y =Trs+[Opred,

f(HI‘:)EC@Hzi@(Hzi@Hﬁ)sym@ ttt
where

where ( )y, denotes the symmetrizatidifé® ﬂ)sym=%(§

®nt+n®¢), etcl. Ph_yS|caIIy,C denotes the vacuum state, pre=Tr+[S| o) |S']

Hz= denote one-particle statesi{: ® Hy+)sym denote two-

particle states, etc. We suppose that all our observables are

operators onF(H;=) since we observe a radiation of the and = Tgr Try:  denote the —partial traces over
obalar field radiated by the black hole at & place far away ") F(Hi+), respectively. In viewing this expression

. : y . ap Yve are lead to an interpretation that the corresponding final
from.lt. In this sensé’-‘(?—[;ﬁ_ are quite physical. Next_ let us state alZ* is represented by the reduced density mai.
consider how to set an initial state O.f the scalar flelpl. WeNext we generalize this argument to a wider range of initial
want to see a response of the scalar field on the quasistation:

ary black-hole background that arises from a gravitati0nagg:gsi’sv:eh'c;zs'zcr:lltlé%eﬁo?lngﬁilztgt:&;orth's gﬁtsz agr:nmal
collapse of other materialslust, fluid, etd. Hence the initial P y (v>vg) y

state atZ~ must be such a state that it includes no excitation€!ement ofP (a density matrix onfz-,~, ). Its evolution
of modes located before the formation of the horizow to Z' is represented as a map induced byS followed
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by the partial trace Ty+: let p (€ P) be an initial density
matrix; then the corresponding final density matfixp)
(eP)is

T(p)=Try+[SpS']. (2.2

Note thatT is a linear map fromP into P.

B. Thermodynamic property of T

In this subsection we show a thermal property of the ma
T, which is summarized as Theorem 1. First let us calculat

a conditional probability defined as
PUN i h=n TN hdn 3hln b,

where

(2.2

1

|
ni ¥

[a'(A )]

0),

|{ni7}>z[11

l{nip}>z{ I1 [a'(p)]" ] 0. (@3

|{ni y}) is a state in7-'If(U>v0) characterized by a set of inte-
gersn , (i=12,...) and{ni o) is a state inF(Hz+) char-

P HHn )

mln(n| y,nl p)

>

=11 (1_Xi)xi2ni (L= |Ri[AN 7

o ni!(ni—nip+ni !
X
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acterized by a set of integensl,p (i=1,2,...). Therefore,
P({n p}|{ni ,}) is a conditional probability for a final state to
be|{n. ,}) when the initial state is specified to b ,}). In
the expressioné is a representation of a Bogoliubov trans-
formation fromH;+®Hy+ to H,- and jy is such a unit
vector inH,+-® Hy+ thatA; vy corresponds to a wave pocket
whose peak is located at a point &n later than the forma-
tion of the horizon ¢(>uvg) [5]. On the other hand,p is a

5] (see Fig. 1L The probability(2.2) is a generalization of
(k|j) investigated by Panangaden and Wadld]. It in-
cludes almost all the informatiérabout a response of the
scalar field on the quasistationary black hole that arises from
the gravitational collapse whil®(k|j) does not, since any
initial states onZ~, which include no excitation before the
formation of the horizon {<vg), can be represented by
using the basi$|{ni .} and any final states ofi" can be

expressed by the bas{${ni )}, i.e., a set of aII|{ni7}>
generatesF(Hz-(,>,,) and a set of aII|{nip}) generates
F(Hz+). This is the very reason why we generali2ék|j)
to P({n, {n, ,}).

By using theS-matrix elements given if5], the condi-

tional probability is rewritten agsee Appendix A for its
derivation

init vector inHz+ and corresponds to a wave packetn

L [—|RIZ(1=|R|?]*™n in )

m=0 Ii!(niy—li)!(nip—li)!mi!(niy—mi)!(nip—mi)!

OZ|R[Z)M M|, (2.4

ni=n o~ min(lj ,my) (ni_nip+|i)!(ni_nip+ mi)!

whereR,; is a reflection coefficient for the mode specified by the integar the Schwarzschild metrisee Appendix Aand
X; is a constant defined by = ex — m(w;—Qgym;)/ «]. In the expressiony; andm; are a frequency and an azimuthal angular
momentum quantum number of the mode specified by the integed() g andk are the angular velocity and surface gravity
of the black hole.

Now, the expression in the large square brackets in(Ed) appears also in the calculation Bk|j). Using the result of
[4], it is easily shown that

mln(ni P ,ni 7)

SZO sit(n ,=s)l(n ,=s)! |’

s
(NN, s)lof

P({n HHn =11 K (2.5

This is a generalization of the result pf], and the fol-
lowing lemma is easily derived by using this expression.

where

2
(1=x)X "= |R[D)M e

Ki= 2,2\n_+n +1 )
(1= [R5 e ITheir argument is restricted to the case whep=n. =0 for all
i other than a particular value.
. L . _{niyHn'} . .
(|Ri|2=x))(1—|R;|?x?) 2All the information is included irT n‘,’ defined in Lemma
vi: nip n‘p

(A-|R > 2.
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Lemma 1For the conditional probability defined by Eq.

(2.10
(2.2 the following equality holds:

Tlon(Bar - Qer) 1= pin(Bar - Qh),

where

P({n ,=ki}[{n, :ji})ex%_ﬂ > ji(0—Q mi))

"’ 7 e > pin(Ber uQBH)EZ_l{nZ} ex;{ _IBBHZ n, y(wi_QBHmi))
=P{n, ,=iit{n =k} iy
X[

Xex;{ _IBBHEi ki(wi_QBHmi))a (2.6)

Pn(Ban Qe)=2"1 2 exr{ —Ban nip(wi_QBHmi)>
where w; and m; are the frequency and azimuthal angular 0l '

momentum quantum number of the mode specifiedi by
Qg is the angular velocity of the horizon, an@gy
=2/ k. In this expressior is a surface gravity of the black
hole.

Note that,B,;Hl is the Hawking temperature of the black
hole. This lemma states that a detailed balance condition
holds® Summing up about ak’s, we expect that a thermal
density matrixpy(Bsn.Qer) in P with a temperaturg3g,t
and a chemical potenti&) gy for azimuthal angular momen-
tum quantum number will be mapped By to a thermal
density matriXow(Bgn ,Qgr) in P with the same temperature

and the same chemical potential. To show that this expect _omnlcarl (tenrs;em:ée f mﬁUﬁUO)tV\Q:r ISpSC:SI vatlues orf ;h de i
tion is true, we have to prove that all off-diagonal elements.cMPErature and cnemical potential evolves 10 a grand ca

: .~ _“nonical ensemble &t with the same temperature and the
gr;]rr[np;‘(gBSré\)/ga)]inar:p;Z?di)I:?Br.thls purpose the following same chemical potential. Note that the special vaW§$
Lemma 2Denote a matrix element Gf as and(Q g, are determined by the background geometrﬁg,}
is the Hawking temperature afdlgy is the angular velocity
of the black hole formed. This result is used in Sec. Il B to
prove the generalized second law for the quasistationary
black hole.

XKn, (N, ot

ZE% ex’{_BBHZ ji(wi_QBHmi)>- (2.11

Pin(Ben Qen) and pi(Be.Qpn) can be regarded as
grand canonical ensembles” ir? and P, respectively,
which have a common temperatugs, and a common
chemical potentiaf) g, for the azimuthal angular momentum
quantum number. Thus the theorem says that the grand ca-

T = i T, B D (27)

{n Hn',

Then
(2.8

unless
=n _—n’ (2.9

for all i.
Lemma 2 shows that all off-diagonal elementsIg¢p) in
the basis of[{n ,})} vanish if all off-diagonal elements @f

Ill. THE GENERALIZED SECOND LAW

The generalized second law is one of the most interesting
conjectures in black-hole thermodynamics since it restricts
ways of interaction between a black hole and ordinary ther-
modynamic matter. It can be regarded as a generalization
both of the area law of black holes and of the second law of
ordinary thermodynamics. The latter, which states that the
total entropy of a system cannot decrease under the physical
evolution of a thermodynamic system, can be proved for a
finite-dimensional system if a microcanonical ensemble for
the system does not change under the evolyt&n

In the preceding section we proved that the grand canoni-

in the basis{|{n ,})} are zero. Thus, combining it with o' onsemble of the scalar field does not change under the
lemma 1, the following theorem is easily proved. Note that gyhysical evolution on a background that describes the forma-
set of all |{n ,})({n’,}| generatesP and a set of all tion of a quasistationary black hole. So we expect that the
l{n 1{{n’,}| generatesP [see the argument below Eq. generalized second law may be proved in a way similar to
2.3)]. ! the proof of the second law of ordl_nary thermodynamms. For
Theorem 1.Consider the linear maf¥ defined by Eq. the purpose of the proof we rewrite the generalized second

(2.1) for a real, massless scalar field on a background georﬂ@W as an inequality between functionals of a density matrix

. . S f matter fields.
ﬁgé t;‘?};gesc”bes a formation of a quasistationary black The generalized second law of black-hole thermodynam-

ics is

ASgh+ AShate™0, 3.1
3t guarantees that thermal distribution of any temperature is
mapped to a thermal distribution of some other temperature closevhereA denotes the change of quantities under the evolution
to the Hawking temperature, as far as only the diagonal elementef the system angy, andS,,,yerare the entropy of the black
are concerned. hole and the thermodynamic entropy of the matter fields,
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respectively. For a quasistationary black hole, using the first In the rest of this section we denote a space of all density

law of black-hole thermodynamid$], matrices onF asP(F). Evidently, P(F) is a linear convex
set rather than a linear set. _
ASgh= BeH(AMpH— QprAdpy), Definition 2.A map 7 of P(F) into P(F) is called linear if
the conservation of total energy Tapi+(1—a)py]=al(py)+(1—a)7(py)
AMgy+AEnaie= 0, for all a satisfying O<a<1 and allp;,p, [e P(F)].
and the conservation of total angular momentum By this definition it is easily proved by induction that

AJdgy+ AL nater= 0, N N
o _ _ _ _ E aipi)=2 a;7(p;) (3.9
it is easily shown that the generalized second law is equiva- =1 =1
lent to the inequality . N
if 8;=0, 2{_,a;=1, andp; e P(F).
ASmatter Ber(AEmater— QeHAL mated =0, (3.2 Now we prove the following lemma, which concerns the
N—-co limit of the left-hand side of Eq(3.5. We use this
where Bgy, Qgy, Mgy, andJgy are the inverse tempera- lemma in the proof of Theorem 2. _
ture, angular velocity, mass, and angular momentum of the Lemma 3Consider a linear mag of P(F) into P(¥) and
black hole;E ater aNd L aier are the energy and azimuthal an elemenpg of P(F). For a diagonal decomposition
component of the angular momentum of the matter fields.
Equation(3.2) is of the form

U[po; Ben Qsr) =Ul po; Ben Qsn). (3.3
] ) ) ] define a series of density matrices of the form
whereU is the functional of the density matrix of the matter

fields defined by

Po:iz1 pili)il,

po=2 Pilagi)il (N=N,N+1,...), (3.6
ULp; Ber {2sn)=—Tt{p Inp]—Ben(TI Ep] =1

—Qpy Tr{L,p]) (3.4  where

and p, andp, are the initial density matrix and the corre- "

sponding final density matrix, respectively. In the expression anEZfl Pi

E andL, are operators corresponding to the energy and the

azimuthal component of the angular momentum. Note thagndN is large enough thaa,>0. Then

Eqg. (3.3 is an inequality between functionals of a density

matrix of matter field§. We will prove the generalized sec- lim (@ |7 pn) | V) =(P|T(pg)|¥) (3.7

ond law by showing that this inequality holds. Actually we n—o

do it in Sec. Ill B for a quasistationary black hole that arises . ~

from a gravitational collapse, using the results of Sec. Il andor arbitrary elementyb) and|¥) of 7.

a theorem given in the following subsection. This lemma says tha(p,) has a weak-operator topology

limit 7(pg).

A. Nondecreasing functional Proof. By definition,
In this subsection we give a theorem that makes it pos- po=anpnt(1—anp), (3.8

sible to construct a functional that does not decrease by a

physical evolution. It is a generalization of a resul{8f. In ~ Where

Sec. Il B we derive Eq(3.3) for a quasistationary black hole

that arises from gravitational collapse, applying the theorem = s

to the scalar field investigated in Sec. Il pl= i;n‘gl pi/(1=anli)il  (an<1)
Let us consider Hilbert spaceg and F. First we give " B

some definitions needed for the theorem. pn (an=1).

Definition 1.A linear bounded operatgron F is called a
density matrix if it is self-adjoint, positive semidefinite, and

satisfies (DT po) | W) = an(®|T(pp) | )+ (1 - an)(D| T p}) | W).
Trp=1.

Then the linearity of/ shows that

Thus, if (®|T(p,)|¥) is finite in the limitn—, then the
lemma is established since

“Information about the background geometry appears in the in- lima,=1.
equality as variables that parametrize the functional. n—cw
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For the purpose of proving the finiteness(df| 7{(p,) | V), it ~ Similarly it is shown that
is sufficient to show thaf ®[p|¥)| is bounded from above
by ||®| |[¥|| for an arbitrary elemeng of P(F). This is easy n
to prove as follows: Gi= lim 2 Ajjq; /by,
n—ox J

KDBW)=| X Bi(@[T)(T W)
whereb,=3"_,q;. By Eq.(3.13 and the continuity of it
is shown that

=2 K@T)(T W)l
n
< - /a
<|®| |l (39 (5. /G = lim f( S, a, P2 ) (.14
where we have used a diagonal decomposition nme
ngi 5i|T><T|_ Next defineC}' and'éin by
|
Theorem 2. Assume the following three assump- Cinzjzl AyQ; /G, C'=Clay; (3.19

tions: (@) 7 is a linear map ofP(F) into P(F), (b) f is a

continuous function convex to below and there are non-

negative constants;, c,, andc; such that|f((1—€)x)  then the convex property df means
—f(x)|<|e€|[cq|f(X)|+ cy|x| +c3] for all x (=0) and suffi-

ciently small|¢, and (c) there are positive definite density |

matricesp.. [ e P(F)] andp.. [ e P(F)] such thatZ(p..) £(5. [ < lim Aijq; £(Crp:/
7. If [pepol=[p- T(pe)1=0 and TEp.|f(pops )] (Bifdy=lim 2, G f(Clpy /)
<o, then
U T po)1=U pol, (3.10  since
where n
Aijd; Aijdj
- _ -1 —=1, ——==0.
Upl=—Trp.1(ppz "], a1 2 o5t g

Upl=-Trp..f(p 5H1.
Hence

As stated in the first paragraph of this subsection, theorem
2 is used in Sec. Ill B to prove the generalized second law

for a quasistationary black hole that arises from gravitational ~ e
collar?se. / ? _U[T(Po)]=i21 aif(pi/ay)
Proof. First let us decompose the density matrices diago-
nally as > ' n ALl ~
<> lim > énj f(Cl'p;/q;).
* * I=1 oo J=1 i
Po:izl p|||><||1 px:izl ql||><||' (316)
(3.12
T po) = 2 Wil T(p.) :2 T\ SinceC{' andC}' satisfy

Then by lemma 3 and E¢3.5), lim C'= lim CP'=

n—oo n—o
n

pi=( Ty=li Aipila,, (31
Pi=(1[Ttpo) 1) nm ,2’1 iPj /8 (313 it is implied by the assumption aboftitthat

where a,=3_;p; and Ay=(T|T([j)(j)|T). A; has the Sl (p
‘f( J) (J) <|1-CM[c4|f(p;/a))] +cap; /0;+ C3]

properties
g;

I

= for sufficiently largen. Therefore,
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é Aijq; n =T,
& o [F(Clpj/a)—f(p;/a))]
|1- C“| " f(x)=x Inx,
<— ch Al f(pj/ay)| (318
I
n n Po= Pin(Bah gH)s
+C2j21 Aijpj+c3j§1 A”q])
= ~:>o:~ IQ .
11-CN n P = Pin(Ber  an)
= cr Clzl aj |f(pi /qi)l Note that it is theorem 1 that makes such a setting possible.

Hence, if an initial state, and the corresponding final state
T(pg) satisfy

n n
+C22 pj+C32 Qj>,
=1 =1

. . . [o.ptn(Ber Qer) 1= T(p0) , pin(Ban L2er)]=0 (3.19
where we have used<OA;;<1 to obtain the last inequality.
Since the first term in the large bracket in the last expressioandi po] converges absolutely, theorem 2 can be applied to
is finite in the limitn—cc by the assumption of the absolute the system of the quasistationary black hole and the scalar
convergence ol py] and all the other terms in the large field around it. Now
bracket are finite,

U pol=—Trpolnpol — Ben( T Epol — QgnTr L 00]) —INZ

21 gnq] [f(Cinpj /q]')—f(pj/qj)]lzo_ [po;Bar sy —INn 320
1= i

n
lim

n—oo

U =—Tr[polnpo]— T Ep,
Moreover, by the absolute convergencé®p,], it is easily UTpo)] LPo 20] Ben(THLEpo]
shown that — QT L,pol)—INZ

=U[T(po);Bar en) —INZ

wherep o denotesT (pg),

lim (5— )Z Aija;f(p/a;)| =0.
Thus EE{HE} (EI ni yQ’i)Hni y}><{ni y}|'
~UTpol<2, .2’1 Aiaf(pi/ap). (319 {nz (Z n m.)l{n DN

i 7

We can interchange the sum oveand the sum over on the
right-hand side of Eq(3.17) since it converges absolutely by gnd
the absolute convergence @fp,]. Hence

E=S [ n 0 lin bttn,
—u[ﬂpo>]<2 a;f(p;/a;)=—Upol. '’

L3 (3 nm o ol

o

B. Proof of the generalized second law Thus the inequality(3.10 in this case is Eq(3.3) itself,

Let us combine theorem 1 with theorem 2 to prove thewhich in turn is equivalent to the generalized second law.
generalized second law. In theorem 2 set the linear hap Finally, theorem 2 proves the generalized second law for a
the convex functiorf(x), and the density matrices, and  quasistationary black hole that arises from gravitational col-
p.. as lapse, provided that an initial density matgiy of the scalar
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po atZ™ contains at most a finite number of excitations. Note

that althoughpy(Bgn Q) CONtains an infinite number of APPENDIX A: THE CONDITIONAL PROBABILITY

excitations by definitionp, does not. Therefore, the assump-

tions are satisfied wherp, is diagonal in the basis  In this appendix we reduce E.2) to Eq.(2.4). First the
{I{n 1)} and contains at most a finite number of excitations.S Matrix obtained by 5] is

Z J@2n)t 0
5|0>:an0 ;n—:!)(®e),

IV. SUMMARY AND DISCUSSION (A1)

A e lopat At
In summary we have proved the generalized second law Sa(A7)S Ria'(ip) +Tia (i),

for a quasistationary black hole that arises from gravitational
collapse. To prove it we have derived the thermal property of

| . . . wheree andN are a bivector and a normalization constant
the semiclassical evolution of a real massless scalar field oy

the quasistationary black-hole background and have given aefmed by
method for searching for a nondecreasing functional. These
are generalizations of the results[df and[3], respectively.
Now we comment on the Frolov-Page statement that their €=2> xi(A®Tgym N=II V1—x,
proof of the generalized second law may be applied to the : :
case of the black hole formed by gravitational collafiap
Their proof for a quasistationary eternal black hole is base
on the following two assumptiondi) the state of matter
fields on the past horizon is thermal afiid a set of radiation
modes on the past horizon and one on the past null infinity

are quantum-mechanically uncorrelated. These two assumi- thi . q the f d azimuthal
tions are reasonable for the eternal case since black holéd 'S EXPreSSIom; andm; are the frequency and azimutha

emit thermal radiation. In the case of a black hole that ariseémgula_r momentum quantum number of a mpde specified by

from gravitational collapse, we might expect that things'meg_e”’ andQ gy andk are the angular velocity and surface

would go well by simply replacing the past horizon with a 9ravity of the black hole;y, ip, io, A, and ;7 are unit

null surface at the moment of the formation of the horizonVeCtors inHz+ ®Hy+ defined in[S] and the first four are

(thev =v,, surface in Fig. L However, the state of the mat- '€lated as

ter fields on the past horizon is completely determined by the

state of the fields before the horizon formatior<v in Fig. a a a

1), in which there is no causal effect of the existence of the iy =Tiio"+Riip% (A2)

future horizon. Since the essential origin of the thermal ra-

diation from a black hole is the existence of a horizon, the

state of the fields on the null surface does not have to be a A=t p?+r;0?,

thermal one. Hence assumptiGn becomes problematic in

this case. Although the above replacement may be the most

extreme one, an intermediate replacement causes an intermgheret; ,T; are transmission coefficients for the mode speci-

diate violation of assumptiofi) due to the correlation be- fied by the integeii on the Schwarzschild metrigs] and

tween modes on the future null infinity and modes on ther; R; are reflection coefficients. They satidfy

past null infinity located after the horizon formation. The

correlation can be seen explicitly in E@.5). Thus we con-

clude that Frolov and Page’s proof cannot be applied to the Iti]2+]|ri|2=|Ti| >+ |Ri|2=1,

case of the black hole formed by gravitational collapse. (A3)
Finally we discuss a generalization of our proof to a dy-

namical background. For the case of a dynamical back-

ground Bgy and Qg are changed from time to time by a

possible backreaction. Thus, to prove the generalized second

law for the dynamical background, we have to generalize

theorem 1 to the dynamical case consistently with the back-

reaction. Once this can be achieved, theorem 2 seems useful

to prove the generalized second law for the dynamical back-5The last two equations itA3) are consequences of the time

ground. reflection symmetry of the Schwarzschild metric.

avhere

Xi:eXF[_W(wi_QBHmi)/K].

ti:Ti! I’,=—R|*T|/T|*

By using theS matrix, we obtain
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(2n+2ini ! nl+m; M=l = m
- o

X 2n)! : RiT ® ip ® -
_ L - 1 X_lnI Ny (ni) MmNy Ml -1
_NniEzo méo |i20 (El (2ni+n;) !H [\/ﬁni! (mi) li Ri Ti i ]
nool+m, ni—Ii+n|7 m;
X H ®i7' ® ip ® io y (A4)

sym

whereX’ denotes a summation with respectig m;, andl; over the rang&;n;=n, n;=0, O<sm;<n_,, O<Il;=<n;. In Eq.
(A4), those orthonormal basis vectorsl{lmi 1) ® F(Hy+) that have a nonvanishing inner product \/\l&‘ljr{ni L) appear in the

form®
J (Ei(zni+ni y))l n; nip ni+ni Yinip
IGnitn H(ni+n ,=n )t ] H ©it®ip  © 0 : (A5)

sym

Thus, when we calculatd{n. ,}|@(H[)S|{n ,}), the summation in EqA4) is reduced to a summation with respectiand
m; over the rangen;=max(0On ,—n ), max(On ,—n;)<m;< min(n ,.,n ) with’ li=n ,—m;. Here|H) is an element of
F(Hy+). Paying attention to this fact, we can obtain the expression of the conditional probability

x.2”i min(ni poNy n,
Z(Znﬁrniy))!ﬂ R B ()

nizmaﬂovnipniy)}(' i "‘i~y!(r1i!)2 mj=max0n_,—n;) \ M

2
n, S, (Z,(2n+n_))!
o RO \/

ip [ [ Hi[ni!nip!(ni+niy—nip)!]

P({n, l{n ,})=| NIZ{

X

2
n; nip ni+ni vy~

n, )
®iT® ip &® i symal_i[

n; nip ni+ni yfnip

QT ® ip (24 e

sym/ | - (AB)

x11

The inner product in expressiqA6) is equal t8

\/l'li[ni!nip!(ni+ni y~ N
(Zi(2ni+n )! '

Finally, by using Eq(A3) and exchanging the order of the summation suitably, we can obtain

5The number of the “particle”;o in Eq. (Ad) is ni+n.,—n,, setting the number of the particlp to N,
"The range is obtained by inequalities=0, O<m;<n ., 0<I;<n;, Ii+mi:ni andni+ni y— N ,=0.

Ly Py
8Equation(A5) is normalized to have unit norm.
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on ) M [—IRIZ(1=[R|»1"™n in
P({n b =11 | (2=xx (= IRIHN e |§0 méo T —T)l(n ,—Iytmi(n_—m)i(n ,—m)!
o ni!(ni—nip+niy)!
> RCAIDRELTIR

nj=n ,~min(;m) (M= N, 1)HN—n, 4+ m;)!
This is what we have to show.

APPENDIX B: A PROOF OF LEMMA 2

In this appendix we give a proof of lemma 2.
{n ,Hn"}
Proof. Since a set of al|r and ;o generatest,,+ [5], the definition ofT '~ '” leads to

nHn',}

{n Hn' } : :
T = 3 (N n SN HSlnntn b, (BY
n H0' ) o S0 ) ' "

where
1
{n.n,nH=]l | —=—=T[a"("]""[a'(p)]"{a’(0)]"||0).
i ,/niT!nip!niU!

In this expressi0|<|3|{ni ,) is given by Eq.(A4) and Sl{ni’y}) is obtained by replacing, ,, with ni'7 in Eq. (A4). Now, those
orthonormal basis vectors of the foﬂl{mif,ni p:N.ot) that have a nonzero inner product \/\/Bl'{ni ) must also be of the form

{n Hn',}
(AB). ThusT{ '7}{ ‘7} vanishes unless there exists a set of inte¢ersn/} (i=1,2, ... )such that

n N,

m=n{, n+n,-n,=n+n" —n’, (B2
for all i. The existence ofn;} and{n;} is equivalent to the condition y—ni’yz n,—n’ foralli. |
I
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