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We investigate the instability of the Cauchy horizon caused by causality violation in the compact vacuum
universe with the topologyB3S13R, which Moncrief and Isenberg considered. We show that if the occur-
rence of curvature singularities are restricted to the boundary of the causality-violating region, the whole
segments of the boundary become curvature singularities. This implies that strong cosmic censorship holds in
the spatially compact vacuum space-time in the case of causality violation. This also suggests that causality
violation cannot occur for a compact universe.@S0556-2821~97!06316-9#

PACS number~s!: 04.20.Gz, 04.20.Dw, 98.80.Hw

I. INTRODUCTION

Whether or not space-time is allowed to have causality-
violating regions is an important problem in classical general
relativity. Tipler @1,2# showed that any attempt to evolve
closed timelike curves from an initial regular Cauchy data
would cause singularities to form in a space-time. Kriele@3#
showed that the causality-violating set has incomplete null
geodesics if its boundary is compact. Maeda and Ishibashi
@4# showed that singularities necessarily occur when a
boundary of the causality-violating set exists in a space-time
under the physically suitable assumptions. Thus, over the
past few decades a considerable number of studies have been
made to elucidate the relations between causality violation
and singularities.

The appearance of causality violation causes the Cauchy
horizon. This is closely related to the strong cosmic censor-
ship. Its mathematical description is that the maximal glo-
bally hyperbolic development of a generic initial Cauchy
data is inextendible@5#. In other words, it holds if a space-
time admits no Cauchy horizon. So far only a few attempts
have been made to study the instability of the Cauchy hori-
zon due to causality violation in classical general relativity.

One can observe the appearance of causality violations
and associated Cauchy horizons in compact universe models
by extending the space-time maximally. The Taub-Newman-
Unti-Tamburino~NUT! universe is one of such models. In
the compact homogeneous vacuum universe case, Chrus´ciel
and Rendall@6# showed that the strong cosmic censorship
holds in a few class of Bianchi types. Ishibashiet al. @7#
showed that the strong cosmic censorship holds in compact
hyperbolic inflationary universe models.

On the other hand Moncrief and Isenberg@8,9# showed
that causality-violating cosmological solutions of Einstein
equations are essentially artifacts of symmetries. They
proved that there exists a Killing symmetry in the direction
of the null geodesic generator on the Cauchy horizon if the
Cauchy horizon is compact by using Einstein equations. We
can easily understand this curious result by inspecting exact
solutions which have causality-violating regions. For ex-

ample, the Misner space-time and the Taub-NUT universe,
which have compact Cauchy horizons, have Killing symme-
tries on the Cauchy horizons. However, the physically real-
istic universe is inhomogeneous and does not admit Killing
symmetries. Thus we expect that a compact inhomogeneous
universe does not have any Cauchy horizon or, if it does, the
Cauchy horizon cannot be compact from the results of Mon-
crief and Isenberg. One often studies the inhomogeneous
universe by adding perturbations on homogeneous models.
Especially there are some works on the perturbative analysis
of a spatially compact universe with a compact Cauchy ho-
rizon @10#. As one of such perturbative approaches,
Konkowski and Shepley@11# studied two-dimensional cylin-
drical vacuum space-times. They demonstrated the tendency
of the appearance of scalar curvature singularities on the
Cauchy horizon~see also Ref.@12#!. These investigations
suggest that, if a spatially compact universe has a Cauchy
horizon which divides the space-time into causality-
preserving and -violating regions, scalar curvature singulari-
ties occur somewhere on the Cauchy horizon.

In this paper we present a theorem as our main result in
which if a spatially compact universe satisfies generic con-
dition and, if any, all the occurring curvature singularities are
restricted to the boundaries of causality-violating regions,
then whole segments of the Cauchy horizon become curva-
ture singularities. Consequently it follows that such a uni-
verse cannot be extended to the causality-violating regions.

In the next section, we introduce a definition of the
Cauchy horizon which is caused by a causality violation for
discussing causal structure and singularities. In Sec. III, we
observe the behavior of the null geodesic generators of the
Cauchy horizon which satisfies the generic condition. We
also review the dual null formalism of Hayward@13# for
proving our theorem. We present our theorem in Sec. IV.
Section V is devoted to a summary and discussion on the
strong curvature singularity.

II. CHRONOLOGICAL CAUCHY HORIZON

The Cauchy horizons in the spatially compact space-times
are characterized by the null geodesic generators of the
Cauchy horizons. Figure 1~a! shows an example of the
Cauchy horizon which is caused by a singularity, where
there is no causality violating region. Figure 1~b! shows an
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example of the Cauchy horizon which is caused by causality
violation, where the light cone is tipped, allowing the exis-
tence of the closed or imprisoned null geodesic generators.
The most distinct feature of the two Cauchy horizons is
whether the null geodesic generator has future end point or
not as shown in Fig. 1. Moncrief and Isenberg@8,9# have
considered the compact Cauchy horizon of Fig. 1~b!. In their
papers, it has been shown that the space-time has a nontrivial
Killing vector field. Their geometrical assumption in Ref.@8#
is the following. Let the space-time be (M ,g) such as
M5S3R where S is a compact three-manifold and the
metricg is analytic. If there exists a Cauchy horizonH1(S)
of a partial Cauchy surfaceS, thenH1(S) is a compact null
embedded hypersurface which is diffeomorphic toS and the
topology ofH1(S) is B3S1, whereB is a compact spacelike
two-manifold and theS1 factor is generated by the closed
null geodesic generator ofH1(S). More precisely, they con-
sidered such a Cauchy horizonH1(S) with a local product
bundle structurein the sense thatif H 1(S) contains a closed
null geodesic generatorg, there exists an open set Ug con-
taining g such that ~i! UgùH1(S) is diffeomorphic to
Bg3S1 for some two-manifold Bg and some diffeomorphism
fg :UgùH1(S)→Bg3S1, and ~ii ! there is a smooth, sur-
jective mappg :Bg3S1→Bg such that, for any pPBg ,
Bg3S1'Bg3pg

21(p) and the fiberpg
21(p) is diffeomor-

phic to a closed null generator lying in UgùH1(S).
The set of the typeUgùH1(S) is calledthe elementary

region of H1(S). Under the above assumptions it is shown
that a compact null hypersurfaceH1(S) has an analytic Kill-
ing field Y which is null and tangents to a null geodesic
generator ofH1(S). This interesting fact is due to the exis-
tence of the closed null geodesic generators ofH1(S). Mon-
crief and Isenberg suggested that in generic space-time, the
compactH1(S) the closed null geodesic generators cannot
exist.

In generic space-times, it seems reasonable to suppose
that the generic condition@14# is satisfied. We see that the
generic condition contradicts the closedness of the null geo-
desic generator in Sec. III; the null geodesic generators can-
not be closed if the generic condition is satisfied.

The nonexistence ofH1(S) with closed null geodesic
generators in the generic compact universe can be explained
as the appearance of curvature singularities. As discussed in
Ref. @8#, if M has a compact Cauchy horizonH1(S), thenM
has a b-incomplete curve corresponding to a singular

point which had been left out of space-time. This singularity
is a quasiregular singularity. In this paper we are not con-
cerned with such singularities but curvature singularities. We
consider the case that the noncompactness of the Cauchy
horizon is attributed to curvature singularities.

In general it is useful for describing singularities and
causal structures to adoptthe b boundary. Schmidt@15# has
constructed the boundary] of M which corresponds to sin-
gularities of (M ,g) by using theb completeness. His con-
struction is characterized by distinguishing between infinity
and singular points at a finite distance. Hereafter we consider
a large spaceM 1:5Mø].

Let us introduce the following definition, which is an ex-
tension of the above definition for a compact Cauchy hori-
zon, so that one can treat both the compact and noncompact
Cauchy horizons. Here, we should comment on the spatially
compact space-time manifoldM5S3R considered in this
paper. We want to consider the case that the compact space-
like three-manifoldS has a local product bundle structure as
mentioned above, replacing the closed null geodesic genera-
tor g in the definition by a closed spacelike curveL which
generatesS1 factor of S. In this sense, we writeS'B3S1

throughout the paper. The simplest case is thatS has a glo-
bal product bundle structure;S is diffeomorphic toB3S1

and the fibers coincide with closed spacelike curves lying in
S. Examples of the typeS'T3'T23T1 were constructed
by Moncrief in Ref. @16#. The Taub-NUT universe is the
nontrivial case;S is diffeomorphic toS3 with Hopf fibering
S3→S2 and fibersS1 coincide with closed spacelike curves
in S.

Definition: Chronological Cauchy horizon. Consider a
space-time(M ,g) with a partial Cauchy surface S of which
Cauchy development D1(S) has compact spatial sections
S'B3S1, where B is a compact orientable two-manifold.
We call a Cauchy horizon H1(S) the chronological Cauchy
horizon if it satisfies the following conditions.

~a! Let $qn% be a sequence of points in D1(S) which
converges to a point p in H1(S). There exists an infinite
sequence$Ln% of closed spacelike curves which generate
S1 factors of D1(S) and each Ln passes through qn such
that, for every point rnPLn , the tangent vector Kn of Ln at
r n approaches to null, i.e.,

lim
qn→p

g~Kn ,Kn!ur n
50.

~b! If H 1(S) contains a closed null geodesic generator
g, there exists an elementary region of the type
UgùH1(S) with the local product bundle structure as men-
tioned above.

~c! There exists a compact spacelike orientable two-
surface B on H1(S) such that there is no null geodesic
generator of H1(S) which connects two different points p
and q(Þp) on B.

It is obvious that the chronological Cauchy horizon has no
future end point in (M ,g) from condition ~a!. This means
that the segments ofḊ1(S,M 1) are null and, if exist, sin-
gularities are restricted to the boundary of the causality-
violating region inM 1. As mentioned above, when we speak
of a singularity in this paper, it means a curvature singular-
ity. Thus, hereafter,] denotes a curvature singularity.

FIG. 1. Two types of the Cauchy horizons for the spatially com-
pact universe, in which two spatial dimensions,B factors, are sup-
pressed.
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The chronological Cauchy horizon is not required in gen-
eral to be compact and hence it is a generalization of the
Cauchy horizon which is considered in Ref.@8#. Indeed, the
chronological Cauchy horizon can be noncompact if there
are curvature singularities]. In that case, there are nonclosed
incomplete null geodesic generators ofH1(S), which termi-
nate at]. Conditions~b! and ~c! imply that such a noncom-
pact Cauchy horizon can be regarded as one which is made
of the compact Cauchy horizon considered in Ref.@8# by
removing points which correspond to]. If ] is empty, the
chronological Cauchy horizon is compact; i.e., it can be cov-
ered by a finite number of the elementary regions of the type
UgùH1(S), and diffeomorphic toS.

III. PRELIMINARIES

In this section, we introduce the Gaussian null coordinates
to observe the relation between the null geodesic generator
of H1(S) and the generic condition for the discussion of our
theorem. We concentrate our interest on the compact vacuum
space-time M'S3R which admits the chronological
Cauchy horizon defined in the previous section. In addition,
we introduce the dual null coordinates@13# and define a
strong curvature singularity condition which is slightly dif-
ferent from Królak’s one in Ref.@18# and weaker than it.

A. Gaussian null coordinates

We adopt the Gaussian null coordinates$t,x3,xa%(a
51,2) in the neighborhood of the chronological Cauchy ho-
rizon ~in detail, see Ref.@8#!. In this coordinate system, the
metric takes the form

g52dtdx31f~dx3!212badxadx31habdxadxb.
~3.1!

The chronological Cauchy horizonH1(S) corresponds to the
hypersurfacet50. The future developmentD1(S) is the
region t,0. In D1(S), the vector field]/]x3 has closed
spacelike integral curves which generate anS1 factor and
hab is the induced metric of the spacelike two-surfaceB. One
can choose the coordinates$t,xa,x3% such thatf5ba50 on
H1(S). Then,]/]x3u t50 is tangent to the null geodesic gen-
erator ofH1(S). In these coordinates, the Einstein equation
R3350 is given by

~ lnAh! ,331
1
2 f ,t~ lnAh! ,31

1
4 hachbdhab,3hcd,350 ~3.2!

on H1(S). In the case that the integral curves of]/]x3 are
closed in the chronological Cauchy horizonH1(S), applying
the maximum principle@17# for Eq. ~3.2!, we obtainh,350
and consequently

hab,350, ~3.3!

by substitutingh,350 into Eq. ~3.2! again. This equation
implies that the closed null geodesic generator ofH1(S)
must be shear free. This fact has been shown in Ref.@8#. As
seen in Ref.@14# the shear-free congruence does not satisfy
the generic condition; i.e., the null geodesic does not contain
a point at whichK [lRm]nr[sKt]K

nKrÞ0, whereKm is the

tangent vector to the null geodesic. Therefore the null geo-
desic generators ofH1(S) which satisfy the generic condi-
tion are not closed.

B. Dual null coordinates

In the dual null coordinates$u,v,xa%, the metric is written
as

g522e2ldudv1sasadu212sadxadu1habdxadxb.
~3.4!

We choose the shift two-vectorsa such that sa50 on
H1(S). One can easily understand that the dual null coordi-
nates are transformed into the Gaussian null coordinates by
taking

du52eldx3, dv5dt, f5sasae2l, ba522sael.
~3.5!

We introduce some quantities, of which the notation is as
those in Ref.@19#. Introducing the null vectors

km5S ]

]v D m

, nm5S ]

]uD m

2saS ]

]xaD m

, ~3.6!

we define

Sab :5Lkhab , S̃ab :5Lnhab , ~3.7!

whereLk represents the Lie derivative along the vector field
km. The expansionsu, ũ , the shearssab ,s̃ab , and the twist
vectorva are represented as

u5 1
2 habSab , ũ 5 1

2 habS̃ab , ~3.8!

sab5Sab2uhab , s̃ab5S̃ab2 ũ hab , ~3.9!

va5 1
2 elhabLks

b. ~3.10!

On H1(S), the null vectornm corresponds to a tangent vec-
tor of a null geodesic generator ofH1(S). Equation~3.3!
implies s̃ab50.

C. Strong curvature singularity

As discussed in the previous section, we want to consider
space-times which contain the chronological Cauchy horizon
H1(S) and curvature singularity restricted to the boundary
of the causality-violating regionH1(S,M 1). Thus such a
singularity can be specified by, especially, the incomplete
null geodesic generator of the chronological Cauchy horizon
H1(S).

Definition: Strong curvature singularity. A future inex-
tendible null geodesic generator l of H1(S) is said to termi-
nate in a strong curvature singularity in the future if there

exists a point p on l such that the expansionũ up is negative
in the future direction.

We will discuss whether or not the strong curvature sin-
gularity can occur in the vacuum space-time by using the
dual null formalism of Hayward in the last section.
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IV. THEOREM

In this section, we present our theorem in which no spa-
tially compact space-time can have a chronological Cauchy
horizon under the seemingly physical assumptions.

Theorem. Let(M ,g) be a spatially compact vacuum
space-time which admits a regular partial Cauchy surface
S diffeomorphic toS'B3S1. If (M ,g) satisfies the follow-
ing conditions: (i) the generic condition, i.e., every inextend-
ible null geodesic contains a point at which
K [lRm]nr[sKt]K

nKrÞ0, where Km is the tangent vector to
the null geodesic; (ii) the Cauchy horizon, if any, is the chro-
nological Cauchy horizon H1(S); (iii) all occurring curva-
ture singularities are the strong curvature singularities, then,
(M ,g) is globally hyperbolic.

Proof. Suppose that space-time (M ,g) was not globally
hyperbolic. Then eitherH1(S) or H2(S) would exist. Let us
consider onlyH1(S) without loss of generality and take the
dual null coordinates$u,v,xa% defined in the previous sec-
tion in some neighborhood ofH1(S). The generator of
H1(S) would have no past end point in (M ,g) sinceS was
a partial Cauchy surface. In addition every null geodesic
generator ofH1(S) would have no future end point in
(M ,g) from the definition of the chronological Cauchy ho-
rizon. Suppose that there was a closed null geodesic genera-
tor g of H1(S). There would exist an elementary region
UgùH1(S) which containsg from condition~b! of the defi-
nition of the chronological Cauchy horizon. Sinceg was
closed in the elementary region, it would have to be shear
free as discussed in Sec. III. On the other hand, becauseg
was inextendible,g would have a point which satisfies ge-
neric condition~i!. This contradicts the fact thatg is shear
free. Therefore any null geodesic generator ofH1(S) cannot
be closed.

Since H1(S) is a chronological Cauchy horizon and
H1(S,M 1)ø] generates anS1 factor, every null geodesic
generatorl of H1(S,M 1) terminates at some points of]
both in future and past directions. In addition, such null geo-
desic generators do not intersectB more than once from
condition ~c!. Here the curvature singularity] is a strong
curvature singularity from condition~iii !. Thus the expan-
sions of the future-directed null generators ofH1(S,M 1)
become negative in the future direction somewhere near the
future end points in]. On the other hand, the expansions of
past-directed null generators also become negative in the
past direction somewhere near the past end points in].

Let Gu be a null hypersurface on whichu5const with
tangentkm in the neighborhood and of which the intersection
with H1(S), i.e., GuùH1(S), coincides withB. From the
ansatz of the dual null formalism,Gu is foliated by compact
spacelike two-surfacesBm and hence we can take an infinite
sequence of the two-surfaces$Bm% on Gu which converges to
B. Let us consider the boundaries of the causal past sets
J̇2(Bm) ~see Fig. 2!. For each numberm, J̇2(Bm) is closed.
Because the spatial section ofD1(S) is compact and
intD1(S) is causally simple@14#, there exists a null geodesic
generatorl m of J̇2(Bm) whose future and past end points,
denoted bypm andqm , respectively, are onGu and the tan-
gent vector atpm is nm. The limit points p and q of the
infinite sequences$pm% and $qm%, respectively, are onB.

Hereq does not necessarily coincide withp. Then, from the
limit curve lemma in Ref.@20#, for the infinite sequence of
the null geodesic generators$ l m%, there exist limit null geo-
desic curvesl p and l q on H1(S) which pass through the
points p andq, respectively, and a subsequence$ l n% which
converges tol p andl q uniformly with respect toh. Hereh is
a complete Riemannian metric on the space-time~in detail
see Ref.@20#!.

As mentioned above, since every null geodesic generator
of H1(S) terminates at], the limit curvesl p and l q also
terminate at] in the past and future, respectively, without
intersectingB more than once. In addition, because] is a
strong curvature singularity,l p and l q have pointst and s

such thatũ u t.0 and ũ us,0 in the future direction. Sincel n
converges tol p and l q uniformly, for any neighborhoodsUs
and Ut of the pointss and t, respectively, there exists a
natural numberN such that alll n(n.N) intersect bothUs
andUt . It also can be taken the infinite sequences of points
$sn% and $tn% such that, for eachn, snPUsù l n , tn
PUtù l n , sn,tn , and these sequences converge tosP l q
andtP l p , respectively. Then, there exists a numberN8 such
that, for anyn.N8, ũ u tn

.0, ũ usn
,0, in the future direction

by continuity. This contradicts the fact that the expansion of
l n must decrease monotonically in the future direction. Con-
sequently,H1(S) cannot exist.h

V. CONCLUSION AND DISCUSSIONS

We showed that in a compact universe, if the curvature
singularity is restricted to the boundary of the causality-
violating set, whole segments of the boundary become cur-
vature singularities. Consequently the vacuum space-time
with compact spatial sectionS'B3S1 cannot be extended
to the causality-violating region. This result means that
strong cosmic censorship holds in such a space-time.

In our proof of the theorem, we use the strong curvature
singularity condition, whose notion was first introduced by
Tipler @21# and described in terms of expansions by Kro´lak
@18#. Our definition of the strong curvature singularity is
slightly different from that by Kro´lak. Therefore it is

FIG. 2. A two-dimensional section of a spatially compact uni-

verse. The chronological Cauchy horizonH1(S), J̇2(Bm), etc., are
illustrated. The vertical line isGu .
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worth discussing whether or not our strong curvature singu-
larity condition is reasonable in the vacuum space-time. Here
we use the dual null coordinates of Hayward@13#.

Let Gv be the null hypersurfacev5const. OnGv , the
Raychaudhuri equation can be written by

d ũ

du
52

1

2
ũ 22

dl

du
ũ 2

1

4
s̃abs̃

ab. ~5.1!

Hayward noticed that Eq.~5.1! may be simplified by making
use of coordinate freedom onGv . Choosing the coordinate
u on Gv as

dl

du
52

1

2
ũ , ~5.2!

Eq. ~5.1! is written by

d ũ

du
52

1

4
s̃abs̃

ab, ~5.3!

the va , u, and ũ can be easily integrated alongGv and
Gu , respectively, by using the vacuum Einstein equations~in
detail, see Ref.@19#! as

va~u!5vau0expF2E
u0

u

du8 ũ ~u8!G
1expF2E

u0

u

du8 ũ ~u8!G E
u0

u

du8S 2
1

2
Dbs̃ab

1
3

4
Da ũ 1

1

2
ũ Dal DexpF E

u0

u8
du9 ũ ~u9!G , ~5.4!

u~u!5uu0expF2E
u0

u

du8 ũ ~u8!G1expF2E
u0

u

du8 ũ ~u8!G
3E

u0

u

du8e2lKexpF E
u0

u8
du9 ũ ~u9!G , ~5.5!

ũ ~v !5uu0expF2E
v0

v
dv8u~v8!G1expF2E

v0

v
dv8u~v8!G

3E
v0

v
dv8e2lLexpF E

v0

v8
dv9u~v9!G . ~5.6!

HereK andL are defined, respectively, as

K:52 1
2

~2!R1vava2 1
2 DaDal1 1

4 DalDal2vaDal

1Dava, ~5.7!

L:52 1
2

~2!R1vava2 1
2 DaDal1 1

4 DalDal1vaDal

2Dava, ~5.8!

and Da and (2)R are, respectively, the covariant derivative,
and Ricci scalar with respect tohab .

On the other null hypersurfaceGu on whichu5const, the
Raychaudhuri equation is written by

du

dv
52

1

2
u22

dl

dv
u2

1

4
sabs

ab. ~5.9!

As well as onGv , choosing the coordinatev on Gu such that

dl

dv
52

1

2
u, ~5.10!

we can rewrite Eq.~5.9! as

du

dv
52

1

4
sabs

ab. ~5.11!

With the help of Eqs. (5.2) and (5.10), we can express Eqs.
(5.5) and (5.6) on each null hypersurfaceGv , Gu such as

u~u!5u0e2~l2lu0
!1e2lE

u0

u

du8e23lK, ~5.12!

ũ ~v !5 ũ 0e2~l2lv0
!1e2lE

v0

v
dv8e23lL. ~5.13!

In the vacuum space-time, the strong curvature singulari-
ties are caused by Weyl tensor only. The Weyl tensor pro-
duces the shear tensorsab(s̃ab) and the square
sabs

ab(s̃abs̃
ab), which can be interpreted as the gravita-

tional energy. In the Kerr black hole case, Brady and Cham-
bers@19# showed that only the quantitysabs

ab diverges on
the Cauchy horizon buts̃abs̃

ab does not. In terms of expan-
sions, this means that only the expansionu diverges butũ
does not. In generic space-times, however, it is expected that
u and ũ behave similarly; bothu and ũ diverge as they
approach the curvature singularity. Indeed, from Eqs.~5.12!
and ~5.13!, it turns out that, ifl diverges, bothu and ũ
diverge. If there exists a curvature singularity such that
u(u) diverges whileũ (v) does not, thenK must diverge but
l andL must not diverge. In the case, becauseL is different
from K only the signature of the last two terms in Eq.~5.8!,
1vaDal2Dava, the divergence of these two terms must
cancel out that of all the other terms inL. Such a case is
unlikely and cannot be considered as generic. This suggests
that, in generic space-times, if at least eithersabs

ab or
s̃abs̃

ab diverges on the curvature singularity, bothu and ũ
diverge and hence our strong curvature singularity condition
is satisfied. This means that the expansions of the null geo-
desic generators onH1(S) diverge on the singularity when-
ever the gravitational energy diverges. In addition, this sug-
gests that the expansion of each incomplete causal geodesic
diverges on the singularity independent of its tangent in ge-
neric vacuum space-times. A rigorous study of the discussion
above will be given in future works.

One might consider that there exists a possibility to cause
causality violation in the presence of matter. However, in the
black hole case, the existence of matter does not change the
property of the Cauchy horizon drastically as Brady and
Smith @22# have shown by numerical investigation. Thus we
believe that strong cosmic censorship in a compact universe
also holds even if matter exists.
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