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Superluminal subway: The Krasnikov tube
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The “warp drive” metric recently presented by Alcubierre has the problem that an observer at the center of
the warp bubble is causally separated from the outer edge of the bubble wall. Hence such an observer can
neither create a warp bubble on demand nor control one once it has been created. In addition, such a bubble
requires negative energy densities. One might hope that elimination of the first problem might ameliorate the
second as well. We analyze and generalize a metric, originally proposed by Krasnikov for two spacetime
dimensions, which does not suffer from the first difficulty. As a consequence, the Krasnikov metric has the
interesting property that, although the time for a one-way trip to a distant star cannot be shortened, the time for
around trip, as measured by clocks on Earth, can be made arbitrarily short. In our four-dimensional extension
of this metric, a “tube” is constructed along the path of an outbound spaceship, which connects the Earth and
the star. Inside the tube spacetime is flat, but the light cones are opened out so as to allow superluminal travel
in one direction. We show that, although a single Krasnikov tube does not involve closed timelike curves, a
time machine can be constructed with a system of two nonoverlapping tubes. Furthermore, it is demonstrated
that Krasnikov tubes, like warp bubbles and traversable wormholes, also involve unphysically thin layers of
negative energy density, as well as large total negative energies, and, therefore, probably cannot be realized in
practice.[S0556-282(97)03914-3

PACS numbd(s): 04.20.Gz, 04.62:v

I. INTRODUCTION the bubble. Here is an arbitrary function of time which
need not satisfy <1, so that the bubble may attain arbi-
Alcubierre[1] showed recently, with a specific example, trarily large superluminal speeds as seen by external observ-
that it is possible within the framework of general relativity ers. Space is also flat in the region within the bubble where
to warp spacetime in a small “bubblelike” region in such a f=1, since it follows from Eqs(1) and(3) that, forf=1, a
way that a spaceship within the bubble may move with arbifocally inertial coordinate system is obtained by the simple
trarily large speed relative to nearby observers in flat spacaransformatiorx’ =x—x,(t). Hence an object moving along
time outside the bubble. His model involves a spacetiméyith the center of the bubble, whose trajectory is given by
with metric given by(in units whereG=c=1) x'=0, is in free fall.
5 2e2 As pointed out in Ref[1], there are questions as to
ds’= —dt?[1-v?f%(rg)] - 20f(rp)dx dt whether the metri€l) is physically realizable, since the cor-
+dx2+dy?+dZ, (1) responding energy-momentum tensor, related to it by the
Einstein equation, involves regions of negative energy den-
where sity, i.e., violates the weak energy conditiG'EC) [2]. This
is not surprising since it has been shol@ that a straight-
ro=1{[x—Xo(t)12+y?+2%}2 (2)  forward extension of the metric of RdfL] leads to a space-
time with closed timelike curve€CTC's). It is well known
and that negative energy densities are required for the existence
d of stable Lorentzian wormholdg], where CTC’s may also
= _XOI (3)  occur, and Hawking5] has shown that the occurrence of
dt CTC's requires violations of the WEC under rather general
) - circumstances. The occurrence of regions with negative en-
The functionf satisfiesf~0 for ro>R+ R andf~1 for gy density is allowed in quantum field thed;7]. How-
Fo< R— SR, whereR is the bubble_ radius andR is the ha_llf ever, Ford and Romafi8—10 have proved inequalities
thickness of the pupble wall. A suitable form fbis given iN" which limit the magnitude and duration of negative energy
Ref. [1]. In .the limit 5R—>0., f become§ a step functlon.. density. These “quantum inequalities'QI’s) strongly sug-
Spacetime is then flat outside a spherical bubble of radiugest[9] that it is unlikely that stable macroscopic Lorentzian
R centered on the pointy= (Xo(t),0,0) moving with speed wormholes can exist, and similar conclusions have been
v along thex axis, as measured by observers at rest outsiddrawn by Pfenning and Forld 1] with regard to the “warp
drive” spacetime of Ref[1].
It is the goal of this paper to analyze a spacetime recently
*Electronic address: everett@cosmos2.phy.tufts.edu proposed by Krasniko{12] which, although differing from
TPermanent address: Department of Physics and Earth Sciencdbat of Ref.[1] in several key respects, shares with it the
Central Connecticut State University, New Britain, CT 06050. Elec-property of allowing superluminal travel. We first review this
tronic address: roman@ccsu.ctstateu.edu spacetime, in the two-dimensional form as originally given
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by Krasnikov, and give a more extended discussion of itsuitably warped metric to reach a star at a distabDca a
properties than that provided in R¢L2]. Then we carry out time intervalAt<D must, like the potential trolley car pas-
the straightforward task of generalizing the Krasnikov metricsenger, hope that others have previously taken action to pro-
to the realistic case of four dimensions. We establish thatyide a passing mode of transportation when desired.
despite their differences, the Krasnikov and Alcubierre met- In contrast, as Krasnikov points out, causality consider-
rics share a number of important properties. In particular, wetions do not prevent the crew of a spaceship from arranging,
show that, like the metric of Ref1], the Krasnikov metric by their own actions, to completeraund trip from the Earth
implies the existence of CTC'’s, and also show explicitly thatto a distant star and back in an arbitrarily short time, as
the associated energy-momentum tensor violates the WE@neasured by clocks on the Earth, by altering the metric along
Finally, we apply a QI to the Krasnikov spacetime and arguahe path of their outbound trip. As an example, consider the
that, as in the cases of wormholes and Alcubierre bubblesnetric in the two-dimensional,x subspace, introduced by
the QI strongly suggests that the Krasnikov spacetime is ndrasnikov in Ref.[12], given by
physically realizable.
ds?=—(dt—dx)[dt+k(x,t)dx] 4
Il. KRASNIKOV METRIC IN TWO DIMENSIONS _ 2 2
AND SUPERLUMINAL TRAVEL =—dt°+[1-k(x,t)]dx dt+k(x,t)dx ,(5)

Krasnikov[12] raised an interesting problem with meth-
ods of superluminal travel similar to the Alcubierre mecha-
ni§m. The_ basig point is that in a universe de§gribed by the k(x,t)=1—(2—8)0.(t—X)[ 0.(X)— O.(x+e—D)], (6
Minkowski metric att=0, an observer at the origin, e.g., the
captain of a spaceship, can do nothing to alter the metric &, is a smooth monotonic function satisfying
points outside the usual future light cone|<t, where
r=(x2+y?+2z%) In particular, this means that those on
the spaceship can never create, on demand, an Alcubierre
bubble withv>c around the ship. This follows explicitly
from the following simple argument. Points on the outsideand § ande are arbitrary small positive parameters. We will
front edge of the bubble are always spacelike separated frogive a specific form ford, in Sec. VI. Fork=1, the metric
the center of the bubble. One can easily show this by con¢5) reduces to the two-dimensional Minkowski metric. The
sidering the trajectory of a photon emitted in the positive two time-independend, functions between the brackets in
direction from the spaceship. If the spaceship is at rest at theq. (6) vanish for x<0 and cancel forx>D, ensuring
center of the bubble, then initially the photon hask=1 for all t except betweex=0 andx=D. When this
dx/dt=v+1 or dx'/dt=1. This of course must be true behavior is combined with the effect of the fac#@(t—x),
since at the center of the bubble the primed coordinates dene sees that the metri6) describes Minkowski space ev-
fine a locally inertial reference frame. However, at someerywhere fort<0 and, at all times, outside the range
point with x’ =x/, for which 0<f<1 so thatx,<R and the =~ 0<X<D. Fort>x and e<x<D — ¢, the first two ¢, func-
point is within the bubble wall, one finds thdk’/dt=0 or  tions in Eq.(6) both equal 1, whiled(x+e—D)=0, giving
dx/dt=v. (It is clear by continuity thatx/dt=v at some k=dJ—1 everywhere within this region. There are two spa-
point for photons moving in thet x direction inside the tial boundaries between these two regions of constanhe
bubble, sincedx/dt=v+1 at the center of the bubble and betweenx=0 and x=¢ for t>0 and a second between
dx/dt=1 in flat space outside the bubble walThus once X=D —e€ andx=D for t>D. We can think of this metric as
photons reachx., they remain at rest relative to the bubble being produced by the crew of a spaceship which departs
and are simply carried along with it. Photons emitted in theffom Earth =0) att=0 and travels along the axis to
forward direction by the spaceship never reach the outsidPeneb &=D) at a speed which for simplicity we take to be
edge of the bubble wall, which therefore lies outside theonly infinitesimally less than the speed of light, so that it
forward light cone of the spaceship. The bubble thus canndttives att~D. The crew modify the metric by changirg
be created(or controlled by any action of the spaceship from 1 to 6—1 along thex axis in the region between
crew, excluding the use of tachyonic signfis]. x=0 andx=D, leaving a transition region of widtle at

The foregoing discussion does not mean that Alcubierr€ach end to ensure continuity. Similarly, continuity in time
bubbles, if it were possible to create them, could not be usetinplies that the modification df requires a finite time inter-
as a means of superluminal travel. It only means that th&al whose duration we assume, again for simplicity, to be
actions required to change the metric and create the bubbke However, since the boundary of the forward light cone of
must be taken beforehand by some observer whose forwathie spaceship at=0 is given by|x|=t, the spaceship cannot
light cone contains the entire trajectory of the bubble. Supmodify the metric atx beforet=x, which accounts for the
pose space has been warped to create a bubble traveling frdactor 8 (t—x) in the metric. Thus there is a transition re-
the Earth to some distant star, e.g., Deneb, at superlumingion in time between the two valueslofof duratione, lying
speed. A spaceship appropriately located with respect to thalong the world line of the spaceshipz=t. The resulting
bubble trajectory could then choose to enter the bubblegeometry in thex-t plane is shown in Fig. 1, where the
rather like a passenger catching a passing trolley car, anghaded regions represent the two spatial transition regions
thus make the superluminal journey. However, a spaceshid<x<e andD — e<x<D and the temporal transition region
captain hoping to make use of a region of spacetime with x<t<x+ €. In the internal region of the diagram, enclosed

where

1 at &>e

0L0=1 0 o <0 ™
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5 dx. (9)

1)
dx’=(—

Note that the left-hand branch of the light cone in the internal
region is given in the Minkowski coordinates by
dt’/dx’=—1, which, from Eqgs(8) and(9), reduces to our
previous expressiordt/dx=—k=1-§6 on the left-hand
branch of the light cone as illustrated in Fig. 2. We also note

ke 1 that the transformation becomes singular&atO, i.e., at

= k=-1.
From Eqgs.(8) and(9), we obtain

dt  [2-&
dt’ 5

dx’
dt’

(10

For an object propagating causally, i.e., into its forward light
cone, we havédx’/dt’|<1 anddt’ >0. Since < §<2, one
sees that for such an object moving in the positve(and
X) direction,dt>0 for any §. However, for6<1, an object
moving sufficiently close to the left branch of the light cone
given bydx’/dt’ = —1 will havedt/dt’ <0 and thus appear
|<- D ->| to propagate backward in time as seen by observers in the
) o i external =2 ,k=1) region of Fig. 1. These properties of
_ FIG. 1. The Krasnikov sp_aceﬂme in thxet plane. The vertical motion in the Krasnikov metric witth< 1 can be seen from
I[nesg andD are the world lines of thg Earth an.d Deneb, respec-ina shape of the light cone as shown in Fig. 2.
2‘;\'&; dTbhetr\:\éo[ilg él'ge of the spaceship ispproximately repre- Now suppose our spaceship, having traveled from the
y ' Earth to Deneb and arriving at tinte=D, has modified the

by the three shaded aredshas the constant valug—1, Metric so thatk~—1 (i.e., 5~0) along its path. Suppose
while k=1 everywhere outside the shaded regions. Thdurther that it now returns almost immediately to Earth, again

world line of the spaceship is represented by the AR traveling at a speed arbitrarily close to the speed of light as
The properties of the modified metric wi—1<k<1  S€en in its local inertial system, i.e., along the left-hand
can be easily seen from the factored form of the expressioRranch of the light cone wittx’/dt’~ —1. It will then have

for ds2 in Eq. (4) where, puttingds’=0, one sees that the vr=dXdt~—1k=1/(1-6)~1 anddt<0 (sincedx<0),

two branches of the forward light cone in the plane are  @nd thus move down and to the left along the upper edge of
given bydt/dx=1 anddt/dx=—k. As k becomes smaller the diagonal s.haded region in Fig. 1. The spaceship’s return
and then negative, the slope of the left-hand branch of th& Earth requires a time intervalt, = —D/v,=D(6—1),

light cone becomes less negative and then changes sign; i.87d the ship returns to Earth at a time as measured by
the light cone along the negatixeaxis “opens out.” Thisis  ¢locks on the Earth given by=D+At,=D4. (For sim-

illustrated in Fig. 2 where we depict the behavior of the lightPlicity, here we treat the wall thickness, as negligible.

k=8—1 for small 5. For k~—1, the boundary of the for- the spaceship’s departure from Deneb and its return to Earth
ward light cone is almost the straight line=t, and the for- 1S Spacelike. Therefore the return journey must involve su-

ward and backward light cones include almost all of spacePerluminal travel. Note thag>0, meaning that the return of
time. the spaceship to Earth necessarily occurs after its departure.

In the internal region of Fig. 1, where= —1=const, However, the interval between departure and return, as mea-
space is flat, since the metric of E) can be reduced to Sured by observers on the Earth, can be made arbitrarily
Minkowski form by the coordinate transformation small by appropriate choice of the paramefefThe time of
return,tz, must necessarily be positive, since causality in-
sures that the metric is modified, opening out the light cone
to allow causal propagation in the negativdirection, only
for t>0. Sincetg>0, the spaceship cannot travel into its
L Y t own past; i.e., the metric of Ref12], as it stands, does not

i : lead to CTC'’s and the existence of a time machine. How-
ever, when the metri5) is generalized to the more realistic
case of three space dimensions, CTC’s do become possible,
as we shall see below.

Before turning to the three-dimensional generalization,
we note one other interesting property of the Krasnikov met-
ric. In the cases<1, it is always possible to choose an

FIG. 2. Forward light cones in the Krasnikov spacetifiles-  allowed value ofdx’/dt’ for whichdt/dt’=0, meaning that
trated with two space dimension®r k=1, k=0, andk=6—1. the return trip is instantaneous as seen by observers in the

dt’=dt+ >

o
——1>dx, (8)

k=1 k=0 k=8-1
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external region of Fig. 1. This can be seen from the third
diagram in Fig. 2. It also follows easily from E€LO), which
implies thatdt/dt’ =0 whendx’/dt’ satisfies

dx’ B )
dat— (2-6)" (1D

which lies between 0 and 1 for 0<6<1.

IIl. GENERALIZATION TO FOUR DIMENSIONS

In four dimensions the modification of the metric begins
along the path of the spaceship, i.e., thaxis, occurring at :
positionx at timet~x, the time of passage of the spaceship. e<x<D-¢ § X=¢e/2
We assume that the disturbance in the metric propagates ra- '
dially outward from thex axis, so that causality guarantees FIG. 3. Spatial cross sections of a Krasnikov tubeatconst,
that at timet the region in which the metric has been modi- t=const. The left diagram represents a cross section through the
fied cannot extend beyons=t—x, wherep= (y2+ 22) 12 ¢ middle of the tube between the end caps, while the right diagram is
also seems natural to take the modification in the metric nof cross section through an end cap.
to extend beyond some maximum radial distapgg,<D
from thex axis. Thus in four-dimensional spacetime we re-
place Eq.(6) by

ship to return from Deneb to the Earth outside the first tube
along a path parallel to theaxis but at a distance, from it,
whereD>py>2pmax- On the return journey the spaceship

K(t,x,p)=1—(2— )0, —p) O (t—x— crew could again modify the metric along their path, estab-
(t.x.p) (2= 9)0clpmax=p) Ol 2 lishing a second Krasnikov tube identical to the first but
X[0(X)—0(x+e—D)], (12 running in the opposite direction; that is, the metric within

the second tube would be given by that of E§3) with x
and our metric, now written in cylindrical coordinates, is replaced byx=D —x andt replaced byT=t—D. The cru-
given by cial point is that in three dimensions the two tubes can be
made nonoverlapping because of their separation inpthe
ds’=—dt®+ [1-k(t,x,p)]dx dt+k(t,x,p)dx* direction. The spgges%ip can now, for examgle, start frc?m the
+dp?+ p2d 2. (13 Earth x=0) att=2D, and travel back in time to the Earth
at a time arbitrarily close t6=0 by first using the second
(Again we assume for simplicity that theparameters in all  Krasnikov tube to travel to Denelx€ D) at timet=D, and
of the . functions which appear in the expression koare  then using the original tube as before, to travel from Deneb
equal) For t>D+ p. ONe now has a tube of radiys,,, ~ att=D to the Earth at=0. (We are assuming that the ship
centered on thex axis within which the metric has been travels at essentially light speed, thaand e are taken to be
modified; we refer to this structure as a “Krasnikov tube.” negligibly small, and that the small time required to move
In contrast with the metric of Refl], the metric of a Kras- the distancepy<D from one of the Krasnikov tubes to the
nikov tube is static once it has been initially created. If weother is negligible.It may be worth noting that the foregoing
make the assumption thaf,,,& €, such a tube will consist of argument is closely analogous to that given in R8j.for
a relatively large central core, of radigs,,— €, along the the existence of CTC’s in the Alcubierre case. The situation
X axis with e<x<D — ¢; within this central core, space is is also similar to the case of time travel using a two-
flat and k=6—1=const. This central core will be sur- wormhole system, as depicted in the spacetime diagram of
rounded by thin walls and end caps of thicknesswithin Fig. 18.5 of Ref[14].
which there is curved space witk varying between It follows from the foregoing discussion that if Krasnikov
k=6—1 andk=1. The situation is illustrated in Fig. 3, tubes could be constructed, one could, at least in principle,
which shows cross sections through the tube in the regiogstablish a network of such tubes forming a sort of interstel-

e<x<D-—¢€ and also in one of the end caps. lar subway system, allowing instantaneous communication
between points connected by the tubes. A necessary corol-

IV. SUPERLUMINAL SUBWAY AND CLOSED lary of the existence of such a network is the possibility of
TIMELIKE CURVES backward time travel and the consequent existence of CTC’s.

CTC'’s could be avoided only if, for some reason, there ex-
As we have seen, in two dimensions a single Krasnikovisted a preferred axis such that all the Krasnikov tubes were
tube allows superluminal travel backwardtirin one direc- oriented so that the velocity components along that axis of
tion along thex axis, and does not lead to CTC’s. However, objects in superluminal motion were always positive, imply-
in three space dimensions the situation is different. Assuming that no object could return to the same point in tiamel
ing that Krasnikov tubes can be established, imagine that gpace. One might be tempted to reject immediately the pos-
spaceship has traveled from the Earth to Deneb along the sibility of Krasnikov tubes for interstellar travel because, un-
axis during the time interval froh=0 to t=D, and estab- like Alcubierre bubbles, their required length would be enor-
lished the Krasnikov tube running from the Earth to Denebmous. However, there are interesting situations in
which we have discussed. It would then be possible for thestronomy, e.g., jets in active galactic nuclei and possibly
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k Tt

0.2

[
Pmax-€ Prmax Pmaxt€ FIG. 5. Graph of energy density ysat the middle of the tube,
p i.e., atx=D/2, andt=constD/2+ p,.. Here we have chosen
6=0.01,e=10, and p,,=1000e. The plot extends from
Pmax— 3€ 10 pmaxt 3€.

B>0, for small p. Hence, sufficiently near the axis of the
Krasnikov tube, the first and third terms on the right-hand
8 -1 side of Eq.(14) are negative and go a8~ ! for p—0; these
terms thus dominate the second term, which is positive, by a
factor of p~™ 1. Therefore there is necessarily a range of
p hear the axis of the tube where the energy density seen by
a static observer is negative.

As we have noted previously, for a thin-walled tube,
space is nearly flat and 9G;~0 within the core of the tube.

cosmic strings, which involvéalbeit positive matter distri- ~ Thus in the region negs=0 where we can make a general
butions of such dimensions. In any event, even if the constatement about the sign &f; on the basis of the preceding
struction of Krasnikov tubes over astronomical distances igrgument, we expecty to be extremely small due to the
impractical, oppositely directed nonoverlapping pairs ofPehavior of the functiord (pmax—p). (We observe that the
tubes of laboratory dimensions could form time machinescasek=—1, corresponding t&5=0, is not allowed, since

forcing one to confront all the associated problems. that would produce a divergence T .) In the vicinity of
the tube wall, wherd, is large, we can only obtain its value

V. STRESS-ENERGY TENSOR FOR A KRASNIKOV TUBE by ChOOSing an eXpIiCit form fok, i.e., for 05, and th.en
evaluatingT,; numerically. In Fig. 5 we show a plot df; in

In this section, we show that the WEC is necessarily vio-the region of the tube wall obtained in this way, using the
lated in some regions of a Krasnikov tube. The stress-energiyrm of ¢, given in the next section, and taking=D/2,
tensorT,, for the matter needed to produce a Krasnikovisp . +D/2, ande/pm.<1. We see thaly, is negative on
tube can be calculated from the metric of E§3) and the  the inner side of the wall, as one would expect, since the
Einstein equations, using the programATHTENSOR [15].  general argument given above shows fhatmust be nega-
We first obtain an expression far,, in terms of derivatives tive for small p. However, T,; changes sign and develops
of k with respect to the spacetime coordinates. The stresgppreciable positive values on the outer side of the wall. The

FIG. 4. Graph ofk vs p at constank,t. Heree<x<D —e.

tensor elemenTy, is given by the expression corresponding plot ak=e¢/2, in the left end cap, is very
) similar to Fig. 5. There are two main differences: First, the
_ 21 —4 (11K a_k ‘7_k magnitudes of the positive and negative energy density
ap ap maximum and minimum are essentially equal, and second,

these magnitudes are roughly 4 times smaller than at

4(1+K) i
ap?

. L . VI. QUANTUM INEQUALITY CONSTRAINTS
(It will be shown later that this is the energy density seen by Q Q

a static observer.Note that this component of the stress In Ref. [8], an inequality was proved which limits the
tensor involves only derivatives df with respect top. A magnitude and duration of the negative energy density seen
number of general features of thevs p curve illustrated in by an inertial observer in Minkowski spacetime. L&t,,)

Fig. 4 are generic and follow from E@L2) without specify-  be the renormalized expectation value of the stress tensor for
ing an explicit form foré, . In particular,k increases mono- a free, massless, minimally coupled scalar field in an arbi-
tonically from its value ap=0 tok~1 atp=pn.y, SO that trary quantum state. Let* be the observer’s four-velocity,
dkldp and (1+k) are positive. Furthermore, analyticity of so that(T,,u”u”) is the expectation value of the local en-

k at p=0 implies thatok/dp vanishes at that point. From the ergy density in this observer’'s frame of reference. The in-
previous remarks, we have thak/dp~Bp™, with m=1, equality states that
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7o (= (T,u u")dr 3 15 d’>x 2k, [dt\? 0 18
J— 2 —_ —_ —_— =
T ) Pt 32727’ (19 d?  (1+k)?Z\dr ' (18)
for all 79, wherer is the observer’s proper time. The Lorent- d’p  d?¢
zian function which appears in the integrand is a convenient a2 = d=2 =0. (19

choice for a sampling function, which samples the energy

density in an interval of characteristic duratiegp centered Therefore we see that initially static geodesic observers will
around an arbitrary point on the observer’s worldline. Theremain static in the region of the spacetime where
proper time coordinate has been chosen so that this point Ig,=gk/9t=0, i.e., long after the formation of the tube. In
at 7=0. Physically, Eq(15) implies that the more negative this region, from Eq.(17), dt/dr=const, which we could
the energy density is in an interval, the shorter must be thehoose to be 1 so thatt=dr. By suitably adjusting the
duration of the interval. Such a bound is called a “quantumzeros of each time coordinate, we can make the coordinate
inequality” (QI). [More recently, a much simpler proof of timet equal to the proper time in this region.

Eqg. (15 has been given, as well as derivations of similar  To apply the flat spacetime QI, we must first transform to
bounds for the massive scalar and electromagnetic fieldgie orthonormal frame of the static geodesic observer. The

[10]] metric, Eq.(13), can be diagonalized by the transformation
Although the QI bound was initially derived for a mass-

less scalar field in Minkowski spacetim@ithout bound- A 1-k

arie9, it was argued in Ref9] that in fact the bound should dt:dt_(T)dX’ (20
also hold in a curved spacetime and/or one with boundaries,

in the limit of short sampling times. More specifically, when . [1+k

the sampling timer, is restricted to be smaller than the dx= T)dX, (21)
smallest proper radius of curvature or the distance to any

boundaries, then the modes of the quantum field may be dp=dp 22

approximated by plane waves; i.e., spacetime is approxi-
mately Minkowski. In this region, Eq15) should hold. Fur- -
ther evidence supporting this conclusion has recently ap- dé=p d¢, (23)
peared in the form of QI bounds which have been explicitly
proved in various staticurvedspacetimes. In all cases, these
bounds reduce to the flat spacetime QI's in the short-

which corresponds to th@oncoordinatgbasis[18]

sampling-time limit[16,17. e 29
In Ref. [9] the flat spacetime bound was applied, in the 1—k 2

limit of short sampling times, to Morris-Thorne traversable e;z(m e+ 17Kk e, (25

wormhole spacetimes. The upshot of the analysis was that

either the wormhole throat could be no larger than a few e—e 26)

times the Planck length or that there must be large discrep- PP

ancies in the length scales which characterize the wormhole. 1

In the latter case, this typically implied that the exotic matter e3= (_) €y 27

which maintains the wormhole geometry must be concen- p

trated in anexceedinglthin band around the throat. These

results would appear to make the existence of macroscop

static traversable wormholes very unlikely. A similar analy- e e=17.. (28)

sis using the flat space QI has been applied to the Alcubierre womw ey

“warp drive” spacetime[11], which also requires exotic |t is also easily seen that, in the region whére 1, Egs.

matter. Here as well, it was found that the wall of the “warp (24)—(27) reduce to a set of orthonormal basis vectors in

bubble” surrounding a spaceship must be unphysically thirprdinary Minkowski spacetime/Note that this basis is also

compared to the bubble radius. In this section, we apply theuell behaved in the case whém0.)

flat space QI to the Krasnikov spacetime, again in the short- The stress-tensor and Riemann tensor components in this

sampling-time limit, and reach a similar conclusion regard-frame are

ing the thickness of the negative energy regions of the Kras-

nikov tube. T;5=Tape e? (29)
Consider a geodesic observer who is initially at rest, i.e., r

dx/d7=dp/d7=d¢/d7=0. These initial conditions imply  and

;g this basis, using the fact that,-e;=g,5, we have

R;:05= Ravceres e (30)

d2x+ L, [dt 2 ,
W'FF t (E_) =0, (16) wvTa”p
respectively. Here the greek indices label the vector of the
which reduce to basis, and the latin indices denote components in the original
5 5 (coordinate frame. From Eqs(24) and(29), we see that the
a7t (1-Kk) ky ﬂ) ~0 (17)  €nergy density in the orthonormal frame is the same as in the
d?  (1+k)? \dr/] coordinate frame: i.e.,
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Ti=Tyg. (31) This function has the general desired properties outlined in
Sec. lI[19]. However, we do not expect our main conclu-
We will evaluate the energy density in the middle of thesion to depend on the detailed form &f At x=¢€/2,
left end cap at a time long after the formation of the tube,g_(x)=0.5, and so
i.e., atx=€/2, t>x+p+ €. In this region

)
f(x+e-D)=0 (32) k=1-|1~5|0pma—p) (36)
and
1 ) 2 -
6 (t—x—p)=1. (33) —1- 2= ann o 2LmeTP) g )
2 2 €
Therefore, in our chosen region, we have (37)
k=1—(2=8)0.(pmax—p) 0(X). (34) Note that from Eq(14) the energy density depends only
on derivatives ok with respect top. Consider a static ob-
Let us now choose the following specific form fég(¢): server in the middle of the left end cap @& ppq— €. Let

Pmax=Ne, wheren>1, althoughn is not necessarily as-
sumed to be an integer. Substitution of these expressions into

+1 Eq. (14) gives[20]

. (35

1 2¢
0.(&)= > [tan?‘{z(?—l

1 ) [0.27X3.504-4.034— 0.0085+0.017h5— 0.87252+n &%) ] -

Ti= ( 8 €% (n—1)(1.018+ 0.4915)

Recall that 6s §<2. The value§=2 corresponds tk=1  bound to be applicable, we must restrict our sampling time to
(usual Minkowski spacetime with no opening of the light be smaller than the smallest local proper radius of curvature:
cone, while §~0 corresponds t&~ —1 in the vacuum in- i.e.,

side the tubgMinkowski spacetime with maximum “open-

ing out” of the light cone. Therefore, for effective “warp To= O€, (42)
travel,” we wanté to be as small as possible. Expansion of
Eq. (38) in a power series i shows that, for smalb and

n large compared to 1,

whereo<1. In this region, spacetime is approximately flat.
Note that as long as we consider the region of spacetime
corresponding to times long after tube formation, the limit of

1 short sampling times should also eliminate any effects of

Ti~— —>. (390 time dependence of the metric, which occurred during tube
8me formation, on the modes of the quantum field. Over the time
scale 7y, the energy density is approximately constant, and

Let the magnitude of the maximum curvature tensor compo

_ _ - so we have
nent in the static orthonormal frame be denotedRyy,y.

Then a(somewhat tedioyscalculation using Eq(30) shows 70 (* Tidr 5
that, for our chosen observer, in the same limits, E e ~Ti=— 352 a4 (43
s which implies
Rinac= - (40) P
lp
. < —=
(Note that the curvature tensor components, unlike the en- =52 (44)

ergy density, will contain derivatives df with respect to
X.) Hence the smallest proper radius of curvature at this lowherel is the Planck length. For a “reasonable” choice of

cation is o, for example,c~0.01, we have that
1 e<101p~10"3! m. (45)
re~——==~e. (41 . . : .
‘/ﬁmax For an observer in the middle of the right end cap, i.e., at

x=D—¢€/2, it is easily shown that the expression kois the
Let us now apply the QI bound, EL5), to the energy same as that given in Ed37). Since the energy density
density seen by our static geodesic observer. We assume thdgpends only on derivatives &fwith respect tap, its value
Ts; is the expectation value of the stress-tensor operator iwill be the same for observers in the middle of each end cap,
some quantum state of the quantized massless scalar fiedd the same position. For times long after tube formation,
[21]. As argued previously in Ref9], for this flat spacetime the spacetime is spatially symmetric with respect to reflec-
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tions of the tube through the plame=D/2. Hence the com- apmaD
ponents of the curvature tensor in the static orthonormal E~TiV~———. (52)
frame should be the sameat /2 andx=D — /2. There-
fore our previous argument sh.ould apply to both end caps.rrom our QI bound, Eq(44), we also have that~p /02,

At the midpoint of the tube, i.e., a=D/2, 0. (x)=1 and  \\here 5 is assumed to be very small. As an example, let
lfe_(>i+ e—D)=0, and so in thg static  region D=pna=1 m=10%, ande=100,. Then

=1—(2-6)0.(pmax— p). One can again show that for a

static observer atp=pm.—e€, Tii~—1/(87€?), in the E~— al0®mpjgna= — @107 g=— a10®M iy
small-é limit. (The nonzero energy density in the region just gatey
inside the inner wall of the tube is a consequence of the
“tails” of the 6, functions) By symmetry, in this region, where we have takeM g,jax~ 10'? solar masses. Thus, even
k,x=0 atx=D/2. It can be shown that the curvature tensorif we take « to be very small, say, 0.01, one requires nega-
components contain no second derivatives with respect ttive energies of the order of 10 galactic masses just to
X. The components can therefore only depend on derivativesiake a Krasnikov tube 1 m long and 1 m wide. For a tube
of k with respect tp. Again one can show that the smallest that stretches from here to the nearest star, Des4x 10'°
proper radius of curvature at this locatiorr s~ €. Therefore  m, we neecE~ — 10°2M galaxy- Similar orders of magnitude
our conclusion, Eq(45), applies to the walls of théhollow)  were found in the case of the Alcubierre warp bubldl&].
Krasnikov tube as well as to the end cdpg]. Note that we do not expect the positive and negative energies

In the preceding discussion, we assumed {hat,> e, on the outside and inside of the tube to add to zero in gen-
i.e., thatn was large compared to 1. If we relax this require-eral, since the cancellation would have to be exacexe
ment and consider thick tubes, with of order 1, then traordinarily high accuracy24], given the large magnitudes
Pmax=€. In this case, from dimensional arguments, weinvolved.

should have Ti~—1/(87p2.), Rma~1lpia. and We have been assuming th&0, so as to maximize the
ro~pmax. Application of our QI now yields a bound on the @mount by which the light cone is opened out within the
radius of the tube: tube. In particular, values af<1 are needed to allow travel

backward in time and the possibility of CTC'’s. The depen-
lp dence of our results oé can be easily estimated as follows.
Pmax= 2 (46)  Define p=2-§, so thatk=1— » within the (hollow part of
the) tube andk changes by, across the wall of the tube. For
This result is similar to that found in the case of traversablek.zl_ 7, the Ie_ft—hand branch of the light cone in Fig. 2 is
wormholes given bydx/dt=—1/(1— 7). We see thavk/dp~ n/e and
' , , 2kl 9p?~ nl €% within the tube wall; thus, from Eq14), in
Let us now estimate the total amount of negative energ he limit »<1 ande<p. T | ' / 5 dr > F
required for the maintenance of a Krasnikov tyg8]. Our € imit 7 ande=p, 1y SCales asyle”, andr > e. For
task is complicated by the fact that the const slices of the small », the negative energy densities in the walls are thus

Krasnikov spacetime are not everywhere spacelike. The metSY small and the_ Q.I bound, as well as the requirement
fic on such a slice is given by To<<r., can be satisfied for macroscopic valueseofind

79. FOr example, one cgnzsatjsfy th%GQI with=e~1 cm,

_ 2 2, 2442 but only by takingn~|p~€e“/ 75"~ 10" °°. It might therefore
ds’=k(tx.p)dx*+dp®+p*dg”, “7 actually be possible to establish a region within which super-
luminal travel is, in principle, allowed. However the change
in the slope of the left branch of the light cone, illustrated in
Fig. 2, is proportional tay for small %, and hence the speed
of a light ray directed along the negatixeaxis within the
tube, as seen by observers outside, would exceed 1 by only
one part in 16°. The existence of superluminal travel would
thus appear to be completely unobservable.

which can be nonspacelike whé&r<0. Therefore let us in-
stead estimate the total negative energy in a thin bang in
over whichk=const. In this band, from Eq$20) and (21),
the metric can be written as

ds?=—dt2+dx2+dp?+ p2d 2. (48)

Consider a band p wherek~const and the energy density
is most negative. We see from Fig. 5 that such a band has the

form The Alcubierre “warp drive” spacetime suffers from the
drawback that a spaceship at the center of the warp bubble is
Ap=ae, (49 causally disconnected from the outer wall of the bubble. We
have discussed and generalized a metric, originally designed
wherea<1. For a small enough choice ef, we can write by Krasnikov to circumvent this problem, which requires
the metric in this region in the simple form, EG8). The  that any modification of the spacetime to allow superluminal

VII. CONCLUSIONS

proper volume of the band is travel necessarily occurs in the causal future of the launch
point of the spaceship. As a result, this metric has the inter-
V=27pmnad Ap)D=27aepmaD. (50)  esting feature that the time for a one-way trip to a distant star

is limited by all the usual restrictions of special relativity, but
A rough estimate of the total negative energy contained irthe time for around trip may be made arbitrarily short. In
this band is four dimensions this entails the creation of a “tube” during
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the outbound flight of the spaceship, which connects the&onstruct Krasnikov tubes of even modest dimensions were
Earth and the star. Inside the tube, the spacetime is flat bghown to be unphysically large. Similar difficulties have
with the light cones “opened out” to allow superluminal been recently shown to plague warp bubbles and wormholes
travel in one direction, as seen by observers outside the tubgzs]. The Krasnikov tube suffers from some of the same
Although the creation of a single Krasnikov tube does notdrawbacks as these other proposed methods of faster-than-
entail the formation of closed timelike curves, we showediight travel, and is hence also a very unlikely possibility.
that two spatially separated tubes could be used to construct
a time machine—a feature shared by two-wormhole or two-
warp bubble systems. This poses a problem for causality
even if tubes of only, say, laboratory dimensions could be
realized in practice. We would like to thank Michael Pfenning and Larry Ford
In addition, we have also shown that, with relatively mod-for helpful discussions. T.A.R. would like to thank the mem-
est assumptions, maintenance of a such a tube long aftbers of the Tufts Institute of Cosmology for their gracious
formation will necessarily require regions of negative energyhospitality while this work was being done. This research
density which can beo thicker thana few thousand Planck was supported in part by NSF Grant No. PHY-9507351 and
lengths. Estimates of the total negative energy required tby a CCSU/AAUP faculty research grant.
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