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The ‘‘warp drive’’ metric recently presented by Alcubierre has the problem that an observer at the center of
the warp bubble is causally separated from the outer edge of the bubble wall. Hence such an observer can
neither create a warp bubble on demand nor control one once it has been created. In addition, such a bubble
requires negative energy densities. One might hope that elimination of the first problem might ameliorate the
second as well. We analyze and generalize a metric, originally proposed by Krasnikov for two spacetime
dimensions, which does not suffer from the first difficulty. As a consequence, the Krasnikov metric has the
interesting property that, although the time for a one-way trip to a distant star cannot be shortened, the time for
a round trip, as measured by clocks on Earth, can be made arbitrarily short. In our four-dimensional extension
of this metric, a ‘‘tube’’ is constructed along the path of an outbound spaceship, which connects the Earth and
the star. Inside the tube spacetime is flat, but the light cones are opened out so as to allow superluminal travel
in one direction. We show that, although a single Krasnikov tube does not involve closed timelike curves, a
time machine can be constructed with a system of two nonoverlapping tubes. Furthermore, it is demonstrated
that Krasnikov tubes, like warp bubbles and traversable wormholes, also involve unphysically thin layers of
negative energy density, as well as large total negative energies, and, therefore, probably cannot be realized in
practice.@S0556-2821~97!03914-3#

PACS number~s!: 04.20.Gz, 04.62.1v

I. INTRODUCTION

Alcubierre @1# showed recently, with a specific example,
that it is possible within the framework of general relativity
to warp spacetime in a small ‘‘bubblelike’’ region in such a
way that a spaceship within the bubble may move with arbi-
trarily large speed relative to nearby observers in flat space-
time outside the bubble. His model involves a spacetime
with metric given by~in units whereG5c51)

ds252dt2@12v2f 2~r 0!#22v f ~r 0!dx dt

1dx21dy21dz2, ~1!

where

r 05$@x2x0~ t !#21y21z2%1/2 ~2!

and

v5
dx0

dt
. ~3!

The function f satisfiesf '0 for r 0.R1dR and f '1 for
r 0,R2dR, whereR is the bubble radius anddR is the half
thickness of the bubble wall. A suitable form forf is given in
Ref. @1#. In the limit dR→0, f becomes a step function.
Spacetime is then flat outside a spherical bubble of radius
R centered on the pointrW05„x0(t),0,0… moving with speed
v along thex axis, as measured by observers at rest outside

the bubble. Herev is an arbitrary function of time which
need not satisfyv,1, so that the bubble may attain arbi-
trarily large superluminal speeds as seen by external observ-
ers. Space is also flat in the region within the bubble where
f 51, since it follows from Eqs.~1! and~3! that, for f 51, a
locally inertial coordinate system is obtained by the simple
transformationx85x2x0(t). Hence an object moving along
with the center of the bubble, whose trajectory is given by
x850, is in free fall.

As pointed out in Ref.@1#, there are questions as to
whether the metric~1! is physically realizable, since the cor-
responding energy-momentum tensor, related to it by the
Einstein equation, involves regions of negative energy den-
sity, i.e., violates the weak energy condition~WEC! @2#. This
is not surprising since it has been shown@3# that a straight-
forward extension of the metric of Ref.@1# leads to a space-
time with closed timelike curves~CTC’s!. It is well known
that negative energy densities are required for the existence
of stable Lorentzian wormholes@4#, where CTC’s may also
occur, and Hawking@5# has shown that the occurrence of
CTC’s requires violations of the WEC under rather general
circumstances. The occurrence of regions with negative en-
ergy density is allowed in quantum field theory@6,7#. How-
ever, Ford and Roman@8–10# have proved inequalities
which limit the magnitude and duration of negative energy
density. These ‘‘quantum inequalities’’~QI’s! strongly sug-
gest@9# that it is unlikely that stable macroscopic Lorentzian
wormholes can exist, and similar conclusions have been
drawn by Pfenning and Ford@11# with regard to the ‘‘warp
drive’’ spacetime of Ref.@1#.

It is the goal of this paper to analyze a spacetime recently
proposed by Krasnikov@12# which, although differing from
that of Ref. @1# in several key respects, shares with it the
property of allowing superluminal travel. We first review this
spacetime, in the two-dimensional form as originally given
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by Krasnikov, and give a more extended discussion of its
properties than that provided in Ref.@12#. Then we carry out
the straightforward task of generalizing the Krasnikov metric
to the realistic case of four dimensions. We establish that,
despite their differences, the Krasnikov and Alcubierre met-
rics share a number of important properties. In particular, we
show that, like the metric of Ref.@1#, the Krasnikov metric
implies the existence of CTC’s, and also show explicitly that
the associated energy-momentum tensor violates the WEC.
Finally, we apply a QI to the Krasnikov spacetime and argue
that, as in the cases of wormholes and Alcubierre bubbles,
the QI strongly suggests that the Krasnikov spacetime is not
physically realizable.

II. KRASNIKOV METRIC IN TWO DIMENSIONS
AND SUPERLUMINAL TRAVEL

Krasnikov @12# raised an interesting problem with meth-
ods of superluminal travel similar to the Alcubierre mecha-
nism. The basic point is that in a universe described by the
Minkowski metric att50, an observer at the origin, e.g., the
captain of a spaceship, can do nothing to alter the metric at
points outside the usual future light coneurWu<t, where
r 5(x21y21z2)1/2. In particular, this means that those on
the spaceship can never create, on demand, an Alcubierre
bubble with v.c around the ship. This follows explicitly
from the following simple argument. Points on the outside
front edge of the bubble are always spacelike separated from
the center of the bubble. One can easily show this by con-
sidering the trajectory of a photon emitted in the positivex
direction from the spaceship. If the spaceship is at rest at the
center of the bubble, then initially the photon has
dx/dt5v11 or dx8/dt51. This of course must be true
since at the center of the bubble the primed coordinates de-
fine a locally inertial reference frame. However, at some
point with x85xc8 , for which 0, f ,1 so thatxc8,R and the
point is within the bubble wall, one finds thatdx8/dt50 or
dx/dt5v. ~It is clear by continuity thatdx/dt5v at some
point for photons moving in the1x direction inside the
bubble, sincedx/dt5v11 at the center of the bubble and
dx/dt51 in flat space outside the bubble wall.! Thus once
photons reachxc8 , they remain at rest relative to the bubble
and are simply carried along with it. Photons emitted in the
forward direction by the spaceship never reach the outside
edge of the bubble wall, which therefore lies outside the
forward light cone of the spaceship. The bubble thus cannot
be created~or controlled! by any action of the spaceship
crew, excluding the use of tachyonic signals@13#.

The foregoing discussion does not mean that Alcubierre
bubbles, if it were possible to create them, could not be used
as a means of superluminal travel. It only means that the
actions required to change the metric and create the bubble
must be taken beforehand by some observer whose forward
light cone contains the entire trajectory of the bubble. Sup-
pose space has been warped to create a bubble traveling from
the Earth to some distant star, e.g., Deneb, at superluminal
speed. A spaceship appropriately located with respect to the
bubble trajectory could then choose to enter the bubble,
rather like a passenger catching a passing trolley car, and
thus make the superluminal journey. However, a spaceship
captain hoping to make use of a region of spacetime with a

suitably warped metric to reach a star at a distanceD in a
time intervalDt,D must, like the potential trolley car pas-
senger, hope that others have previously taken action to pro-
vide a passing mode of transportation when desired.

In contrast, as Krasnikov points out, causality consider-
ations do not prevent the crew of a spaceship from arranging,
by their own actions, to complete around trip from the Earth
to a distant star and back in an arbitrarily short time, as
measured by clocks on the Earth, by altering the metric along
the path of their outbound trip. As an example, consider the
metric in the two-dimensionalt,x subspace, introduced by
Krasnikov in Ref.@12#, given by

ds252~dt2dx!@dt1k~x,t !dx# ~4!

52dt21@12k~x,t !#dx dt1k~x,t !dx2,
~5!

where

k~x,t ![12~22d!ue~ t2x!@ue~x!2ue~x1e2D !#, ~6!

ue is a smooth monotonic function satisfying

ue~j!5H 1 at j.e

0 at j,0
~7!

andd ande are arbitrary small positive parameters. We will
give a specific form forue in Sec. VI. Fork51, the metric
~5! reduces to the two-dimensional Minkowski metric. The
two time-independentue functions between the brackets in
Eq. ~6! vanish for x,0 and cancel forx.D, ensuring
k51 for all t except betweenx50 and x5D. When this
behavior is combined with the effect of the factorue(t2x),
one sees that the metric~5! describes Minkowski space ev-
erywhere for t,0 and, at all times, outside the range
0,x,D. For t.x and e,x,D2e, the first twoue func-
tions in Eq.~6! both equal 1, whileue(x1e2D)50, giving
k5d21 everywhere within this region. There are two spa-
tial boundaries between these two regions of constantk, one
betweenx50 and x5e for t.0 and a second between
x5D2e andx5D for t.D. We can think of this metric as
being produced by the crew of a spaceship which departs
from Earth (x50) at t50 and travels along thex axis to
Deneb (x5D) at a speed which for simplicity we take to be
only infinitesimally less than the speed of light, so that it
arrives att'D. The crew modify the metric by changingk
from 1 to d21 along thex axis in the region between
x50 and x5D, leaving a transition region of widthe at
each end to ensure continuity. Similarly, continuity in time
implies that the modification ofk requires a finite time inter-
val whose duration we assume, again for simplicity, to be
e. However, since the boundary of the forward light cone of
the spaceship att50 is given byuxu5t, the spaceship cannot
modify the metric atx before t5x, which accounts for the
factor ue(t2x) in the metric. Thus there is a transition re-
gion in time between the two values ofk, of duratione, lying
along the world line of the spaceship,x't. The resulting
geometry in thex-t plane is shown in Fig. 1, where the
shaded regions represent the two spatial transition regions
0,x,e andD2e,x,D and the temporal transition region
x,t,x1e. In the internal region of the diagram, enclosed

56 2101SUPERLUMINAL SUBWAY: THE KRASNIKOV TUBE



by the three shaded areas,k has the constant valued21,
while k51 everywhere outside the shaded regions. The
world line of the spaceship is represented by the lineAB.

The properties of the modified metric withd21<k<1
can be easily seen from the factored form of the expression
for ds2 in Eq. ~4! where, puttingds250, one sees that the
two branches of the forward light cone in thet,x plane are
given by dt/dx51 anddt/dx52k. As k becomes smaller
and then negative, the slope of the left-hand branch of the
light cone becomes less negative and then changes sign; i.e.,
the light cone along the negativex axis ‘‘opens out.’’ This is
illustrated in Fig. 2 where we depict the behavior of the light
cone ~in two spatial dimensions! for k51, k50, and
k5d21 for small d. For k'21, the boundary of the for-
ward light cone is almost the straight linex5t, and the for-
ward and backward light cones include almost all of space-
time.

In the internal region of Fig. 1, wherek5d215const,
space is flat, since the metric of Eq.~5! can be reduced to
Minkowski form by the coordinate transformation

dt85dt1S d

2
21Ddx, ~8!

dx85S d

2Ddx. ~9!

Note that the left-hand branch of the light cone in the internal
region is given in the Minkowski coordinates by
dt8/dx8521, which, from Eqs.~8! and ~9!, reduces to our
previous expressiondt/dx52k512d on the left-hand
branch of the light cone as illustrated in Fig. 2. We also note
that the transformation becomes singular atd50, i.e., at
k521.

From Eqs.~8! and ~9!, we obtain

dt

dt8
511S 22d

d D dx8

dt8
. ~10!

For an object propagating causally, i.e., into its forward light
cone, we haveudx8/dt8u,1 anddt8.0. Since 0,d<2, one
sees that for such an object moving in the positivex8 ~and
x) direction,dt.0 for anyd. However, ford,1, an object
moving sufficiently close to the left branch of the light cone
given bydx8/dt8521 will havedt/dt8,0 and thus appear
to propagate backward in time as seen by observers in the
external (d52 ,k51) region of Fig. 1. These properties of
motion in the Krasnikov metric withd,1 can be seen from
the shape of the light cone as shown in Fig. 2.

Now suppose our spaceship, having traveled from the
Earth to Deneb and arriving at timet'D, has modified the
metric so thatk'21 ~i.e., d'0) along its path. Suppose
further that it now returns almost immediately to Earth, again
traveling at a speed arbitrarily close to the speed of light as
seen in its local inertial system, i.e., along the left-hand
branch of the light cone withdx8/dt8'21. It will then have
v r[dx/dt'21/k51/(12d)'1 anddt,0 ~sincedx,0),
and thus move down and to the left along the upper edge of
the diagonal shaded region in Fig. 1. The spaceship’s return
to Earth requires a time intervalDt r52D/v r5D(d21),
and the ship returns to Earth at a timetE as measured by
clocks on the Earth given bytE5D1Dt r5Dd. ~For sim-
plicity, here we treat the wall thickness,e, as negligible.!

Sinced.0, uDt r u,D, and the spacetime interval between
the spaceship’s departure from Deneb and its return to Earth
is spacelike. Therefore the return journey must involve su-
perluminal travel. Note thattE.0, meaning that the return of
the spaceship to Earth necessarily occurs after its departure.
However, the interval between departure and return, as mea-
sured by observers on the Earth, can be made arbitrarily
small by appropriate choice of the parameterd. The time of
return, tE , must necessarily be positive, since causality in-
sures that the metric is modified, opening out the light cone
to allow causal propagation in the negativet direction, only
for t.0. SincetE.0, the spaceship cannot travel into its
own past; i.e., the metric of Ref.@12#, as it stands, does not
lead to CTC’s and the existence of a time machine. How-
ever, when the metric~5! is generalized to the more realistic
case of three space dimensions, CTC’s do become possible,
as we shall see below.

Before turning to the three-dimensional generalization,
we note one other interesting property of the Krasnikov met-
ric. In the cased,1, it is always possible to choose an
allowed value ofdx8/dt8 for which dt/dt850, meaning that
the return trip is instantaneous as seen by observers in the

FIG. 1. The Krasnikov spacetime in thex-t plane. The vertical
lines E andD are the world lines of the Earth and Deneb, respec-
tively. The world line of the spaceship is~approximately! repre-
sented by the lineAB.

FIG. 2. Forward light cones in the Krasnikov spacetime~illus-
trated with two space dimensions! for k51, k50, andk5d21.
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external region of Fig. 1. This can be seen from the third
diagram in Fig. 2. It also follows easily from Eq.~10!, which
implies thatdt/dt850 whendx8/dt8 satisfies

dx8

dt8
52

d

~22d!
, ~11!

which lies between 0 and21 for 0,d,1.

III. GENERALIZATION TO FOUR DIMENSIONS

In four dimensions the modification of the metric begins
along the path of the spaceship, i.e., thex axis, occurring at
positionx at timet'x, the time of passage of the spaceship.
We assume that the disturbance in the metric propagates ra-
dially outward from thex axis, so that causality guarantees
that at timet the region in which the metric has been modi-
fied cannot extend beyondr5t2x, wherer5(y21z2)1/2. It
also seems natural to take the modification in the metric not
to extend beyond some maximum radial distancermax!D
from thex axis. Thus in four-dimensional spacetime we re-
place Eq.~6! by

k~ t,x,r![12~22d!ue~rmax2r!ue~ t2x2r!

3@ue~x!2ue~x1e2D !#, ~12!

and our metric, now written in cylindrical coordinates, is
given by

ds252dt21@12k~ t,x,r!#dx dt1k~ t,x,r!dx2

1dr21r2df2. ~13!

~Again we assume for simplicity that thee parameters in all
of the ue functions which appear in the expression fork are
equal.! For t@D1rmax one now has a tube of radiusrmax
centered on thex axis within which the metric has been
modified; we refer to this structure as a ‘‘Krasnikov tube.’’
In contrast with the metric of Ref.@1#, the metric of a Kras-
nikov tube is static once it has been initially created. If we
make the assumption thatrmax@e, such a tube will consist of
a relatively large central core, of radiusrmax2e, along the
x axis with e,x,D2e; within this central core, space is
flat and k5d215const. This central core will be sur-
rounded by thin walls and end caps of thicknesse, within
which there is curved space withk varying between
k5d21 and k51. The situation is illustrated in Fig. 3,
which shows cross sections through the tube in the region
e,x,D2e and also in one of the end caps.

IV. SUPERLUMINAL SUBWAY AND CLOSED
TIMELIKE CURVES

As we have seen, in two dimensions a single Krasnikov
tube allows superluminal travel backward int in one direc-
tion along thex axis, and does not lead to CTC’s. However,
in three space dimensions the situation is different. Assum-
ing that Krasnikov tubes can be established, imagine that a
spaceship has traveled from the Earth to Deneb along thex
axis during the time interval fromt50 to t5D, and estab-
lished the Krasnikov tube running from the Earth to Deneb
which we have discussed. It would then be possible for the

ship to return from Deneb to the Earth outside the first tube
along a path parallel to thex axis but at a distancer0 from it,
whereD@r0.2rmax. On the return journey the spaceship
crew could again modify the metric along their path, estab-
lishing a second Krasnikov tube identical to the first but
running in the opposite direction; that is, the metric within
the second tube would be given by that of Eq.~13! with x
replaced byX[D2x and t replaced byT[t2D. The cru-
cial point is that in three dimensions the two tubes can be
made nonoverlapping because of their separation in ther
direction. The spaceship can now, for example, start from the
Earth (x50) at t52D, and travel back in time to the Earth
at a time arbitrarily close tot50 by first using the second
Krasnikov tube to travel to Deneb (x5D) at timet5D, and
then using the original tube as before, to travel from Deneb
at t5D to the Earth att50. ~We are assuming that the ship
travels at essentially light speed, thatd ande are taken to be
negligibly small, and that the small time required to move
the distancer0!D from one of the Krasnikov tubes to the
other is negligible.! It may be worth noting that the foregoing
argument is closely analogous to that given in Ref.@3# for
the existence of CTC’s in the Alcubierre case. The situation
is also similar to the case of time travel using a two-
wormhole system, as depicted in the spacetime diagram of
Fig. 18.5 of Ref.@14#.

It follows from the foregoing discussion that if Krasnikov
tubes could be constructed, one could, at least in principle,
establish a network of such tubes forming a sort of interstel-
lar subway system, allowing instantaneous communication
between points connected by the tubes. A necessary corol-
lary of the existence of such a network is the possibility of
backward time travel and the consequent existence of CTC’s.
CTC’s could be avoided only if, for some reason, there ex-
isted a preferred axis such that all the Krasnikov tubes were
oriented so that the velocity components along that axis of
objects in superluminal motion were always positive, imply-
ing that no object could return to the same point in timeand
space. One might be tempted to reject immediately the pos-
sibility of Krasnikov tubes for interstellar travel because, un-
like Alcubierre bubbles, their required length would be enor-
mous. However, there are interesting situations in
astronomy, e.g., jets in active galactic nuclei and possibly

FIG. 3. Spatial cross sections of a Krasnikov tube atx5const,
t5const. The left diagram represents a cross section through the
middle of the tube between the end caps, while the right diagram is
a cross section through an end cap.
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cosmic strings, which involve~albeit positive! matter distri-
butions of such dimensions. In any event, even if the con-
struction of Krasnikov tubes over astronomical distances is
impractical, oppositely directed nonoverlapping pairs of
tubes of laboratory dimensions could form time machines,
forcing one to confront all the associated problems.

V. STRESS-ENERGY TENSOR FOR A KRASNIKOV TUBE

In this section, we show that the WEC is necessarily vio-
lated in some regions of a Krasnikov tube. The stress-energy
tensorTmn for the matter needed to produce a Krasnikov
tube can be calculated from the metric of Eq.~13! and the
Einstein equations, using the programMATHTENSOR @15#.
We first obtain an expression forTmn in terms of derivatives
of k with respect to the spacetime coordinates. The stress
tensor elementTtt is given by the expression

Ttt5@32p~11k!2#21F24 ~11k!

r

]k

]r
13S ]k

]r D 2

24~11k!
]2k

]r2G . ~14!

~It will be shown later that this is the energy density seen by
a static observer.! Note that this component of the stress
tensor involves only derivatives ofk with respect tor. A
number of general features of thek vs r curve illustrated in
Fig. 4 are generic and follow from Eq.~12! without specify-
ing an explicit form forue . In particular,k increases mono-
tonically from its value atr50 to k'1 at r>rmax, so that
]k/]r and (11k) are positive. Furthermore, analyticity of
k at r50 implies that]k/]r vanishes at that point. From the
previous remarks, we have that]k/]r'brm, with m>1,

b.0, for small r. Hence, sufficiently near the axis of the
Krasnikov tube, the first and third terms on the right-hand
side of Eq.~14! are negative and go asrm21 for r→0; these
terms thus dominate the second term, which is positive, by a
factor of r2m21. Therefore there is necessarily a range of
r near the axis of the tube where the energy density seen by
a static observer is negative.

As we have noted previously, for a thin-walled tube,
space is nearly flat and soTtt'0 within the core of the tube.
Thus in the region nearr50 where we can make a general
statement about the sign ofTtt on the basis of the preceding
argument, we expectTtt to be extremely small due to the
behavior of the functionue(rmax2r). ~We observe that the
casek521, corresponding tod50, is not allowed, since
that would produce a divergence inTtt .) In the vicinity of
the tube wall, whereTtt is large, we can only obtain its value
by choosing an explicit form fork, i.e., for ue , and then
evaluatingTtt numerically. In Fig. 5 we show a plot ofTtt in
the region of the tube wall obtained in this way, using the
form of ue given in the next section, and takingx5D/2,
t@rmax1D/2, ande/rmax!1. We see thatTtt is negative on
the inner side of the wall, as one would expect, since the
general argument given above shows thatTtt must be nega-
tive for small r. However,Ttt changes sign and develops
appreciable positive values on the outer side of the wall. The
corresponding plot atx5e/2, in the left end cap, is very
similar to Fig. 5. There are two main differences: First, the
magnitudes of the positive and negative energy density
maximum and minimum are essentially equal, and second,
these magnitudes are roughly 4 times smaller than at
x5D/2.

VI. QUANTUM INEQUALITY CONSTRAINTS

In Ref. @8#, an inequality was proved which limits the
magnitude and duration of the negative energy density seen
by an inertial observer in Minkowski spacetime. Let^Tmn&
be the renormalized expectation value of the stress tensor for
a free, massless, minimally coupled scalar field in an arbi-
trary quantum state. Letum be the observer’s four-velocity,
so that^Tmnumun& is the expectation value of the local en-
ergy density in this observer’s frame of reference. The in-
equality states that

FIG. 4. Graph ofk vs r at constantx,t. Heree,x,D2e.

FIG. 5. Graph of energy density vsr at the middle of the tube,
i.e., at x5D/2, and t5const@D/21rmax. Here we have chosen
d50.01, e510, and rmax51000e. The plot extends from
rmax23e to rmax13e.
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t0

p E
2`

` ^Tmnumun&dt

t21t0
2 >2

3

32p2t0
4 , ~15!

for all t0, wheret is the observer’s proper time. The Lorent-
zian function which appears in the integrand is a convenient
choice for a sampling function, which samples the energy
density in an interval of characteristic durationt0 centered
around an arbitrary point on the observer’s worldline. The
proper time coordinate has been chosen so that this point is
at t50. Physically, Eq.~15! implies that the more negative
the energy density is in an interval, the shorter must be the
duration of the interval. Such a bound is called a ‘‘quantum
inequality’’ ~QI!. @More recently, a much simpler proof of
Eq. ~15! has been given, as well as derivations of similar
bounds for the massive scalar and electromagnetic fields
@10#.#

Although the QI bound was initially derived for a mass-
less scalar field in Minkowski spacetime~without bound-
aries!, it was argued in Ref.@9# that in fact the bound should
also hold in a curved spacetime and/or one with boundaries,
in the limit of short sampling times. More specifically, when
the sampling timet0 is restricted to be smaller than the
smallest proper radius of curvature or the distance to any
boundaries, then the modes of the quantum field may be
approximated by plane waves; i.e., spacetime is approxi-
mately Minkowski. In this region, Eq.~15! should hold. Fur-
ther evidence supporting this conclusion has recently ap-
peared in the form of QI bounds which have been explicitly
proved in various staticcurvedspacetimes. In all cases, these
bounds reduce to the flat spacetime QI’s in the short-
sampling-time limit@16,17#.

In Ref. @9# the flat spacetime bound was applied, in the
limit of short sampling times, to Morris-Thorne traversable
wormhole spacetimes. The upshot of the analysis was that
either the wormhole throat could be no larger than a few
times the Planck length or that there must be large discrep-
ancies in the length scales which characterize the wormhole.
In the latter case, this typically implied that the exotic matter
which maintains the wormhole geometry must be concen-
trated in anexceedinglythin band around the throat. These
results would appear to make the existence of macroscopic
static traversable wormholes very unlikely. A similar analy-
sis using the flat space QI has been applied to the Alcubierre
‘‘warp drive’’ spacetime @11#, which also requires exotic
matter. Here as well, it was found that the wall of the ‘‘warp
bubble’’ surrounding a spaceship must be unphysically thin
compared to the bubble radius. In this section, we apply the
flat space QI to the Krasnikov spacetime, again in the short-
sampling-time limit, and reach a similar conclusion regard-
ing the thickness of the negative energy regions of the Kras-
nikov tube.

Consider a geodesic observer who is initially at rest, i.e.,
dx/dt5dr/dt5df/dt50. These initial conditions imply

d2xm

dt2 1G tt
m S dt

dt D 2

50, ~16!

which reduce to

d2t

dt2 2
~12k! k,t

~11k!2 S dt

dt D 2

50, ~17!

d2x

dt2 2
2 k,t

~11k!2 S dt

dt D 2

50, ~18!

d2r

dt2 5
d2f

dt2 50. ~19!

Therefore we see that initially static geodesic observers will
remain static in the region of the spacetime where
k,t[]k/]t50, i.e., long after the formation of the tube. In
this region, from Eq.~17!, dt/dt5const, which we could
choose to be 1 so thatdt5dt. By suitably adjusting the
zeros of each time coordinate, we can make the coordinate
time t equal to the proper timet in this region.

To apply the flat spacetime QI, we must first transform to
the orthonormal frame of the static geodesic observer. The
metric, Eq.~13!, can be diagonalized by the transformation

d t̂5dt2S 12k

2 Ddx, ~20!

dx̂5S 11k

2 Ddx, ~21!

dr̂5dr, ~22!

df̂5r df, ~23!

which corresponds to the~noncoordinate! basis@18#

et̂5et , ~24!

ex̂5S 12k

11kDet1S 2

11kDex , ~25!

er̂5er , ~26!

ef̂5S 1

r Def . ~27!

In this basis, using the fact thatea•eb5gab , we have

em̂•en̂5hm̂n̂ . ~28!

It is also easily seen that, in the region wherek51, Eqs.
~24!–~27! reduce to a set of orthonormal basis vectors in
ordinary Minkowski spacetime.~Note that this basis is also
well behaved in the case whenk50.!

The stress-tensor and Riemann tensor components in this
frame are

Tm̂n̂5Tabem̂
a
en̂

b
~29!

and

Rm̂n̂âb̂5Rabcdem̂
a
en̂

b
eâ

c
eb̂

d , ~30!

respectively. Here the greek indices label the vector of the
basis, and the latin indices denote components in the original
~coordinate! frame. From Eqs.~24! and~29!, we see that the
energy density in the orthonormal frame is the same as in the
coordinate frame: i.e.,
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Tt̂ t̂5Ttt . ~31!

We will evaluate the energy density in the middle of the
left end cap at a time long after the formation of the tube,
i.e., atx5e/2, t@x1r1e. In this region

ue~x1e2D !50 ~32!

and

ue~ t2x2r!51. ~33!

Therefore, in our chosen region, we have

k512~22d!ue~rmax2r!ue~x!. ~34!

Let us now choose the following specific form forue(j):

ue~j!5
1

2 H tanhF2S 2j

e
21D G11J . ~35!

This function has the general desired properties outlined in
Sec. III @19#. However, we do not expect our main conclu-
sion to depend on the detailed form ofk. At x5e/2,
ue(x)50.5, and so

k512S 12
d

2D ue~rmax2r! ~36!

512
1

2 S 12
d

2D H tanhF2S 2~rmax2r!

e
21D G11J .

~37!

Note that from Eq.~14! the energy density depends only
on derivatives ofk with respect tor. Consider a static ob-
server in the middle of the left end cap atr5rmax2e. Let
rmax5ne, where n.1, althoughn is not necessarily as-
sumed to be an integer. Substitution of these expressions into
Eq. ~14! gives @20#

Tt̂ t̂5S 1

8p D @0.271~3.50424.034n20.008d10.017nd20.872d21nd2!#

e2~n21!~1.01810.491d!2
. ~38!

Recall that 0&d<2. The valued52 corresponds tok51
~usual Minkowski spacetime with no opening of the light
cone!, while d'0 corresponds tok'21 in the vacuum in-
side the tube~Minkowski spacetime with maximum ‘‘open-
ing out’’ of the light cone!. Therefore, for effective ‘‘warp
travel,’’ we wantd to be as small as possible. Expansion of
Eq. ~38! in a power series ind shows that, for smalld and
n large compared to 1,

Tt̂ t̂'2
1

8pe2 . ~39!

Let the magnitude of the maximum curvature tensor compo-
nent in the static orthonormal frame be denoted byR̂max.
Then a~somewhat tedious! calculation using Eq.~30! shows
that, for our chosen observer, in the same limits,

R̂max'
1

e2 . ~40!

~Note that the curvature tensor components, unlike the en-
ergy density, will contain derivatives ofk with respect to
x.! Hence the smallest proper radius of curvature at this lo-
cation is

r c'
1

AR̂max

'e. ~41!

Let us now apply the QI bound, Eq.~15!, to the energy
density seen by our static geodesic observer. We assume that
Tt̂ t̂ is the expectation value of the stress-tensor operator in
some quantum state of the quantized massless scalar field
@21#. As argued previously in Ref.@9#, for this flat spacetime

bound to be applicable, we must restrict our sampling time to
be smaller than the smallest local proper radius of curvature:
i.e.,

t05se, ~42!

wheres!1. In this region, spacetime is approximately flat.
Note that as long as we consider the region of spacetime
corresponding to times long after tube formation, the limit of
short sampling times should also eliminate any effects of
time dependence of the metric, which occurred during tube
formation, on the modes of the quantum field. Over the time
scalet0, the energy density is approximately constant, and
so we have

t0

p E
2`

` Tt̂ t̂ dt

t21t0
2 'Tt̂ t̂*2

3

32p2s4e4 , ~43!

which implies

e&
l P

s2 , ~44!

wherel P is the Planck length. For a ‘‘reasonable’’ choice of
s, for example,s'0.01, we have that

e&104l P'10231 m. ~45!

For an observer in the middle of the right end cap, i.e., at
x5D2e/2, it is easily shown that the expression fork is the
same as that given in Eq.~37!. Since the energy density
depends only on derivatives ofk with respect tor, its value
will be the same for observers in the middle of each end cap,
at the samer position. For times long after tube formation,
the spacetime is spatially symmetric with respect to reflec-
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tions of the tube through the planex5D/2. Hence the com-
ponents of the curvature tensor in the static orthonormal
frame should be the same atx5e/2 andx5D2e/2. There-
fore our previous argument should apply to both end caps.

At the midpoint of the tube, i.e., atx5D/2, ue(x)51 and
ue(x1e2D)50, and so in the static region
k512(22d)ue(rmax2r). One can again show that for a
static observer atr5rmax2e, Tt̂ t̂'21/(8pe2), in the
small-d limit. ~The nonzero energy density in the region just
inside the inner wall of the tube is a consequence of the
‘‘tails’’ of the ue functions.! By symmetry, in this region,
k,x50 at x5D/2. It can be shown that the curvature tensor
components contain no second derivatives with respect to
x. The components can therefore only depend on derivatives
of k with respect tor. Again one can show that the smallest
proper radius of curvature at this location isr c'e. Therefore
our conclusion, Eq.~45!, applies to the walls of the~hollow!
Krasnikov tube as well as to the end caps@22#.

In the preceding discussion, we assumed thatrmax@e,
i.e., thatn was large compared to 1. If we relax this require-
ment and consider thick tubes, withn of order 1, then
rmax'e. In this case, from dimensional arguments, we
should have Tt̂ t̂'21/(8prmax

2 ), R̂max'1/rmax
2 , and

r c'rmax. Application of our QI now yields a bound on the
radius of the tube:

rmax&
l P

s2 . ~46!

This result is similar to that found in the case of traversable
wormholes.

Let us now estimate the total amount of negative energy
required for the maintenance of a Krasnikov tube@23#. Our
task is complicated by the fact that thet5const slices of the
Krasnikov spacetime are not everywhere spacelike. The met-
ric on such a slice is given by

ds25k~ t,x,r!dx21dr21r2df2, ~47!

which can be nonspacelike whenk,0. Therefore let us in-
stead estimate the total negative energy in a thin band inr
over whichk'const. In this band, from Eqs.~20! and ~21!,
the metric can be written as

ds252d t̂21dx̂21dr21r2df2. ~48!

Consider a bandDr wherek'const and the energy density
is most negative. We see from Fig. 5 that such a band has the
form

Dr5ae, ~49!

wherea!1. For a small enough choice ofa, we can write
the metric in this region in the simple form, Eq.~48!. The
proper volume of the band is

V'2prmax~Dr!D52paermaxD. ~50!

A rough estimate of the total negative energy contained in
this band is

E'Tt̂ t̂V'2
armaxD

e
. ~51!

From our QI bound, Eq.~44!, we also have thate' l P /s2,
where d is assumed to be very small. As an example, let
D5rmax51 m51035l P ande5100l P . Then

E'2a1068mPlanck52a1063 g52a1018Mgalaxy,
~52!

where we have takenMgalaxy'1012 solar masses. Thus, even
if we takea to be very small, say, 0.01, one requires nega-
tive energies of the order of 1016 galactic masses just to
make a Krasnikov tube 1 m long and 1 m wide. For a tube
that stretches from here to the nearest star, i.e.,D'431016

m, we needE'21032Mgalaxy. Similar orders of magnitude
were found in the case of the Alcubierre warp bubble@11#.
Note that we do not expect the positive and negative energies
on the outside and inside of the tube to add to zero in gen-
eral, since the cancellation would have to be exact toex-
traordinarily high accuracy@24#, given the large magnitudes
involved.

We have been assuming thatd'0, so as to maximize the
amount by which the light cone is opened out within the
tube. In particular, values ofd,1 are needed to allow travel
backward in time and the possibility of CTC’s. The depen-
dence of our results ond can be easily estimated as follows.
Defineh522d, so thatk512h within the ~hollow part of
the! tube andk changes byh across the wall of the tube. For
k512h, the left-hand branch of the light cone in Fig. 2 is
given bydx/dt521/(12h). We see that]k/]r;h/e and
]2k/]r2;h/e2 within the tube wall; thus, from Eq.~14!, in
the limit h!1 ande!r, Ttt scales ash/e2, andr c@e. For
small h, the negative energy densities in the walls are thus
very small and the QI bound, as well as the requirement
t0!r c , can be satisfied for macroscopic values ofe and
t0. For example, one can satisfy the QI witht05e'1 cm,
but only by takingh' l P

2e2/t0
4'10266. It might therefore

actually be possible to establish a region within which super-
luminal travel is, in principle, allowed. However the change
in the slope of the left branch of the light cone, illustrated in
Fig. 2, is proportional toh for smallh, and hence the speed
of a light ray directed along the negativex axis within the
tube, as seen by observers outside, would exceed 1 by only
one part in 1066. The existence of superluminal travel would
thus appear to be completely unobservable.

VII. CONCLUSIONS

The Alcubierre ‘‘warp drive’’ spacetime suffers from the
drawback that a spaceship at the center of the warp bubble is
causally disconnected from the outer wall of the bubble. We
have discussed and generalized a metric, originally designed
by Krasnikov to circumvent this problem, which requires
that any modification of the spacetime to allow superluminal
travel necessarily occurs in the causal future of the launch
point of the spaceship. As a result, this metric has the inter-
esting feature that the time for a one-way trip to a distant star
is limited by all the usual restrictions of special relativity, but
the time for around trip may be made arbitrarily short. In
four dimensions this entails the creation of a ‘‘tube’’ during
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the outbound flight of the spaceship, which connects the
Earth and the star. Inside the tube, the spacetime is flat but
with the light cones ‘‘opened out’’ to allow superluminal
travel in one direction, as seen by observers outside the tube.
Although the creation of a single Krasnikov tube does not
entail the formation of closed timelike curves, we showed
that two spatially separated tubes could be used to construct
a time machine—a feature shared by two-wormhole or two-
warp bubble systems. This poses a problem for causality
even if tubes of only, say, laboratory dimensions could be
realized in practice.

In addition, we have also shown that, with relatively mod-
est assumptions, maintenance of a such a tube long after
formation will necessarily require regions of negative energy
density which can beno thicker thana few thousand Planck
lengths. Estimates of the total negative energy required to

construct Krasnikov tubes of even modest dimensions were
shown to be unphysically large. Similar difficulties have
been recently shown to plague warp bubbles and wormholes
@25#. The Krasnikov tube suffers from some of the same
drawbacks as these other proposed methods of faster-than-
light travel, and is hence also a very unlikely possibility.
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