PHYSICAL REVIEW D VOLUME 56, NUMBER 4 15 AUGUST 1997

Attractive or repulsive nature of the Casimir force for rectangular cavity
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The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that
confine the massless scalar field is reexamined f@ & {)-dimensional rectangular cavity with unequal finite
p edges and different spacetime dimensidni this paper. With periodic or Neumann boundary conditions,
the energy is always negative. The case of Dirichlet boundary conditions is more complicated. The sign of the
Casimir energy satisfying Dirichlet conditions on the surface of a hyper€atmvity with equal finitep
edge$ depends on whethegr is even or odd. In the general cagecavity with unequap edge$, however, we
show that the sign of the Casimir energy does not only depend on wieiherdd or even. Furthermore, we
find that the Casimir force is always attractive if the edges are chosen appropriately. It is interesting that the
Casimir force may be repulsive for ogdcavity with unequal edges, in contrast with the same problem in a
hypercube cas¢S0556-282(97)00116-]

PACS numbd(s): 04.62+v, 03.65.Ge

I. INTRODUCTION value of spacetime dimensidy, , which depends op, such
thatE?>0 for D<Dg, andEg is shown to be always nega-
The study of vacuum fluctuations, as embodied in theive for D=D.. However, it is not surprising that existence
Casimir effect[1], has been a subject of extensive researctof critical value D. depends on whethgy is even or odd,
[2]. The Casimir effect is essentially a polarization of thebecause authors of Ref8] have assumed ;=L,=---
vacuum of quantized fields which arises because of a changelL,=L for simplicity. Actually, in the general case of a
in the spectrum of vacuum oscillations when the quantizatior®-dimensional spacetime the sign of the Casimir energy may
volume is bounded, or some background figddy., gravity ~ depend on(@ the spacetime dimensionalityh) the type of
is presented. Early investigations of the effects of a gravitaboundary conditionsic) the numbeip of independent direc-
tional background were performed by Ut|yama and DeWitttionS with finite extension of the Space regiOn that constraints
[3], and work has continued on this important subjetit  the field, (d) the relation between the lengths of these finite
Historically, the first prediction of the effect of boundaries P €dges,(€) the gravitational backgroundf) the compact-
was performed by Casimifi]: An attractive forceF  N€SS of spacetime, arg) the finite temperature. Lukog®]
= —(w?/240a%* should act on a unit area of two conducting has argued that the Casimir energy associated with an elec-
plane-parallel plates in vacuum, wheads the distance be- tromagnetic field quantized inside a perfectly conducting box

tween the plates. An attraction of this sort was subsequentl?dgeg‘l’ Lz, L3, may change sign depending on the re'?'
. : ; Ive lengths. A similar behavior has been shown to occur in
observed experimentallf5]. For plates 1 crhin area with

—05 the f 0.2 dvn. i q ith th the case of a massless scalar field in a three-dimensional
a=b.o nm, the force was=u.2 dyn, In accoraance wi € parallel-epipedal cavity with Dirichlet boundary conditions

theoretical prediction. Another physical situation where the[lO]. In this paper, the consequences(ef-(g) will not be
Casimir effect has been of great importance is in the bagjiscyssed, and we will discuss the Casimir effect of massless
models of QCD{6]. o scalar field for a rectangular cavity with unequal edges and
The question of whether the Casimir effect for a rectan-pjrichiet boundary conditions iD-dimensional Minkowski
gular cavity with unequal edges and different spacetime d"spacetime.
mensions gives rise to an attractive or repulsive force be-' gy physicists would nowadays argue against the state-
tween the configuration boundaries that confine the field isnent that ther-function regularization procedure has proven
up till now unsolved and will be discussed in this paper. Inyg pe 3 very powerful and elegant technique. Rigorous exten-
the general case of R-dimensional spacetime, for a mass- sjon of the proof of Epsteiri-function [11] regularization
less scalar field quantized inside a box V\pﬂedges.of equal has been obtained12,13. Recently, the generalized
lengthL;=L,=---=L,=L andD—1-p edges with char-  ~fynction has many interesting applications, e.g., in the
acteristic lengti\>L, the sign of the Casimir energifg is piecewise string14] and p-branes[15]. It may be worth
always negativé7]. For Dirichlet boundary conditions, the emphasizing that the Riemarrfunction is the functional
sign of E; depends on whether is even or odd8]. When  function associated with the rectangular cavity of equal
the number of finite and equal edges of a rectangular box iedges, and the Epstefrfunction is the functional function
odd it is analytically shown thafg<0 for anyD. On the associated with that of unequal edges. In this paper the sign
contrary, whenp is even there exists a particular critical of the Casimir energy and the nature of the Casimir force
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associated with a massless scalar field trapped inside a resthere Epsteinf functionEy(a,,a,,...,a,;) is defined as

angular cavity(with p finite and unequal edges am—p

—1 infinite edgesin D-dimensional spacetime is discussed
for different lengths of these finite edges. We find that the

) P —S
Ep(@1,85,...,8p;8)= (Z ajnjz) )

{n}=11\j=1

sign of the Casimir energy depends on the relative lengths of

edges. Furthermore, we show that the Casimir force is alForp=1 the same result as published in & is obtained:
ways attractive if the lengths of edges are chosen appropri-

ately. The Casimir force may be repulsive for odd-
dimensional cavity (>>1) with unequal edges, in contrast

with the same problem in a hypercube case.

Il. CASIMIR ENERGY IN D-DIMENSIONAL
MINKOWSKI SPACETIME

In calculations on the Casimir effect, extensive use is
made of eigenfunctions and eigenvalues of the corresponding

[ _ _ ~massless scalar fieldihe energy density2.8) can be written as
#(1,x3,x") defined in aD-dimensional Minkowski space-

field equation. A Hermitian

time satisfies the free Klein-Gordon equation:

(5= (1,2 x") =0, (2.1)
where i=1,...D—-1; a=1,...p; T=p+1,...D—1. The
field is confined in the interior of[§ — 1)-dimensional rect-
angular cavity ) with p edges of finite lengths

Li,Ls,...,Lp andD —1—p edges with characteristic lengths
of orderA>L,. We consider the case of Dirichlet boundary
conditions, i.e.(t,x?,x")|,o=0. The modes of the field are

then
. NymXq Ny mXo A np’ﬂ'xp ik et
dimp=sin sin --sin efTxreT! e
{n} L, L, Ly
(2.2
2 2 2
nqm Ny Ny
2_ 1,2 1 2 p
=ki+|—| +|-——]| +-+|-— :
e R R e B

where{n} stands for a short notation of; ,n,,...,n,, and

n, is a positive integer. In the ground stdt@acuum each of

these modes contributes an enetgy?2. The total energy of
the field in the interior of} is thus given by

D-1 o0

1
en= 11 (Llew)de—p—lkZ > ok

T=p+1 {n}=1

(2.9

We define the energy densLﬂE(Ll,Lz,...,Lp) as a function
of the finite lengthL,,L,,...,.L, of p edges:

D
&
ep=Tp1— (2.9
Ly
T=p+1
Using the Eqs(A4)—(A6), Eq. (2.5 becomes
77_(D—p)/2 D_p
SE(Ll,LZ,...,Lp)Z—W <_T)
<E 1 1 1 D—p)
_25 _25---1_21_— )
PILT L5 LG 2

(2.6

(D12

b -D
81(L1):_2DL?—1 r 2 é’(l_D), (28)

where {(s) is the usual Riemang function. Using the re-
flection formula

r(g) WS’2g(s)=r<?> 752 (1-5), (2.9
(2.10

s?=—(2@)‘DLi‘DF(% {(D).

This result is finite for all positivéd’s, and is always nega-
tive. In the limitL,;—«, Eq.(2.10 gives the energy density
of the field in the absence of the plates.

lll. THE SIGN OF THE CASIMIR ENERGY DENSITY
OF p=2, 3 CAVITY

We consider firsp=2 case in which the field is confined
in the interior of O — 1)-dimensional rectangular cavity with
two edges of finite length&,, L, and D—3 edges with
characteristic lengths of ordar>L,,L,. One can see from
Eq. (2.6) that it is not straightforward to ascertain the sign of
the Casimir energy density. For the=L,=L case, Eq.
(2.6) can be regularized using the techniques of RdfS, §|
giving the finite value for the Casimir energy:

2-D

9(L,L)= sy | 2m1-0VT

D—1) '
——|A@L1D-1)

—W—D/ZF(%> A(l,l;D)}, (3.2

where

oo

A(1,1;2)=m;_'m (m2+n?)~", (3.2

where the prime means that the term=n=0 has to be
excluded. The sums of the type in E8.2) can be calculated
efficiently with the help of the Jacok# function [17,18.
Using the Mellin transformation of exp(b,7),

f 7 e ®dr=b"'T'(r), (3.3

0

we have

©

A(1,1;2):%f:7f1m’;’w exf —(m?+n?)7r]dr.
(3.9
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TABLE I. The Casimir energy densities for massless scalar fields satisfying Dirichlet boundary conditions inside a cavity with two
unequal edges in B-dimensional spacetime, whekg is the chosen unit length.

D L,/L=1 1.01 1.05 1.10 1.50 2.00 3.00 5.00
3 0.041 04 0.040 83 0.039 99 0.038 89 0.029 56 0.01762-6.3x10°°% —5.4x102
4 0.004 83 0.004 78 0.004 57 0.004 29 0.00167 —1.8x10°° —8.6x10° —2.2x102
5 0.000 81 0.000 79 0.000 74 0.00065 —-2.6x10°% —1.5x10°% —-3.9x10°% -8.9x10°°
6 0.000 11 0.000 11 9251075 6.4x10°° —-3.1x107% -82x10% -1.8x10°% —3.9x10°°
7 —-19x10° -1.8x10° -23x10°° —-33x10° -2.0x10* —-44x10* -9.2x10* -1.9x10°3

10 -26x10° —-25x10° -23x10°% -23x10%° —-49x10° -87x10° -—16x10% —-3.2x107*
15 —-6.9x10% —-65x10® -55x10°% —-52x10°% -8.7x10% —14x10%> —-25x10° -—4.6x10°°
20 —-3.1x10% -28x10°% -23x10°% -21x10%® —-34x10¢® -52x10°% -89x10°°% —-1.6x107°

Now, using the definition of function, We thus see that the double seri@s3) has been transformed
into a product of known one-dimensional series. Numerical

2 calculations show that the energy density is positive Dor
93(0,Q)Em:z_m qm, (3.5  <6. However, it can be shown that the energy density be-

comes negative for integer valuBs=7. The authors of Ref.
and settingy = exp(~7), we find, from Eq.(3.4), [8] argued that there exists a particular critical value of

spacetime dimensioD . ,EE shown to be always negative in
1 o p in even cases.
A(1,1;2r)= m fo | 0%(0,e*f)—1], (3.6 In theL,#L, case, Eq(2.6) is reduced to
D-2
where the subtrahend in the square brackets stems from the ¢D=— E (ﬁ) r(g) Ez(—lz1 _12; Q)
absence of a term witm=n=0 from Eq.(3.2). The known 212 2 L L3 2
representatiofil9] (3.10

which can be regularized in elegant way by means of the

- ' S bidmensional Epstein function. By making use of the Mellin
—[93(0,(1) 1]= 2‘1 1+q2' Z 20 —1)lq'@* Y, transform
3.
39 1 1 2-D 1 Y
the Eq.(3.2) can be reduced as Ez 2| 2 L2’ > |~ (2—D> nl%zl . drr
A(LLi2)=44(N) A1), (3.9 ?

n\2 (n,\?
where {(r) is the Riemanry function andB(r) is the Di- Xexp[ -7 (—1 +(—2 ]
richlet series: namely, Ly Lo

(3.11
B(r)= 2 (-1 (3.9 and the modified Bessel functions of the second ki{ad),
j+1)" one can obtain
1 1 2-D\ 1 . ., Vo[ L Ly F(z)g(l_D)
T2, T2 T (LT ~+L5 7)i(2— D)“‘ 5-1+t D=1
Ly’ Ly 2 2 L7 L; (Z—D)
l" _
2
D-1
41D (3/2)DF(_) {(D-1)
_ZF 2-D| L5 1F( )f(D)"‘ 2D "D r
2 2
2p(2-D)12 o n,|(@-172 L,
+ 2-D 2 (n—z) K(Dl)/Z(Zﬂ- L_l nlnz). (312

r

D-1)/2y (D—3)/2 N1:N2=1
)L<1 2P
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From Egs.(3.10 and(3.12, we have

D-1 D
F(T) {(D-1) F(f) ¢(D) (Lz)

e5(Lq,Ly)= 20 D2 —(O-112 D72 L,
L, (3-D)l2 n, (D-1)12 27n;n,L,
—4(—) — Ko-vel ——— 313
Ll ny,np=1 Ny I—l
|
The sum of the converging series can be calculated effi- o o 1-pelD 5
ciently with the help of the expansion e5(Ly,Lo)=—Ly(2m) PLIPT o |4(D)=Laer(Ly).
(3.1

k=

o0 k
T 1 1

Ku2)= 5, e*ZEO Kl (82)F Hl [4v*=(2)-1)?].
: (3.14 Sincee? is always negative and>(L,,L,) is a continued

function forL,>0, there exists a critical ratip., such that
Table | shows the Casimir energy dens&i& for ng and  the energy densitg>(L,L,)<O if L,y/Ly>uc. Further-
D=3,4,..,7,10,15,20, where we have ChOSE[l unit. As more, there exists @, symmetryL,«L, for energy func-
expected, the result of Caruso, Neto, Svaiter, and Svider tion. We now have proved exact argument that is stated as
is reconfirmed by this numerical calculation, taking into ac-fo|lows: There exists a critical ratip., such that the sign of
countIle L. IThef'C:JdNeS ?f the C%slmlr]rl etnirgy cojlensny fodr,the Casimir energy is negative if,>ucl,; or 0<L,
massless scalar fields satisfying Dirichlet boundary condi-_  ~1| o (D—1)-dimensional rectangular cavity with

tions inD=3,4 cases are shov_vn in Fig(al Fpr D=5, 6, .two finite edges and — 3 edges with characteristic lengths
and 7, the curves of the Casimir energy density are shown in

Fig. 1(b). Figure 1c) shows the curves of the Casimir energy of o.rdc-ar 7‘>L1'|72' L 1L1_<L2<'“°L’ the sign of the
density as functions of ,/L, in D=10, 15, and 20 cases. Casimir energy is also negativelf=7. -

There exists an evident minimum &t/L,;=1 asD in- Whenp is odd the sign of the Casimir energy of a mass-
creases. Numerical calculations also show that there exists!@ss scalar field satisfying Dirichlet conditions is always
maximum atL,/L;= u,adD). Table Il shows theu,(D)  Negative whatever the value @ in the hypercube cases.
and &5 at Lo/L1=tmax and 3, at Lo/L;=1 for D

=6,7,..,20. Furthermore, numerical calculations show that

there exists a particular critical ratpp.=2.737 such that the ) o N
energy densitys2D<0 if Lo/Ly>pe OF Ly/Ly> u for any TABLE II. The maximum value of the_ Casimir energy de_r?smes
dimensionD. In the critical ratioL,/L;=u, or Li/L, at LZ/Ll:“maX. .for r.na.SSIeSS sc.alar .flelds satisfying D'”Ch.let
_ . - . boundary conditions inside a cavity with two unequal edges in a
= pc, EQ.(3.13 gives the energy density of the field equal D-dimensional spacetime, whelle, is the chosen unit length
to that in the absence of the cavity. These are interesting, bllUleantime the values QfD’ atL :T_ are listed to contrast with-
they are rather weak results for we are using the curves iQD ' 2 roe

Fig. 1. However, we can prove that these results are exact i™>"

the D-dimensional Minkowski spacetime. D Lo el e (Ly.Ly)
If we assumedL,=AL;, where\ is the characteristic
length of L+(T=p+1,...D~—1), Eq.(3.13 can be written 6 1+(1x1077) 0.000 114 640 7 0.000114 640 8
as 7 1.0102 —0.0000192394 -0.0000194771
8 1.0375 —0.000 036 6757 —0.000 038 696 2
D—1 D 9 1.0575 —0.000 0311072 —0.000034 1599
. L, F(T) {(D-1) F(;) {(D) 10 1.0724 —0.000 0231299 —0.000 026 376 2
e2(L,,L,)= _ _ - 11 1.0830 —0.000016 7097 —0.0000197328
2tk 2oLy D2 o 12 1.0911 ~0.0000121189 —0.000 014 779 5
o n.\ (D-1)2 13 1.0968 —0.0000089401 -—0.0000112286
—4)\(1-D)2 E (_1) 14 1.1008 —0.000 006 746 8 —0.000008 704 2
nynp=1\MN2 15 1.1034 —0.000005 2212 —0.0000069027
16 1.1049 —0.000 004 1471 —0.000 005 605 9
17 1.1058 —0.0000033808 —0.000004 3828
XKp-1)2(2mAN1Ny) | . 3.15 18 1.1063 —0.000 002 827 6 —0.000 003 973 1
19 1.1065 —0.000 002 4248 —0.000 003 4650
20 1.1067 —0.0000021304 —0.0000030916

In the limit A\ — >, we have
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FIG. 1. The curves of the Casimir energy density as functions,dL, in D-dimensional spacga) D=3,4; (b) D=5,6,7; (c) D
=10,15,20. According to the Casimir energy density, there exigtssymmetryL <L, . As in this figure, we choosk, as unit, so using

the value atL,/L,;>1 we can find the value dt,/L;<1. For example, the value fdr,/L,=0.5 clearly equals to 1/4 value fdr, /L,
=2.

The question whether the Casimir energy for the unequal finitglges gives rise to a positive or a negative sign will be
discussed here. For simplicity, we tage=3 in Eq.(2.6), 83'? can be written as

e A

1 1 ;_1 (3'17)
L3y 2

—

which can be regularized by means of the Mellin transform. We have
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Tl Rlel 5

Z e et
” K e 21(3-D+2k)/4
1 1 n n
- L3-DP2  (16m) KLk D—2)2—(2i—1)2 n(1-D- 2k)/2( 2) +(_3)
(2) 2 (16m) KL ,—Uo[( )2— (2] )]nlvnzZnS:l ) L) G
n2 n3 211/2
Xexp —27wbng L2 + L_s . (3.18

We may use the same steps as above to write
83?(|—1aL2L3):|—182D(|—2,L3) (3.19

in the limit L;>L,,L3. Sincesg(Ll,Lz,L3) is continued forL,>0, there exist critical valueg., andD., such that the
energy density.;?>0 forL;>pucL,Lo=L3z=L,D<Dg; andsg’<0 forL;>ucL,L,=L3;=L,D>D.. Numerical calculations
show u.=5.287 andD.= 6. Therefore, the behavior o:"zj(Ll,Lz,L3) looks to beSzD(Lz,L3) when the edges are chosen
appropriately. Similarly, we can prove

e5(Ly,Ly,Lg)=L;loe(La), (3.20

in the limit L,,L,>L5. It is obvious that2(L,,L,,L3) is always negative if 3/L, andLs/L, are sufficiently small.

IV. ATTRACTIVE OR REPULSIVE NATURE OF CASIMIR FORCE

The preceding researches can be generalized tp aAfter some work, we obtain recursion relations of the Casimir energy
density

5 7P~P2 ph—D 1 1 p-D
Sp(Ll,Lz,...,Lp): 2D7p+2 r 2 Ep*l L_%,...,F, T

w(P-prL2 p—D-1 1 1 p-D-1
T T oD-p+2 LI 2 Ep—1| 72, 723 — 2

1 1
— o LY 5 o (16m) kleH[p D-1)*-(2j-1)’]

o]

2

2 ng) 2] (P~0+ 204 N, ny) 242
X n{p~ D2k 2>’2( ) +---+(—) exp{—Zﬂ'L n (— + --+(— ]
{r;l L, Lp o L2 Lp
4.9
If we assumed finite edged.,,...,L4>Lg:1,....L, and repeat Eq4.1), we have
ep(Libgbgeibp)=LiLggpq(Lgsts--mLp)- 4.2

From the continuity of functiomE(Ll,...,Lq,Lq+1,...,Lp), we obtain the following argument: If the lengths effinite
edges are much longer than thosepof g edges, the nature of the Casimir energy depends on the valpe of Whenp
—-g=1, s,? is always negative. Whep—qg=even andLy,,=---=L,=L, there exists a critical dimension f@|3D. When
D=<D¢, the sign of the Casimir energy is positive. When-D, the sign of the Casimir energy is negative.

By using Eq.(2.10, the Casimir force per unit area in tlpe=1 case is attractive for any value bf and of magnitude

-d(e?/IL)  D-1
oL, LD

D
r(;)@ﬁ)%(m. 4.3

The pressure of the vacuum between the plates is thus negative. Similarly, we have
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D
55 1 F(i)m’) . 2(L2)<1D>/2 - (nl)(Dl)’zK (27TL2n1n2>
aLZ_ZD WD/ZL?—l ( ) L, o1\ Ny (D-1)/2 L,
LZ)(SD)IZ * (nl)(Dl)lz (ZWLGlnz)
+4| — — 2mNnN.K p_ EEEr— 4.4
L, ny o1\ g TN (p-3)2 L, (4.9

2<R2f(\/x§+ XA A% dXy

" (AD)

simir force is attractive at £L,/L,<puma and it is repul-
sive atL,/L1>umax- Therefore, the Casimir force may be
repulsive for oddp cavity with unequal edges, in contrast
with the same problem in a hypercube case. In faftis  The generalized polar coordinate transformation is
very complicated in that its attractive or repulsive nature de-

pends on the appropriate choice of edgelengths in the

D-dimensional spacetime. X1=T1 COSpy,

The results obtained in this paper permit us to discuss a
possible application. We considema= 3 rectangular cavity
with walls of infinite conductivity. The electromagnetic field
then satisfies the boundary conditionB=0 and nXE
=0. Following Ambjorn and Wolfram 7], the Casimir en- X3=T Sing;Sing,, (A2)
ergy ®Me3(L,,L,,L3) of the electromagnetic field can be
written in terms of the massless scalar field as

in the p=2 case. Using Table II, we can find that the Ca- s f f
B Xt x

Xo=Tr Sing;C0Sps,

Xn—1=T1 SiNg;SiNg,- - SiNg,_2C0Spy_1,

€Mea(Ly,Lp,Lg)=2e5(Ly,Ly, L) +e3(Ly,L5) o . _
Xn=T SiNg,SiNg,- - -Sing,_»Sing,_,
+e3(Ly,Ly)+ed(Lly,Lsy). (4.5
. and the Jacobian is
Use will also be made of the well-known fd&,20] that the
order of magnitude of the electromagnetic zero-point energy
does not change if one deforms a spherical shell of radius _ D(X1,Xz,...Xn)
a into a cubic shell of length, withh ~2a. On the other T D(N @1, Pro1)
hand, the Abraham-Lorentz model describes the electron as a (A3)
conducting spherical shell of radias To guarantee the sta-
bility of the electron Poincare stresses had to be postulated!sing Egs.(A2) and (A3), we have
Casimir[21] proposed to extend the classical electron model
by taking into account the zero-point fluctuations of the elec- R -
tromagnetic field inside and outside of the conducting shell. G:f rnflf(r)dr-f sin"™2 ¢,de;- -
Unfortunately, the Casimir model of the electron fails, at 0 0

rn_lsinn_z(Plsinn_s(Pz .. .Sil’kpn_z .

least in theL;=L,=Lz~2a case, because the Casimir en- - om
ergy of anS? electron is positive from Eq4.5). Does this xf Sing,_,d@,_o- den_
argument still hold for rectangular cavity? The answer is no, 0 0
and it can be shown that the zero-point energy is negative 22 (R
when we choose lengths of edges, appropriately. We take, = f r"Lf(r)dr. (A4)
for example L;=1.6 and L,=L3=1, then ®Mgi~—2 F(E) 0
x 10" 3. Therefore, Casimir-like model of electron could be
stable. Note that, in this case, the condition of stability will
be satisfied only for a particular shape and size. Let
Finally, we shall give a brief discussion. When there is
more than one finite length, there should be nontrivial quan- N
tum effects due to the corners and edges. By using the Ep- B(p,q)zJ ———p¥q: P>00>0. (A5)
stein Z-function technique, these effects have been included o (1+1)
in this paper.
The functionB is called the beta function, one can show that
APPENDIX: SOME USEFUL DEFINITE INTEGRALS

This Appendix derives formulas for the Casimir energy in B(p.q)=B(q.p) I'(p)I'(a) (A6)
Sec. Il. We consider first multiple integral ' ’ F(p+aq)’
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wherel functionI'(p) is defined

F(p)=J:xp‘1 exp(—x)dx, p>0. (A7)

LI, CHENG, LI, AND ZHAI

In the terms of thd™ function, one can show

n

(2n—1)!! (A8)

r(-n+3)=(-1)" (n=12,..).
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