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It is shown that there is a precise sense in which the Heisenberg uncertainty between fluxes of electric and
magnetic fields through finite surfaces is given by~one-half\ times! the Gauss linking number of the loops
that bound these surfaces. To regularize the relevant operators, one is naturally led to assign a framing to each
loop. The uncertainty between the fluxes of electric and magnetic fields through a single surface is then given
by the self-linking number of the framed loop which bounds the surface.@S0556-2821~97!02016-X#

PACS number~s!: 03.70.1k, 03.65.Bz

I. INTRODUCTION

In 1833, Gauss noticed a striking fact about electromag-
netism@1#. He considered a loopL1 carrying a constant cur-
rent I and computed the workW done in moving a magnetic
monopole of strengthm along a closed pathL2 in the mag-
netic field produced by the current:

W5
mI

4p R
L1

ds R
L2

dteabc L̇1
a~s! L̇2

b~ t !

3
L1

c~s!2L2
c~ t !

uL1~s!2L2~ t !u3
. ~1.1!

He then made a deep observation which can be stated in the
modern mathematical terminology as follows: although the
double integral

GL~L1 ,L2!:5
1

mI
W ~1.2!

makes use of Euclidean geometry in several ways, its value
is in fact a topological invariant, a measure of the linking
between the loopsL1 andL2. In particular, even if one de-
forms the loops, the value of the double integral does not
change so long as the loops do not touch or cross each other.
This is a remarkable property and Gauss expressed the belief
that the quantityGL(L1 ,L2) may have a fundamental signifi-
cance. The view was shared by others. In particular, in his
celebrated treatise on electricity and magnetism, Maxwell
returns to this property and further elaborates on it@2,3#.

It turns out that the double integralGL(L1 ,L2) does have
a fundamental significance in electromagnetism, which how-
ever, could not have been guessed before the advent of quan-
tum field theory. To see this, consider source-free Maxwell
theory ~in Minkowski space-time!. In the Hamiltonian treat-
ment, the vector potentialAa( x̄ ) and the electric field
Ea( x̄ ) ~on a constant time hyperplane! serve as the basic
canonically conjugate fields with the Poisson brackets rela-
tions:

$Aa~ x̄ !,Eb~ ȳ !%5da
bd3~ x̄ , ȳ !. ~1.3!

~Throughout this paper, curly brackets will denote Poisson
brackets.! The vector potential itself is not an observable
since it fails to be gauge invariant. However, we can inte-
grate it over a closed loopa to obtain a gauge invariant
functional:

B@a#:5 R
a
Aadla[E

Sa

Bad2Sa , ~1.4!

whereSa is any two-surface bounded by the loopa. Simi-
larly, given any two-surfaceSb bounded by a closed loopb
we can define the flux of the electric field,

E@b#:5E
Sb

Ead2Sa , ~1.5!

which depends only on the loopb ~and not on the specific
surfaceSb with boundaryb) becauseEa is divergence free.
The observablesB@a# and E@b# are ~over!complete in the
sense that their values at a point (Ba,Ea) of the physical
phase space suffice to determine that point uniquely.

It is straightforward to compute the Poisson brackets be-
tween these observables ifa and b have no point in com-
mon. The result is

$B@a#,E@b#%5 R
a
dl a~ x̄ !E

Sb

d2Sa~ ȳ !d3~ x̄ , ȳ !5I ~a,Sb!,

~1.6!

whereI (a,Sb) denotes the oriented intersection number be-
tween the loopa and the surfaceSb . But, as a geometrical
picture makes it clear~see Fig. 1!, this intersection number is
precisely the linking number between loopsa and b. „An
analytic calculation showing the equality ofI (a,Sb) with
GL(a,b) is given in the Appendix.… Thus, we have

$B@a#,E@b#%5GL~a,b!. ~1.7!

The fact that the Poisson bracket is metric independent may
seem surprising at first. But note that, since the vector poten-
tial Aa is a one-form and the electric fieldEa ~being canoni-
cally conjugate toAa) is naturally a vector density of weight
one, neither the symplectic structure~1.3! nor the definitions
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of the observablesE@a#, B@b# require a metric~or any other
background field! for their definitions. Hence, if well de-
fined, the right side of Eq.~1.7! has to bea topological
invariant of loops labeling the observables.

Let us pass to the quantum theory heuristically. One
would expect that~if a andb have no point in common! the
commutator between the magnetic and electric flux operators
would be given by

@B̂@a#,Ê@b##5 i\ GL~a,b! ~1.8!

and hence the Heisenberg uncertainties should satisfy

~DB̂@a#!~DÊ@b#!>
\

2
uGL~a,b!u. ~1.9!

This implies that there is an intrinsic uncertainty in the si-
multaneous measurements of fluxes of electric and magnetic
fields across finite surfaces if the Gauss linking numbers of
the loops bounding the two surfaces is not zero~see Fig. 2!.
In this sense, as suspected by Gauss and others, the linking
number does have a fundamental significance in electro-
magnetism.

A number of questions arise immediately. Can one make
these quantum considerations precise? If the quantization is
basedon the algebra of operators generated byB̂@a# and
Ê@b#, the answer is clearly in the affirmative. However, in
such representations, the Maxwell Hamiltonian operator fails
to be well defined. In the standard Fock representation where
the Hamiltonianis well defined, operatorsÊ@a# and B̂@b#
fail to be well defined.~See, e.g.,@5#.! Can one nonetheless
give meaning to the topological uncertainty relations~1.9! in
the Fock representationin a suitable limiting sense? Second,

the uncertainty relation given above fails to be meaningful if
the loopsa and b coincide. However, it is known that the
Gauss self-linking number of a loopis well defined if the
loop is framed@3#. Is there perhaps a framing that is naturally
introduced in the process of regularization of the operators in
question? If so, can one give meaning to the commutator of

B̂@a# and Ê@a#? The purpose of this work is to analyze
these issues. We will find that the specific questions raised
here can be answered affirmatively.

In Sec. II, we will consider the Fock space of photons and
show that suitably ‘‘thickened,’’ regulated versions of the
above ‘‘flux operators’’ are indeed well defined on the Fock

space. This will enable us to regardB̂@a# and Ê@b# as cer-
tain limits of well-defined operators. We will see that the
commutation relations~1.8! also hold in a limiting sense. In
this limit, the thickening of surfaces goes to zero. However,
the loop that bounds the limiting surface carries the
‘‘memory’’ of the thickening in the form of a framing. We
will see in Sec. III that the limits of the commutators of the
regulated flux operators are functionals of these framed
loops. In particular, the framing enables one to evaluate the
~limits of! commutators without ambiguities even when the
loops intersect and overlap. We should emphasize however
that the level of rigor in this work is that generally used in
theoretical physics rather than mathematical physics.

We will conclude this section with a few remarks.
~i! One often definesdimensionlessobservables:B8@a#

5(c/e)B@a# and E8@b#5(1/e)E@b#, which can be expo-
nentiated to obtain Weyl commutation relations.@The
exponential of iB8@a#[ i (c/e)radlaAa , for example, is
the U~1! holonomy.# In terms of these primed observables,
the uncertainty principle reads (DB8@a#)(DE8@b#)
>(1/2afine)GL(a,b), whereafine is the fine structure con-
stant.

~ii ! In the non-Abelian case, one can replace expiB8@a#
by the trace of the holonomy of the connection along the
loop a. The analogue ofE8@b# is trickier. To ensure gauge
invariance, one now has to thicken the loop to a ribbon.~See,
e.g., @4,5#.! The commutator is then again ‘‘topological.’’
However, the physical meaning of these observables is now
less transparent.

~iii ! Over the last five years, the uncertainty relation~1.9!
was used by one of us~A.A.! to motivate the loop represen-
tation for gauge theories and gravity in a number of confer-
ences~see, e.g.,@4#!. It was pointed out that a similar obser-
vation on the Maxwell uncertainties was made by Ju¨rgen
Löffelholz from the Leipzig mathematical physics group and
also by condensed matter theorists interested in flux quanti-
zation. Unfortunately, however, we have not been able to
find specific references.

II. REGULATED FLUX OPERATORS

A. Preliminaries

Let us begin by recalling a few facts about the Fock rep-
resentation of photons. Since we are interested in~fluxes of!
electric and magnetic operators, it will be convenient to
adapt the discussion to a canonical framework. A vectorV in
the one-photon Hilbert spaceH is then represented by a pair

FIG. 1. The Gauss linking numberGL(a,b) equals the oriented
intersection numberI (a,Sb). In ~a! this number is 1 and in~b!
it is 0.

FIG. 2. The~absolute value of the! Gauss linking number be-
tween loopsa andb is 1. In this case, the Heisenberg uncertainty
between the magnetic flux through the surfaceSa and the electric
flux throughSb is \/2.
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(Aa ,Ea) of divergence-free vector fields on a constant time
hyperplane and the Hilbert space norm is given by~see, e.g.,
@6#!:

^VuV&5
1

2\ES
d3x@Aa~n1/2Aa!1Ea~n21/2Ea!#.

~2.1!

Denote byFH the symmetric Fock space based onH. Elec-
tric and magnetic fields are represented by operator valued
distributions involving the standard linear combinations of
creation and annihilation operators onFH . Consider, for ex-
ample, the smeared object

Ê@ f #:5E d3xÊa~x! f a~x!, ~2.2!

where f a is a test field, i.e., vector field of compact support.
SinceEa is divergence free, we haveE@ f #5E@ f 1]g#, for
any test functiong. This is a well-defined operator onFH
provided the vectorV5(Tf a ,0) lies in the Hilbert spaceH,
i.e., provided the norm

^VuV&5
1

2\E d3x @Tf a~n1/2Tf a!#[
1

2\ E d3kukuuT f̃ au2

~2.3!

is finite, where Tf a is the transverse part off , and T f̃ its
Fourier transform.~The transverse projection removes the
‘‘gauge freedom’’ of adding a gradient tof a .) In that case,
Ê@ f # is expressible as a sum of the creation and annihilation
operators associated with the stateV.

The situation with the magnetic field operator is com-
pletely analogous. The commutator between smeared electric
and magnetic fields is given by

@B̂@ f #,Ê@g##5 i\ E d3xeabc@]af b~ x̄ !#gc~ x̄ !

5\ E d3keabcka~ f̃ b~ k̄ !!! g̃c~ k̄ !, ~2.4!

where f̃ b denotes the Fourier transform off b and a star
denotes complex conjugation.

B. Regularization

Let us now consider the formal expression of the electric
flux operator:

Ê@b#5E
Sb

Êad2Sa . ~2.5!

It can be expressed as a smeared electric field,
E@b#5*d3xEa( x̄ ) f a

(b)( x̄ ), where, however, the test field

f a
(b)( x̄ ) is a distribution with support onSb :

f a
~b!~ x̄ !5E

Sb

d2Sad3~ x̄ , s̄b!, ~2.6!

where s̄b denotes a point on the surfaceSb . Hence, the
corresponding operatorÊ@b# is only formal; it fails to be
well defined on the Fock space. We must regulate it.

We will proceed in two steps~the first of which is the
crucial one!. Geometrically, the problem arises becausef a

(b)

is a distribution with two-dimensional support. We can rem-
edy this situation by an appropriate ‘‘thickening’’ of the sur-
face Sb . Let us therefore replace the loopb by a strip ~or
ribbon! Sb of height e ~see Fig. 3!. More precisely, let us
proceed as follows. Let us first equipb with a framing~i.e.,
let us introduce, at each point ofb, a vector in a direction
transverse toḃa, the tangent tob!. Then, for eachtP@0,e#,
let us denote bybt the loop obtained by displacingb a
distancet along the framing.~Thusb0[b). This construc-
tion uses the flat Euclidean metric on the spatial hyperplane.
But the key final results will not depend on this flat metric.!
Let St denote a surface bounded by the loopbt ~such that
the assignmentt→St is smooth.! The family of loopsbt
constitute the stripSb and the three-dimensional region
swept out by the family of surfacesSt constitutes a ‘‘pill-
box’’ Pb with boundarySb .

We can now consider the flux of the electric field through
the three-dimensionalpillbox region

E@Pb#5E
0

e

dt E
St

d2SaEa~ s̄t!. ~2.7!

~From now on, loops will be assumed to be framed. How-
ever, for simplicity of notation, we will continue to denote
them just by Greek lettersa,b, . . . .! This yields a smearing
of the electric field with a test fieldf a

(Pb) with support in
threedimensions,

E@Pb#5E d3xEa~x! f a
~Pb!

~x!

with

f a
~Pb!

5E
0

e

dt E
St

~dSt!ad3~ x̄ , s̄ t!, ~2.8!

FIG. 3. The surfaceSb with boundaryb is thickened to a three-
dimensional pillboxPb bounded by the stripSb . As e tends to
zero,Pb shrinks toSb andSb tends to the loopb. The ‘‘memory’’
of the strip is retained by the initial framing attached tob.
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and one can hope that the corresponding operator would be
well defined in quantum theory. This completes our first step
in regularization.

The key question now is the following: Is
V5(Tf a

(Pb) ,0) normalizable with respect to the inner product
~2.3!? This calculation is carried out in the Appendix. It turns
out that, although the three-dimensional smearing softens the
singularity of f a

(b) considerably, the norm̂VuV& still has a
logarithmic ultraviolet divergence. This arises because the
three-dimensional pillboxPb , on which f a

(Pb) is supported,
has sharp boundaries. This is where the second step in the
regularization procedure comes in. The problem can be
handled in a number of ways. We will use the simplest one
and just introduce an ultraviolet cutoff atu k̄ u5L. That is, we
begin with f a

(Pb) as in Eq.~2.8!, take the Fourier transform of
its transverse part, multiply it by the step function which is
unity if u k̄ u<L and zero otherwise and consider the inverse
Fourier transformf a

(Pb ,L) of the resulting function. Then,

Ê@ f (Pb ,L)# is a well-defined operator on the Fock space. This
operator can be regarded as the regulated version of the heu-
ristic expressionÊ@b# since, in the classical theory, we have

lim
e→0

1

e S lim
L→`

E d3xEa~x! f a
~Pb ,L!

~x! D 5E@b#. ~2.9!

The situation with the magnetic-flux operator, of course, is
identical. Thus, given a framed loopa, we can introduce a
strip Sa of height e and consider a pillboxPa it bounds.
Then, B̂@ f (Pa ,L)# is a well-defined operator on the Fock
space.

III. REMOVAL OF THE REGULATORS

Let us compute the commutator between the regularized
flux operators using Eq.~2.4! and then, in the result, remove
the regulators by taking appropriate limits. Removing the
ultraviolet cutoff yields

lim
L→`

F B̂@ f ~Pa ,L!#, Ê@ f ~Pb ,L!] #5\ lim
L→`

E
L

d3k eabcka @ f̃ ~Pa!~ k̄ !#! f̃ ~Pb!~ k̄ !5 i\E d3x eabc @]af b
~Pa!

~ x̄ !# f c
~Pb!

~ x̄ !

5 i\ E
0

e

ds R
as

dla E
0

e

dt f a
~bt!

5 i\ E
0

e

dsE
0

e

dt$B@as#, E@bt#%, ~3.1!

where, in the first step, the subscriptL denotes that the integration is carried out over the balluKu,L. The final result is not
surprising: the right side is justi\ times the well-defined Poisson bracket between the classical ‘‘thickened flux’’ observables:

lim
L→`

@B̂@ f ~Pa ,L!#,Ê@ f ~Pb ,L!#5 i\$B@ f ~Pa!#,E@ f ~Pb!#%. ~3.2!

Thus, as far as the commutator is concerned, the ultraviolet cutoff plays no essential role.
To remove the regulatore, we have to compute

lim
e→0

1

e2
~ lim

L→`

@B̂@ f ~Pa ,L!#,Ê@ f ~Pb ,L!## !5 i\ lim
e→0

1

e2S E0

e

dsE
0

e

dt$B@as#,E@bt#% D 5 i\ lim
e→0

1

e2S E0

e

dsE
0

e

dt P~as , bt! D
~3.3!

say. This calculation is more subtle. We will divide the dis-
cussion in four cases which bring out the role of framing in
handling pathologies that arise when the loops intersect and
overlap.

~i! The simplest case arises when the loops have no point
in common. Then, for a sufficiently smalle, there is no in-
tersection between any of the loopsas andbt . Hence, the
Poisson bracketP(as , bt) can be calculated exactly as in
Sec. I. It is independent ofs and t and equalsGL(a,b).
Hence,

lim
e→0

1

e2 E0

e

dsE
0

e

dtP~as ,bt!5GL~a,b!. ~3.4!

Thus, in this case, the limiting procedure gives a precise
meaning to the calculation of Sec. I: The uncertainty relation
~1.9! holds in the sense that

lim
e→0

1

e2
~ lim

L→`

@B̂@ f ~Pa ,L!#,Ê@ f ~Pb ,L!##!5 i\GL~a,b!.

~3.5!

~ii ! Let us now consider the case whena andb intersect
at a single point, sayp. ~Intersections at a finite number of
points requires only a trivial extension of this case.! Now,
the result depends on the thickening, or more precisely, on
the framing atp initially chosen to carry out the thickening.
Let ȧa andḃa denote the tangent vectors to the two loops at
p. Consider the two-dimensional plane they span in the tan-
gent space ofp. Suppose that the frame vectors of the loops
a andb lie on opposite sides of the plane. Then~for suffi-
ciently small e) among loopsas and bt , the only ones
which intersect area0 and b0, the original loops. Hence,
P(as ,bt) is well defined in thes, t space except at the
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single point, (s50,t50), which is of measure zero. Fur-
thermore, at all other points,P(as ,bt) is independent of
s and t. Its value is precisely the Gauss linking number
GL(a,b8)5GL(a8,b), where the primed loops are obtained
by moving the unprimed ones slightly along the framing vec-
tors. Thus, we have

lim
e→0

1

e2
~ lim

L→`

@B̂@ f ~Pa ,L!#,Ê@ f ~Pb ,L!##!5 i\GL~a,b8!

5 i\GL~a8,b!,
~3.6!

which, in this case, is (i\ times! the natural Gauss linking
number associated with theframedloops.

~iii ! Let us now consider the case where the two loops
intersect at a single pointp as before but where frame vec-
tors atp ~lie on the same side of the plane spanned by the
two tangents and! are parallel. Then the two stripsSa and
Sb intersect in a line rather than a single point. In this case
the limit is more delicate. A loopas on Sa intersects a loop
bt on Sb if and only if s5t. Thus, the calculation of Sec. I
for computingP(as ,bt) goes through for the entire region
of the parameter space (s,t)P@0,e#3@0,e# except for the
diagonal. Again, since the diagonal is a set of measure zero,
we can ignore it. However, now the integrandP(as ,bt) is
no longer a constant on the entire parameter space. As a
simple geometric picture reveals, it takes one value,
GL(a,b8), on one side of the diagonal and another value,
GL(a8,b), on the other, where as before the primed loops
are obtained by displacing the unprimed loops slightly in the
direction of framing. Hence, we now have

lim
e→0

1

e2
~ lim

L→`

@B̂@ f ~Pa ,L!#,Ê@ f ~Pb ,L!##!5
i\

2
@GL~a,b8!

1GL~a8,b!].
~3.7!

The right side is (i\ times! the average of the two possible
linking numbers one can obtain by displacing the loopsa
and b infinitesimally using the assigned framing, i.e., the
‘‘natural’’ ~extension of the! Gauss linking number associ-
ated with the two givenframedloops.

~iv! Finally, let us consider the commutator between
fluxes of electric and magnetic associated with thesame
framed loopa. In this case the stripsSa andSb as well as
the ‘‘pillboxes’’ Pa andPb coincide. Now, ifs5t the loops
as andbt have no points in common. Hence, the integrand
P(as ,bt) is well defined everywhere except along the diag-
onal. However, in this case~outside the diagonal which we
can ignore! the value of the integrand is in fact constant,
namely, the Gauss linking numberGL(a,a8), wherea8 is
again obtained by displacinga slightly along the framing.
Thus, in this case, we have

lim
e→0

1

e2
~ lim

L→`

@B̂@ f ~Pa ,L!#,Ê@ f ~Pa ,L!##!5 i\GL~a,a8!.

~3.8!

The right side is precisely theself-linking numberof the
framed loopa @3#. Note in particular that if the framing is
trivial ~e.g., if all the frame vectors are parallel in the three-
dimensional Euclidean space!, the right side vanishes~even
before taking the limite→0). Thus, in this case, one can
simultaneously measure the fluxes of electric and magnetic
fields with arbitrary accuracy.

There are of course other cases one can analyze. For ex-
ample, one can consider loops with isolated intersections,
where, however, framing at the intersection points is not of
the type considered in cases~ii ! and ~iii ! above. Given the
two framings, the calculation of the limit of the commutator
is generally straightforward. Since the regularization is geo-
metric and the final limiting procedure refers only to proper-
ties of ribbons obtained from framing, it is natural to inter-
pret the result as the Gauss linking number of framed loops
in those cases as well.

IV. DISCUSSION

In this work we have pointed out that there is a remark-
able relation between the Gauss linking number, the simplest
link invariant, and the Heisenberg uncertainty between fluxes
of electric and magnetic fields, the basic observables of the
quantum Maxwell theory. This uncertainty is intrinsic in that
it arises because of the fundamental quantum fluctuations
and persists even in the vacuum state.

The precise sense in which this relation holds is rather
subtle especially if the loops in question intersect or overlap.
In the classical theory, given any closed loopa, we can
compute the fluxesB@a# andE@a# of magnetic and electric
fields through any surfaceSa bounded by the loopa. To
obtain the corresponding quantum observables, however, we
have to ‘‘thicken’’ the surfaces in question. A natural strat-
egy is to frame the initial loop since a framing provides a
canonical thickening. When this is done~and an ultraviolet
cutoff is introduced! one obtains regulated flux operators
which are well-defined on the Fock space. We can compute
their commutators andthenremove the regulators. The limit
is the just (i\ times! the Gauss link invariant of the framed
loops. Even when the loops intersect or coincide@as in cases
~ii !, ~iii !, and ~iv! considered in Sec. III#, the limit of the
commutator equals (i\ times! the Gauss linking number of
the framedloops.

For simplicity, we worked in Minkowski space-time.
However, the entire discussion can be carried over without
any difficulty to general stationary space-times~where the
norm of the Killing field is bounded away from zero!. In this
case, one can use geodesics tangential to the framing to
thicken the the loops and work in the canonical Fock repre-
sentation selected by the Killing field@7,8#. In the nonsta-
tionary context, there is no canonical representation of the
CCR. However, one can again construct the algebra of
smeared flux operators and the basic results will hold on any
Hilbert space on which this algebra can be represented. This
is to be expected because the final results are topological and
do not refer to the Minkowskian geometry used in the inter-
mediate stages.

Finally, we wish to point out that the Gauss linking num-
ber also plays a key role in the expression of the measure
which dictates the inner product on the photon Hilbert space
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in the so-called self-dual representation~where states are ap-
propriate functionals of self-dual connections! @9#.

Note added. After this paper was submitted and posted on
the LANL archives, we learned from Professor A. Widom
that the formal relation~1.6! first appeared in@10#. Professor
I. Birula pointed out that, in the analysis presented in this
paper, it would be more appropriate to use the displacement
vectorD as the basic variable in place of the electric fieldE.
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APPENDIX

1. From intersection to Gauss-linking number

In this subsection we shall show the analytic equivalence
between the intersection numberI (a,Sb) of Eq. ~1.6! and
the Gauss linking number of Eqs.~1.1! and~1.2!. We start by
rewriting the intersection number:

I ~a,Sb!5$B@a#,E@b#%5E d3xFa@a, x̄ !wa@b, x̄ !,

~A1!

whereFa@a, x̄ ) is the so-calledform factorof the loopa,

Fa@a, x̄ !5 R
a
daad3~a, x̄ ! ~A2!

andwa@b, x̄ ) is given by

wa@b, x̄ !5E
Sb

dSad3~ x̄ , s̄b!. ~A3!

Also, note thatwa is a potential for the form factor, since

Fa@a, x̄ !5eabc]bwc@a, x̄ !. ~A4!

There is an extra ‘‘gauge freedom’’ sincewa and
wa85wa1]af give rise to thesameform factorFa.

So far, the intersection number does not depend on any
background structure and is, therefore, topological in nature.
Expression~1.1! is, however, written in terms of a Euclidean
metric. Let us therefore introduce such a metric. Then,

d3~x2̄ ȳ !52
1

4p
¹x

2 1

ux̄2 ȳu
52

1

4p
]a]x

aS 1

ux̄2 ȳu
D .

~A5!

We can now rewrite the intersection number as

I ~a,Sb!52
1

4pE d3xE d3yFa@a, x̄ ! wa@b, ȳ !

3]d]y
dS 1

ux2̄yū
D

5
1

4pE d3xE d3yFa@a, x̄ !

3]dwa@b, ȳ ! ]y
dS 1

ux̄2 ȳu
D , ~A6!

where in the second step we have integrated by parts. Now,

I ~a,Sb!5
1

4pE d3xFa@a, x̄ !E d3yF2] [dwa]@b, ȳ !1~]awd[b, ȳ !)]y
dS 1

ux̄2 ȳu
D G . ~A7!

The last term can again be integrated by parts

E d3y~]awd@b, ȳ !!]y
dS 1

ux̄2 ȳu
D 52E d3y

1

ux̄2 ȳu
~]a]dwd@b, ȳ !!50, ~A8!

where we have used the gauge freedom to selectwa such that]awa50.
Finally, we have

I ~a,Sb!5
1

4pE d3xE d3y Fa@a, x̄ !Fb@b, ȳ !eabc]y
cS 1

ux̄2 ȳu
D

5
1

4pE d3xE d3yFa@a, x̄ !Fb@b, ȳ !eabc

xc2yc

ux̄2 ȳu
3 . ~A9!
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Now, the definition of the form factor implies that:
*d3xFa@a, x̄ ) f a5radaaf a . Hence, we have the desired
equality

I ~a,Sb!5
1

4p R
a
ds R

b
dteabcȧ

a~s!ḃb~ t !
ac~s!2bc~ t !

ua~s!2b~ t !u3
.

~A10!

2. Quantum operators

Recall from Sec. II that the smeared operatorsÊ@ f (Pb)#
are well defined on the Fock spaceF if and only if theH
norm of V5(Tf a

(Pb) ,0) is finite. In this subsection we will
compute this norm and show that it has a logarithmic diver-
gence thereby establishing the necessity of an ultraviolet cut-
off.

Let us consider the simplest case. In cylindrical coordi-
nates (r,f,z), let the stripSb defining the pillbox region
Pb be circles of radius r5R and z5t; thus
aW t(s)5(R,2p s,2e/21t). We can take theSt surfaces to
be parallel to thez5const plane. In this geometry, the smear-
ing covector field f a(x) is the ‘‘step function:’’
f a(x)5¹az if r,R and zP@2e/2,e/2#; f a(x)50 other-
wise. The Fourier transform will have a nonvanishing com-
ponent only in thekz direction:

f̃ kz
~k!5

1

~2p!3/2E0

RE
0

2pE
e/2

e/2

dz dfrdreikrr cosf eikzz.

~A11!

Using the identity

J0~z!5
1

pE0

p

eiz cosudu, ~A12!

and the recurrence formulas of Bessel functions we arrive at

f̃ kz
~k!5A2

p
R

J1~krR!

kr

sin~kze!

kz
. ~A13!

The transverse part any fieldf̃ a
T( k̄ ) is the projection of the

that field orthogonal to the radial vectorka. Therefore,

u f̃ Tu25u f̃ kz
u2

kr
2

kr
21kz

2
. ~A14!

The expression*Sd3k uku u f̃ a
T(k)u2 now takes the form

E
S
d3k uku u f̃ a~k!u254R2E

2`

` E
0

`

dkzdkr

kr
2

@kz
21kr

2#1/2

3
J1

2~kR!

kr

sin2~kze!

kz
2

, ~A15!

where uku5@kz
21kr

2#1/2. It is now obvious that the integral
diverges logarithmically sinceJ1(x);x21/2 whenx→`.
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