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The outward-pointing principal null direction of the Schwarzschild Riemann tensor is null hypersurface
forming. If the Schwarzschild mass spontaneously jumps across one such hypersurface, then the hypersurface
is the history of an outgoing lightlike shell. The outward-pointing principal null direction of the Kerr Riemann
tensor is asymptotically~in the neighborhood of future null infinity! null hypersurface forming. If the Kerr
parameters of mass and angular momentum spontaneously jump across one such asymptotic hypersurface then
the asymptotic hypersurface is shown to be the history of an outgoing lightlike shell and a wire singularity-free
spherical impulsive gravitational wave.@S0556-2821~97!02416-8#

PACS number~s!: 04.30.Db, 04.20.Jb

I. INTRODUCTION

In a recent paper@1# the authors studied the physical con-
sequences of abrupt changes occurring spontaneously in the
multipole moments of a static axially symmetric isolated
gravitating body. The conclusion was that a disturbance
propagates with the speed of light away from the source
which when analyzed near future null infinity is shown to
consist of a spherical outgoing lightlike shell accompanied
by a spherical impulsive gravitational wave. Motivated by
the well-known phenomenon of glitches observed in pulsars
@2#, we examine in this paper the physical implications of
glitches in the mass and angular momentum associated with
the source of the Kerr space-time. We find that in the neigh-
borhood of future null infinity a disturbance consisting of a
spherical lightlike shell and a spherical impulsive gravita-
tional wave can be identified. If the Kerr angular momentum
vanishes~the Schwarzschild special case! then the gravita-
tional wave does not exist. If the angular-momentum glitch
includes an abrupt change in the direction of the angular
momentum then the gravitational wave has the maximum
two degrees of freedom of polarization. The spherical impul-
sive gravitational waves appearing in this paper~Sec. III! and
in @1# are the only examples of such waves known to the
authors which are free of unphysical directional~or wire!
singularities~see Sec. I of@1# where this is discussed!.

To study the physical properties of the disturbances men-
tioned above we use the Barrabe`s-Israel~BI! theory of light-
like shells and impulsive waves@3#. This theory is easily
accessible and a useful description of part of it is also avail-
able in @1# where, in particular, the identification of the
gravitational wave and the lightlike shell, when both exist, is

given explicitly. To rederive the results stated in the present
paper the reader must be familiar with the BI theory. For
readers who wish to work through the calculations based on
the BI theory we give some intermediate steps in the Appen-
dix. The consequences of such calculations can be easily
followed independently, however, in the main body of this
paper.

To simplify the presentation and introduce our approach
we present first in Sec. II the well-known~see@3#, for ex-
ample! Schwarzschild example in which the mass of the
source spontaneously undergoes an abrupt but finite change.
This is also useful as a special case of the corresponding
Kerr example, which is the main point of the paper, given in
Sec. III. This is followed by a brief discussion of our results
in Sec. IV.

II. THE SCHWARZSCHILD EXAMPLE

Consider Schwarzschild space-time with the line element

ds252
2r 2dzdz̄

@11~1/2!zz̄#2
12dudr1S 12

2m

r
D du2.

~2.1!

Here u5const are future-directed null hypersurfaces~null
cones! generated by the geodesic integral curves of the null
vector field ]/]r . This vector field is also the outward-
pointing principal null direction of the Riemann tensor of the
space-time. We wish to consider this space-time undergoing
a spontaneous abrupt change in the massm of the source
across one of the outward null hypersurfacesu50 ~say! and
then ask: what are the physical properties ofu50? To do
this we imagine the space-time divided into two halvesM 1

corresponding tou.0 andM 2 corresponding tou,0 both
with boundaryu50 and then reattaching the halves onu
50 preserving, with the identity map, the induced line ele-
ment onu50:
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dl252r 2~du21sin2udf2!. ~2.2!

We denote the resulting space-time byM 2øM 1. For the
space-timeM 2øM 1 described above there is a stress-
energy tensor concentrated onu50 of the form

Tmn5Smnd~u!, ~2.3!

with xm5(u,f,r ,u) andd is the Diracd function. We refer
to Smn as the surface stress-energy tensor of the lightlike
shell with historyu50 ~see@3#!. The normal tou50 is the
null vector with componentsnm given via the one-form

nmdxm5du. ~2.4!

The BI theory@3# gives

16pSmn52
4@m#

r 2 nmnn, ~2.5!

where@m# is the finite jump in the massm acrossu50. This
means that there is no stress in the outgoing lightlike shell
~as might be expected because the shell is spherical and ex-
panding! and the surface energy density of the shell mea-
sured by a radially moving observer~discussed in@3#! is a
positive multiple of

s52
@m#

4pr 2 , ~2.6!

and so it is natural to assume that@m#,0 for an outgoing
shell. Thus we conclude that the space-timeM 2øM 1 de-
scribes a Schwarzschild gravitational field~described by the
space-timeM 2! with an expanding spherical light-like shell
propagating through it leaving behind a Schwarzschild field
described byM 1 and with mass reduced compared to that of
M 2.

In general in the type of situation described here~subdi-
vision and re-attachment, or ‘‘cut and paste,’’ of a space-
time on a null hypersurface! the space-timeM 2øM 1 has a
Weyl conformal curvature tensor containing ad-function
term singular on the null hypersurface and composed of a
matter part~which is nonzero provided the stress in the shell
is anisotropic! and a part describing an impulsive gravita-
tional wave~see@1# where this is explicitly demonstrated and
@3# for the calculation of these terms!. However, due to the
spherical symmetry of the Schwarzschild example above, the
Weyl tensor ofM 2øM 1 vanishes identically in this case.
Thus, in particular, the shell above is unaccompanied by an
impulsive gravitational wave.

III. THE KERR EXAMPLE

We consider here an analogous situation in the Kerr
space-time to that considered in the Schwarzschild space-
time in the previous section. We begin with a form of the
Kerr space-time which makes it easy to identify the outgoing
principal null direction of the Riemann tensor and which
specializes to Eq.~2.1! when the Kerr angular-momentum
parameter is put to zero. In addition it will be interesting not
only to consider spontaneous changes in the magnitude of
the Kerr angular momentum but also to include spontaneous
changes in the direction of the angular momentum. We thus

want to use a form of the Kerr solution which involves the
mass parameter and three components of the angular mo-
mentum per unit mass. One such form can readily be ob-
tained by first noting that the Kerr solution with massm and
angular momentum per unit massA may be written in Kerr’s
@4# original coordinates (z,z̄,r ,u) @with the simple replace-
ment, as in Eq.~2.1!, of the polar angles~u,f! with the
complex coordinatez5&eif tanu/2 and its complex conju-
gatez̄# in the form

ds2522
r 21P2

@11~1/2!zz̄#2
dzdz̄12dS~dr2 iPzdz1 iP z̄ dz̄

1SdS!, ~3.1!

where

P5AS 12~1/2!zz̄

11~1/2!zz̄
D , S5

1

2
2

mr

r 21P2
, ~3.2!

and the one-formdS is given by

dS5du1 iPzdz2 iP z̄ dz̄, ~3.3!

with Pz5]P/]z. The rotation

z→
& sin~u1/2!2z cos~u1/2!

eif1cos~u1/2!1~z/& !sin~u1/2!
, ~3.4!

whereu1 ,f1 are constants, leaves the form of Eq.~3.1! in-
variant withP replaced by

P5
a

&
S z1z

11~1/2!zz̄
D 1

b

i&
S z2 z̄

11~1/2!zz̄
D

1cS 12~1/2!zz̄

11~1/2!zz̄
D , ~3.5!

where

a5A sinu1cosf1 , b5A sinu1sinf1 ,

c5A cosu1 . ~3.6!

We thus obtain the Kerr solution with massm and angular-
momentum three-vectorJ5(ma,mb,mc) having the same
magnitude but a different direction than the initial oneJ
5(0,0,mA). Restoring the polar coordinates~u,f! as above
we arrive at the line element@5#

ds252r2~du21sin2udf2!12dS~dr2Ndu2M sinudf

1SdS!, ~3.7!

with

r25r 21P2, P5~a cosf1b sinf!sinu1c cosu,
~3.8!

dS5du1Ndu1M sinudf, S5
1

2
2

mr

r2 , ~3.9!

and
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N52a sinf1b cosf, ~3.10a!

M52~a cosf1b sinf!cosu1c sinu. ~3.10b!

We note from Eq.~3.10! that

E2[M21N25m22@ uJu22~n•J!2#, ~3.11!

where the unit three-vector n is given by n
5(sinu cosf,sinu sinf,cosu). Also the outward-pointing
principal null direction of the Riemann tensor is tangent to
the vector field]/]r or equivalently is given via the~nonex-
act! one-form dS in Eq. ~3.9!. When this line element is
written in a Kerr-Schild form in which the flat background is
expressed in rectangular Cartesian coordinates and time, it
can be shown—see@5# in which this is described in detail—
that in the linear approximation it takes the form of the line
element of the space-time outside the history of a slowly
rotating sphere of massm and angular momentumJ
5(ma,mb,mc), in exactly the same way as Kerr showed—
see@4#—that his original form approximates the line element
of the spacetime outside the history of such a sphere of mass
m and angular momentumJ5(0,0,mA).

In analogy with the Schwarzschild example in Sec. II we
might expect that a spontaneous abrupt change in the param-
eters $m,a,b,c% will result in a disturbance propagating
through space-time along the outgoing principal null direc-
tion of the Kerr Riemann tensor. As this vector field is not
surface forming for all values ofr we cannot use the BI
theory to study the disturbance for allr . However, for large
r , specifically if theO(r 22) terms are neglected, then]/]r
is tangent to null hypersurfacesu5const. The normalnm to
u5const, given via the one-formnmdxm5du, satisfies
gmnnmnn5O(r 22). In this approximationu5const are por-
tions of future null cones having the integral curves of
]/]r as generators withr an affine parameter along them.
These generators are, in the approximation under consider-
ation, shear-free null geodesics with expansionr 21 and the
induced line element onu5const is given approximately by

dl252r 2~du21sin2udf2!. ~3.12!

This follows from Eq.~3.7! in which the ratio of the ne-
glected terms to the retained terms in the induced line ele-
ment isO(r 22). Thus, if the disturbance is propagating in
the direction of]/]r then for sufficiently large values ofr a
front is formed~a null hypersurface is formed in space-time!
with historyu50 ~say!. We now assume thatacross the null
portion of u50 a spontaneous jump in the parameters
$m,a,b,c% occurs from values$m,a,b,c% to the past (u
,0) of this null portion of u50 to values
$m1 ,a1 ,b1 ,c1% to the future (u.0) of this null portion of
u50, and that the regions of space-time,M 1(u.0) and
M 2(u,0), on either side of the null part ofu50 join on
this null part with the identity map and thus preserving the
induced line element~3.12!. We can now use the BI theory
to study the physical properties of the null part ofu50 by
calculating the surface stress-energy tensor there and by cal-
culating thed-function term@the coefficient ofd(u)# in the
Weyl conformal curvature tensor. The results of our calcula-
tions for this Kerr example will naturally be a generalization
of those for the Schwarzschild example in Sec. II. Again

there is a stress-energy tensor of the form~2.3! on the null
part of u50 with surface stress energy described by the
tensorSmn which in this case has components

16pS135
@N#

r 3 1O~r 24!, ~3.13a!

16pS235
@M #cscu

r 3 1O~r 24!, ~3.13b!

16pS3352
4@m#

r 2 1
2@E2#

r 3 1O~r 24!, ~3.13c!

with all other components small of orderr 25. Here as before
the square brackets denote the jump across the null part of
u50 of the quantities contained therein.N,M ,E2 are given
by Eqs.~3.10! and~3.11! and jump because the Kerr param-
eters jump. By Eq.~3.13! the null part ofu50 is the history
of an outgoing lightlike shell. By Eqs.~3.13a! and ~3.13b!
there is an anisotropic stress in the shell~due to the jump in
the Kerr angular momentum per unit mass!. By Eq. ~3.13c!
the surface energy density of the shell measured by a radially
moving observer is a positive multiple of

s52
1

4pr 2 S @m#2
@E2#

2r
1O~r 22! D . ~3.14!

This is the generalization of Eq.~2.6! and s.0 implies
@m#,0 once again. It is interesting to note that an expanding
lightlike shell sandwiched between two Reissner-Nordstrom
space-times with different masses and charges~the charged
version of the Schwarzschild example in Sec. II! has an exact
surface energy density given by Eq.~3.14!, without the error
term, with @E2# replaced by@e2#, the jump in the square of
the charge across the history of the shell.

The BI theory enables us to calculate the coefficient of
d(u) in the Weyl conformal curvature tensor for the reat-
tached space-time. This coefficient in general splits@1,3# into
a matter part, which is present if there is anisotropic stress in
the shell~as there is in the Kerr example!, and a wave part
describing an impulsive gravitational wave accompanying
the lightlike shell. To display the components of this coeffi-
cient it is convenient to introduce the asymptotically null
tetrad given via the one-formsdu,dr1Sdu@with S given in
Eq. ~3.9!#, (&)21r (du1 i sinudf) and its complex conju-
gate. This tetrad is asymptotically parallel transported along
the integral curves of]/]r . By this we mean that the com-
ponents on the tetrad of the covariant derivatives of the tet-
rad vectors in the direction of]/]r are small of orderr 22.
Denoting the Newman-Penrose components on this tetrad of
the matter part of the coefficient ofd(u) by MCA (A
50,1,2,3,4) and those of the wave part of this coefficient of
d(u) by WCA , we find, for the matter part~see@1#!,

MC05O~r 25!, MC15O~r 24!, MC25O~r 23!,
~3.15a!

MC352
1

4&r 2
@N2 iM #1O~r 23!, ~3.15b!

MC45O~r 23!, ~3.15c!
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and for the wave part all Newman-Penrose components van-
ish with the exception of

WC45
1

4r 4 @m~N2 iM !2#1O~r 25!. ~3.16!

Here again the square brackets denote the jump across the
null part of u50 of the quantity contained therein.

IV. DISCUSSION

We first notice thatMCA is predominantly type III in the
Petrov classification withnm as a degenerate principal null
direction. The presence ofMCA is due to the presence of
anisotropic stress in the lightlike shell@see Eqs.~3.13a! and
~3.13b!# which is a consequence of the nonvanishing Kerr
angular-momentum parameters in this case.WCA is typeN
in the Petrov classification withnm as a fourfold degenerate
principal null direction. This means that the shell is accom-
panied by a spherical impulsive gravitational wave whose
presence is again due to the nonvanishing Kerr angular-
momentum parameters. Since bothN and M are smooth
bounded functions ofu, f for 0<u<p, 0<f,2p neither
Eq. ~3.15! nor Eq.~3.16! possess line singularities.

It is interesting to note that the predominant radial depen-
dence of MCA and WCA @which is O(r 22) for MCA and
O(r 24) for WCA# is the same forWCA as in our earlier
paper@1#. This is because the lightlike shell and the gravita-
tional wave share the same null hypersurface historyu50 in
space-time and are therefore in direct competition with each
other. Hence it is no surprise that the matter part is more
dominant than the wave part.

Finally we see that if the angular-momentum three-vector
J introduced after Eq.~3.6! had for u,0, J5(0,0,mc) and
for u.0, J5(0,0,m1c1) thenN15N50 and the spherical
impulsive wave with amplitude~3.16! has one degree of
freedom of polarization. Adding a change of direction to this
change of magnitude of the angular momentum clearly adds
the extra degree of freedom to the gravitational wave.

APPENDIX: USEFUL FORMULAS FOR SECS. II AND III

For readers who are familiar with the BI theory and wish
to derive the results stated in Secs. II and III we list here the
results of some useful intermediate calculations. These apply
to the Kerr example of Sec. III. They all specialize to the
Schwarzschild example of Sec. II when the Kerr angular
momentum parameters are put to zero.

The jumpgmn in the transverse extrinsic curvature across
the null part ofu50 is given by

g11522@m#1
@E2#

r
1O~r 22!, ~A1!

g225g11 sin2u, ~A2!

g1252
@mMN#

r 2 sinu1O~r 23!, ~A3!

g1352
@N#

r
1O~r 22!, ~A4!

g2352
@M #

r
sinu1O~r 22!, ~A5!

g3350, gm4[0. ~A6!

Along with theO(r 22) leading term ing12 given in Eq.~A3!
we require theO(r 22) leading term ing112g22 csc2 u. This
is neatly given along with Eq.~A3! by

g112g22 csc2u22g12 cscu52
1

r 2 @m~N2 iM !2#

1O~r 23!. ~A7!

The stress-energy tensorSmn of the shell in terms ofgmn is
@3#

16ph21Smn52g (mnn)2gnmnn2g†gmn2qmn, ~A8!

where in the present caseh511O(r 24),

gm5gmnnn , g†5gmnm , g5gmngmn , ~A9!

and

qmn5e~gmn2ggmn!, ~A10!

with e5gmnnmnn. In the Kerr casee5O(r 22) ~e50 in the
Schwarzschild case! and

q115O~r 26!, q125O~r 27!, q225O~r 26!, ~A11!

q135O~r 25!, q235O~r 25!, q335O~r 24!, ~A12!

so that theqmn term in Eq. ~A8! is absorbed into the
O(r 24) error in Eq.~3.13!. This ensures that the accuracy
given in Eq. ~3.13! is the optimum consistent withu50
being approximately null@in the sense thate5O(r 22)#.

Thed-function term in the Weyl tensor is calculated from
@3#

Ckl
mn5H 2hn[kg [m

l] nn]216pd [m
[k Sn]

l]1
8p

3
Sa

admn
kl J d~u!.

~A13!

Care must be taken in identifying the wave part of the coef-
ficient of d(u) here. It isnot given by the first term in Eq.
~A13! but is contained in the first term ~the reader must
consult@1# to see this clearly!.
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