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The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that
confine the massless scalar field is reexamined for a (D21)-dimensional rectangular cavity with unequal finite
p edges and different spacetime dimensionsD in this paper. With periodic or Neumann boundary conditions,
the energy is always negative. The case of Dirichlet boundary conditions is more complicated. The sign of the
Casimir energy satisfying Dirichlet conditions on the surface of a hypercube~a cavity with equal finitep
edges! depends on whetherp is even or odd. In the general case~a cavity with unequalp edges!, however, we
show that the sign of the Casimir energy does not only depend on whetherp is odd or even. Furthermore, we
find that the Casimir force is always attractive if the edges are chosen appropriately. It is interesting that the
Casimir force may be repulsive for oddp cavity with unequal edges, in contrast with the same problem in a
hypercube case.@S0556-2821~97!00116-1#

PACS number~s!: 04.62.1v, 03.65.Ge

I. INTRODUCTION

The study of vacuum fluctuations, as embodied in the
Casimir effect@1#, has been a subject of extensive research
@2#. The Casimir effect is essentially a polarization of the
vacuum of quantized fields which arises because of a change
in the spectrum of vacuum oscillations when the quantization
volume is bounded, or some background field~e.g., gravity!
is presented. Early investigations of the effects of a gravita-
tional background were performed by Utiyama and DeWitt
@3#, and work has continued on this important subject@4#.
Historically, the first prediction of the effect of boundaries
was performed by Casimir@1#: An attractive force F
52(p2/240a4) should act on a unit area of two conducting
plane-parallel plates in vacuum, wherea is the distance be-
tween the plates. An attraction of this sort was subsequently
observed experimentally@5#. For plates 1 cm2 in area with
a50.5 mm, the force was'0.2 dyn, in accordance with the
theoretical prediction. Another physical situation where the
Casimir effect has been of great importance is in the bag
models of QCD@6#.

The question of whether the Casimir effect for a rectan-
gular cavity with unequal edges and different spacetime di-
mensions gives rise to an attractive or repulsive force be-
tween the configuration boundaries that confine the field is
up till now unsolved and will be discussed in this paper. In
the general case of aD-dimensional spacetime, for a mass-
less scalar field quantized inside a box withp edges of equal
lengthL15L25•••5Lp5L andD212p edges with char-
acteristic lengthl@L, the sign of the Casimir energyEp

D is
always negative@7#. For Dirichlet boundary conditions, the
sign of Ep

D depends on whetherp is even or odd@8#. When
the number of finite and equal edges of a rectangular box is
odd it is analytically shown thatEp

D,0 for any D. On the
contrary, whenp is even there exists a particular critical

value of spacetime dimensionDc , which depends onp, such
thatEp

D.0 for D,Dc , andEp
D is shown to be always nega-

tive for D>Dc . However, it is not surprising that existence
of critical valueDc depends on whetherp is even or odd,
because authors of Ref.@8# have assumedL15L25•••
5Lp5L for simplicity. Actually, in the general case of a
D-dimensional spacetime the sign of the Casimir energy may
depend on~a! the spacetime dimensionality,~b! the type of
boundary conditions,~c! the numberp of independent direc-
tions with finite extension of the space region that constraints
the field, ~d! the relation between the lengths of these finite
p edges,~e! the gravitational background,~f! the compact-
ness of spacetime, and~g! the finite temperature. Lukosz@9#
has argued that the Casimir energy associated with an elec-
tromagnetic field quantized inside a perfectly conducting box
edgesL1 , L2 , L3 , may change sign depending on the rela-
tive lengths. A similar behavior has been shown to occur in
the case of a massless scalar field in a three-dimensional
parallel-epipedal cavity with Dirichlet boundary conditions
@10#. In this paper, the consequences of~e!–~g! will not be
discussed, and we will discuss the Casimir effect of massless
scalar field for a rectangular cavity with unequal edges and
Dirichlet boundary conditions inD-dimensional Minkowski
spacetime.

Few physicists would nowadays argue against the state-
ment that thez-function regularization procedure has proven
to be a very powerful and elegant technique. Rigorous exten-
sion of the proof of Epsteinz-function @11# regularization
has been obtained@12,13#. Recently, the generalized
z-function has many interesting applications, e.g., in the
piecewise string@14# and p-branes@15#. It may be worth
emphasizing that the Riemannz function is the functionalz
function associated with the rectangular cavity of equal
edges, and the Epsteinz function is the functionalz function
associated with that of unequal edges. In this paper the sign
of the Casimir energy and the nature of the Casimir force
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associated with a massless scalar field trapped inside a rect-
angular cavity~with p finite and unequal edges andD2p
21 infinite edges! in D-dimensional spacetime is discussed
for different lengths of these finite edges. We find that the
sign of the Casimir energy depends on the relative lengths of
edges. Furthermore, we show that the Casimir force is al-
ways attractive if the lengths of edges are chosen appropri-
ately. The Casimir force may be repulsive for odd-
dimensional cavity (p.1) with unequal edges, in contrast
with the same problem in a hypercube case.

II. CASIMIR ENERGY IN D-DIMENSIONAL
MINKOWSKI SPACETIME

In calculations on the Casimir effect, extensive use is
made of eigenfunctions and eigenvalues of the corresponding
field equation. A Hermitian massless scalar field
f(t,xa,xT) defined in aD-dimensional Minkowski space-
time satisfies the free Klein-Gordon equation:

~] t
22] i

2!f~ t,xa,xT!50, ~2.1!

where i 51,...,D21; a51,...,p; T5p11,...,D21. The
field is confined in the interior of (D21)-dimensional rect-
angular cavity V with p edges of finite lengths
L1 ,L2 ,...,Lp andD212p edges with characteristic lengths
of orderl@La . We consider the case of Dirichlet boundary
conditions, i.e.,f(t,xa,xT)u]V50. The modes of the field are
then

f$n%5sin
n1px1

L1
sin

n2px2

L2
•••sin

nppxp

Lp
eikT•xTe2 ivkt,

~2.2!

vk
25kT

21S n1p

L1
D 2

1S n2p

L2
D 2

1•••1S npp

Lp
D 2

, ~2.3!

where$n% stands for a short notation ofn1 ,n2 ,...,np , and
na is a positive integer. In the ground state~vacuum! each of
these modes contributes an energyvk/2. The total energy of
the field in the interior ofV is thus given by

«p
D5 )

T5p11

D21

~LT/2p!E dD2p21k (
$n%51

`
1

2
vk . ~2.4!

We define the energy density«p
D(L1 ,L2 ,...,Lp) as a function

of the finite lengthL1 ,L2 ,...,Lp of p edges:

«p
D5

«p
D

)
T5p11

D21

LT

. ~2.5!

Using the Eqs.~A4!–~A6!, Eq. ~2.5! becomes

«p
D~L1 ,L2 ,...,Lp!52

p~D2p!/2

2D2p11 GS 2
D2p

2 D
3EpS 1

L1
2 ,

1

L2
2 ,...,

1

Lp
2 ;2

D2p

2 D ,

~2.6!

where Epsteinz function Ep(a1 ,a2 ,...,ap ;s) is defined as

Ep~a1 ,a2 ,...,ap ;s!5 (
$n%51

` S (
j 51

p

ajnj
2D 2s

. ~2.7!

For p51 the same result as published in Ref.@7# is obtained:

«1
D~L1!52

p~D21!/2

2DL1
D21 GS 12D

2 D z~12D !, ~2.8!

wherez(s) is the usual Riemannz function. Using the re-
flection formula

GS s

2Dp2s/2z~s!5GS 12s

2 Dp~s21!/2z~12s!, ~2.9!

the energy density~2.8! can be written as

«1
D52~2Ap!2DL1

12DGS D

2 D z~D !. ~2.10!

This result is finite for all positiveD ’s, and is always nega-
tive. In the limit L1→`, Eq. ~2.10! gives the energy density
of the field in the absence of the plates.

III. THE SIGN OF THE CASIMIR ENERGY DENSITY
OF p52, 3 CAVITY

We consider firstp52 case in which the field is confined
in the interior of (D21)-dimensional rectangular cavity with
two edges of finite lengthsL1 , L2 and D23 edges with
characteristic lengths of orderl@L1 ,L2 . One can see from
Eq. ~2.6! that it is not straightforward to ascertain the sign of
the Casimir energy density. For theL15L25L case, Eq.
~2.6! can be regularized using the techniques of Refs.@16, 8#
giving the finite value for the Casimir energy:

«2
D~L,L !5

L22D

2D11 F2p~12D !/2GS D21

2 DA~1,1;D21!

2p2D/2GS D

2 DA~1,1;D !G , ~3.1!

where

A~1,1;2r !5 ( 8
m,n52`

`

~m21n2!2r , ~3.2!

where the prime means that the termm5n50 has to be
excluded. The sums of the type in Eq.~3.2! can be calculated
efficiently with the help of the Jacobiu function @17,18#.
Using the Mellin transformation of exp(2b,t),

E
0

`

t r 21e2btdt5b2rG~r !, ~3.3!

we have

A~1,1;2r !5
1

G~r !
E

0

`

t r 21 ( 8
m,n52`

`

exp@2~m21n2!t#dt.

~3.4!
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Now, using the definition ofu function,

u3~0,q![ (
m52`

`

qm2
, ~3.5!

and settingq5exp(2t), we find, from Eq.~3.4!,

A~1,1;2r !5
1

G~r !
E

0

`

t r 21@u3
2~0,e2r !21#, ~3.6!

where the subtrahend in the square brackets stems from the
absence of a term withm5n50 from Eq.~3.2!. The known
representation@19#

1

4
@u3

2~0,q!21#5(
i 51

`
qi

11q2i 5(
i 51

`

(
j 50

`

~21! jqi ~2 j 11!,

~3.7!

the Eq.~3.2! can be reduced as

A~1,1;2r !54z~r !b~r !, ~3.8!

wherez(r ) is the Riemannz function andb(r ) is the Di-
richlet series: namely,

b~r ![(
j 50

`
~21! j

~2 j 11!r . ~3.9!

We thus see that the double series~3.3! has been transformed
into a product of known one-dimensional series. Numerical
calculations show that the energy density is positive forD
<6. However, it can be shown that the energy density be-
comes negative for integer valuesD>7. The authors of Ref.
@8# argued that there exists a particular critical value of
spacetime dimensionDc ,Ep

D shown to be always negative in
p in even cases.

In the L1ÞL2 case, Eq.~2.6! is reduced to

«2
D52

1

2 SAp

2 D D22

GS 22D

2 DE2S 1

L1
2 ,

1

L2
2 ;

22D

2 D ,

~3.10!

which can be regularized in elegant way by means of the
bidmensional Epstein function. By making use of the Mellin
transform

E2S 1

L1
2 ,

1

L2
2 ;

22D

2 D 5
1

GS 22D

2 D (
n1 ,n251

` E
0

`

dttD/2

3expH 2tF S n1

L1
D 2

1S n2

L2
D 2G J ,

~3.11!

and the modified Bessel functions of the second kindK(z),
one can obtain

E2S 1

L1
2 ,

1

L2
2 ;

22D

2 D 52
1

2
~L1

22D1L2
22D!z~22D !1

Ap

2 S L2

L1
D21 1

L1

L2
D21D GS 12D

2 D z~12D !

GS 22D

2 D

2
p12D

2GS 22D

2 D
L1

L2
D21 GS D

2 D z~D !1

p~3/2!DGS D21

2 D z~D21!

2GS 22D

2 DL2
D22

1
2p~22D !/2

GS 22D

2 DL1
~D21!/2L2

~D23!/2
(

n1 ,n251

` S n1

n2
D ~D21!/2

K ~D21!/2S 2p
L2

L1
n1n2D . ~3.12!

TABLE I. The Casimir energy densities for massless scalar fields satisfying Dirichlet boundary conditions inside a cavity with two
unequal edges in aD-dimensional spacetime, whereL1 is the chosen unit length.

D L2 /L151 1.01 1.05 1.10 1.50 2.00 3.00 5.00

3 0.041 04 0.040 83 0.039 99 0.038 89 0.029 56 0.017 62 26.331023 25.431022

4 0.004 83 0.004 78 0.004 57 0.004 29 0.001 67 21.831023 28.631023 22.231022

5 0.000 81 0.000 79 0.000 74 0.000 65 22.631024 21.531023 23.931023 28.931023

6 0.000 11 0.000 11 9.531025 6.431025 23.131024 28.231024 21.831023 23.931023

7 21.931025 21.831025 22.331025 23.331025 22.031024 24.431024 29.231024 21.931023

10 22.631025 22.531025 22.331025 22.331025 24.931025 28.731025 21.631024 23.231024

15 26.931026 26.531026 25.531026 25.231026 28.731026 21.431025 22.531025 24.631025

20 23.131026 22.831026 22.331026 22.131026 23.431026 25.231026 28.931026 21.631025
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From Eqs.~3.10! and ~3.12!, we have

«2
D~L1 ,L2!5

1

2DL1
D22

F GS D21

2 D z~D21!

p~D21!/2 2

GS D

2 D z~D !

pD/2 S L2

L1
D

24S L2

L1
D ~32D !/2

(
n1 ,n251

` S n1

n2
D ~D21!/2

K ~D21!/2S 2pn1n2L2

L1
D G . ~3.13!

The sum of the converging series can be calculated effi-
ciently with the help of the expansion

Kn~z!5Ap

2z
e2z(

k50

`
1

k!

1

~8z!k )
j 51

k

@4n22~2 j 21!2#.

~3.14!

Table I shows the Casimir energy density«p
D for p52 and

D53,4,...,7,10,15,20, where we have chosenL1 unit. As
expected, the result of Caruso, Neto, Svaiter, and Svaiter@8#
is reconfirmed by this numerical calculation, taking into ac-
countL15L2 . The curves of the Casimir energy density for
massless scalar fields satisfying Dirichlet boundary condi-
tions in D53,4 cases are shown in Fig. 1~a!. For D55, 6,
and 7, the curves of the Casimir energy density are shown in
Fig. 1~b!. Figure 1~c! shows the curves of the Casimir energy
density as functions ofL2 /L1 in D510, 15, and 20 cases.
There exists an evident minimum atL2 /L151 as D in-
creases. Numerical calculations also show that there exists a
maximum atL2 /L15mmax(D). Table II shows themmax(D)
and «2 max

D at L2 /L15mmax and «2 min
D at L2 /L151 for D

56,7,...,20. Furthermore, numerical calculations show that
there exists a particular critical ratiomc52.737 such that the
energy density«2

D,0 if L2 /L1.mc or L1 /L2.mc for any
dimension D. In the critical ratio L2 /L15mc or L1 /L2
5mc , Eq. ~3.13! gives the energy density of the field equal
to that in the absence of the cavity. These are interesting, but
they are rather weak results for we are using the curves in
Fig. 1. However, we can prove that these results are exact in
the D-dimensional Minkowski spacetime.

If we assumedL25lL1 , where l is the characteristic
length of LT(T5p11,...,D21), Eq. ~3.13! can be written
as

«2
D~L1 ,L2!5

L2

2DL1
D21

F GS D21

2 D z~D21!

lp~D21!/2 2

GS D

2 D z~D !

pD/2

24l~12D !/2 (
n1 ,n251

` S n1

n2
D ~D21!/2

3K ~D21!/2~2pln1n2!G . ~3.15!

In the limit l→`, we have

«2
D~L1 ,L2!52L2~2Ap!2DL1

12DGS D

2 D z~D !5L2«1
D~L1!.

~3.16!

Since«1
D is always negative and«2

D(L1 ,L2) is a continued
function for L2.0, there exists a critical ratiomc , such that
the energy density«2

D(L1 ,L2),0 if L2 /L1.mc . Further-
more, there exists aZ2 symmetryL1↔L2 for energy func-
tion. We now have proved exact argument that is stated as
follows: There exists a critical ratiomc , such that the sign of
the Casimir energy is negative ifL2.mcL1 or 0,L2

,mc
21L1 for (D21)-dimensional rectangular cavity with

two finite edges andD23 edges with characteristic lengths
of order l@L1 ,L2 . If mc

21L1,L2,mcL, the sign of the
Casimir energy is also negative ifD>7.

Whenp is odd the sign of the Casimir energy of a mass-
less scalar field satisfying Dirichlet conditions is always
negative whatever the value ofD in the hypercube cases.

TABLE II. The maximum value of the Casimir energy densities
at L2 /L15mmax for massless scalar fields satisfying Dirichlet
boundary conditions inside a cavity with two unequal edges in a
D-dimensional spacetime, whereL1 is the chosen unit length.
Meantime, the values of«2

D at L15L2 are listed to contrast with
«2max

D .

D mmax «2max
D «2

D (L1 ,L2)

6 11(131027) 0.000 114 640 7 0.000 114 640 8
7 1.0102 20.000 019 239 4 20.000 019 477 1
8 1.0375 20.000 036 675 7 20.000 038 696 2
9 1.0575 20.000 031 107 2 20.000 034 159 9
10 1.0724 20.000 023 129 9 20.000 026 376 2
11 1.0830 20.000 016 709 7 20.000 019 732 8
12 1.0911 20.000 012 118 9 20.000 014 779 5
13 1.0968 20.000 008 940 1 20.000 011 228 6
14 1.1008 20.000 006 746 8 20.000 008 704 2
15 1.1034 20.000 005 221 2 20.000 006 902 7
16 1.1049 20.000 004 147 1 20.000 005 605 9
17 1.1058 20.000 003 380 8 20.000 004 382 8
18 1.1063 20.000 002 827 6 20.000 003 973 1
19 1.1065 20.000 002 424 8 20.000 003 465 0
20 1.1067 20.000 002 130 4 20.000 003 091 6
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The question whether the Casimir energy for the unequal finitep edges gives rise to a positive or a negative sign will be
discussed here. For simplicity, we takep53 in Eq. ~2.6!, «3

D can be written as

«3
D52

1

2 SAp

2 D D23

GS 32D

2 DE3S 1

L1
2 ,

1

L2
2 ,

1

L3
2 ;

32D

2 D , ~3.17!

which can be regularized by means of the Mellin transform. We have

FIG. 1. The curves of the Casimir energy density as functions ofL2 /L1 in D-dimensional space.~a! D53,4; ~b! D55,6,7; ~c! D
510,15,20. According to the Casimir energy density, there exists aZ2 symmetryL1↔L2 . As in this figure, we chooseL1 as unit, so using
the value atL2 /L1.1 we can find the value atL2 /L1,1. For example, the value forL2 /L150.5 clearly equals to 1/4 value forL2 /L1

52.
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«3
D5

1

4 SAp

2 D D23

GS 32D

2 DE2S 1

L2
2 ,

1

L3
2 ;

32D

2 D 2
1

2 SAp

2 D D22

L1GS 22D

2 DE2S 1

L2
2 ,

1

L3
2 ;

22D

2 D
2S 1

2D D22

L1
32D/2(

k50

`
1

k!
~16p!2kL1

2k)
j 50

k

@~D22!22~2 j 21!2# (
n1 ,n2 ,n351

`

n1
~12D22k!/2F S n2

L2
D 2

1S n3

L3
D 2G ~32D12k!/4

3expH 22pL1n1F S n2

L2
D 2

1S n3

L3
D 2G1/2J . ~3.18!

We may use the same steps as above to write

«3
D~L1 ,L2L3!5L1«2

D~L2 ,L3! ~3.19!

in the limit L1@L2 ,L3 . Since«3
D(L1 ,L2 ,L3) is continued forL1.0, there exist critical valuesmc and Dc , such that the

energy density«3
D.0 for L1.mcL,L25L35L,D<Dc ; and«3

D,0 for L1.mcL,L25L35L,D.Dc . Numerical calculations
show mc55.287 andDc56. Therefore, the behavior of«2

D(L1 ,L2 ,L3) looks to be«2
D(L2 ,L3) when the edges are chosen

appropriately. Similarly, we can prove

«3
D~L1 ,L2 ,L3!5L1L2«1

D~L3!, ~3.20!

in the limit L1 ,L2@L3 . It is obvious that«3
D(L1 ,L2 ,L3) is always negative ifL3 /L1 andL3 /L2 are sufficiently small.

IV. ATTRACTIVE OR REPULSIVE NATURE OF CASIMIR FORCE

The preceding researches can be generalized to anyp. After some work, we obtain recursion relations of the Casimir energy
density

«p
D~L1 ,L2 ,...,Lp!5

p~D2p!/2

2D2p12 GS p2D

2 DEp21S 1

L2
2 ,...,

1

Lp
2 ;

p2D

2 D
2

p~D2p11!/2

2D2p12 L1GS p2D21

2 DEp21S 1

L2
2 ,...,

1

Lp
2 ;

p2D21

2 D
2

1

2D2p11 L1
~p2D !/2(

k50

`
1

k!
~16p!2kL1

2k)
j 51

k

@~p2D21!22~2 j 21!2#

3 (
$n%51

`

n1
~p2D22k22!/2F S n2

L2
D 2

1•••1S np

Lp
D 2G ~p2D12k!/4

expH 22pL1n1F S n2

L2
D 2

1•••1S np

Lp
D 2G1/2J .

~4.1!

If we assumedq finite edgesL1 ,...,Lq@Lq11 ,...,Lp and repeat Eq.~4.1!, we have

«p
D~L1 ,...,Lq ,Lq11 ,...,Lp!5L1 ...Lq«p2q

D ~Lq11 ,...,Lp!. ~4.2!

From the continuity of function«p
D(L1 ,...,Lq ,Lq11 ,...,Lp), we obtain the following argument: If the lengths ofq finite

edges are much longer than those ofp2q edges, the nature of the Casimir energy depends on the value ofp2q. Whenp
2q51, «p

D is always negative. Whenp2q5even andLq115•••5Lp5L, there exists a critical dimension for«3
D . When

D<Dc , the sign of the Casimir energy is positive. WhenD.Dc , the sign of the Casimir energy is negative.
By using Eq.~2.10!, the Casimir force per unit area in thep51 case is attractive for any value ofD and of magnitude

2]~«1
D/L !

]L1
52

D21

L1
D GS D

2 D ~2Ap!2Dz~D !. ~4.3!

The pressure of the vacuum between the plates is thus negative. Similarly, we have
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2
]«2

D

]L2
5

1

2D
H GS D

2 D z~D !

pD/2L1
D21 24~D22!S L2

L1
D ~12D !/2

(
n1 ,n251

` S n1

n2
D ~D21!/2

K ~D21!/2S 2pL2n1n2

L1
D

14S L2

L1
D ~32D !/2

(
n1 ,n251

` S n1

n2
D ~D21!/2

2pn1n2K ~D23!/2S 2pL2n1n2

L1
D ~4.4!

in the p52 case. Using Table II, we can find that the Ca-
simir force is attractive at 1<L2 /L1,mmax and it is repul-
sive atL2 /L1.mmax. Therefore, the Casimir force may be
repulsive for oddp cavity with unequal edges, in contrast
with the same problem in a hypercube case. In fact,«p

D is
very complicated in that its attractive or repulsive nature de-
pends on the appropriate choice of edgelengths in the
D-dimensional spacetime.

The results obtained in this paper permit us to discuss a
possible application. We consider ap53 rectangular cavity
with walls of infinite conductivity. The electromagnetic field
then satisfies the boundary conditionn•B50 and n3E
50. Following Ambjorn and Wolfram@7#, the Casimir en-
ergy (em)«3

4(L1 ,L2 ,L3) of the electromagnetic field can be
written in terms of the massless scalar field as

~em!«3
4~L1 ,L2 ,L3!52«3

4~L1 ,L2 ,L3!1«2
3~L1 ,L2!

1«2
3~L1 ,L3!1«2

3~L2 ,L3!. ~4.5!

Use will also be made of the well-known fact@9,20# that the
order of magnitude of the electromagnetic zero-point energy
does not change if one deforms a spherical shell of radius
a into a cubic shell of length, withL'2a. On the other
hand, the Abraham-Lorentz model describes the electron as a
conducting spherical shell of radiusa. To guarantee the sta-
bility of the electron Poincare stresses had to be postulated.
Casimir@21# proposed to extend the classical electron model
by taking into account the zero-point fluctuations of the elec-
tromagnetic field inside and outside of the conducting shell.
Unfortunately, the Casimir model of the electron fails, at
least in theL15L25L3'2a case, because the Casimir en-
ergy of anS2 electron is positive from Eq.~4.5!. Does this
argument still hold for rectangular cavity? The answer is no,
and it can be shown that the zero-point energy is negative
when we choose lengths of edges, appropriately. We take,
for example L151.6 and L25L351, then (em)«3

4'22
31023. Therefore, Casimir-like model of electron could be
stable. Note that, in this case, the condition of stability will
be satisfied only for a particular shape and size.

Finally, we shall give a brief discussion. When there is
more than one finite length, there should be nontrivial quan-
tum effects due to the corners and edges. By using the Ep-
stein z-function technique, these effects have been included
in this paper.

APPENDIX: SOME USEFUL DEFINITE INTEGRALS

This Appendix derives formulas for the Casimir energy in
Sec. II. We consider first multiple integral

G5E •••E
x1

2
1•••1xn

2<R2
f ~Ax1

21•••1xn
2!dx1•••dxn .

~A1!

The generalized polar coordinate transformation is

x15r cosw1 ,

x25r sinw1cosw2 ,

x35r sinw1sinw2 , ~A2!

xn215r sinw1sinw2•••sinwn22coswn21 ,

xn5r sinw1sinw2•••sinwn22sinwn21

and the Jacobian is

J[
D~x1 ,x2 ,...,xn!

D~r ,w1 ,...,wn21!
5r n21sinn22w1sinn23w2 ...sinwn22 .

~A3!

Using Eqs.~A2! and ~A3!, we have

G5E
0

R

r n21f ~r !dr•E
0

p

sinn22 w1dw1•••

3E
0

p

sinwn22dwn22•E
0

2p

dwn21

5
2pn/2

GS n

2D E
0

R

r n21f ~r !dr. ~A4!

Let

B~p,q!5E
0

` tp21

~11t !p1q , p.0,q.0. ~A5!

The functionB is called the beta function, one can show that

B~p,q!5B~q,p!5
G~p!G~q!

G~p1q!
, ~A6!
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whereG function G(p) is defined

G~p!5E
0

`

xp21 exp~2x!dx, p.0. ~A7!

In the terms of theG function, one can show

G~2n1 1
2 !5~21!n

2nAp

~2n21!!!
~n51,2,...!. ~A8!
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