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The generalized second law of black-hole thermodynamics was proved by Frolov and Page@Phys. Rev. Lett.
71, 3902 ~1993!# for a quasistationary eternal black hole. However, realistic black holes arise from gravita-
tional collapse, and in this case their proof does not hold. In this paper we prove the generalized second law for
a quasistationary black hole that arises from gravitational collapse.@S0556-2821~97!03116-0#

PACS number~s!: 04.70.Dy

I. INTRODUCTION

The generalized second law of black-hole thermodynam-
ics insists that the entropy of a black hole plus the thermo-
dynamic entropy of fields outside the horizon does not de-
crease@1#, where the black-hole entropy is defined as a
quarter of the area of the horizon. Namely, it says that the
entropy of the whole system does not decrease. It interests us
in a quite physical sense since it links the world inside a
black hole and our thermodynamic world. In particular it
gives physical meaning to black-hole entropy indirectly since
it concerns the sum of black-hole entropy and ordinary ther-
modynamic entropy and the physical meaning of the latter is
well known by statistical mechanics.

Frolov and Page@2# proved the generalized second law
for a quasistationary eternal black hole by assuming that the
state of matter fields on the past horizon is thermal and that
the set of radiation modes on the past horizon and that on the
past null infinity are quantum-mechanically uncorrelated.
The assumption is reasonable for the eternal case since a
black hole emits a thermal radiation~the Hawking radiation!.
When we attempt to apply their proof to a noneternal black
hole that arises from gravitational collapse, we might expect
that things would go well by simply replacing the past hori-
zon with a null surface at the moment of the formation of the
horizon ~the v5v0 surface in Fig. 1!. However, the expec-
tation is disappointing since the assumption becomes prob-
lematic in this case. The reason is that on a collapsing back-
ground the thermal radiation is observed not at the moment
of the horizon formation but at the future null infinity and
that any modes on the future null infinity have a correlation
with modes on the past null infinity located after the horizon
formation. The correlation can be seen explicitly in Eq.~2.5!
of this paper. Thus their proof does not hold for the case in
which a black hole arises from gravitational collapse. Since
astrophysically a black hole is thought to arise from gravita-
tional collapse, we want to prove the generalized second law
in this case.

In this paper we prove the generalized second law for a
quasistationary black hole that arises from gravitational col-
lapse. For this purpose we concentrate on an inequality be-
tween functionals of a density matrix since the generalized
second law can be rewritten as an inequality between func-
tionals of a density matrix of matter fields as shown in Sec.
III. We seek a method to prove that a special functional of a

density matrix cannot decrease under a physical evolution.
~It is a generalization of a result by Sorkin@3#.! To apply it to
the system with a black hole and derive the generalized sec-
ond law as its consequence we need to establish a property of
physical evolution of matter fields around the black hole.
Thus, for concreteness, we investigate a real massless scalar
field semiclassically in a curved background that describes
gravitational collapse and calculate conditional probabilities
that, as a whole, have almost all the information about the
behaviors of the scalar field after the formation of the hori-
zon. ~The probability we seek is a generalization of one cal-
culated by Panangaden and Wald@4#.! Using the result of the
calculation, it is shown that a thermal density matrix of the
scalar field at the past null infinity evolves to a thermal den-
sity matrix with the same temperature and the same chemical
potential at the future null infinity, provided that the initial
temperature and chemical potential are special values speci-
fied by the background geometry. Finally, we prove the gen-
eralized second law by using these results.

The rest of the paper is organized as follows. In Sec. II we
consider a real massless scalar field in a background of a
gravitational collapse to show a thermodynamic property of
it. A thermal state with special values of temperature and
chemical potential evolves to a thermal state with the same
temperature and the same chemical potential. These special
values are determined by the background geometry. In Sec.
III, first the generalized second law is rewritten as an in-
equality that states that there is a nondecreasing functional of
a density matrix of matter fields. After that we give a theo-
rem that shows an inequality between functionals of density
matrices. Finally, we apply it to the scalar field investigated
in Sec. II to prove the generalized second law for the qua-
sistationary background. In Sec. IV we summarize this pa-
per.

II. MASSLESS SCALAR FIELD IN BLACK-HOLE
BACKGROUND

In this section we consider a real massless scalar field in a
curved background that describes the formation of a quasi-
stationary black hole. Let us denote a past null infinity by
I2, a future null infinity byI1, and a future event horizon
by H1. We introduce the usual null coordinatesu,v and
suppose that the formation of the event horizonH1 is at v
5v0 ~see Fig. 1!. At I2 andI1, by virtue of the asymptotic

PHYSICAL REVIEW D 15 AUGUST 1997VOLUME 56, NUMBER 4

560556-2821/97/56~4!/2192~10!/$10.00 2192 © 1997 The American Physical Society



flatness, there is a natural definition of the Hilbert spaces
HI2 andHI1 of mode functions with positive frequencies
@5#. The Hilbert spacesF(HI6) of all asymptotic states are
defined as follows with a suitable completion~symmetric
Fock spaces!:

F~HI6![C%HI6 % ~HI6 ^HI6!sym% ••• ,

where ( )sym denotes the symmetrization@(j ^ h)sym5 1
2 (j

^ h1h ^ j), etc.#. Physically,C denotes the vacuum state,
HI6 denote one-particle states, (HI6 ^HI6)sym denote two-
particle states, etc. We suppose that all our observables are
operators onF(HI6) since we observe a radiation of the
scalar field radiated by the black hole at a place far away
from it. In this senseF(HI1) are quite physical. Next let us
consider how to set an initial state of the scalar field. We
want to see a response of the scalar field on the quasistation-
ary black-hole background that arises from a gravitational
collapse of other materials~dust, fluid, etc.!. Hence the initial
state atI2 must be such a state that it includes no excitations
of modes located before the formation of the horizon~no

excitation atv,v0!. A space of all such states is a subspace
of F(HI2) and we denote it byFI2(v.v0) . We would like to
derive a thermal property of a scattering process of the scalar
field by the quasistationary black hole. Hence we consider
density matrices onFI2(v.v0) andF(HI1). Denote a space

of all density matrices onFI2(v.v0) by P and a space of all

density matrices onF(HI1) by P̃.
Let us discuss an evolution of a state atI2 to the future.

SinceI1 is not a Cauchy surface because of the existence of
H1, F(HI2) is mapped not toF(HI1) but to F(HI1)
^F(HH1) by a unitary evolution, whereHH1 is a Hilbert
space of mode functions on the horizon with a positive fre-
quency andF(HH1) is a Hilbert space of all states onH1

defined as a symmetric Fock space constructed from
HH1@see the definition ofF(HI6)#. Although there is no
natural principle to determine the positivity of the frequency
~equivalently, there is no natural definition of the particle
concept!, the detailed definition ofHH1 does not affect the
result since we shall trace out the degrees of freedom of
F(HH1) @see Eq.~2.1!#. To describe the evolution of a quan-
tum state of the scalar field fromF(HI2) to F(HI1)
^F(HH1) an S matrix is introduced@5#. For a given initial
state uc& in F(HI2), the corresponding final state in
F(HI1) ^F(HH1) is Suc&. Then the corresponding evolu-
tion from FI2(v.v0) to F(HI1) ^F(HH1) is obtained by

restrictingS to FI2(v.v0) and we denote it byS too. In this
section we show a thermal property of the scalar field in the
background by using theS-matrix elements given by Wald
@5#.

A. Definition of T

Let the initial state of the scalar field beuf&
@PFI 2(v.v0)# and observe the corresponding final state atI1

@see the argument after the definition ofF(HI6)#. Formally
the observation corresponds to a calculation of a matrix ele-
ment ^fuS†OSuf&, whereS is the S matrix that describes
the evolution of the scalar field fromFI 2(v.v0) to F(HI1)

^F(HH1) andO is a self-adjoint operator onF(HI1) cor-
responding to the quantity we want to observe. The matrix
element can be rewritten in a convenient fashion as

^fuS†OSuf&5TrI1@Or red#,

where

r red5TrH1@Suf&^fuS†#

and TrI1,TrH1 denote the partial traces over
F(HI1),F(HH1), respectively. In viewing this expression
we are lead to an interpretation that the corresponding final
state atI1 is represented by the reduced density matrixr red.
Next we generalize this argument to a wider range of initial
states, which includes all mixed states. For this case an initial
state is represented not by an element ofFI2(v.v0) but by an

element ofP ~a density matrix onFI2(v.v0)!. Its evolution

to I1 is represented as a mapT induced byS followed

FIG. 1. Conformal diagram of a background geometry that de-
scribes a gravitational collapse.I2 andI1 are the past null infinity
and the future null infinity, respectively, andH1 is the future event
horizon. The shaded region represents collapsing materials that
form the black hole. In addition to the collapsing matter, we con-
sider a real massless scalar field and investigate a scattering prob-
lem by the black hole after its formation (v.v0). Thus we specify
possible initial states atI2 to those states that are excited from the
vacuum by only modes whose support is withinv.v0 ~elements of
FI2(v.v0)! and possible mixed states constructed from them~ele-
ments ofP!. In the diagram,A ig ( i 51,2, . . . ) is amode function
corresponding to a wave packet whose peak is atv.v0 on I2 and

ir ( i 51,2, . . . ) is amode function corresponding to a wave packet
on I1.
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by the partial trace TrH1: let r (PP) be an initial density
matrix; then the corresponding final density matrixT(r)
(PP̃) is

T~r!5TrH1@SrS†#. ~2.1!

Note thatT is a linear map fromP into P̃.

B. Thermodynamic property of T

In this subsection we show a thermal property of the map
T, which is summarized as Theorem 1. First let us calculate
a conditional probability defined as

P~$n
i r%u$ni g%![^$n

i r%uT~ u$n
i g%&^$ni g%u!u$ni r%&, ~2.2!

where

u$n
i g%&[F)i

1

An
i g!

@a†~A ig!#n
i gG u0&,

u$n
i r%&[F)i

1

An
i r!

@a†~ ir!#n
i rG u0&. ~2.3!

u$n
i g%& is a state inFI2(v.v0) characterized by a set of inte-

gersn
i g ( i 51,2, . . . ) andu$n

i r%& is a state inF(HI1) char-

acterized by a set of integersn
i r ( i 51,2, . . . ). Therefore,

P($n
i r%u$ni g%) is a conditional probability for a final state to

be u$n
i r%& when the initial state is specified to beu$n

i g%&. In
the expressionsA is a representation of a Bogoliubov trans-
formation fromHI1 %HH1 to HI2 and ig is such a unit
vector inHI1 %HH1 thatAi g corresponds to a wave pocket
whose peak is located at a point onI2 later than the forma-
tion of the horizon (v.v0) @5#. On the other hand,ir is a
unit vector inHI1 and corresponds to a wave packet onI1

@5# ~see Fig. 1!. The probability~2.2! is a generalization of
P(ku j ) investigated by Panangaden and Wald1 @4#. It in-
cludes almost all the information2 about a response of the
scalar field on the quasistationary black hole that arises from
the gravitational collapse whileP(ku j ) does not, since any
initial states onI2, which include no excitation before the
formation of the horizon (v,v0), can be represented by
using the basis$u$n

i g%&% and any final states onI1 can be

expressed by the basis$u$n
i r%&%, i.e., a set of allu$n

i g%&
generatesF(HI2(v.v0)) and a set of allu$n

i r%& generates

F(HI1). This is the very reason why we generalizeP(ku j )
to P($n

i r%u$ni g%).

By using theS-matrix elements given in@5#, the condi-
tional probability is rewritten as~see Appendix A for its
derivation!

P~$n
i r%u$ni g%!

5)
i

F ~12xi !xi

2n
i r

~12uRi u2!n
i g1n

i r (
l i50

min~n
i g ,n

i r!

(
mi50

min~n
i g ,n

i r!
@2uRi u2/~12uRi u2!# l i1min

i g!ni r!

l i ! ~n
i g2 l i !! ~n

i r2 l i !!mi ! ~n
i g2mi !! ~n

i r2mi !!

3 (
ni5n

i r2min~ l i ,mi !

` ni ! ~ni2n
i r1n

i g!!

~ni2n
i r1 l i !! ~ni2n

i r1mi !!
~xi

2uRi u2!ni2n
i rG , ~2.4!

whereRi is a reflection coefficient for the mode specified by the integeri on the Schwarzschild metric~see Appendix A! and
xi is a constant defined byxi5exp@2p(vi2VBHmi)/k#. In the expression,v i andmi are a frequency and an azimuthal angular
momentum quantum number of the mode specified by the integeri , andVBH andk are the angular velocity and surface gravity
of the black hole.

Now, the expression in the large square brackets in Eq.~2.4! appears also in the calculation ofP(ku j ). Using the result of
@4#, it is easily shown that

P~$n
i r%u$ni g%!5)

i
FKi (

si50

min~n
i r ,n

i g!
~n

i r1n
i g2si !!v i

si

si ! ~n
i r2si !! ~n

i g2si !!
G , ~2.5!

where

Ki5
~12xi !xi

2n
i r

~12uRi u2!n
i g1n

i r

~12uRi u2xi
2!n

i g1n
i r11 ,

v i5
~ uRi u22xi

2!~12uRi u2xi
2!

~12uRi u2!2xi
2 .

This is a generalization of the result of@4#, and the fol-
lowing lemma is easily derived by using this expression.

1Their argument is restricted to the case whenn
i g5n

i r50 for all
i other than a particular value.

2All the information is included inT
$n i r%$n

i r8 %

$ni g%$n
i g8 %

defined in Lemma

2.
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Lemma 1.For the conditional probability defined by Eq.
~2.2! the following equality holds:

P~$n
i r5ki%u$ni g5 j i%!expS 2bBH(

i
j i~v i2VBHmi ! D

5P~$n
i r5 j i%u$ni g5ki%!

3expS 2bBH(
i

ki~v i2VBHmi ! D , ~2.6!

where v i and mi are the frequency and azimuthal angular
momentum quantum number of the mode specified byi ,
VBH is the angular velocity of the horizon, andbBH
[2p/k. In this expressionk is a surface gravity of the black
hole.

Note thatbBH
21 is the Hawking temperature of the black

hole. This lemma states that a detailed balance condition
holds.3 Summing up about allk’s, we expect that a thermal
density matrixrth~bBH ,VBH! in P with a temperaturebBH

21

and a chemical potentialVBH for azimuthal angular momen-
tum quantum number will be mapped byT to a thermal
density matrixr̃ th~bBH ,VBH! in P̃ with the same temperature
and the same chemical potential. To show that this expecta-
tion is true, we have to prove that all off-diagonal elements
of T@rth~bBH ,VBH!] are zero. For this purpose the following
lemma is proved in Appendix B.

Lemma 2.Denote a matrix element ofT as

T
$n

i r%$n
i r8 %

$n
i g%$n

ig
8 %

[^$n
i r%uT~ u$n

i g%&^$ni g8 %u!u$n
i r8 %&. ~2.7!

Then

T
$n

i r%$n
i r8 %

$n
i g%$n

ig
8 %

50, ~2.8!

unless

n
i g2n

i g8 5n
i r2n

i r8 ~2.9!

for all i .
Lemma 2 shows that all off-diagonal elements ofT(r) in

the basis of$u$n
i r%&% vanish if all off-diagonal elements ofr

in the basis$u$n
i g%&% are zero. Thus, combining it with

lemma 1, the following theorem is easily proved. Note that a
set of all u$n

i g%&^$ni g8 %u generatesP and a set of all

u$n
i r%&^$ni r8 %u generatesP̃ @see the argument below Eq.

~2.3!#.
Theorem 1.Consider the linear mapT defined by Eq.

~2.1! for a real, massless scalar field on a background geom-
etry that describes a formation of a quasistationary black
hole. Then

T@rth~bBH ,VBH!#5r̃th~bBH ,VBH!, ~2.10!

where

rth~bBH ,VBH![Z21 (
$n

i g%
expS 2bBH(

i
n

i g~v i2VBHmi ! D
3u$n

i g%&^$ni g%u,

r̃th~bBH ,VBH![Z21 (
$n

i r%
expS 2bBH(

i
n

i r~v i2VBHmi ! D
3u$n

i r%&^$ni r%u,

Z[(
$ j i %

expS 2bBH(
i

j i~v i2VBHmi ! D . ~2.11!

r th~bBH ,VBH! and r̃ th~bBH ,VBH! can be regarded as
‘‘grand canonical ensembles’’ inP and P̃, respectively,
which have a common temperaturebBH

21 and a common
chemical potentialVBH for the azimuthal angular momentum
quantum number. Thus the theorem says that the grand ca-
nonical ensemble atI2 (v.v0) with special values of the
temperature and chemical potential evolves to a grand ca-
nonical ensemble atI1 with the same temperature and the
same chemical potential. Note that the special valuesbBH

21

andVBH are determined by the background geometry:bBH
21

is the Hawking temperature andVBH is the angular velocity
of the black hole formed. This result is used in Sec. III B to
prove the generalized second law for the quasistationary
black hole.

III. THE GENERALIZED SECOND LAW

The generalized second law is one of the most interesting
conjectures in black-hole thermodynamics since it restricts
ways of interaction between a black hole and ordinary ther-
modynamic matter. It can be regarded as a generalization
both of the area law of black holes and of the second law of
ordinary thermodynamics. The latter, which states that the
total entropy of a system cannot decrease under the physical
evolution of a thermodynamic system, can be proved for a
finite-dimensional system if a microcanonical ensemble for
the system does not change under the evolution@3#.

In the preceding section we proved that the grand canoni-
cal ensemble of the scalar field does not change under the
physical evolution on a background that describes the forma-
tion of a quasistationary black hole. So we expect that the
generalized second law may be proved in a way similar to
the proof of the second law of ordinary thermodynamics. For
the purpose of the proof we rewrite the generalized second
law as an inequality between functionals of a density matrix
of matter fields.

The generalized second law of black-hole thermodynam-
ics is

DSBH1DSmatter>0, ~3.1!

whereD denotes the change of quantities under the evolution
of the system andSBH andSmatterare the entropy of the black
hole and the thermodynamic entropy of the matter fields,

3It guarantees that thermal distribution of any temperature is
mapped to a thermal distribution of some other temperature closer
to the Hawking temperature, as far as only the diagonal elements
are concerned.
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respectively. For a quasistationary black hole, using the first
law of black-hole thermodynamics@6#,

DSBH5bBH~DMBH2VBHDJBH!,

the conservation of total energy

DMBH1DEmatter50,

and the conservation of total angular momentum

DJBH1DLmatter50,

it is easily shown that the generalized second law is equiva-
lent to the inequality

DSmatter2bBH~DEmatter2VBHDLmatter!>0, ~3.2!

wherebBH , VBH , MBH , andJBH are the inverse tempera-
ture, angular velocity, mass, and angular momentum of the
black hole;Ematter and Lmatter are the energy and azimuthal
component of the angular momentum of the matter fields.
Equation~3.2! is of the form

U@ r̃0 ;bBH ,VBH!>U@r0 ;bBH ,VBH!, ~3.3!

whereU is the functional of the density matrix of the matter
fields defined by

U@r;bBH ,VBH![2Tr@r lnr#2bBH~Tr@Er#

2VBH Tr@L zr#! ~3.4!

and r0 and r̃0 are the initial density matrix and the corre-
sponding final density matrix, respectively. In the expression
E andL z are operators corresponding to the energy and the
azimuthal component of the angular momentum. Note that
Eq. ~3.3! is an inequality between functionals of a density
matrix of matter fields.4 We will prove the generalized sec-
ond law by showing that this inequality holds. Actually we
do it in Sec. III B for a quasistationary black hole that arises
from a gravitational collapse, using the results of Sec. II and
a theorem given in the following subsection.

A. Nondecreasing functional

In this subsection we give a theorem that makes it pos-
sible to construct a functional that does not decrease by a
physical evolution. It is a generalization of a result of@3#. In
Sec. III B we derive Eq.~3.3! for a quasistationary black hole
that arises from gravitational collapse, applying the theorem
to the scalar field investigated in Sec. II.

Let us consider Hilbert spacesF and F̃. First we give
some definitions needed for the theorem.

Definition 1.A linear bounded operatorr onF is called a
density matrix if it is self-adjoint, positive semidefinite, and
satisfies

Trr51.

In the rest of this section we denote a space of all density
matrices onF asP(F). Evidently,P~F! is a linear convex
set rather than a linear set.

Definition 2.A mapT of P~F! intoP~F̃! is called linear if

T@ar11~12a!r2#5aT~r1!1~12a!T~r2!

for all a satisfying 0<a<1 and allr1 ,r2 @PP(F)#.

By this definition it is easily proved by induction that

TS (
i 51

N

air i D 5(
i 51

N

aiT~r i ! ~3.5!

if ai>0, ( i 51
N ai51, andr iPP(F).

Now we prove the following lemma, which concerns the
N→` limit of the left-hand side of Eq.~3.5!. We use this
lemma in the proof of Theorem 2.

Lemma 3.Consider a linear mapT of P~F! into P~F̃! and
an elementr0 of P~F!. For a diagonal decomposition

r05(
i 51

`

pi u i &^ i u,

define a series of density matrices of the form

rn5(
i 51

n

pi /anu i &^ i u ~n5N,N11, . . . !, ~3.6!

where

an[(
i 51

n

pi

andN is large enough thataN.0. Then

lim
n→`

^FuT~rn!uC&5^FuT~r0!uC& ~3.7!

for arbitrary elementsuF& and uC& of F̃.
This lemma says thatT(rn) has a weak-operator topology

limit T(r0).
Proof. By definition,

r05anrn1~12an!rn8 , ~3.8!

where

rn85H (
i 5n11

`

pi /(12an)u i &^ i u (an,1)

rn (an51).

Then the linearity ofT shows that

^FuT~r0!uC&5an^FuT~rn!uC&1~12an!^FuT~rn8!uC&.

Thus, if ^FuT(rn8)uC& is finite in the limit n→`, then the
lemma is established since

lim
n→`

an51.4Information about the background geometry appears in the in-
equality as variables that parametrize the functional.
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For the purpose of proving the finiteness of^FuT(rn8)uC&, it
is sufficient to show thatz^Fur̃uC& z is bounded from above
by iFi iCi for an arbitrary elementr̃ of P(F̃). This is easy
to prove as follows:

z^Fur̃uC& z5U(
i

p̃i^Fu ĩ &^ ĩ uC&U
<(

i
z^Fu ĩ &^ ĩ uC& z

<iFi iCi , ~3.9!

where we have used a diagonal decomposition

r̃5(
i

p̃i u ĩ &^ ĩ u.

j

Theorem 2. Assume the following three assump-
tions: ~a! T is a linear map ofP~F! into P~F̃!, ~b! f is a
continuous function convex to below and there are non-
negative constantsc1 , c2 , and c3 such thatu f „(12e)x…
2 f (x)u<ueu†c1u f (x)u1c2uxu1c3‡ for all x (>0) and suffi-
ciently small ueu, and ~c! there are positive definite density
matricesr` @PP(F)# and r̃` @PP(F̃)# such thatT(r`)
5 r̃` . If @r` ,r0#5@ r̃` ,T(r0)#50 and Tr@r`u f (r0r`

21)u#
,`, then

Ũ@T~r0!#>U@r0#, ~3.10!

where

U@r#[2Tr@r` f ~rr`
21!#,

~3.11!

Ũ@ r̃ #[2Tr@ r̃` f ~ r̃ r̃ `
21!#.

As stated in the first paragraph of this subsection, theorem
2 is used in Sec. III B to prove the generalized second law
for a quasistationary black hole that arises from gravitational
collapse.

Proof. First let us decompose the density matrices diago-
nally as

r05(
i 51

`

pi u i &^ i u, r`5(
i 51

`

qi u i &^ i u,
~3.12!

T~r0!5(
i 51

`

p̃i u ĩ &^ i u, T~r`!5(
i 51

`

q̃i u ĩ &^ i u.

Then by lemma 3 and Eq.~3.5!,

p̃i5^ ĩ uT~r0!u ĩ &5 lim
n→`

(
j 51

n

Ai j pj /an , ~3.13!

where an[( i 51
n pi and Ai j [^ ĩ uT(u j &^ j u)u ĩ &. Ai j has the

properties

(
i 51

`

Ai j 51, 0<Ai j <1.

Similarly it is shown that

q̃i5 lim
n→`

(
j 51

n

Ai j qj /bn ,

wherebn[( i 51
n qi . By Eq. ~3.13! and the continuity off it

is shown that

f ~ p̃i /q̃i !5 lim
n→`

f S (
j 51

n

Ai j

pj /an

q̃i
D . ~3.14!

Next defineCi
n and C̃i

n by

Ci
n[(

j 51

n

Ai j qj /q̃i , C̃i
n[Ci

n/an ; ~3.15!

then the convex property off means

f ~ p̃i /q̃i !< lim
n→`

(
j 51

n
Ai j qj

Ci
nq̃i

f ~C̃i
npj /qj !

since

(
j 51

n
Ai j qj

Ci
nq̃i

51,
Ai j qj

Ci
nq̃i

>0.

Hence

2Ũ@T~r0!#5(
i 51

`

q̃i f ~ p̃i /q̃i !

<(
i 51

`

lim
n→`

(
j 51

n
Ai j qj

Ci
n f ~C̃i

npj /qj !.

~3.16!

SinceCi
n and C̃i

n satisfy

lim
n→`

Ci
n5 lim

n→`

C̃i
n51,

it is implied by the assumption aboutf that

U f S C̃i
npj

qj
D 2 f S pj

qj
DU<u12C̃i

nu@c1u f ~pj /qj !u1c2pj /qj1c3#

for sufficiently largen. Therefore,
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U(
j 51

n
Ai j qj

Ci
n @ f ~C̃i

npj /qj !2 f ~pj /qj !#U
<

u12C̃i
nu

Ci
n S c1(

j 51

n

Ai j qj u f ~pj /qj !u

1c2(
j 51

n

Ai j pj1c3(
j 51

n

Ai j qj D
<

u12C̃i
nu

Ci
n S c1(

j 51

n

qj u f ~pj /qj !u

1c2(
j 51

n

pj1c3(
j 51

n

qj D ,

where we have used 0<Ai j <1 to obtain the last inequality.
Since the first term in the large bracket in the last expression
is finite in the limit n→` by the assumption of the absolute
convergence ofU@r0# and all the other terms in the large
bracket are finite,

lim
n→`

U(
j 51

n
Ai j qj

Ci
n @ f ~C̃i

npj /qj !2 f ~pj /qj !#U50.

Moreover, by the absolute convergence ofU@r0#, it is easily
shown that

lim
n→`

US 1

Ci
n21D (

j 51

n

Ai j qj f ~pj /qj !U50.

Thus

2Ũ@T~r0!#<(
i 51

`

(
j 51

`

Ai j qj f ~pj /qj !. ~3.17!

We can interchange the sum overi and the sum overj on the
right-hand side of Eq.~3.17! since it converges absolutely by
the absolute convergence ofU@r0#. Hence

2Ũ@T~r0!#<(
j 50

`

qj f ~pj /qj !52U@r0#.

j

B. Proof of the generalized second law

Let us combine theorem 1 with theorem 2 to prove the
generalized second law. In theorem 2 set the linear mapT,
the convex functionf (x), and the density matricesr` and
r̃` as

T5T,

f ~x!5x lnx,
~3.18!

r`5rth~bBH ,VBH!,

r̃`5 r̃ th~bBH ,VBH!.

Note that it is theorem 1 that makes such a setting possible.
Hence, if an initial stater0 and the corresponding final state
T(r0) satisfy

@r0,rth~bBH ,VBH!#5@T~r0!,rth~bBH ,VBH!#50 ~3.19!

andU@r0# converges absolutely, theorem 2 can be applied to
the system of the quasistationary black hole and the scalar
field around it. Now

U@r0#52Tr@r0lnr0#2bBH~Tr@Er0#2VBHTr@L zr0# !2 lnZ

5U@r0 ;bBH ,VBH!2 lnZ,
~3.20!

Ũ@T~r0!#52Tr@ r̃0lnr̃0#2bBH~Tr@Ẽr̃0#

2VBHTr@ L̃ zr̃0# !2 lnZ

5U@T~r0!;bBH ,VBH!2 lnZ,

wherer̃ 0 denotesT(r0),

E[ (
$n

i g%
S (

i
n

i gv i D u$n
i g%&^$ni g%u,

L z[ (
$n

i g%
S (

i
n

i gmi D u$n
i g%&^$ni g%u

and

Ẽ[ (
$n

i r%
S (

i
n

i rv i D u$n
i r%&^$ni r%u,

L̃ z[ (
$n

i r%
S (

i
n

i rmi D u$n
i r%&^$ni r%u.

Thus the inequality~3.10! in this case is Eq.~3.3! itself,
which in turn is equivalent to the generalized second law.
Finally, theorem 2 proves the generalized second law for a
quasistationary black hole that arises from gravitational col-
lapse, provided that an initial density matrixr0 of the scalar
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field satisfies the above assumptions. For example, it is guar-
anteed by lemma 2 that ifr0 is diagonal in the basis
$u$h

i g%&% thenT(r0) is also diagonal in the basis$u$n
i r%&%

and Eq.~3.19! is satisfied. The assumption of the absolute
convergence ofU@r0 ;bBH ,VBH) holds whenever initial state
r0 atI2 contains at most a finite number of excitations. Note
that althoughrth~bBH ,VBH! contains an infinite number of
excitations by definition,r0 does not. Therefore, the assump-
tions are satisfied whenr0 is diagonal in the basis
$u$n

i g%&% and contains at most a finite number of excitations.

IV. SUMMARY AND DISCUSSION

In summary we have proved the generalized second law
for a quasistationary black hole that arises from gravitational
collapse. To prove it we have derived the thermal property of
the semiclassical evolution of a real massless scalar field on
the quasistationary black-hole background and have given a
method for searching for a nondecreasing functional. These
are generalizations of the results of@4# and@3#, respectively.

Now we comment on the Frolov-Page statement that their
proof of the generalized second law may be applied to the
case of the black hole formed by gravitational collapse@2#.
Their proof for a quasistationary eternal black hole is based
on the following two assumptions:~i! the state of matter
fields on the past horizon is thermal and~ii ! a set of radiation
modes on the past horizon and one on the past null infinity
are quantum-mechanically uncorrelated. These two assump-
tions are reasonable for the eternal case since black holes
emit thermal radiation. In the case of a black hole that arises
from gravitational collapse, we might expect that things
would go well by simply replacing the past horizon with a
null surface at the moment of the formation of the horizon
~thev5v0 surface in Fig. 1!. However, the state of the mat-
ter fields on the past horizon is completely determined by the
state of the fields before the horizon formation~v,v0 in Fig.
1!, in which there is no causal effect of the existence of the
future horizon. Since the essential origin of the thermal ra-
diation from a black hole is the existence of a horizon, the
state of the fields on the null surface does not have to be a
thermal one. Hence assumption~i! becomes problematic in
this case. Although the above replacement may be the most
extreme one, an intermediate replacement causes an interme-
diate violation of assumption~i! due to the correlation be-
tween modes on the future null infinity and modes on the
past null infinity located after the horizon formation. The
correlation can be seen explicitly in Eq.~2.5!. Thus we con-
clude that Frolov and Page’s proof cannot be applied to the
case of the black hole formed by gravitational collapse.

Finally we discuss a generalization of our proof to a dy-
namical background. For the case of a dynamical back-
groundbBH and VBH are changed from time to time by a
possible backreaction. Thus, to prove the generalized second
law for the dynamical background, we have to generalize
theorem 1 to the dynamical case consistently with the back-
reaction. Once this can be achieved, theorem 2 seems useful
to prove the generalized second law for the dynamical back-
ground.
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APPENDIX A: THE CONDITIONAL PROBABILITY

In this appendix we reduce Eq.~2.2! to Eq.~2.4!. First the
S matrix obtained by@5# is

Su0&5N(
n50

` A~2n!!

2nn!
~ ^

n

e!,

~A1!

Sa†~A ig!S215Ria
†~ ir!1Tia

†~ is!,

wheree and N are a bivector and a normalization constant
defined by

e52(
i

xi~ il ^ it!sym, N5)
i

A12xi ,

where

xi5exp@2p~v i2VBHmi !/k#.

In this expressionv i andmi are the frequency and azimuthal
angular momentum quantum number of a mode specified by
integeri , andVBH andk are the angular velocity and surface
gravity of the black hole,ig, ir, is, il, and it are unit
vectors inHI1 %HH1 defined in@5# and the first four are
related as

ig
a5Ti i s

a1Ri i r
a,

~A2!

il
a5t i i r

a1r i i s
a,

wheret i ,Ti are transmission coefficients for the mode speci-
fied by the integeri on the Schwarzschild metric@5# and
r i ,Ri are reflection coefficients. They satisfy5

ut i u21ur i u25uTi u21uRi u251,
~A3!

t i5Ti , r i52Ri* Ti /Ti* .

By using theS matrix, we obtain

5The last two equations in~A3! are consequences of the time
reflection symmetry of the Schwarzschild metric.
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Su$n
i g%&5NF)i

1

An
i g!

@Ria
†~ ir!1Tia

†~ is!#n
i gG (n50

` A~2n!!

2nn!
~ ^

n

e!sym

5N(
n50

`

( 8 F)i

1

An
i g!

S n
i g

mi
D Ri

miT
i

n
i g2miGA~2n!! F)

i

xi
ni

ni !
S ni

l i
D tz

l i r i
ni2 l iG

3A~2n1( ini g!!

~2n!!
S )

i
^

ni

it ^

l i1mi

ir ^

ni2 l i1n
i g2mi

isD
sym

5N (
ni50

`

(
mi50

n
i g

(
l i50

ni AS (
i

~2ni1n
i g! D !)

i F 1

An
i g!

xi
ni

ni !
S n

i g

mi
D S ni

l i
DRi

miT
i

n
i g2mi

t i
l i r i

ni2 l iG
3S )

i
^

ni

it ^

l i1mi

ir ^

ni2 l i1n
i g2mi

isD
sym

, ~A4!

where(8 denotes a summation with respect toni , mi , andl i over the range( ini5n, ni>0, 0<mi<n
i g , 0< l i<ni . In Eq.

~A4!, those orthonormal basis vectors inu$n
i r%& ^F(HH1) that have a nonvanishing inner product withSu$n

i g%& appear in the
form6

A ~( i~2ni1n
i g!!!

P i@ni !ni r! ~ni1n
i g2n

i r!! #
S )

i
^

ni

it ^

n
i r

ir ^

ni1n
i g2n

i r

isD
sym

. ~A5!

Thus, when we calculate (^$n
i r%u ^ ^Hu)Su$n

i g%&, the summation in Eq.~A4! is reduced to a summation with respect toni and

mi over the rangeni>max(0,n
i r2n

i g), max(0,n
i r2ni)<mi< min(n

i r ,n
i g) with7 l i5n

i r2mi . Here uH& is an element of

F(HH1). Paying attention to this fact, we can obtain the expression of the conditional probability

P~$n
i r%u$ni g%!5uNu2 (

$ni>max~0,n
i r2n

i g!%
S (

i
~2ni1n

i g! D !)
i

F xi
2ni

n
i g! ~ni ! !2 U (

mi5max~0,n
i r2ni !

min~n
i r ,n

i g! S n
i g

mi
D

3S ni

n
i r2mi D Ri

miT
i

n
i g2mi

t
i

n
i r2mi

r
i

ni2n
i r1miU2GU KA ~( i~2ni1n

i g!!!

P i@ni !ni r! ~ni1n
i g2n

i r!! #

3)
i

S
^

ni

it ^

n
i r

ir ^

ni1n
i g2n

i r

is
D

sym,)
i

S
^

ni

it ^

n
i r

ir ^

ni1n
i g2n

i r

is
D

symL U2

. ~A6!

The inner product in expression~A6! is equal to8

AP i@ni !ni r! ~ni1n
i g2n

i r!! #

~( i~2ni1n
i g!!!

.

Finally, by using Eq.~A3! and exchanging the order of the summation suitably, we can obtain

6The number of the ‘‘particle’’is in Eq. ~A4! is ni1n
i g2n

i r , setting the number of the particleir to n
i r .

7The range is obtained by inequalitiesni>0, 0<mi<n
i g , 0< l i<ni , l i1mi5n

i r , andni1n
i g2n

i r>0.
8Equation~A5! is normalized to have unit norm.
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P~$n
i r%u$ni g%!5)

i
F ~12xi !xi

2n
i r

~12uRi u2!n
i g1n

i r (
l i50

min~n
i g ,n

i r!

(
mi50

min~n
i g ,n

i r!
@2uRi u2/~12uRi u2!# l i1min

i g!ni r!

l i ! ~n
i g2 l i !! ~n

i r2 l i !!mi ! ~n
i g2mi !! ~n

i r2mi !!

3 (
ni5n

i r2min~ l i ,mi !

` ni ! ~ni2n
i r1n

i g!!

~ni2n
i r1 l i !! ~ni2n

i r1mi !!
~xi

2uRi u2!ni2n
i rG .

This is what we have to show.

APPENDIX B: A PROOF OF LEMMA 2

In this appendix we give a proof of lemma 2.

Proof. Since a set of allit and is generatesHH1 @5#, the definition ofT
$n

i r%$n
i r8 %

$n
i g%$n

i g8 %
leads to

T
$n

i r%$n
ir
8 %

$n
i g%$n

ig
8 %

5 (
$n

is
%,$n

it
%

^$n
it

, n
i r ,n

is
%uSu$n

i g%&^$ni g8 %uSu$n
it
,n

ir
8 ,n

is
%&, ~B1!

where

u$n
it

, n
i r ,n

is
%&[)

i F 1

An
it

!n
i r!nis

!
@a†~ it!#n

it @a†~ ir!#n
i r@a†~ is!#n

isG u0&.

In this expressionSu$n
i g%& is given by Eq.~A4! andSu$n

i g8 %& is obtained by replacingn
i g with n

i g8 in Eq. ~A4!. Now, those

orthonormal basis vectors of the formu$n
it
,n

i r ,n
is

%& that have a nonzero inner product withSu$n
i g%& must also be of the form

~A5!. ThusT
$n

i r%$n
i r8 %

$n
i g%$n

i g8 %
vanishes unless there exists a set of integers$ni ,ni8% ( i 51,2, . . . ) such that

ni5ni8 , ni1n
i g2n

i r5ni81n
i g8 2n

i r8 ~B2!

for all i . The existence of$ni% and$ni8% is equivalent to the conditionn
i g2n

i g8 5n
i r2n

i r
8 for all i . j
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