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Implications of spontaneous glitches in the mass and angular momentum in Kerr space-time
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The outward-pointing principal null direction of the Schwarzschild Riemann tensor is null hypersurface
forming. If the Schwarzschild mass spontaneously jumps across one such hypersurface, then the hypersurface
is the history of an outgoing lightlike shell. The outward-pointing principal null direction of the Kerr Riemann
tensor is asymptoticallyin the neighborhood of future null infinifynull hypersurface forming. If the Kerr
parameters of mass and angular momentum spontaneously jump across one such asymptotic hypersurface then
the asymptotic hypersurface is shown to be the history of an outgoing lightlike shell and a wire singularity-free
spherical impulsive gravitational wav50556-282(97)02416-8

PACS numbg(s): 04.30.Db, 04.20.Jb

I. INTRODUCTION given explicitly. To rederive the results stated in the present
paper the reader must be familiar with the BI theory. For
In a recent papdrl] the authors studied the physical con- readers who wish to work through the calculations based on
sequences of abrupt changes occurring spontaneously in thee Bl theory we give some intermediate steps in the Appen-
multipole moments of a static axially symmetric isolateddix. The consequences of such calculations can be easily
gravitating body. The conclusion was that a disturbancdollowed independently, however, in the main body of this
propagates with the speed of light away from the sourcdaPer. _ _
which when analyzed near future null infinity is shown to 10 Simplify the presentation and introduce our approach
consist of a spherical outgoing lightlike shell accompaniedVe Present first in Sec. Il the well-knowisee[3], for ex-
by a spherical impulsive gravitational wave. Motivated by @MPIe Schwarzschild example in which the mass of the
the well-known phenomenon of glitches observed in pulsar§OUrce spontaneously undergoes an abrupt but finite change.
[2], we examine in this paper the physical implications of This is also usefl_JI as a spec_|al case of the correspond_lng
glitches in the mass and angular momentum associated withe'" €xample, which is the main point of the paper, given in
the source of the Kerr space-time. We find that in the neigh;sec- IIl. This is followed by a brief discussion of our results
borhood of future null infinity a disturbance consisting of a'n Sec. V.
spherical lightlike shell and a spherical impulsive gravita-
tional wave can be identified. If the Kerr angular momentum [l. THE SCHWARZSCHILD EXAMPLE
vanishes(the Schwarzschild special cashen the gravita-
tional wave does not exist. If the angular-momentum glitch
includes an abrupt change in the direction of the angular

Consider Schwarzschild space-time with the line element

o —
momentum then the gravitational wave has the maximum ——ng—+2dudr+ 1_2_m du?.

two degrees of freedom of polarization. The spherical impul- [1+(1/2)¢)? r

sive gravitational waves appearing in this pafsec. ) and 2.1

in [1] are the only examples of such waves known to the
authors which are free of unphysical directiofat wire) ~ Here u=const are future-directed null hypersurfadesill
singularities(see Sec. | of1] where this is discussgd cones generated by the geodesic integral curves of the null
To study the physical properties of the disturbances menvector field d/dr. This vector field is also the outward-
tioned above we use the Barrabisrael(Bl) theory of light-  pointing principal null direction of the Riemann tensor of the
like shells and impulsive wave8]. This theory is easily Space-time. We wish to consider this space-time undergoing
accessible and a useful description of part of it is also availa spontaneous abrupt change in the masef the source
able in[1] where, in particular, the identification of the across one of the outward null hypersurfaoesO (say and
gravitational wave and the lightlike shell, when both exist, isthen ask: what are the physical propertiesuef0? To do
this we imagine the space-time divided into two halks
corresponding ta>0 andM ~ corresponding ta<<0 both
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dI?=—r2(d#?+sirfed ¢?). (2.2 want to use a form of the Kerr solution which involves the

mass parameter and three components of the angular mo-

We denote the resulting space-time By UM ™. For the  mentum per unit mass. One such form can readily be ob-

space-timeM~UM™ described above there is a stress-tained by first noting that the Kerr solution with massand

energy tensor concentrated a0 of the form angular momentum per unit ma&smay be written in Kerr's
[4] original coordinates {,Z,r,u) [with the simple replace-

MY — v
T SHo(u), 23 ment, as in Eq.(2.1), of the polar angleg6,¢) with the

with x#=(6,,r,u) and 8is the Diracs function. We refer ~COmplex coordinatg=v2e'? tan ¢/2 and its complex conju-

to S** as the surface stress-energy tensor of the lightlikedateZ] in the form

shell with historyu=0 (see[3]). The normal tou=0 is the

null vector with components* given via the one-form - r’+ PZ_ dgd?r 2d2(dr—iP§d§+iPFj§_
+ 2
n,dx*=du. (2.4 [1+(1/2)¢c]
The BI theory[3] gives +S&), @D
. S/w__4[m] - o5 where
ST T ' 1-(12)¢¢ 1 mr
=Al————, S5 (3.2
where[ m] is the finite jump in the mas® acrosu=0. This 1+@1/9¢¢ 2 r°+P
means that there is no stress in the outgoing lightlike shell 4 the one-fornd3, is given by
(as might be expected because the shell is spherical and ex- o
panding and the surface energy density of the shell mea- dS=du+iP,d{—iP;d¢, (3.3
sured by a radially moving observédiscussed irf3]) is a
positive multiple of with P,=dP/d{. The rotation
__ [ml] V2 Sin(61/2)— ¢ cog 6,/2
o=— el (2,6) n( 1 ) { coq 1 ) (3.4)

€' ?1c09 6,/2) + ({Iv2)sin(6,/2)
and so it is natural to assume tHah]<<O for an outgoing
shell. Thus we conclude that the space-tiMe UM™* de-
scribes a Schwarzschild gravitational fig¢ttescribed by the

where 0,, ¢, are constants, leaves the form of E§.1) in-
variant with P replaced by

space-timeM ~) with an expanding spherical light-like shell a (+¢ b g"—§_
propagating through it leaving behind a Schwarzschild field =_ —%jL - —4
described byM * and with mass reduced compared to that of V2 \1+(1/2)¢8) iv2 \1+(1/2)¢¢

M.

In general in the type of situation described hé&uabdi-
vision and re-attachment, or “cut and paste,” of a space-
time on a null hypersurfagahe space-timé~UM™ has a
Weyl conformal curvature tensor containing &function  where
term singular on the null hypersurface and composed of a
matter partwhich is nonzero provided the stress in the shell
is anisotropi¢ and a part describing an impulsive gravita-
tional wave(seg[1] where this is explicitly demonstrated and
[3] for the calculation of these ternsHowever, due to the e thus obtain the Kerr solution with massand angular-
spherical symmetry of the Schwarzschild example above, thgyomentum three-vectai=(ma,mb,mc) having the same
Weyl tensor ofM~UM™ vanishes identically in this case. magnitude but a different direction than the initial ode
ThUS, in particular, the shell above is Unaccompanied by aQ:(O’OmA) Restoring the po|ar Coordinaté&d)) as above

1-(1/2)¢¢

—_—, 3.
¢ 1+(1/2)§9 (39
a=A sind;cosp,, b=A sing;sing,,

c=A co¥;. (3.6

impulsive gravitational wave. we arrive at the line elemefi6]
IIl. THE KERR EXAMPLE ds?=— p?(d#?+sirfad ¢?)+ 2d= (dr—NdH—M sindd ¢
We consider here an analogous situation in the Kerr +Sd), (3.7

space-time to that considered in the Schwarzschild space-. h
time in the previous section. We begin with a form of the WIt
Kgrr space-time whl_ch makes it easy to identify the outgoing p2=r2+P2, P=(a cosp+b sing)sing+c cod,
principal null direction of the Riemann tensor and which

S (3.9
specializes to Eq(2.1) when the Kerr angular-momentum
parameter is put to zero. In addition it will be interesting not
only to consider spontaneous changes in the magnitude of
the Kerr angular momentum but also to include spontaneous
changes in the direction of the angular momentum. We thuand

) 1 mr
d>=du+Ndé#+M sinfd¢, SZE_F' 3.9
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N=—a sing+b cosp, (3.10a there is a stress-energy tensor of the fg&r8) on the null
part of u=0 with surface stress energy described by the
M= —(a cosp+b sing)cosf+c sing. (3.10n  tensorS*” which in this case has components

We note from Eq(3.10 that 1677813=[rl3]+0(r‘4), (3133
E2=M2+N2=m~7|J|2—(n-J)?%], (3.11
: : . [M]csd B
where the unit three-vectorn is given by n 167SB=—75—+0(r %), (3.13h
= (sind cosp,sind sing,cos). Also the outward-pointing r
principal null direction of the Riemann tensor is tangent to 4[m] 2[E?]
the vector fields/ar or equivalently is given via thénonex- 167S¥=— ——+ — +0(r %, (3.139

ach one-formd2 in Eq. (3.9. When this line element is r

written in a Kerr-Schild form in which the flat background is
expressed in rectangular Cartesian coordinates and time
can be shown—sd] in which this is described in detail—
that in the linear approximation it takes the form of the line
element of the space-time outside the history of a slowl
rotating sphere of massn and angular momentund
=(ma,mb,mc), in exactly the same way as Kerr showed—
see[4]—that his original form approximates the line element
of the spacetime outside the history of such a sphere of ma
m and angular momentud= (0,0mA).

In analogy with the Schwarzschild example in Sec. Il we
might expect that a spontaneous abrupt change in the param- 1 [E?]
eters{m,a,b,c} will result in a disturbance propagating o=— g2 [m]—7+0(r*2) . (3.19
through space-time along the outgoing principal null direc-
tion of the Kerr Riemann tensor. As this vector field is not1his is the generalization of Eq2.6) and o>0 implies
surface forming for all values of we cannot use the BI

with all other components small of order°. Here as before
e square brackets denote the jump across the null part of
u=0 of the quantities contained thereM,M,E? are given

by Egs.(3.10 and(3.11) and jump because the Kerr param-
Yeters jump. By Eq(3.13 the null part ofu=0 is the history

of an outgoing lightlike shell. By Eq9.3.133 and (3.13b
there is an anisotropic stress in the shdlie to the jump in

the Kerr angular momentum per unit masBy Eq. (3.139

ffie surface energy density of the shell measured by a radially
moving observer is a positive multiple of

X [Mm]<0 once again. It is interesting to note that an expanding
theory to study the disturbance for all However, for large  |ightiike shell sandwiched between two Reissner-Nordstrom
r, specifically if theO(r ?) terms are neglected, theifor space-times with different masses and charges charged
is tangent to null hypersurfaces=const. The normah® to  \ersjon of the Schwarzschild example in Seghts an exact
u=const, given via the one-form, dx“=du, satisfies gyrface energy density given by B§.14), without the error
9,,n“n”=0(r 7). In this approximatioru= const are por-  term, with[ E2] replaced by €], the jump in the square of
tions of future null cones having the integral curves ofine charge across the history of the shell.
dlor as generators with an affine parameter along them.  The BJ theory enables us to calculate the coefficient of
These generators are, in the_ approximation -under con5|de5-(u) in the Weyl conformal curvature tensor for the reat-
ation, shear-free null geodesics with expansnoﬁ_ and the  tached space-time. This coefficient in general splitg] into
induced line element on=const is given approximately by g matter part, which is present if there is anisotropic stress in
o oo 2 the shell(as there is in the Kerr exampleand a wave part
dI*=—r*(d¢*+sir*9d$?). (312 describing an impulsive gravitational wave accompanying
This follows from Eq.(3.7) in which the ratio of the ne- the Iig_ht!ike shell. _To displ_ay the components of t_his coeffi-
glected terms to the retained terms in the induced line eleS€Nt it IS convenient to introduce the asymptotically null
ment isO(r~2). Thus, if the disturbance is propagating in t€trad given V|a_t1he one-forntu,dr+ Sdu[with S given in
the direction ofd/ar then for sufficiently large values ofa ~ £9- (3:9], (v2)"“r(d6+i sindde) and its complex conju-
front is formed(a null hypersurface is formed in space-time gate. This tetrad is asymptotically parallel transported along

with historyu=0 (say. We now assume thaicross the null the integral curves of/dr. By this we mean that the com-
portion of U=0 a spontaneous jump in the parametersponems on the tetrad of the covariant derivatives of the tet-
m,a,b,c} occurs from valuegm,a,b,c! to the past ¢ rad vectors in the direction af/gr are small of order 2.
<d) ’ 'of this null portion 'of, ’u=0 to values Denoting the Newman-Penrose components on this tetrad of
i M
{m, ,a, ,b, ,c,} to the future ¢>0) of this null portion of the matter part of the coefficient of(u) bY ‘PA, (,A
u=0, and that the regions of space-tind," (u>0) and =0,1,2,3,4) and those of the wave part of this coefficient of
M~ (u<0), on either side of the null part af=0 join on

8(u) by WW ,, we find, for the matter parsee[1]),
this null part with the identity map and thus preserving the  wm., _ _5 Malp —4 Myl _3
induced line element3.12). We can now use the BI theory Po=0(r>), TWy=0(r7), T¥,=0(r (32’153
to study the physical properties of the null partw£0 by '
calculating the surface stress-energy tensor there and by cal- 1
culating thes-function term[the coefficient ofs(u)] in the My = — [N=iM]+O(r~3, (3.15h
Weyl conformal curvature tensor. The results of our calcula- 4v2r?
tions for this Kerr example will naturally be a generalization

of those for the Schwarzschild example in Sec. Il. Again M, =0(r 3, (3.159
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and for the wave part all Newman-Penrose components van- Y22= Y11 SINF6, (A2)
ish with the exception of
1 [mMN] 6+0(r 3) (A3)
=— sin r—),
My, =2 [MN=-IM)Z]+0(r %), (316 Y12 r2
N

Here again the square brackets denote the jump across the Y13= — ¥+O(r’2), (A4)

null part ofu=0 of the quantity contained therein.
__IM] 2
IV. DISCUSSION Y23= — — Sind+O(r %), (AS5)
We first notice that¥ , is predominantly type Il in the y3=0, 7,4=0. (AB)

Petrov classification witm* as a degenerate principal null

direction. The presence dfW, is due to the presence of Along with theO(r ~?) leading term iny;, given in Eq.(A3)

anisotropic stress in the lightlike shéflee Eqs(3.133 and e require theD(r ~2) leading term iny;;— y,, cs€ 6. This
(3.13b] which is a consequence of the nonvanishing Keris neatly given along with EqA3) by

angular-momentum parameters in this ca&d, is typeN
in the Petrov classification with# as a fourfold degenerate _ _ - i ERTVERY

S (0> ; . Y11~ Y22 CSCO— 271, CS®= — — [M(N—iM)?]
principal null direction. This means that the shell is accom- r
panied by a spherical impulsive gravitational wave whose +O(r 3 (A7)
presence is again due to the nonvanishing Kerr angular- '
momentum parameters. Since bdthand M are smooth  The stress-energy tensst” of the shell in terms ofy,,, is
bounded functions o, ¢ for 0<6<m, O<$<2m neither  [3]

Eq. (3.19 nor Eq.(3.16 possess line singularities.

It is interesting to note that the predominant radial depen- 167y~ 1S*'=2y#n" — yn#n’— y'gr* —g*’, (AB)
dence ofM¥, and W¥, [which is O(r~?) for ¥, and
O(r~ % for YW ,] is the same forY¥, as in our earlier
paper[1]. This is because the lightlike shell and the gravita- yh=yhrn,, yi= YN, ="V, (A9)
tional wave share the same null hypersurface histery in
space-time and are therefore in direct competition with eacland
other. Hence it is no surprise that the matter part is more g~'= e(y*'— ygt?), (A10)
dominant than the wave part.

Finally we see that if the angular-momentum three-vectowith e=g,,,n“n"”. In the Kerr case=0(r ?) (e=0 in the
J introduced after Eq(3.6) had foru<0,J=(0,0mc) and Schwarzschild cageand
for u>0,J=(0,0m,c,) thenN*=N=0 and the spherical _ _ _
impulsive wave with amplitude€3.16 has one degree of qt=0(r"%), q*=0(r™"), ¢*=0(r"°), (A11)
freedom of polarization. Adding a change of direction to this_13_ -5 23_ -5 33_ —a
change of magnitude of the angular momentum clearly addS =00, g7=0(r"), g==0(r", (AL2)
the extra degree of freedom to the gravitational wave. so that theg“” term in Eq. (A8) is absorbed into the

O(r % error in Eq.(3.13. This ensures that the accuracy
APPENDIX: USEFUL FORMULAS FOR SECS. Il AND IlI given in Eq.(3.13 is the optimum consistent withi=0
being approximately nuflin the sense that=0O(r ?)].
The &function term in the Weyl tensor is calculated from

where in the present casg=1+0(r %),

For readers who are familiar with the BI theory and wish
to derive the results stated in Secs. Il and 11l we list here th 3]
results of some useful intermediate calculations. These app
to the Kerr example of Sec. Ill. They all specialize to the 8
Schwarzschild example of Sec. Il when the Kerr angular C“,w:[ZWH[KV[X,]LHV]_]-GW%ZSQ]]JF? Sg%ﬁ] o(u).

momentum parameters are put to zero. (A13)
The jumpy,,, in the transverse extrinsic curvature across
the null part ofu=0 is given by Care must be taken in identifying the wave part of the coef-

ficient of 5(u) here. It isnot given by the first term in Eq.
(A1) (A13) but is containedin the first term(the reader must
consult[1] to see this clearly

2
Y= —2[m]+ E-FO(FZ),
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