PHYSICAL REVIEW D VOLUME 56, NUMBER 4 15 AUGUST 1997

Geometry of nonextreme black holes near the extreme state
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A nonextreme black hole in a cavity can achieve the extreme state with a zero surface gravity at a finite
temperature on a boundary, the proper distance between the boundary and the horizon being finite. The
classical geometry in this state is found explicitly for four-dimensional spherically symmetrical ardd 2
rotating holes. In the first case the limiting geometry depends only on one scale factor arftbtbEuclidean
manifold is described by the Bertotti-Robinson spacetime. The general structure of a metric in the limit in
question is also found with quantum corrections taken into account. Its angular part represents a two-sphere of
a constant radius. In all cases the Lorentzian counterparts of the metrics are free from singularities.
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PACS numbdrs): 04.70.Dy

One of the most intriguing issues in black hole physics isdue to To# T cannot arise at all. In the grand-canonical
connected with the nature of the extreme state. In particulagnsemble approach when a system is characterized by the
it concerns the possibility of a thermodynamic description oflocal temperaturdf =8~* and potentiab at the boundary
such objects which is highly nontrivial because the Hawking s it turns out that among all boundary dai@.(g,®,) there
temperaturel, =0 in the state under discussion. In Rgff] ~ €XiSts such a subs¢g,rg,®(p,rg)) for which (i) the ex-
it was suggested to consider such objects as having an arkﬂ—eme state is realized at finite temperatui®, the horizon

trary temperaturd ; measured at infinity which determines as the same area as the boundary surface but is situated at
L 0 i . . ) finite proper distancks from it (unlike the extreme topologi-
the period in Euclidean time. This proposal is motivated b prop & ( po’od

L ) Yeal sector wherég=). In some sense, a nonextreme hole
the qualitative difference between the _topology qf extrememitates the extreme one, §o—0 (but T is finite).
and nonextreme black holes: the Euclidean manifold of an The geometrical properties indicated above are rather un-
extreme one is regular irrespective of the valgen contrast  expected and needed to be clarified. In this paper | show that
with nonextreme holes for which the absence of conical sinfor a wide class of black holes there exists the extreme state
gularities demand3,=Ty. Reasoning connected with to- of nonextreme black holes which has the universal form of
pology [1,2] shows that one should ascribe the entrdpy the limiting metric and find it explicitly. More exactly, |
=0 to extreme holes instead of the Bekenstein-Hawking-onsider(i) spherically symmetrical configurations near the
value S=A/4 (A is the surface area of a horizon extreme state(ii) _the ultraextreme case andi) (2+1)- _
However, further investigations showed that the deviationd'r.nens'or""II rotating black holes. It is rema(kable that n
of T, from its Hawking valueT,;=0 entails unavoidable spite of the variety of types of black hole solutions and their

. i th ¢ fiol arameters, some shortening of description occasswe
divergences in the stress-energy tensor of quantum fields g, see) near the state in question.

ther for two-dimensiondl3] or four-dimensional4] extreme Consider the Euclidean black hole metric

black holes and for this reason the possibilityTef# Ty is

unacceptable physically. One can say that the principle of ds*=f(r)d7*+dr¥/f+r?dw?, dw?=d6?+de? sirfe.
thermal equilibrium is more fundamental than the require- oy
ment of the rbegul_arit?/ f_or tlhe Eucflidean manifﬁl?. The;atter The Euclidean time takes its values in the range 0
turns out to be simply irrelevant for extreme holes and can— +-1_+-1 ; ;

not ensure a well-defined behavior of thermodynamic quan:zrsﬂ- :Cvﬁerlé?ovxlljsés ;nt;ozd;cgrhg:]e new variabler;
tities for quantum fields in a corresponding background. In 0 ! '

the casel = _'I'H_the diffi_cultie_s i_ndicated above are re_m_oved ds?=(pI2m)%d 7-§+ d1?2+r2dw?. 2
but the possibility to build a finite-temperature description of ) )
extreme holes is lost. BLr(1)1=Bo[f(r)]1V? is the inverse local temperature at an

Meanwhile, recently it was tracel] how a black hole a_rbitrary pointr+sr$r_B, r . is the radius of the event ho-
can approach the extreme state in the topological sector {20, ! is the proper distance between andr. N
nonextreme configurations wittS=A/4 when for the For the spacetimél) and (2) the equilibrium condition
Reissner-Nordstr (RN) metricm—e (m is a massg is a reads
charge. In so doing, the thermodynamic equilibrium is ful- — B[ 1/2 T —gr
. " e 1 = r , To=Tu=1'(r)/4m, 3
filled at every stage of the limiting transition, so difficulties B=Bol T(rs)] o=Tu=T'(r)/4m ®

where a prime denotes the derivative with respect to a cor-
responding argumeng is taken at the boundamg .
*Electronic address: oleg.b.zaslavskii@univer.kharkov.ua For the nearly extreme stajg,—o but there exists the
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subset of boundary data for which —rg in such away that in a small vicinity ofr =r, solution (6) refers to thewhole
the limit can be reached at finitg with the finite distance Egyclidean manifold whose four-volume in our case is finite.
| =g betweenr . andrg [5]. In so doing, the coordinate |t is clear from Egs.(6) and (7) that the proper distance
becomes ill defined and it is more convenient to Lsg its  petween a horizox=0 and any other point witkk>0 is
dimensionless analog as a new coordinate. Let us choose tHigite whereas the distance betweer o~ and any othep
coordinate according to <o s infinite. It is this property, which gives rise to quali-
tative distinction between topologies of extreme and nonex-
r—r,.=4aTob Y(sinhx/2)2, b=f'(r.)/2. (4  treme holes and their entropifk,2].
o _ . ' Thus, starting from the original RN metric we arrive in
In the limit in question the region, <r=rg shrinks and  the limit m— e at two different versions of the BR spacetime
we can expand(r) in a power serieg(r)=4nTo(r—r.)  corresponding to different Killing vector gt andd/ot, de-
+b(r—r,)?+--- nearr=r . Then after substitution into pending on a topological sectft0]. That it is Eq.(7) [but
Egs.(2) and(3) we obtain not Eq.(8)] which is relevant for our problem is not inciden-
tal. The Hawking effect is intimately connected with the ex-
ds?=b~}(dry sint? x+dx?)+rgdew? x=IbY2 (5) istence of a horizon which makes the outer region geodesi-
) cally incomplete. Either Eq(7) or Eg. (8) possesses this
For the RN hole=(1—r,/r)(1—r_/r) and in the extreme property but Eq(7) is more incomplete in the sense that only

limit r . =r_=rg, b=rg? Then the partt;> p of Eq.(8) is mapped to Eq(7) as follows from
Egs.(11) and(12). As a result,Ty=(2) ! for Eq. (7) in
ds’=r3(d72 sintf x+dx*+dw?) (6)  accordance with the finite boundary temperature in our prob-
) ) lem whereasT ;=0 for Eq. (8): roughly speaking, the more
(Euclidean versionor information lost, the more there is a temperature.
The BR metric is obtained above from the RN one and for
ds?=rg(—dt? sint? x+dx?+ dw?) (7)  this reason represents only classical geometry. Quantum ef-

) ) o ) fects will certainly change its forn{In particular, Riemann
(Lorentzian version This is nothing more than the cyryatureR+0 in general whileR=0 for the BR space-
Bertotti-Robinson(BR) spacetimg6,7]. o time) It is remarkable, however, thall effects of back re-

That the BR metric is relevant for the description of the 5.tion for the model1) are encoded in the coefficiemt
extreme RN hole was already pointed out in the Iiteratureomy, so the metric is described by E@) instead of Eq(6)
[4,8,9 but in quite different context when the BR solution where b takes its RN valuergz. It is also worth paying

was considered in the t0p0|0gi0621| sector correspond_ing Qitention that the explicit form of boundary data for which
extreme black holes{=(1-r. /r)® from the very begin-  ne state in question is achieve=4mrg®(1—d2) 1 for
ning. Then, expanding the metric coefficients near . and  yha ¢jassical RN holE5]] was not used in derivation at all as
[‘thdEf'”g the new radial variable according to-r. || as the form of field equations. Such universality is ex-
=rgp ~ One obtains plained by that we consider the state for whighdefinition
A ) s 2l o To—0. Quantum effects can change the connection between
ds’=rgp~4(—dt{+dp®+p*dw?). (8 T, and black hole parameters as well as relationship be-
. . . tween boundary datésay, betweerg and ®) for a dressed
Two metrics(7) and (8) look different but in fact are hole as compared with a bare one. Nonetheless, if a theory

equivalent IocaIIy._ This can be seen from the representatiogdmits the existence of an extreme state in the above sense,
of the BR2 spzzslcetlzme as the mzetrlc 2” the2 hyperbo[dﬂ:l the limiting form of the metric with finite boundary condi-
Puttingw?+v?—u?=1, ds?>=du?—dv?—dw? and making tions is described by Ed5)

substitution for the part of the hyperboloid=0 Bearing in mind the possible role of quantum effects, of

) ) . interest is a metric more general than ER).
u=cosht sinhx, wv=sinht sinhx, w=coshx, (9)

_ 2 -1 2 2 2
we obtain Eq(7). Another substitution ds?=U(ndr*+V - H(ndr*+ride’. (13

B B Then, repeating all manipulations step by step we arrive at
u=(2p) H(ti-p?+1), v=(2p) N tf-p?-1),

ds’=b Y(adr?+dx?) +ridw?. (14)
w=p~ 'ty (10
Here a=4sintf x/2(1+c sintfx/2), b=V"(r)/2, ¢
(for simplicity we putrg=1 for a momentgives us Eq(8). =V/(r )U"(r )IV"(r HU'(r ).
Here two coordinate systems are connected by formulas In general, ifc#1 the Riemann curvature is no longer
constant but depends on a point due to effects of back reac-
t,/rg=e' cothx, plrg=e'(sinhx)"%, (11) tions.
The developed approach is also applicable to two-
coshx=t;/p, €= (ti_Pz)/ré- (12) dimensional metrics which can be obtained by discarding the

term dw?. It is known that in the topological sector of ex-
| stress that whereas the BR met(@® gives only the treme holes there arise weak divergences of the stress-energy
approximate representation of the RN one of an extreme holensor of quantum fields on the event horizon discussed re-
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cently in the context of two-dimensional dilaton gravifyl]. y={(1— a?)[1+o0%(1— qZ)]}—UZ,
These divergences are due to the prop&iy 0 [4] and are
absent in our case whefig,;# 0 for the limiting form of the z=20q[ 2+ 02(1— "] Y (1-g?)[ 1+ oX(1—g?)|}12

metric (6) and (14). (20)
Let us discuss briefly the case of so-called ultraextreme
black holes for which, in the extreme, stdte-0 by defini- We are interested in the possibility of finding the finite-

tion [12]. One can check that finite boundary conditions aretemperature solutions of these equations for the extreme state
again possible due to, —rg in spite of Ty—0. In this case (o0<w,z=1). It is seen from Eq(20) directly that such a
the substitutiorr —r , = 7 Ty12 shows that terms of the third solution does exists =1 (r . =rg as well as in the 31
order and higher in the expansion tfr) nearr=r, are case and boundary data are restricted by the condition
negligible and
o=a/(1-q°). (21)
ds?=12d72+dI?+ridw?. (15) _ o y
The thermodynamic description needs the transition from
In other words, we obtain the direct product of the two-the Lorentzian picture to the Euclidean one that for rotating

dimensional Rindler space and a two-sphere of a constafoles gives rise to the complexification of a metfib].
radius. However, to avoid subtleties which are irrelevant for the is-

| stress that this result is by no means the trivial consesue under consideration, | will list a metric at once in the
quence of the known fact that the metric of a generic black.orentzian form. After expanding\® and N* in a power
hole can be represented by the Rindler one near the horizofgries near =r, and using the substitutiof) one can ob-
Such representation is approximate, valid only in a smalfain
region of spacetime near the event horizon, approximate to a

nonextreme black hole and has nothing to do with the ther- d?=r3[ —dt? sint? x+dx?+ (d¢+Q,dt;)?],
modynamic approach we deal with. Meanwhile, our black
hole is ultraextreme and the four-dimensional volume of a Q.= (sink? x/2)4rg, (22)

Euclidean manifold is finite. The metrid5) appeared as a

result of the limiting transition from the nonextreme statewhere time is normalized accordingttp=27Tot. Now only
whenf’(r ) is small but nonzero whilé¢”(r ,)=0 by defi-  two dimensionless parameters are independent among all
nition; had we started from the metric with=const( boundary data—say 4 andq, whereasr is determined by
—r,)% at once we would have obtained the metric which hassq. (22).

nothing to do with Eq(15). Thus, we obtained the generalization of the BR metric to
Now we will analyze the case of 21 black hole§13]  the case of rotation as the limiting form oft2L holes in the
which is achieved due to rotation. The metric refti3] state under discussion.
It is worth noting that ifc—0 (T—«) we obtain the
ds?=—N2dt?+ N~ 2dr2+r?(N¢dt+d¢)?, extreme state not simply at finite temperature but even in the

high-temperature limit. In so doingy— 0 according to Eg.
N2=—M+(r/1)2+J3%4r2, N¢=-J/2r2. (16) (21), so the extreme holeJ& M) is slowly rotating.
To summarize, it turned out that in the topological sector
As we will be interested in the metric near the horizan of nonextreme black holes a metric takes the universal form
it is convenient to redefine the angular variable according téear the extreme state. Its classical geometry is described by

é— d—N%(r )t. Then a single parameterg which enters the metric simply as a
scale factor in the static case and by two parameters for
ds?= — N2dt2+ N~ 2dr2+r2(N¢dt+d¢)?, rotating 2+1 holes. The essential feature of the obtained

solutions is the absence of singularities of spacetime in con-
trast to the truly(topologically extreme black holes for
which singularities exist behind a horizon. Although in the

. L thermodynamic approach only the regiorr , is relevant,
Following the general approach for finite-size thermody-it is possible that the above results shed light on the issue of

hamics (.)f 2r1 holes(see[14,1_&'i and references the_re)iret singularities. Indeed, due to properly chosen boundary data
us consider the grand-canonical ensemble for which the S%ﬂl the range of a radial coordinate shrinks to the paint

of boundary conditions includes in the case under discussion

! . =r, in such a way that Lorentzian versions of metrics are
r'e, B and the angular velocitf) of the heat .bath with re- free from singularities. In this sense it is thermodynamics
spect to zero angular momentum observers:

which is responsible for removing singularities in the Lorent-
zian versions of metrics. Perhaps nature forbids the existence

N?=J(1/2r% —1/2r?). 17

Q=IN"Y(VZi-1/2x?), 18 of truly extreme black holes as thermodynamic objéste
the beginning of the papebut gives us instead the hint to
B=PBoN, Bo=2mr,(M2—J3%/1?)" 12, (199  another possible approach to the problems of either the ex-

treme state or singularities in the framework of gravitational
It is convenient to introduce dimensionless quantitles thermodynamics.
=r,Irg, q=Qr, o=B/27l, z=JI/MI. Then after some al- Of interest is to generalize the obtained results to non-
gebraic manipulations one obtains from E@kB) and (19) spherical and rotating four-dimensional black holes.
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