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Gauss linking number and the electromagnetic uncertainty principle
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It is shown that there is a precise sense in which the Heisenberg uncertainty between fluxes of electric and
magnetic fields through finite surfaces is given(bype-half# times the Gauss linking number of the loops
that bound these surfaces. To regularize the relevant operators, one is naturally led to assign a framing to each
loop. The uncertainty between the fluxes of electric and magnetic fields through a single surface is then given
by the self-linking number of the framed loop which bounds the surf&@556-282(97)02016-X]

PACS numbdss): 03.70+k, 03.65.Bz

I. INTRODUCTION — b T —

opueTio {A(X),EX(y)}= 826X, y). (L3

In 1833, Gauss noticed a striking fact about electromag- ) ] )
netism[1]. He considered a loop, carrying a constant cur- (Throughout this paper, curly brackets will denote Poisson
rentl and computed the wo/ done in moving a magnetic brackets. The vector potential itself is not an observable

monopole of strengtim along a closed path, in the mag- since ?t fails to be gauge invariant. However, we can inte-
netic field produced by the current: grate it over a closed loopr to obtain a gauge invariant

functional:

ml : :
- a b
W= an 3€le3 izdteabc La(s) L2 Blal:= 3§ AdlP= L B2d’S,, ()

@

C C
M. (1.1  WhereS, is any two-surface bounded by the loap Simi-
[Ly(s)—Ly(t)® larly, given any two-surfac&; bounded by a closed log
we can define the flux of the electric field,
He then made a deep observation which can be stated in the
modern mathematical terminology as follows: although the
double integral

E[B]:= L E3d?S,, (1.5

B

_ which depends only on the log® (and not on the specific
GL(Ly,Lo) = ﬁw (1.2 surfaceS; with boundaryB) because&? is divergence free.
The observable8[ «] and E[ 8] are (ovepcomplete in the

makes use of Euclidean geometry in several ways, its valugense that their values at a poifB*(E?) of the physical
is in fact a topological invariant, a measure of the linking Phase space suffice to determine that point uniquely.
between the loopk,; andL,. In particular, even if one de- It is straightforward to compute the Poisson br_ackets be-
forms the loops, the value of the double integral does nofWween these observablesdfand 8 have no point in com-
change so long as the loops do not touch or cross each othépon- The result is
This is a remarkable property and Gauss expressed the belief
that the quantitgZ(L,,L,) may have a fundamental signifi- (B[], E[B]}= 3§ dla(x_)f dZSa(WéG(ry)ﬂ(a,Sﬁ),
cance. The view was shared by others. In particular, in his a S
celebrated treatise on electricity and magnetism, Maxwell (1.9
returns to this property and further elaborates dr2,8].

It turns out tﬁatghe):jouble integralC(L,,L,) (?E)er]have wherel («,Sg) denotes the oriented intersection numb(_ar be-
a fundamental significance in electromagnetism, which howWeen the loopx and the surfac&,. But, as a geometrical
ever, could not have been guessed before the advent of quaCture makes it cleaisee Fig. 1, this intersection number is
tum field theory. To see this, consider source-free MaxwelP'€Cisely the linking number between loopsand 8. (An
theory (in Minkowski space-time In the Hamiltonian treat- 2nalytic calculation showing the equality 6f«,Sg) with

ment, the vector potential-\a(x_) and the electric field GL(a,p) is given in the Appendiy.Thus, we have

E3(x) (on a constant time hyperplaneerve as the basic {B[a],E[B]}=GL(a,B). 1.7
canonically conjugate fields with the Poisson brackets rela-
tions: The fact that the Poisson bracket is metric independent may

seem surprising at first. But note that, since the vector poten-

tial A, is a one-form and the electric fielef (being canoni-
*Electronic address: ashtekar@phys.psu.edu cally conjugate tA,) is naturally a vector density of weight
"Electronic address: corichi@phys.psu.edu one, neither the symplectic structute3) nor the definitions
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S the uncertainty relation given above fails to be meaningful if
the loopsa and B coincide. However, it is known that the
Gauss self-linking number of a lodg well defined if the
loop is framed 3]. Is there perhaps a framing that is naturally
introduced in the process of regularization of the operators in
B question? If so, can one give meaning to the commutator of

B[a] and E[a]? The purpose of this work is to analyze
these issues. We will find that the specific questions raised
(a) (b) here can be answered affirmatively.
In Sec. Il, we will consider the Fock space of photons and
FIG. 1. The Gauss linking numbéiC(«,B) equals the oriented show that suitably “thickened,” regulated versions of the
intersection numbef(«,Sg). In (3 this number is 1 and ifb)  above “flux operators” are indeed well defined on the Fock

itis 0. space. This will enable us to regalf ] and E[ 8] as cer-
tain limits of well-defined operators. We will see that the
commutation relation§1.8) also hold in a limiting sense. In
fined, the right side of Eq(1.7) has to bea topological this limit, the thickening of surfaces goes to zero. However,
invariant of loops labeling the observables. the loop that bounds the limiting surface carries the
Let us pass to the quantum theory heuristically. One Mmemory” of the thickening in the form of a framing. We
would expect thafif @ and8 have no point in commarthe Wil see in Sec. lll that the limits of the commutators of the
commutator between the magnetic and electric flux operator&gulated flux operators are functionals of these framed

=

of the observableE[ «], B[ 8] require a metricor any other
background fielyl for their definitions. Hence, if well de-

would be given by loops. In particular, the framing enables one to evaluate the
(limits of) commutators without ambiguities even when the
[B[a],E[B]]=i% GL(a,B) (1.8  loops intersect and overlap. We should emphasize however

that the level of rigor in this work is that generally used in
and hence the Heisenberg uncertainties should satisfy theoretical physics rather than mathematical physics.

We will conclude this section with a few remarks.

(i) One often defineslimensionlesobservablesB’'[ a]
=(c/e)B[a] and E'[ B]=(1/e)E[ B], which can be expo-
nentiated to obtain Weyl commutation relationgThe
This implies that there is an intrinsic uncertainty in the si-exponential ofiB'[a]=i(c/e)§,dI?A,, for example, is
multaneous measurements of fluxes of electric and magnetiie (1) holonomy] In terms of these primed observables,
fields across finite surfaces if the Gauss linking numbers ofhe uncertainty principle reads AB'[«])(AE'[B])

the loops bounding the two surfaces is not zexee Fig. 2 > (1/24,,)GL(a, 8), Where ey, is the fine structure con-
In this sense, as suspected by Gauss and others, the linkiggynt.

number does have a fundamental significance in electro- (ji) |n the non-Abelian case, one can replace ipa]

magnetism. _ o . by the trace of the holonomy of the connection along the
A number of questions arise immediately. Can one makgsop . The analogue oE’[ 3] is trickier. To ensure gauge

these quantum considerations precise? If the guant|zat|on [fvariance, one now has to thicken the loop to a ribkiGee,

basedon the algebra of operators generatedBjyr] and  e.g.,[4,5]) The commutator is then again “topological.”

E[ 8], the answer is clearly in the affirmative. However, in However, the physical meaning of these observables is now

such representations, the Maxwell Hamiltonian operator faildess transparent.

to be well defined. In the standard Fock representation where (iii) Over the last five years, the uncertainty relatiar®)

the Hamiltonianis well defined, operator&[a] andB[g]  Was used by one of Ug\.A.) to motivate the loop represen-

fail to be well defined(See, e.g.[5].) Can one nonetheless tation for gauge theories and_ gravity in a num_be_r of confer-

give meaning to the topological uncertainty relatioh®) in ~ €ncesisee, e.g.[4]). It was pointed out that a similar obser-

the Fock representatidn a suitable limiting senseSecond, vation on the Maxwell uncertainties was made bygam
Loffelholz from the Leipzig mathematical physics group and

also by condensed matter theorists interested in flux quanti-
zation. Unfortunately, however, we have not been able to
find specific references.

N A h
(AB[a])(AE[B])=7|GL(a.B)]. (1.9

Il. REGULATED FLUX OPERATORS

A. Preliminaries

Let us begin by recalling a few facts about the Fock rep-
FIG. 2. The(absolute value of theGauss linking number be- resentation of photons. Since we are interestedlixes of
tween loopse and g is 1. In this case, the Heisenberg uncertainty €lectric and magnetic operators, it will be convenient to

between the magnetic flux through the surf&geand the electric ~adapt the discussion to a canonical framework. A vedtor
flux throughSg is #:/2. the one-photon Hilbert spad¢ is then represented by a pair
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(A4,E?) of divergence-free vector fields on a constant time St=¢
hyperplane and the Hilbert space norm is given($se, e.g.,
[6]):
1
(VIV)= % f d3X[AL(AYPAR) + E3(AY2E)].
s,
(2.

T=€

T=l
Denote byF;, the symmetric Fock space based®nElec-
tric and magnetic fields are represented by operator valued
distributions involving the standard linear combinations of
creation and annihilation operators 8#,. Consider, for ex-
ample, the smeared object FIG. 3. The surfac&, with boundaryg is thickened to a three-
dimensional pillboxP; bounded by the strik ;. As e tends to
R R zero,P s shrinks toSg andEﬁ tends to the loogB. The “memory”
E[f]:= J d3XEA(x)fa(x), (2.2 of the strip is retained by the initial framing attached@o

{;

wheref is a test field, i.e., vector field of compact support. wheres_ﬁ denotes a point on the surfa®;. Hence, the

SinceE? is divergence free, we havg[f]=E[f+dg], for  corresponding operatdg[ 8] is only formal; it fails to be
any test functiong. This is a well-defined operator afi,;  well defined on the Fock space. We must regulate fit.
provided the vectol/=("f,,0) lies in the Hilbert space, We will proceed in two stepsthe first of which is the
i.e., provided the norm crucial ong. Geometrically, the problem arises becafi$8
L L is a distribution with two-dimensional support. We can rem-
_ 30T U2 Teav_ 3 % 12 edy this situation by an appropriate “thickening” of the sur-
(VIv)= ﬁf dXx (AT ]=57 J dkIk[| 1| face S;. Let us therefore replace the logpby a strip (or
(2.3 ribbon X, of heighte (see Fig. 3. More precisely, let us
proceed as follows. Let us first equipwith a framing(i.e.,
is finite, whereTf, is the transverse part df and Tf its  let us introduce, at each point @, a vector in a direction
Fourier transform.(The transverse projection removes thetransverse tg8?, the tangent tg8). Then, for eachre[0,e],
“gauge freedom” of adding a gradient tg.) In that case, let us denote by3, the loop obtained by displacing a
E[f] is expressible as a sum of the creation and annihilatioglistancer along the framing(Thus B8,= ). This construc-
operators associated with the stite tion uses the flat Euclidean metric on the spatial hyperplane.
The situation with the magnetic field operator is com- But the key final results will not depend on this flat mejric.
pletely analogous. The commutator between smeared electri€t S, denote a surface bounded by the lo8p (such that
and magnetic fields is given by the assignment— S, is smooth). The family of loopsg.,
constitute the strip%; and the three-dimensional region
. . - swept out by the family of surfaceS, constitutes a “pill-
[B[f].E[9]]=i% deXEabc[ﬁafb(X)]gc(x) box” P4 with boundarys .
We can now consider the flux of the electric field through

_ Jd3keab°ka(?b(k_))*'§c(k_), (2.4 the three-dimensionapillbox region

where T}, denotes the Fourier transform 6f and a star E[Pﬂ]=j0d7 JS d’S,E*(s,). (2.7)
denotes complex conjugation. ’

(From now on, loops will be assumed to be framed. How-
ever, for simplicity of notation, we will continue to denote
Let us now consider the formal expression of the electrichem just by Greek letters, 8, . . . ) This yields a smearing

flux operator: of the electric field with a test fieldgpﬁ) with support in
threedimensions,

B. Regularization

E[B]= f Ead?s,. (2.5
Sp
E[P,]= | d®xE2(x)f"#(x
It can be expressed as a smeared electric field, [Pl f 0ty 700
E[,6’]=fd3an(x)f(f)(x), where, however, the test field
f#)(x) is adistribution with support onS,: with

fP(x)=| d?S,8%(x,5), 2.6 Pp_ [ —
a (X) fsﬂ (X, s3) (2.6 fie fodr JST(dST)aé\?(x,s,), (2.9
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and one can hope that the corresponding operator would g {(Ps-V)] is a well-defined operator on the Fock space. This
well defined in quantum theory. This completes our first stegyperator can be regarded as the regulated version of the heu-

in regularization. ristic expressiore since, in the classical theory, we have
The key question now is the following: Is P [A] ' y:

V= (ngpﬂ) ,0) normalizable with respect to the inner product 1
(2.3)? This calculation is carried out in the Appendix. It turns LmO Z(
out that, although the three-dimensional smearing softens the

singularity of f¥) considerably, the norV|V) still has a  The situation with the magnetic-flux operator, of course, is
logarithmic ultraviolet divergence. This arises because thédentical. Thus, given a framed loap, we can introduce a
three-dimensional pillbo¥;, on whichff:ﬁ) is supported, strip %, of heighte and consider a pillboxP,, it bounds.
has sharp boundaries. This is where the second step in thehen, B[f(P«'})] is a well-defined operator on the Fock
regularization procedure comes in. The problem can ba&pace.

handled in a number of ways. We will use the simplest one

and just introduce an ultraviolet cutoff |g¢|= A. That is, we lll. REMOVAL OF THE REGULATORS

S e (Pg) .

pegm withf, * as in Eq.(2.8)z take the Fourier trgnsform Of_ Let us compute the commutator between the regularized
its transverse part, multiply it by the step function which isy gperators using Eq2.4) and then, in the result, remove
unity if |k|<A and zero otherwise and consider the inversethe regulators by taking appropriate limits. Removing the
Fourier transformfépﬂ'A) of the resulting function. Then, ultraviolet cutoff yields

lim fdi“an(x)f;"ﬁ'A)(x) —E[B8]. (2.9

A—oo

lim | B[f(PaM)], E[fPsM]]=4 lim fAdf*k ek, [TP (k)" ?<Pﬁ>(k_)=ihf d®x €2° [a,f72 (%) 1P (%)

A—oo A—oo

—i% J:do- fﬁa die J:drfﬁff):iﬁ jOEdUJOEdT{B[aJ], SR 3.1)

where, in the first step, the subscriptdenotes that the integration is carried out over the [lkd A. The final result is not
surprising: the right side is just: times the well-defined Poisson bracket between the classical “thickened flux” observables:

lim [B[ f(Pa-M] E[fPs- V=i {B[fP],E[fPA]}. (3.2

A—oo

Thus, as far as the commutator is concerned, the ultraviolet cutoff plays no essential role.
To remove the regulatot, we have to compute

. 1 . ~ ~ X i 1 € € o 1 € €
im — (lim [B[1Pa ] E[1Pa V1] )=i lim —2( [ ao [ “artere eren >=|ﬁllm —2( [ao[“ar pra,. /3»)

e—0 € A—ow e—0 € e—0 €
(3.3

say. This calculation is more subtle. We will divide the dis- A A
cussion in four cases which bring out the role of framing in lim — ( lim [B[f(P« V], E[fPs- V]]) =i/ GL(,B).
handling pathologies that arise when the loops intersect and e—0 € A—

overlap. (3.9
(i) The simplest case arises when the loops have no point
in common. Then, for a sufficiently smadl there is no in- (i) Let us now consider the case wharand 8 intersect

tersection between any of the loops and 8,. Hence, the at a single point, sap. (Intersections at a finite number of
Poisson brackeP(«a,, 8, can be calculated exactly as in points requires only a trivial extension of this caskow,
Sec. I. It is independent of and 7 and equalL(«,8). the result depends on the thickening, or more precisely, on
Hence, the framing atp initially chosen to carry out the thickening.

Let «® and 82 denote the tangent vectors to the two loops at
p. Consider the two-dimensional plane they span in the tan-
gent space op. Suppose that the frame vectors of the loops
a and B lie on opposite sides of the plane. Théar suffi-
Thus, in this case, the limiting procedure gives a preciseiently small €) among loopsa,, and B,, the only ones
meaning to the calculation of Sec. I: The uncertainty relatiorwhich intersect arex, and By, the original loops. Hence,
(1.9 holds in the sense that P(a,,B,) is well defined in theo, 7 space except at the

lim = edo-foedTP(ag,BT)ZQE(a,,B). 3.9

e—0 62 0
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single point, ¢=0,7=0), which is of measure zero. Fur- The right side is precisely theelf-linking numberof the
thermore, at all other points?(«,,8,) is independent of framed loopa [3]. Note in particular that if the framing is
o and 7. Its value is precisely the Gauss linking numbertrivial (e.g., if all the frame vectors are parallel in the three-
GL(a,B)=GL(a’,B), where the primed loops are obtained dimensional Euclidean spacehe right side vanishe@ven
by moving the unprimed ones slightly along the framing vec-before taking the limite—0). Thus, in this case, one can
tors. Thus, we have simultaneously measure the fluxes of electric and magnetic
fields with arbitrary accuracy.
1 . . There are of course other cases one can analyze. For ex-
lim — (lim [B[fP«M],E[fPs-M]])=iAGL(a,B') ample, one can consider loops with isolated intersections,
€0 € Aow where, however, framing at the intersection points is not of
the type considered in casés) and (iii) above. Given the
=ihGL(a',B), two framings, the calculation of the limit of the commutator
(3.6 is generally straightforward. Since the regularization is geo-
] ] ] o o metric and the final limiting procedure refers only to proper-
which, in this case, isi: times the natural Gauss linking ties of ribbons obtained from framing, it is natural to inter-

number associated with tffeamedloops. pret the result as the Gauss linking number of framed loops
(iii) Let us now consider the case where the two l00psy, those cases as well.

intersect at a single point as before but where frame vec-
tors atp (lie on the same side of the plane spanned by the

two tangents andare parallel. Then the two strigs, and IV. DISCUSSION
3 intersect in a line rather than a single point. In this case
the limit is more delicate. A loojr,, on 3, intersects a loop

B.onZif and only if o= 7. Thus, the calculation of Sec. |
for computingP(«,,,8,) goes through for the entire region

In this work we have pointed out that there is a remark-
able relation between the Gauss linking number, the simplest
link invariant, and the Heisenberg uncertainty between fluxes
of electric and magnetic fields, the basic observables of the
guantum Maxwell theory. This uncertainty is intrinsic in that

. it H the int . % arises because of the fundamental guantum fluctuations
we can ignore it. However, now the integrafla, . 8,) is and persists even in the vacuum state.

no longer a constant on the entire parameter space. As a The precise sense in which this relation holds is rather

glznple ,geometnc p(ljctur?thre\ije_als, ItI talées iﬂe Valluesubtle especially if the loops in question intersect or overlap.
(,8'), on one side of the diagonal and another va Y41 the classical theory, given any closed loap we can

GL(a’,B), on the other, where as before the primed IOOpScompute the fluxeB[ «] andE[ «] of magnetic and electric

are obtained by displacing the unprimed loops slightly in thefields through any surfacs, bounded by the loopr. To

direction of framing. Hence, we now have obtain the corresponding quantum observables, however, we
have to “thicken” the surfaces in question. A natural strat-

i = lim TR (Pa M) ErF(Ps A7) =t / egy is to frame the initial loop since a framing provides a
LWB €2 (A“Lnx[B[f 1LELT 1 2 [GL(a.B") canonical thickening. When this is dort@nd an ultraviolet
cutoff is introduced one obtains regulated flux operators
+GL(a',B)]. which are well-defined on the Fock space. We can compute

(3.7) their commutators anthenremove the regulators. The limit
is the just (% times the Gauss link invariant of the framed

The right side is i times the average of the two possible 100ps. Even when the loops intersect or coindide in cases
linking numbers one can obtain by displacing the loaps (i) (iii), and (iv) considered in Sec. [)j the limit of the
and 8 infinitesimally using the assigned framing, i.e., the COMmutator equalsif times the Gauss linking number of

“natural” (extension of the Gauss linking number associ- the framedloops. _ _ _ _
ated with the two giveriramedIoops. For simplicity, we worked in Minkowski space-time.

(iv) Finally, let us consider the commutator betweenHowever, the entire discussion can be carried over without

fluxes of electric and magnetic associated with tzmme any difficulty to general stationary space-tim@enere the
framed loopa. In this case the strips, and3.; as well as  NO'M of the Killing field is bounded away from zgran this
the “pillboxes” P,, andP; coincide. Now, ifo=r the loops ~ Cas€, one can use geodesics tangential to the framing to
a, and 8, have no points in common. Hence, the integrandth'Cker_‘ the the loops and work in the canonical Fock repre-
P(a,,B,) is well defined everywhere except along the diag_sentat|on selected by Fhe Killing f|_el[di,8]. In the nonsta-
onal. However, in this cas@utside the diagonal which we tonary context, there is no canonical representation of the
can ignorg the value of the integrand is in fact constant, CCR. However, one can again construct the algebra of
namely, the Gauss linking numb&iZ(a,a'), wherea' is sr_neared flux operators ar_1d the basic results will hold on any
again obtained by displacing slightly along the framing. _Hllbert space on which this alge_zbra can be represente_d. This
Thus, in this case, we have is to be expected because the final results are topological and
do not refer to the Minkowskian geometry used in the inter-
1 mediate stages.
lim = ( lim [B[f(Pa M), E[fPe M) =iAGL(a,a'). Finally, we wish to point out that the Gauss linking num-
-0 € A ber also plays a key role in the expression of the measure
(3.8  which dictates the inner product on the photon Hilbert space
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in the so-called self-dual representatiovhere states are ap- andw,[ 8, x) is given by
propriate functionals of self-dual connection8].

Note addedAfter this paper was submitted and posted on
the LANL archives, we learned from Professor A. Widom
that the formal relatioril.6) first appeared ifi10]. Professor
I. Birula pointed out that, in the analysis presented in this
paper, it would be more appropriate to use the displacemenftiso, note thatw, is a potential for the form factor, since
vectorD as the basic variable in place of the electric fiEld

W[ B.X)= fs dS,8%(x, sp). (A3)
B

F a,X)=e*a,w [, X). (A4)
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(AS5)
APPENDIX ) , ,
We can now rewrite the intersection number as
1. From intersection to Gauss-linking number
1 — _
In this subsection we shall show the analytic equivalence |(a,Sg)=— —J d3xJ d3y|:a[a,x) w,[B,Y)
between the intersection numbkfe,Sg) of Eq. (1.6) and 4m
the Gauss linking number of Eq4.1) and(1.2). We start by 1
rewriting the intersection number: x&da‘y’ —
Ix—ylg
I(a,SB)={B[a],E[B]}=f d*XF a, X)W, B, X), 1 —
=—J ds de‘ F a,x)
(A1)
WhereFa[a,x_) is the so-calledorm factor of the loop«, — 4 1
X daWal B,Y) 9y FEmk (AB)

Foa,x)= gﬁdaaa3(a,x_> (A2) . .
a where in the second step we have integrated by parts. Now,

I(,S ):if d3xF a x_)j d3y| 29, Wa [ B, Y) + (I Wg[ B,Y)) ! (A7)
1B A ) [dWa]llL P aWdl o, y|X_—W

The last term can again be integrated by parts

J d*y(daWel B,Y)) ( ) f y— (30wl B,Y))=0, (A8)

where we have used the gauge freedom to selgctuch that)®w,=0.
Finally, we have

1 — — 1
|(a,S,e)=Ef d3Xf d% Fa[a,X)Fb[B,y)éabcﬁ§(ﬁ)
1 o - XC_yC
- 3 3y Ea b s~ 73
477f d XJ dyFa, x)F [B-y)eabcb(—_w : (A9)
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Now, the definition of the form factor implies that:
Jd3xF¥ a,x)f,=¢,da?f,. Hence, we have the desired

equality
a®(s)— B(t)

la(s)—B()|*
(A10)

1 . )
I(aisﬁ):E § ds %ﬁdtfabcaa(s)ﬁb(t)

2. Quantum operators

Recall from Sec. Il that the smeared operatafg(F#]
are well defined on the Fock spageéif and only if the H

norm 0fV=(Tf;Pﬂ) ,0) is finite. In this subsection we will

GAUSS LINKING NUMBER AND THE ...
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Using the identity

1 (7
Jo(2)=— fo giz cosig g, (A12)

and the recurrence formulas of Bessel functions we arrive at

_ 2 Jy(k.R) sin(k
i (k)= \/;R —Jl(k"R) —sm(k all (A13)
p z

The transverse part any fieH(k_) is the projection of the
that field orthogonal to the radial vectkf. Therefore,

compute this norm and show that it has a logarithmic diver-
gence thereby establishing the necessity of an ultraviolet cut- 2

off.

Let us consider the simplest case. In cylindrical coordi-

nates p,¢,z), let the strip ; defining the pilloox region
P be circles of radius p=R and z=r7; thus

&T(s)=(R,277 s,— €/2+ 7). We can take thé&, surfaces to

be parallel to the=const plane. In this geometry, the smear-

ing covector field f,(x) is the “step function:”
fa(X)=V,z if p<R and ze[—¢€/2,e/2]; f,(X)=0 other-

wise. The Fourier transform will have a nonvanishing com-

ponent only in thek, direction:

1 R (2m (€2 ik p cos¢ Aik,z
fi (k =—f f f dz dppdpe™ e ez,
(0 (2m)%2Jo Jo Je bpdpety
(A11)

TT2=[F ) 5" (A14)
K2+ kS

The expressiofsd°k |k| |T1(k)|? now takes the form

2

d3k |k| |F.(k 2:4R2F fdkdk—"
Jotin ator=ase [ | doao b

J3(kR) sirf(k,e)
X

K, k2

(A15)

where |k|=[kZ+k2]*2 It is now obvious that the integral
diverges logarithmically sincé;(x)~x~Y? whenx—o.
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