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A nonextreme black hole in a cavity can achieve the extreme state with a zero surface gravity at a finite
temperature on a boundary, the proper distance between the boundary and the horizon being finite. The
classical geometry in this state is found explicitly for four-dimensional spherically symmetrical and 211
rotating holes. In the first case the limiting geometry depends only on one scale factor and thewholeEuclidean
manifold is described by the Bertotti-Robinson spacetime. The general structure of a metric in the limit in
question is also found with quantum corrections taken into account. Its angular part represents a two-sphere of
a constant radius. In all cases the Lorentzian counterparts of the metrics are free from singularities.
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PACS number~s!: 04.70.Dy

One of the most intriguing issues in black hole physics is
connected with the nature of the extreme state. In particular,
it concerns the possibility of a thermodynamic description of
such objects which is highly nontrivial because the Hawking
temperatureTH50 in the state under discussion. In Ref.@1#
it was suggested to consider such objects as having an arbi-
trary temperatureT0 measured at infinity which determines
the period in Euclidean time. This proposal is motivated by
the qualitative difference between the topology of extreme
and nonextreme black holes: the Euclidean manifold of an
extreme one is regular irrespective of the valueT0 in contrast
with nonextreme holes for which the absence of conical sin-
gularities demandsT05TH . Reasoning connected with to-
pology @1,2# shows that one should ascribe the entropyS
50 to extreme holes instead of the Bekenstein-Hawking
valueS5A/4 ~A is the surface area of a horizon!.

However, further investigations showed that the deviation
of T0 from its Hawking valueTH50 entails unavoidable
divergences in the stress-energy tensor of quantum fields ei-
ther for two-dimensional@3# or four-dimensional@4# extreme
black holes and for this reason the possibility ofT0ÞTH is
unacceptable physically. One can say that the principle of
thermal equilibrium is more fundamental than the require-
ment of the regularity for the Euclidean manifold. The latter
turns out to be simply irrelevant for extreme holes and can-
not ensure a well-defined behavior of thermodynamic quan-
tities for quantum fields in a corresponding background. In
the caseT05TH the difficulties indicated above are removed
but the possibility to build a finite-temperature description of
extreme holes is lost.

Meanwhile, recently it was traced@5# how a black hole
can approach the extreme state in the topological sector of
nonextreme configurations withS5A/4 when for the
Reissner-Nordstro¨m ~RN! metric m→e ~m is a mass,e is a
charge!. In so doing, the thermodynamic equilibrium is ful-
filled at every stage of the limiting transition, so difficulties

due to T0ÞTH cannot arise at all. In the grand-canonical
ensemble approach when a system is characterized by the
local temperatureT5b21 and potentialF at the boundary
r B it turns out that among all boundary data (b,r B ,F,) there
exists such a subset„b,r B ,F(b,r B)… for which ~i! the ex-
treme state is realized at finite temperature,~ii ! the horizon
has the same area as the boundary surface but is situated at
finite proper distancel B from it ~unlike the extreme topologi-
cal sector wherel B5`!. In some sense, a nonextreme hole
imitates the extreme one, soT0→0 ~but T is finite!.

The geometrical properties indicated above are rather un-
expected and needed to be clarified. In this paper I show that
for a wide class of black holes there exists the extreme state
of nonextreme black holes which has the universal form of
the limiting metric and find it explicitly. More exactly, I
consider~i! spherically symmetrical configurations near the
extreme state,~ii ! the ultraextreme case and~iii ! (211)-
dimensional rotating black holes. It is remarkable that in
spite of the variety of types of black hole solutions and their
parameters, some shortening of description occurs~as we
will see! near the state in question.

Consider the Euclidean black hole metric

ds25 f ~r !dt21dr2/ f 1r 2dv2, dv25du21df2 sin2u.
~1!

The Euclidean time takes its values in the range 0<t
<T0

215TH
21. Let us introduce the new variablet1

52pT0t where now 0<t1<2p. Then

ds25~b/2p!2dt1
21dl21r 2dv2. ~2!

b@r ( l )#5b0@ f (r )#1/2 is the inverse local temperature at an
arbitrary pointr 1<r<r B , r 1 is the radius of the event ho-
rizon, l is the proper distance betweenr 1 and r .

For the spacetime~1! and ~2! the equilibrium condition
reads

b5b0@ f ~r B!#1/2, T05TH5 f 8~r 1!/4p, ~3!

where a prime denotes the derivative with respect to a cor-
responding argument,b is taken at the boundaryr B .
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subset of boundary data for whichr 1→r B in such a way that
the limit can be reached at finiteb with the finite distance
l 5 l B betweenr 1 and r B @5#. In so doing, the coordinater
becomes ill defined and it is more convenient to usel or its
dimensionless analog as a new coordinate. Let us choose this
coordinate according to

r 2r 154pT0b21~sinh x/2!2, b5 f 8~r 1!/2. ~4!

In the limit in question the regionr 1<r<r B shrinks and
we can expandf (r ) in a power seriesf (r )54pT0(r 2r 1)
1b(r 2r 1)21••• near r 5r 1 . Then after substitution into
Eqs.~2! and ~3! we obtain

ds25b21~dt1 sinh2 x1dx2!1r B
2dv2, x5 lb1/2. ~5!

For the RN holef 5(12r 1 /r )(12r 2 /r ) and in the extreme
limit r 15r 25r B , b5r B

22. Then

ds25r B
2~dt1

2 sinh2 x1dx21dv2! ~6!

~Euclidean version! or

ds25r B
2~2dt2 sinh2 x1dx21dv2! ~7!

~Lorentzian version!. This is nothing more than the
Bertotti-Robinson~BR! spacetime@6,7#.

That the BR metric is relevant for the description of the
extreme RN hole was already pointed out in the literature
@4,8,9# but in quite different context when the BR solution
was considered in the topological sector corresponding to
extreme black holes,f 5(12r 1 /r )2 from the very begin-
ning. Then, expanding the metric coefficients nearr 5r 1 and
introducing the new radial variable according tor 2r 1

5r Br21 one obtains

ds25r B
2r22~2dt1

21dr21r2dv2!. ~8!

Two metrics ~7! and ~8! look different but in fact are
equivalent locally. This can be seen from the representation
of the BR spacetime as the metric on the hyperboloid@7#.
Putting w21v22u251, ds25du22dv22dw2 and making
substitution for the part of the hyperboloidu>0

u5cosht sinh x, v5sinh t sinh x, w5coshx, ~9!

we obtain Eq.~7!. Another substitution

u5~2r!21~ t1
22r211!, v5~2r!21~ t1

22r221!,

w5r21t1 ~10!

~for simplicity we putr B51 for a moment! gives us Eq.~8!.
Here two coordinate systems are connected by formulas

t1 /r B5et coth x, r/r B5et~sinh x!21, ~11!

coshx5t1 /r, e2t5~ t1
22r2!/r B

2. ~12!

I stress that whereas the BR metric~8! gives only the
approximate representation of the RN one of an extreme hole

in a small vicinity of r 5r 1 solution ~6! refers to thewhole
Euclidean manifold whose four-volume in our case is finite.
It is clear from Eqs.~6! and ~7! that the proper distance
between a horizonx50 and any other point withx.0 is
finite whereas the distance betweenr5` and any otherr
,` is infinite. It is this property, which gives rise to quali-
tative distinction between topologies of extreme and nonex-
treme holes and their entropies@1,2#.

Thus, starting from the original RN metric we arrive in
the limit m→e at two different versions of the BR spacetime
corresponding to different Killing vectors]/]t and]/]t1 de-
pending on a topological sector@10#. That it is Eq.~7! @but
not Eq.~8!# which is relevant for our problem is not inciden-
tal. The Hawking effect is intimately connected with the ex-
istence of a horizon which makes the outer region geodesi-
cally incomplete. Either Eq.~7! or Eq. ~8! possesses this
property but Eq.~7! is more incomplete in the sense that only
the partt1.r of Eq. ~8! is mapped to Eq.~7! as follows from
Eqs. ~11! and ~12!. As a result,TH5(2p)21 for Eq. ~7! in
accordance with the finite boundary temperature in our prob-
lem whereasTH50 for Eq. ~8!: roughly speaking, the more
information lost, the more there is a temperature.

The BR metric is obtained above from the RN one and for
this reason represents only classical geometry. Quantum ef-
fects will certainly change its form.~In particular, Riemann
curvatureRÞ0 in general whileR50 for the BR space-
time.! It is remarkable, however, thatall effects of back re-
action for the model~1! are encoded in the coefficientb
only, so the metric is described by Eq.~5! instead of Eq.~6!
where b takes its RN valuer B

22. It is also worth paying
attention that the explicit form of boundary data for which
the state in question is achieved@b54pr BF(12F2)21 for
the classical RN hole@5## was not used in derivation at all as
well as the form of field equations. Such universality is ex-
plained by that we consider the state for whichby definition
T0→0. Quantum effects can change the connection between
TH and black hole parameters as well as relationship be-
tween boundary data~say, betweenb and F! for a dressed
hole as compared with a bare one. Nonetheless, if a theory
admits the existence of an extreme state in the above sense,
the limiting form of the metric with finite boundary condi-
tions is described by Eq.~5!.

Bearing in mind the possible role of quantum effects, of
interest is a metric more general than Eq.~1!:

ds25U~r !dt21V21~r !dr21r 2dv2. ~13!

Then, repeating all manipulations step by step we arrive at

ds25b21~adt1
21dx2!1r B

2dv2. ~14!

Here a54 sinh2 x/2(11c sinh2 x/2), b5V9(r )/2, c
5V8(r 1)U9(r 1)/V9(r 1)U8(r 1).

In general, ifcÞ1 the Riemann curvature is no longer
constant but depends on a point due to effects of back reac-
tions.

The developed approach is also applicable to two-
dimensional metrics which can be obtained by discarding the
term dv2. It is known that in the topological sector of ex-
treme holes there arise weak divergences of the stress-energy
tensor of quantum fields on the event horizon discussed re-
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cently in the context of two-dimensional dilaton gravity@11#.
These divergences are due to the propertyTH50 @4# and are
absent in our case whereTHÞ0 for the limiting form of the
metric ~6! and ~14!.

Let us discuss briefly the case of so-called ultraextreme
black holes for which, in the extreme, stateb50 by defini-
tion @12#. One can check that finite boundary conditions are
again possible due tor 1→r B in spite ofTH→0. In this case
the substitutionr 2r 15pTHl 2 shows that terms of the third
order and higher in the expansion off (r ) near r 5r 1 are
negligible and

ds25 l 2dt1
21dl21r B

2dv2. ~15!

In other words, we obtain the direct product of the two-
dimensional Rindler space and a two-sphere of a constant
radius.

I stress that this result is by no means the trivial conse-
quence of the known fact that the metric of a generic black
hole can be represented by the Rindler one near the horizon.
Such representation is approximate, valid only in a small
region of spacetime near the event horizon, approximate to a
nonextreme black hole and has nothing to do with the ther-
modynamic approach we deal with. Meanwhile, our black
hole is ultraextreme and the four-dimensional volume of a
Euclidean manifold is finite. The metric~15! appeared as a
result of the limiting transition from the nonextreme state
when f 8(r 1) is small but nonzero whilef 9(r 1)50 by defi-
nition; had we started from the metric withf 5const(r
2r1)3 at once we would have obtained the metric which has
nothing to do with Eq.~15!.

Now we will analyze the case of 211 black holes@13#
which is achieved due to rotation. The metric reads@13#

ds252N2dt21N22dr21r 2~Nfdt1df!2,

N252M1~r / l !21J2/4r 2, Nf52J/2r 2. ~16!

As we will be interested in the metric near the horizonr 1

it is convenient to redefine the angular variable according to
f→f2Nf(r 1)t. Then

ds252N2dt21N22dr21r 2~Nfdt1df!2,

Nf5J~1/2r 1
2 21/2r 2!. ~17!

Following the general approach for finite-size thermody-
namics of 211 holes~see@14,15# and references therein! let
us consider the grand-canonical ensemble for which the set
of boundary conditions includes in the case under discussion
r B , b and the angular velocityV of the heat bath with re-
spect to zero angular momentum observers:

V5JN21~1/2r 1
2 21/2r 2!, ~18!

b5b0N, b052pr 1~M22J2/l2!21/2. ~19!

It is convenient to introduce dimensionless quantitiesy
5r 1 /r B , q5Vr , s5b/2p l, z5J/Ml. Then after some al-
gebraic manipulations one obtains from Eqs.~18! and ~19!

y5$~12q2!@11s2~12q2!#%21/2,

z52sq@q21s2~12q4!#21$~12q2!@11s2~12q2!#%1/2.
~20!

We are interested in the possibility of finding the finite-
temperature solutions of these equations for the extreme state
(s,`,z51). It is seen from Eq.~20! directly that such a
solution does exists ify51 ~r 15r B as well as in the 311
case! and boundary data are restricted by the condition

s5q/~12q2!. ~21!

The thermodynamic description needs the transition from
the Lorentzian picture to the Euclidean one that for rotating
holes gives rise to the complexification of a metric@16#.
However, to avoid subtleties which are irrelevant for the is-
sue under consideration, I will list a metric at once in the
Lorentzian form. After expandingN2 and Nf in a power
series nearr 5r 1 and using the substitution~4! one can ob-
tain

ds25r B
2@2dt1

2 sinh2 x1dx21~df1V1dt1!2#,

V15~sinh2 x/2!4r B , ~22!

where time is normalized according tot152pT0t. Now only
two dimensionless parameters are independent among all
boundary data—say 1/r B andq, whereass is determined by
Eq. ~21!.

Thus, we obtained the generalization of the BR metric to
the case of rotation as the limiting form of 211 holes in the
state under discussion.

It is worth noting that ifs→0 (T→`) we obtain the
extreme state not simply at finite temperature but even in the
high-temperature limit. In so doing,q→0 according to Eq.
~21!, so the extreme hole (J5Ml ) is slowly rotating.

To summarize, it turned out that in the topological sector
of nonextreme black holes a metric takes the universal form
near the extreme state. Its classical geometry is described by
a single parameterr B which enters the metric simply as a
scale factor in the static case and by two parameters for
rotating 211 holes. The essential feature of the obtained
solutions is the absence of singularities of spacetime in con-
trast to the truly ~topologically! extreme black holes for
which singularities exist behind a horizon. Although in the
thermodynamic approach only the regionr .r 1 is relevant,
it is possible that the above results shed light on the issue of
singularities. Indeed, due to properly chosen boundary data
all the range of a radial coordinate shrinks to the pointr
5r 1 in such a way that Lorentzian versions of metrics are
free from singularities. In this sense it is thermodynamics
which is responsible for removing singularities in the Lorent-
zian versions of metrics. Perhaps nature forbids the existence
of truly extreme black holes as thermodynamic objects~see
the beginning of the paper! but gives us instead the hint to
another possible approach to the problems of either the ex-
treme state or singularities in the framework of gravitational
thermodynamics.

Of interest is to generalize the obtained results to non-
spherical and rotating four-dimensional black holes.
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