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Strong cosmic censorship and causality violation
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We investigate the instability of the Cauchy horizon caused by causality violation in the compact vacuum
universe with the topolog x S'X R, which Moncrief and Isenberg considered. We show that if the occur-
rence of curvature singularities are restricted to the boundary of the causality-violating region, the whole
segments of the boundary become curvature singularities. This implies that strong cosmic censorship holds in
the spatially compact vacuum space-time in the case of causality violation. This also suggests that causality
violation cannot occur for a compact univer80556-282(97)06316-9

PACS numbegs): 04.20.Gz, 04.20.Dw, 98.80.Hw

I. INTRODUCTION ample, the Misner space-time and the Taub-NUT universe,
which have compact Cauchy horizons, have Killing symme-
Whether or not space-time is allowed to have causalityiries on the Cauchy horizons. However, the physically real-
violating regions is an important problem in classical generaistic universe is inhomogeneous and does not admit Killing
relativity. Tipler [1,2] showed that any attempt to evolve Symmetries. Thus we expect that a compact inhomogeneous
closed timelike curves from an initial regular Cauchy datauniverse does not have any Cauchy horizon or, if it does, the
would cause singularities to form in a space-time. Krj@  Cauchy horizon cannot be compact from the results of Mon-
showed that the causality-violating set has incomplete nulfrief and Isenberg. One often studies the inhomogeneous
geodesics if its boundary is compact. Maeda and Ishibastiniverse by adding perturbations on homogeneous models.
[4] showed that singulariies necessarily occur when dEspecially there are some works on the perturbative analysis
boundary of the causality-violating set exists in a space-tim@f @ spatially compact universe with a compact Cauchy ho-
under the physically suitable assumptions. Thus, over th&zon [10]. As one of such perturbative approaches,
past few decades a considerable number of studies have beéankowski and Sheple}l1] studied two-dimensional cylin-
made to elucidate the relations between causality violatiofirical vacuum space-times. They demonstrated the tendency
and singularities. of the appearance of scalar curvature singularities on the
The appearance of causality violation causes the CaucHyauchy horizon(see also Ref[12]). These investigations
horizon. This is closely related to the strong cosmic censorsuggest that, if a spatially compact universe has a Cauchy
ship. Its mathematical description is that the maximal glo-horizon which divides the space-time into causality-
bally hyperbolic development of a generic initial Cauchy Preserving and -violating regions, scalar curvature singulari-
data is inextendibl¢5]. In other words, it holds if a space- ties occur somewhere on the Cauchy horizon.
time admits no Cauchy horizon. So far only a few attempts In this paper we present a theorem as our main result in
have been made to study the instability of the Cauchy horiwhich if a spatially compact universe satisfies generic con-
zon due to causality violation in classical general relativity. dition and, if any, all the occurring curvature singularities are
One can observe the appearance of causality violationéstricted to the boundaries of causality-violating regions,
and associated Cauchy horizons in compact universe modelden whole segments of the Cauchy horizon become curva-
by extending the space-time maximally. The Taub-Newmanture singularities. Consequently it follows that such a uni-
Unti-Tamburino(NUT) universe is one of such models. In Verse cannot be extended to the causality-violating regions.
the compact homogeneous vacuum universe Case,'ﬂeh‘us In the next section, we introduce a definition of the
and Rendall[6] showed that the strong cosmic censorshipCauchy horizon which is caused by a causality violation for
holds in a few class of Bianchi types. Ishibagtial. [7]  discussing causal structure and singularities. In Sec. Ill, we
showed that the strong cosmic censorship holds in compa@bserve the behavior of the null geodesic generators of the
hyperbolic inflationary universe models. Cauchy horizon which satisfies the generic condition. We
On the other hand Moncrief and Isenbd®)9] showed also review the dual null formalism of Haywaid 3] for
that causality-violating cosmological solutions of Einsteinproving our theorem. We present our theorem in Sec. IV.
equations are essentially artifacts of symmetries. Theyection V is devoted to a summary and discussion on the
proved that there exists a Killing symmetry in the directionStrong curvature singularity.
of the null geodesic generator on the Cauchy horizon if the
Cauchy horizon is compact by using Einstein equations. We
can easily understand this curious result by inspecting exact
solutions which have causality-violating regions. For ex- The Cauchy horizons in the spatially compact space-times
are characterized by the null geodesic generators of the
Cauchy horizons. Figure (4 shows an example of the
*Electronic address: maeda@th.phys.titech.ac.jp Cauchy horizon which is caused by a singularity, where
Electronic address: akihiro@th.phys.titech.ac.jp there is no causality violating region. Figurél shows an
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_—— Futre et o ——=Time arrow point whiqh had begn left Qut of sp_ace—time. This singularity
L0 is a quasiregular singularity. In this paper we are not con-
cerned with such singularities but curvature singularities. We
/ @ consider the case that the noncompactness of the Cauchy
«+ A T e horizon is attributed to curvature singularities.
H(S) 2 simgtaric H(S) In general it is useful for describing singularities and
causal structures to adotte b boundary Schmidt[15] has
--------------- constructed the boundaryof M which corresponds to sin-
| | gularities of (M,g) by using theb completeness. His con-
struction is characterized by distinguishing between infinity
() (b and singular points at a finite distance. Hereafter we consider

a large spact “:=MUJ.

FIG. 1. Two types of the Cauchy horizons for the spatially com-  Let us introduce the following definition, which is an ex-
pact universe, in which two spatial dimensioBsfactors, are sup- tension of the above definition for a compact Cauchy hori-
pressed. zon, so that one can treat both the compact and noncompact

Cauchy horizons. Here, we should comment on the spatially
example of the Cauchy horizon which is caused by causalitgompact space-time manifoldl =3 X R considered in this
violation, where the light cone is tipped, allowing the exis-paper. We want to consider the case that the compact space-
tence of the closed or imprisoned null geodesic generatorsike three-manifold® has a local product bundle structure as
The most distinct feature of the two Cauchy horizons ismentioned above, replacing the closed null geodesic genera-
whether the null geodesic generator has future end point aor v in the definition by a closed spacelike curewhich
not as shown in Fig. 1. Moncrief and Isenbd®9] have  generates' factor of 3. In this sense, we writ& ~B X St
considered the compact Cauchy horizon of Fidp) 1In their  throughout the paper. The simplest case is thaias a glo-
papers, it has been shown that the space-time has a nontrivighl product bundle structur& is diffeomorphic toBx St
Killing vector field. Their geometrical assumption in RE8]  and the fibers coincide with closed spacelike curves lying in
is the following. Let the space-time beM(g) such as 3. Examples of the typ& ~T3~T2X T* were constructed
M=%XR whereX is a compact three-manifold and the by Moncrief in Ref.[16]. The Taub-NUT universe is the
metricg is analytic. If there exists a Cauchy horizbh(S)  nontrivial case? is diffeomorphic toS® with Hopf fibering
of a partial Cauchy surfacs, thenH*(S) is a compact null  $3_.s2 and fibersS! coincide with closed spacelike curves
embedded hypersurface which is diffeomorphi&tand the jn S .
topology ofH *(S) is BX S', whereB is a compact spacelike  Definition: Chronological Cauchy horizonConsider a
two-manifold and theS' factor is generated by the closed space-timgM,g) with a partial Cauchy surface S of which
null geodesic generator &f *(S). More precisely, they con- Cauchy development T{S) has compact spatial sections
sidered such a Cauchy horizéh" (S) with a local product  $~BxS!, where B is a compact orientable two-manifold.
bundle structurén the sense that H *(S) contains a closed Wwe call a Cauchy horizon E(S) the chronological Cauchy
null geodesic generatoy, there exists an open set\fon-  horizon if it satisfies the following conditions.
taining y such that(i) U,NH"(S) is diffeomorphic to (@ Let {g,} be a sequence of points in*®S) which
B, x S' for some two-manifold Band some diffeomorphism converges to a point p in H(S). There exists an infinite
¢,:U,NH*(S)—B, xS, and (i) there is a smooth, sur- sequenceL,} of closed spacelike curves which generate

jective mapw,:B,xS'-B, such that, for any gB,, S! factors of D'(S) and each |, passes through ,gsuch
B, X Sleyx w;l(p) and the fiberrr;l(p) is diffeomor-  that, for every point feL,, the tangent vector Kof L,, at
phic to a closed null generator lying in ,LfﬂH*(S). r, approaches to null, i.e.,

The set of the typéJ ,/ﬂH+(S) is calledthe elementary
region of H(S). Under the above assumptions it is shown lim g(Kn,Kn)|rn=0.
that a compact null hypersurfagg™ (S) has an analytic Kill- =P

ing field Y which is null and tangents to a null geodesic . ) )

generator oH*(S). This interesting fact is due to the exis-  (b) If H7(S) contains a closed null geodesic generator
tence of the closed null geodesic generatorsl 5{S). Mon- 7> the+re exists an elementary region of the type
crief and Isenberg suggested that in generic space-time, thé,'H " (S) with the local product bundle structure as men-

compactH *(S) the closed null geodesic generators cannofioned above. . .
exist. (c) There exists a compact spacelike orientable two-

In generic space-times, it seems reasonable to supposgrface B on H (S) such that there is no null geodesic
that the generic conditiofil4] is satisfied. We see that the generator of H (S) which connects two different points p
generic condition contradicts the closedness of the null gec@nd «#p) on B. _ _
desic generator in Sec. lII; the null geodesic generators can- !t is obvious that the chronological Cauchy horizon has no
not be closed if the generic condition is satisfied. future end point in #,g) from condition (a). This means

The nonexistence oH™(S) with closed null geodesic that the segments d*(S,M™) are null and, if exist, sin-
generators in the generic compact universe can be explainglilarities are restricted to the boundary of the causality-
as the appearance of curvature singularities. As discussed wolating region inM *. As mentioned above, when we speak
Ref.[8], if M has a compact Cauchy horizéti (S), thenM of a singularity in this paper, it means a curvature singular-
has a b-incomplete curve corresponding to a singularity. Thus, hereafterg denotes a curvature singularity.
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The chronological Cauchy horizon is not required in gen-tangent vector to the null geodesic. Therefore the null geo-
eral to be compact and hence it is a generalization of thélesic generators dfi " (S) which satisfy the generic condi-
Cauchy horizon which is considered in RE8]. Indeed, the tion are not closed.
chronological Cauchy horizon can be noncompact if there
are curvature singularities In that case, there are nonclosed B. Dual null coordinates
incomplete null geodesic generatorskbf (S), which termi-
nate atg. Conditions(b) and(c) imply that such a noncom-
pact Cauchy horizon can be regarded as one which is mad®
of the_compact Cagchy horizon considere_d in Rél. by g=—2e " dudy +s%s,du?+ 2s,dx2du+ h,,dx2dx°.
removing points which correspond to If ¢ is empty, the (3.4)
chronological Cauchy horizon is compact; i.e., it can be cov-
ered by a finite number of the elementary regions of the typ&\ve choose the shift two-vectos® such thats?=0 on

In the dual null coordinateu,v,x?}, the metric is written

U,NH"(S), and diffeomorphic tc. H*(S). One can easily understand that the dual null coordi-
nates are transformed into the Gaussian null coordinates by
ll. PRELIMINARIES taking

In this section, we introduce the Gaussian null coordinates du=—e*dx®, dv=dt, ¢=s3s,*, B,=—2s.e".
to observe the relation between the null geodesic generator (3.5
of H*(S) and the generic condition for the discussion of our ) . . o
theorem. We concentrate our interest on the compact vacuum We introduce some quantities, of which the notation is as
space-time M~3 xR which admits the chronological those in Ref[19]. Introducing the null vectors
Cauchy horizon defined in the previous section. In addition, u
we introduce the dual null coordinat¢43] and define a kﬂ_(i>ﬂ n“—(i)#—sa(i) 3.6
strong curvature singularity condition which is slightly dif- “lov/ ! “\au P '

ferent from Krdak’s one in Ref[18] and weaker than it.
we define
A. Gaussian null coordinates _
We adopt the Gaussian null coordinatésx3,x3}(a 2ap:=Lilap, Zap:=Lohap, 3.7

=1,2) in the neighborhood of the chronological Cauchy ho- : A :
rizon (in detail, see Ref[8)). In this coordinate system, the where £, represents the Lie derivative along the vector field

metric takes the form k“. The expansion®, 6, the shearsr,,, o4, and the twist
vector w, are represented as
g=2dtdx+ ¢p(dx3) 2+ 28,dx3dx3+ h,,dx2dxP.

(3.0 o=1nh2bs ., B=1habts (3.8
The chronological Cauchy horizat* (S) corresponds to the _y ~ _F _3
hypersurfacet=0. The future developmerd*(S) is the ab=>ap~ ONan, Tap=2ap~ OMNa, 3.9
regiont<0. In D7(S), the vector fieldd/dx> has closed ©0,= LM pLysP. (3.10

spacelike integral curves which generate $Infactor and
h,y, is the induced metric of the spacelike two-surf&céne
can choose the coordinatftsx®,x%} such thatp=8,=0 on
H*(S). Then,dl 9x3|,, is tangent to the null geodesic gen-
erator ofH™(S). In these coordinates, the Einstein equation
R33=0 is given by

OnH™*(S), the null vectom# corresponds to a tangent vec-
tor of a null geodesic generator &f*(S). Equation(3.3)

implies o 4,=0.

C. Strong curvature singularity

(Invh) a5+ 3¢ (Invh) 5+ 3P, heq =0 (3.2 As discussed in the previous section, we want to consider
space-times which contain the chronological Cauchy horizon
on H*(S). In the case that the integral curves@bx® are  H™(S) and curvature singularity restricted to the boundary
closed in the chronological Cauchy horizdi (S), applying  of the causality-violating regiotd " (S,M*). Thus such a
the maximum principld17] for Eq. (3.2), we obtainh ;=0  singularity can be specified by, especially, the incomplete
and consequently null geodesic generator of the chronological Cauchy horizon
H*(S).
hab3=0, (3.3 Definition: Strong curvature singularity. A future inex-
tendible null geodesic generator | of H{S) is said to termi-

by substitutingh ;=0 into Eq. (3.2 again. This equation nate in a strong curvature singularity in the future if there
implies that the closed null geodesic generatorHof(S) exists a point p on | such that the expans@@ iS negative
must be shear free. This fact has been shown in [B&fAs  in the future direction.

seen in Ref[14] the shear-free congruence does not satisfy We will discuss whether or not the strong curvature sin-
the generic condition; i.e., the null geodesic does not contaigularity can occur in the vacuum space-time by using the

a point at whichK\R,j,,(-K K"K?#0, whereK* is the  dual null formalism of Hayward in the last section.
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IV. THEOREM

In this section, we present our theorem in which no spa-
tially compact space-time can have a chronological Cauchy |,
horizon under the seemingly physical assumptions. '

Theorem. Let(M,g) be a spatially compact vacuum
space-time which admits a regular partial Cauchy surface
S diffeomorphic t&~BXx S. If (M,g) satisfies the follow-
ing conditions: (i) the generic condition, i.e., every inextend-
ible  null geodesic contains a point at which
KinRuvpeK7K"KP#0, where K is the tangent vector to
the null geodesic; (ii) the Cauchy horizon, if any, is the chro-
nological Cauchy horizon Hi(S); (i) all occurring curva-
ture singularities are the strong curvature singularities, then,
(M,q) is globally hyperbolic.

Proof. Suppose that space-tim&(g) was not globally
hyperbolic. Then either * (S) or H ™ (S) would exist. Let us FIG. 2. A two-dimensional section of a spatially compact uni-
consider onlyH " (S) without loss of generality and take the verse. The chronological Cauchy horizeirt (S), J7(B,,), etc., are
dual null coordinategu,v,x®} defined in the previous sec- illustrated. The vertical line i§’, .
tion in some neighborhood ofi*(S). The generator of
H*(S) would have no past end point itM(,g) sinceSwas  Hereq does not necessarily coincide with Then, from the
a partial Cauchy surface. In addition every null geodesidimit curve lemma in Ref[20], for the infinite sequence of
generator ofH"(S) would have no future end point in the null geodesic generatofk,}, there exist limit null geo-
(M,qg) from the definition of the chronological Cauchy ho- desic curved , and |4 on H*(S) which pass through the
rizon. Suppose that there was a closed null geodesic genergeints p andq, respectively, and a subsequertg which
tor y of H*(S). There would exist an elementary region converges td,, andl, uniformly with respect tdh. Hereh is
U,NH"(S) which containsy from condition(b) of the defi-  a complete Riemannian metric on the space-tiinedetail
nition of the chronological Cauchy horizon. Singewas see Ref[20]).
closed in the elementary region, it would have to be shear As mentioned above, since every null geodesic generator
free as discussed in Sec. Ill. On the other hand, because of H*(S) terminates aw, the limit curvesl, and |, also
was inextendible;y would have a point which satisfies ge- terminate atJ in the past and future, respectively, without
neric condition(i). This contradicts the fact that is shear intersectingB more than once. In addition, becaugds a
free. Therefore any null geodesic generatoHof(S) cannot strong curvature singularity, andl, have pointst and s

be closed. _ _ _ such thatf|,>0 and 6|,<0 in the future direction. Sinck,
Since H'(S) is a chronological Cauchy horizon and ¢onverges td, andl, uniformly, for any neighborhoods's
H*(S,M™)Us generates a$' factor, every null geodesic and U, of the pointss and t, respectively, there exists a
generatorl of H"(S,M ™) terminates at some points &f  natural numbeiN such that alll,(n>N) intersect bothU,
both in future and past directions. In addition, such null geo-andU; . It also can be taken the infinite sequences of points
desic generators do not interségtmore than once from {s ! and {t,} such that, for eachn, s,eU,Nl,, t,
condition (c). Here the curvature singularity is a strong <U,Nl,, s,<t,, and these sequences convergestol
curvature singularity from conditiofiii). Thus the expan- andtel,, respectively. Then, there exists a numhérsuch

sions of the future-directed null generators tof (S,M*) that, for anyn>N’, ’5|tn>0"5|5n<0’ in the future direction

:)(?[come r&eggtn:e n tr(])e f;ﬁuretﬁlreztloré s;)hmewhere near t?ﬁy continuity. This contradicts the fact that the expansion of
uture end points iry. On the other hand, the expansions of} ', gt decrease monotonically in the future direction. Con-
past-directed null generators also become negative in th§equentlyH*(S) cannot exist[]

past direction somewhere near the past end points in
Let I', be a null hypersurface on which=const with
tangentk* in the neighborhood and of which the intersection V. CONCLUSION AND DISCUSSIONS
with H*(S), i.e., [ ,NH*(S), coincides withB. From the
ansatz of the dual null formalisnh;, is foliated by compact
spacelike two-surfaceB,,, and hence we can take an infinite

9 : Future light cone

wwwawwy : Strong curvature singularity

: Chronological Cauchy horizon

We showed that in a compact universe, if the curvature
singularity is restricted to the boundary of the causality-

sequence of the two-surfaci,} onT', which converges to violating set, whole segments of the boundary become cur-
d m u 9 vature singularities. Consequently the vacuum space-time

'.3‘ Let us con§|der the boundaries of.the cal.JsaI past SeWith compact spatial sectioh~Bx S! cannot be extended
J7(B) (see Fig. 2 For each numbem, J"(By,) is closed. {5 the causality-violating region. This result means that
Because the spatial section @ (S) is compact and  strong cosmic censorship holds in such a space-time.
intD * (S) is causally simpl¢14], there exists a null geodesic  |n our proof of the theorem, we use the strong curvature
generatorl ,, of J7(B,,,) whose future and past end points, singularity condition, whose notion was first introduced by
denoted byp,,, andq,,, respectively, are off, and the tan-  Tipler [21] and described in terms of expansions by lgko
gent vector atp,, is n*. The limit pointsp and q of the  [18]. Our definition of the strong curvature singularity is
infinite sequence$p,} and {q,.}, respectively, are oB.  slightly different from that by Krtak. Therefore it is
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worth discussing whether or not our strong curvature singu-
larity condition is reasonable in the vacuum space-time. Here

we use the dual null coordinates of HaywdiicB].
Let I', be the null hypersurface=const. OnI',, the
Raychaudhuri equation can be written by

dé
du

1, da. 1o
2—50 —ﬁa—zo'ab(f . (5.1)

Hayward noticed that Eq5.1) may be simplified by making
use of coordinate freedom dn,. Choosing the coordinate
uonl, as

dA 1.
ﬁ = - 50, (5.2)
Eq. (5.1 is written by
o 1. —
qu= " 2% (5.3

the w,, 6, and @ can be easily integrated alorlg, and
I'y, respectively, by using the vacuum Einstein equati@ams
detail, see Ref[19]) as

wa(u):waloexp{ - fudu’ré(u’)
Yo

u - u 1 -
+exp{—f du’é(u’) f du’(—EAbaab
Uo Uo

3 - 1_ v
+—Aa0+—0Aa>\)ex;{fu du”é(u”)|, (5.9
4 2 5o
u —_ u —_
6(u)=0|0exr{—f du’ a(u’) +exr{—J du’ a(u’)
Upg Upg

u’ —~
du"é’(u”)

u
xf du'e‘“Kexp{f
Ug Uo

b6(v)= 9|Oexp{— fvdv'ﬁ(v')
vo

: (5.9

+exp{—f dv’6(v')

vo

xf du'eALex;“” dv” 0(v")
Uo UO

HereK andL are defined, respectively, as

. (5.6

K:=—3PR+ 0%~ FAPA N+ ZANA N — 0®A N
(5.7

+ A, 0%,

Li=—3PR+ 0a0?— FAA N+ APNA N + 0?A )
—A,0% (5.8

and A, and ®)R are, respectively, the covariant derivative,
and Ricci scalar with respect to,y, .

On the other null hypersurfade, on whichu= const, the
Raychaudhuri equation is written by

KENGO MAEDA AND AKIHIRO ISHIBASHI

do
=

1

1, d\
2

dv

1

4

(5.9

T b0,

As well as onl",, choosing the coordinateon I, such that

dA 1
we can rewrite Eq(5.9) as
deo 1 ab
o= 7Tan0 (5.1

With the help of Egs. (5.2) and (5.10), we can express Eqgs.
(5.5) and (5.6) on each null hypersurfacg, I',, such as

u
0(u)=00e2<”‘ku0)+e2"f du'e K, (5.12

Ug
5(0)=~00e2“‘*"vo)+e2>‘f dv'e L. (5.13
vo

In the vacuum space-time, the strong curvature singulari-
ties are caused by Weyl tensor only. The Weyl tensor pro-

duces the shear tensow,,(ca,) and the square

a0 (04,02%), which can be interpreted as the gravita-
tional energy. In the Kerr black hole case, Brady and Cham-
bers[19] showed that only the quantity,,o®° diverges on

the Cauchy horizon but,,o2" does not. In terms of expan-

sions, this means that only the expansipuliverges butd
does not. In generic space-times, however, it is expected that

6 and 6 behave similarly; bothd and @ diverge as they
approach the curvature singularity. Indeed, from E§sl2

and (5.13, it turns out that, if\ diverges, bothd and 6
diverge. If there exists a curvature singularity such that

6(u) diverges whiled(v) does not, theik must diverge but

N\ andL must not diverge. In the case, becausis different
from K only the signature of the last two terms in E§.9),

+ w?A N —A,0?, the divergence of these two terms must
cancel out that of all the other terms in Such a case is
unlikely and cannot be considered as generic. This suggests
that, in generic space-times, if at least eithef,o®® or

o0 diverges on the curvature singularity, batrand @
diverge and hence our strong curvature singularity condition
is satisfied. This means that the expansions of the null geo-
desic generators od *(S) diverge on the singularity when-
ever the gravitational energy diverges. In addition, this sug-
gests that the expansion of each incomplete causal geodesic
diverges on the singularity independent of its tangent in ge-
neric vacuum space-times. A rigorous study of the discussion
above will be given in future works.

One might consider that there exists a possibility to cause
causality violation in the presence of matter. However, in the
black hole case, the existence of matter does not change the
property of the Cauchy horizon drastically as Brady and
Smith[22] have shown by numerical investigation. Thus we
believe that strong cosmic censorship in a compact universe
also holds even if matter exists.
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