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At the minisuperspace level of homogeneous models, the bare probability for a classical universe has a huge
peak at small universes for the Hartle-Hawking ‘‘no-boundary’’ wave function, in contrast with the suppres-
sion at small universes for the ‘‘tunneling’’ wave function. If the probability distribution is cut off at the Planck
density~say!, this suggests that the former quantum state is inconsistent with our observations. For inhomo-
geneous models in which stochastic inflation can occur, it is known that the idea of including a volume factor
in the observational probability distribution can lead to arbitrarily large universes being likely. Here, this idea
is shown to be sufficient to save the Hartle-Hawking proposal even at the minisuperspace level~for suitable
inflaton potentials! by giving it enough space to be consistent with observations.@S0556-2821~97!03716-8#

PACS number~s!: 98.80.Hw, 04.60.Kz, 98.80.Bp

Various remarkable features of our observed Universe
~large size, low curvature, approximate isotropy and homo-
geneity, and the second law of thermodynamics! strongly
suggest that its state is not random but highly special. Two
leading proposals for special quantum states of the Universe
are the Hartle-Hawking ‘‘no-boundary’’ proposal@1–7# and
the ‘‘tunneling’’ proposal of Vilenkin, Linde, and others
@8–13#. In toy models incorporating presumed approxima-
tions for these proposals, they both seem to lead to low-
entropy early universes and so might explain the second law
of thermodynamics. If a suitable inflaton is present in the
effective low-energy dynamical theory, and if sufficient in-
flation occurs, both proposals seem to lead to a large uni-
verse with low curvature and approximate homogeneity and
isotropy today. However, it has been controversial whether
both proposals do indeed predict sufficient inflation.

In particular, in the minisuperspace approximation of us-
ing only Robertson-Walker geometries and a single homoge-
neous inflaton scalar field, the tree-level or zero-loop prob-
ability densities for the two proposals have the opposite signs
in the exponent of the Euclidean actionSE @itself inversely
proportional to the inflaton potentialV(f0) at the nucleation
valuef0 of the inflaton fieldf, when the nucleation is via a
Euclidean four-dimensional hemisphere#:

PNB5e22SE5epa0
2
5expS 3

8V~f0! D ~1!

for the Hartle-Hawking no-boundary proposal, and

PT5e22uSEu5e12SE5e2pa0
2
5expS 2

3

8V~f0! D ~2!

for the tunneling proposal, where

a05a0~f0!5@8pV~f0!/3#21/2 ~3!

is the radius of the Euclidean four-dimensional hemisphere
that is a solution of the Einstein equations with a stress-

energy tensorTmn52V(f0)gmn , with Planck units being
used throughout (\5c5G51).

During inflation the inflaton potentialV(f) decreases to
some particular value where inflation ends, so if one pre-
sumes that one has a realization of the universe configuration
in which the probability density is roughly maximized, then
at this level the tunneling proposal seems to favor the maxi-
mum amount of inflation possible, whereas the no-boundary
proposal seems to favor the minimum amount. Typically, the
maximum amount of inflation is infinite~e.g., when the in-
flaton field in unbounded, or when the inflaton potential has
a maximum!, so in this regard the tunneling proposal seems
consistent with observations, which are themselves appar-
ently consistent with an arbitrarily large universe. However,
the minimum amount of inflation, just sufficient for it to be
called inflation, is very small@14#, leading to a universe that
would recollapse long before it got large enough to be con-
sistent with our observations of the Universe.

One might conclude that the no-boundary proposal has
thus been refuted by observations. However, before rejecting
it by such a simple-minded argument, one should look for
possible correction factors. For example, if one considers the
total probability rather than just the probability density, it has
been shown@15# that the no-boundary proposal might be as
viable as the tunneling proposal. For, although the unnormal-
ized probability density of the no-boundary proposal has an
utterly enormous peak at tiny amounts of inflation, one can
easily see that if the nucleating value of the inflaton field is
unbounded above, and if loop@16# or other effects do not
damp the probability density at these large values~where the
zero-loop approximation has the probability density tending
to a constant, assuming that the potential either diverges or
tends to a constant in this limit!, then the integral of the
probability density over this infinite range of the value of the
inflaton field gives a diverging unnormalized probability for
sufficient inflation. This swamps the exponentially large but
finite unnormalized probability for insufficient inflation, giv-
ing a prediction that the no-boundary proposal leads to suf-
ficient inflation ~actually, an arbitrarily large amount of in-
flation! with unit normalized probability.*Electronic address: don@phys.ualberta.ca

PHYSICAL REVIEW D 15 AUGUST 1997VOLUME 56, NUMBER 4

560556-2821/97/56~4!/2065~8!/$10.00 2065 © 1997 The American Physical Society



The usual objection to this argument for saving the no-
boundary proposal is that for it to work for an inflaton po-
tential that rises indefinitely~and not unnaturally slowly! for
arbitrarily large values of the inflaton field, one must assume
that the probability density is not unduly damped for large
values of the potential that greatly exceed the Planck density,
which is roughly the largest density where the zero-loop ap-
proximation might be expected to be rather reliable. It is
sometimes said that one should put a cutoff on the probabil-
ity distribution at the Planck density, in which case the inte-
gral over the probability density at lower values is grossly
insufficient to overbalance the huge peak at minimal values
for inflation in the no-boundary proposal.

The first part of this objection is indeed valid, that the
total-probability solution to the apparent difficulty of the no-
boundary proposal does seem to require suitable physics in
the Planck regime, which we certainly do not yet understand.
Thus this solution is only a possible solution, not definitely a
viable one.

On the other hand, the claim that the probability distribu-
tion should be cut off at the Planck density is at least equally
ad hocand unjustified at present, so, just as one cannot yet
be sure that the total-probability solution does work, neither
can one be sure that it does not work. In other words, it is not
definitely not viable.

Another correction is the use of the selection principle
called the weak anthropic principle~perhaps somewhat mis-
leadingly, since it is not meant to refer just to mankind! @17#,
that what we observe about the universe is conditioned on
where we as observers exist within the Universe. Here, I will
take the ‘‘where’’ to mean not only where we are spatially or
temporally within the Universe, but also where we are within
the quantum state of the Universe~e.g., where we are within
the probability distribution for different universe configura-
tions!. This principle can save the no-boundary proposal
when one considers inhomogeneous inflaton fluctuations and
their back reaction on the metric, a process called ‘‘stochas-
tic inflation,’’ which can lead to a ‘‘self-reproducing uni-
verse’’ with ‘‘eternal inflation’’ that occurs for an indefi-
nitely long time and hence makes the volume of the Universe
arbitrarily large@9,18–22#. The idea is based on the obser-
vation that typical observers or civilizations are more likely
to occur in spaces of larger volume, other factors being equal
@19,20,26,22,23#.

The first application of the inhomogeneous stochastic
evolution of the inflaton field to eternal inflation was made
by Vilenkin @9# for new inflation, when he showed that one
could get an arbitrarily large amount of inflation even within
a bubble ~which could encompass the entire Universe in
Vilenkin’s picture, as in that of Hawking and Moss@24#!,
and not just outside the bubbles as in previous analyses. Af-
ter Linde discovered the scenario of ‘‘chaotic inflation’’@25#
~inflation from an inflaton potential without a maximum, or
in a region where there is no maximum!, which seems more
realistic than new inflation, he discovered that it also leads to
eternal stochastic inflation and what he called a ‘‘self-
regenerating universe’’@19,26#. ~Linde was actually the first
to use the phrase ‘‘eternal inflation’’@19#, and he has been
the leading researcher of it since that time@19,26,22#.!

Eternal stochastic inflation occurs when the rms ‘‘stochas-
tic’’ change in the scalar field from the freezing out of inho-
mogeneous modes during one Hubble timeDt5H21,

df5
H

2p
5A2V

3p
, ~4!

is greater than the slow-roll change of the field during that
same time:

Df52ḟDt5
V8

3H2 5
V8

8pV
. ~5!

This occurs when the stochastic inflation condition

V82,
128p

3
V3 ~6!

is satisfied@26#.
As a result of both the stochastic and slow-roll changes in

the inflaton field, in some regions the field decreases, and in
others it increases. Although the amount of comoving vol-
ume in which the field decreases is greater than the amount
in which the field increases~because of the slow-roll change
Df, which is toward smaller fields!, the back reaction of the
inflaton potential on the metric causes the physical volume to
increase more in the regions in which the field increases.
Therefore, when one weights the regions by their physical
volumes rather than by their comoving volumes, the domi-
nant behavior is for the inflaton field to increase. This pro-
cess allows the inflaton field to remain large for an arbitrarily
long time, thereby leading to an arbitrarily large amount of
inflation @9,19–22#. The results of eternal stochastic inflation
are claimed to be independent of the initial conditions@22# ~a
claim which seems to me implicitly to assume some strong
restriction on the allowed quantum states, perhaps analogous
to a claim that in nongravitational quantum field theory in
classical Minkowski spacetime, suitable states all asymptoti-
cally approach that of the vacuum in each local region as the
excitations disperse with time!.

Now, the main point of the present paper is the conceptual
or pedagogical point that even at the crude level of using
only the zero-loop homogeneous minisuperspace approxima-
tion, the anthropic-principle idea of weighting by the physi-
cal volume can save the Hartle-Hawking no-boundary pro-
posal from appearing inconsistent with our observations of
an expanding universe, at least for a wide range of inflaton
potentials, even if the probability distribution is damped or
cut off at the Planck density.

To use Vilenkin’s language@23#, suppose we start with
what he calls the ‘‘principle of mediocrity,’’ that our civili-
zation is average, ‘‘randomly picked in the metauniverse.’’
This leads to a probability distribution for various observed
results that is proportional not only to what I shall call the
‘‘bare’’ probability distribution of universe configurations
having these results, but also to the number of civilizations
occurring within the corresponding configuration.~Note that
what I am calling a universe configuration, Vilenkin calls a
universe, and what I call the Universe, Vilenkin calls the
metauniverse.!
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The bare probability distribution is that given by the ap-
propriate probability interpretation for the correct quantum
state of the Universe that does not make reference to observ-
ers or civilizations. Then, with other factors being equal, one
would expect the number of civilizations to be proportional
to the volume of space at the time at which the civilizations
occur. ~I myself might prefer@27# to focus on conscious
perceptions rather than civilizations, and someone else might
prefer to focus on observers, but one would expect any of
these to be proportional to the volume of space, other condi-
tions being the same.! The volume of space at the time of the
civilizations would itself be proportional to the volume of
space at the end of inflation~assuming that inflation oc-
curred, and that there is a fixed volume expansion factor
between the end of inflation and the time of the civilizations,
as there would be for approximatelyk50 Friedmann-
Robertson-Walker~FRW! parts of the Universe with the
same density at the end of inflation, the same density at the
time of the civilizations, or the same post-inflation age then,
and the same equation of state at the intermediate densities!.

Thus, one would expect that the probability distribution
for observed results to be roughly proportional to the bare
probability distribution for these results, multiplied by the
volume of space at the end of inflation in the universe con-
figuration that has these results. I shall call this product the
‘‘observational’’ probability distribution.

Here, I shall focus on the probability distribution, in the
minisuperspace approximation, of one ‘‘constant of mo-
tion,’’ f0, of an approximate classical universe model that
matches a universe configuration.~The probability distribu-
tion of f0 in stochastic inflation has been studied in@22#.! In
particular, I shall focus on universe configurations in which
the effective constants of nature are the same as in our con-
figuration and in which the large-scale configuration is ap-
proximately that of a classicalk51 Friedmann-Robertson-
Walker universe which evolved from a period of single
inflation starting with a moment of time symmetry at which
the size of that universe was a minimum and the inflaton
field had the homogeneous valuef0.

According to the Hartle-Hawking no-boundary proposal
in the minisuperspace approximation being used here, the
zero-loop approximation for the bare probability distribution
gives the unnormalized approximate probability density of
Eq. ~1! for f0, but with PNB there replaced byPbare here to
emphasize that it is the approximate bare probability:
namely,

Pbare~f0!df05epa0
2
~f0!df05expS 3

8V~f0! Ddf0 . ~7!

@By ‘‘approximate,’’ I mean, e.g., ignoring loop effects, Ja-
cobians, or other prefactors of the exponential of twice the
negative of the real part of the Euclidean action. I also mean
that this Euclidean action is itself given here only in the
approximation that variations in the potential and in the en-
ergy density are negligible during a Euclidean regime that is
assumed to be a Friedmann-Robertson-Walker four-
dimensional hemisphere of radiusa0 given by Eq. ~3!,
bounded by a totally geodesic round equatorial three-sphere,

that is, the three-space of a universe at its moment of nucle-
ation out of the Euclidean regime and into the Lorentzian
regime of inflation.#

As noted above, the bare probability rises sharply for
smaller values ofV(f0) when this is much smaller than
unity ~the Planck density!. However, we need to multiply the
bare probability by the volume of space at the end of infla-
tion to get the observational probability.

The volume of three-space at the moment of nucleation,
which is the beginning of a Lorentzian period of inflation
that would have had a moment of time symmetry then if the
Lorentzian evolution were analytically continued backward
as well as forward in real Lorentzian time from this moment
of nucleation, is

V052p2a0
35F 27p

128V3~f0!G
1/2

. ~8!

Then we need to multiply by the volume expansion factor
during inflation. Let us assume that the inflaton potential has
0,V8(f)[dV/df!V(f)!1 for fe!f!fPl , with fe
being the value off where

V8~fe!5V~fe! ~9!

~which will be taken to be the point at which inflation ends,
since this is roughly the point at which the slow-roll approxi-
mation breaks down!, and with fPl being the value of the
inflaton field that leads to a potential of the Planck density,

V~fPl!51 ~10!

in the Planck units I am using. Such a potential leads to
slow-roll inflation for f in this range~which is assumed to
includef0). For simplicity, use the slow-roll approximation
all the way to the end of inflation atf5fe. Then, the slow-
roll approximations to the FRW-inflaton equations lead to a
volume expansion factor during inflation of roughly

Ve

V0
5S ae

a0
D 3

5expS 24pE
fe

f0 V~f!df

V8~f! D
5expS 12pE

f0

fe a~f!df

a8~f! D . ~11!

Multiplying this volume expansion factor by the volume
of space at the beginning of inflation and by the bare prob-
ability distribution gives the unnormalized observational
probability distribution

Pobs~f0!df05VePbare~f0!df0

5V0S ae

a0
D 3

Pbare~f0!df0

5F 27p

128V3~f0!
G 1/2

expS 24pE
fe

f0 V~f!df

V8~f!
D

3expS 3

8V~f0! Ddf0
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52p2a0
3~f0!expS 12pE

f0

fe a~f!df

a8~f!
D

3exp„pa0
2~f0!…

5ep~f0!df0 , ~12!

where the logarithm of the unnormalized observational prob-
ability density is

p~f0!524pE
fe

f0 V~f0!df

V8~f0!
1

3

8V~f0!
2

3

2
lnV~f0!

1
1

2
lnS 27p

128D
512pE

f0

fe a0~f!df

a08~f!
1pa0

2~f0!13lna0~f0!

1 ln~2p2!

'24pE
fe

f0 V~f0!df

V8~f0!
1

3

8V~f0!

512pE
f0

fe a0~f!df

a08~f!
1pa0

2~f0!. ~13!

I shall generally use one of these last two approximate ex-
pressions, dropping the logarithm of the volume at the be-
ginning of inflation as a relatively unimportant term, and
keeping only the logarithm of the volume expansion factor
during inflation and minus twice the Euclidean action in the
zero-loop approximation to the bare probability, since those
two terms generally dominate whenV(f0)!1, or, equiva-
lently, when a0(f0)@1 ~nucleating universe much larger
than the Planck size!.

Now we need to put in the fact that the observational
probability density is cut off forf0,fm, wherefm is the
minimum value of the nucleating inflaton field to lead to
enough inflation for the existence of civilizations. If civiliza-
tions can only occur when the Universe is old enough for
some nucleosynthesizing stars to have burned out and yet for
other heat-producing stars to still be burning, then if the con-
stants of nature take the values that they do in our universe
configuration, one would need at leastNm ~roughly 60
@26,28#! e-folds of inflation, and this makesfm the solution
of the equation

Nm58pE
fe

fm V~f!df

V8~f!
. ~14!

If, for the sake of argument, we also cut off the probabil-
ity distribution forf0.fM ~e.g., withfM5fPl), then unless
fM is utterly enormous@which would require thatV(f) be
extremely flat at largef if V(fM)<1#, then most of the total
~integrated! observational probability forfm,f0,fM will
occur near the maximum of the approximate unnormalized
observational probability density, or of its logarithmp(f0).
If the maximum is at or very nearfm, then one would pre-
dict that a typical civilization would see such a universe
recollapsing, which is contrary to our observations. But if the

maximum is at a sufficiently higher value off0, there would
be enough inflation that the Universe today would be much
larger than what we can see and hence very nearly spatially
flat on a scale corresponding to its present age~under the
assumption that it is approximately Friedmann-Robertson-
Walker!, thus agreeing with observations.

Now the analysis depends on the qualitative form of the
inflaton potentialV(f). Because a period of slow-roll infla-
tion hasV(f) monotonically decreasing with time whilef
itself also changes monotonically, I shall assume that within
the entire rangefm,f,fM , V8(f) is bounded away from
zero and hence has a single sign~which without loss of gen-
erality is herein taken to be positive, since one could replace
f by 2f if necessary!. I shall also assume thatV(f) is
sufficiently smooth to be at least twice differentiable as a
function of f.

The first two derivatives of the approximate expression
for the logarithm of the probability density,p(f0), then have
the form

p8[
dp

df0
5

24pV

V8
2

3V8

8V252pa0S a082
6

a08
D , ~15!

p9[
d2p

df0
2524pS 12

VV9

V82 D2
3

8S V9

V2 22
V82

V3 D
52pFa0S 11

6

a08
2Da091a08

226G
52pa0S 11

6

a08
2Da091

a08

a0
p8, ~16!

where the primes on theV’s and a0’s, just as on thep’s,
mean derivatives with respect to the independent variable
f0 , of which they are functions.

For a fairly general class of potentialsV(f0), which I
shall call class 1,p(f0) has no local maximum betweenfm
andfM . For example, at a local extremum ofp, one can see
from Eqs.~15! and~16! that the second derivative ofp with
respect tof0 has the same sign as the second derivative of
a0 or of V21/2, so if these functions are concave upward~as
they are, for example, ifV is a positive power off0 or is
exponentially increasing withf0), thenp(f0) has no local
maximum.

Within this class 1, the maximum ofp(f0) occurs at one
of the end points, atfm or fM , and so it is simply a question
of whether p(fm) or p(fM) is larger, assuming that the
difference is greater than the generally less-important factors
we have dropped. Ifp(fm) is the larger, then the observa-
tional probability for the Hartle-Hawking proposal~at least
within the minisuperspace and zero-loop approximations!
would be dominated by cases in which observers occurred
almost entirely very late within a recollapsing universe,
which is contrary to observations. But ifp(fM) is the larger,
then the observational probability would be dominated by
cases in which a universe is expanding near thek50 bor-
derline when observers occur within it, which is consistent
with our observations.

For the complementary class, which I shall call class 2,
p(f0) does have one or more local maxima betweenfm and
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fM , wherea0852A6 anda09,0. In this case one needs to
compare the values ofp(f0) at these local maxima as well
as at the end pointsfm andfM . Still assuming that ignored
factors are insignificant, and assuming that no local maxi-
mum occurs so close tofm that it would give insufficient
inflation to be consistent with observations, the only case in
which the Hartle-Hawking proposal would apparently~i.e., if
our approximations are valid! give typical results inconsis-
tent with our observations of the expansion of the Universe
would be the case in whichp(fm) is larger than the value of
p(f0) at the other end point or any of the local maxima in
between.

Onesufficient~but notnecessary! condition forp(fm) not
to be the global maximum ofp(f0) for fm,f0,fM , and
hence for the Hartle-Hawking proposal to be consistent with
our observations of the expansion of the Universe~assuming,
as always, that other corrections factors are negligible!, is
thatp8(fm).0. In terms of the potentialV and its derivative
V8, the sufficient condition for the Hartle-Hawking proposal
to pass this test is

V82,64pV3, ~17!

when evaluated atf05fm. Or, in terms of the derivativea08
~still with respect tof0) of a05(8pV/3)21/2 at f05fm, it
is

2A6,a08,0. ~18!

On the other hand, forp(f0) to be greater thanp(fm) for
some larger value off0, one has thenecessarycondition that
Eq. ~17! or ~18! be true when evaluated in at least some
range off0 greater thanfm.

Consider the class 1 example of a power-law potential
with positive ~constant! exponentn,

V~f!5
l

n
fn, ~19!

where l is a coupling constant for the field, which in the
Planck units we are using is a number that shall be assumed
to be small.~For example, forn52, it is the square of the
mass of the inflaton fieldf, which is then a free massive
field, minimally coupled to gravity.!

Again, making the approximation of keeping only the vol-
ume expansion factor and the zero-loop bare probability fac-
tor, this leads to the logarithm of the observational probabil-
ity density varying roughly as

p~f0!5p~fm!1
12p

n
~f0

22fm
2 !2

3n

8l
~fm

2n2f0
2n!.

~20!

For f0@fm, one gets, roughly,

p~f0!2p~fm!5
12p

n
f0

22
3n

8lfm
n

. ~21!

Since there are are no local maxima ofp(f0) for this class 1
potential, it would allow the Hartle-Hawking proposal~in the

minisuperspace approximation under consideration! to be
consistent with observations if and only ifp(fM).p(fm),
or, roughly,

fM
2 .

n2

32plfm
n

. ~22!

To express this condition as a condition on the coupling
constantl for a given exponentn, we need to writefM and
fm in terms of these two parameters of the potential. If one
takesfM5fPl , the value whereV51, one gets

fM5fPl5S n

l D 1/n

. ~23!

Furthermore,fm is determined by the need forNm ~roughly
60 @26,28#! e-folds of inflation beforef decreases tofe,
where the slow-roll approximation ends and inflation ends.
For the power-law potential given by Eq.~19!, Eq.~10! gives

fe5n, ~24!

and then forNm e-folds of inflation, we need

Nm5 ln~ae/a0!5
4p

n
~fm

2 2fe
2!, ~25!

so

fm5Afe
21

nNm

4p
5An21

nNm

4p
'S nNm

4p D 1/2

;2An,

~26!

where the first approximation is forn!Nm/4p, and the sec-
ond @26# uses the fact thatNm/4p;4. @The fact that this
number is not very large suggests that even the first approxi-
mation is not very good, but in a more careful analysis@26#
the slow-roll approximation breaks down at afe that is ac-
tually something liken/A16p, which would make the first
term inside the square root of Eq.~26! about 50 times
smaller than the crude estimate above.#

Now, if one insertsfM from Eq.~23! and the last approxi-
mation for fm from Eq. ~26! into the inequality~22!, one
finds that it becomes

l~n22!/n.22n~n15!/2p2n/2n2[ ~n22!/2]2, ~27!

the condition for the Hartle-Hawking proposal~in the
minisuperspace and zero-loop approximations! to have most
observers see a nearly flat universe, consistent with our ob-
servations, rather than a recollapsing universe, for the power-
law potential~19!.

We have already assumed thatfm!fM , which implies
that the coupling constant must be small,

l!22nn~22n!/n, ~28!

so the inequality~27! is automatically true forn<2 ~recall
that we are assuming thatn.0). In particular, for a free
massive inflaton (n52), with mass much less than the
Planck mass, the Hartle-Hawking proposal~even at the
minisuperspace level being considered! would be consistent
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with our observations in predicting that a typical observer
would see a nearly flat universe on large scales.

However, for exponentsn.2, the consistency of the
Hartle-Hawking proposal is not automatic at this minisuper-
space level. There is always a range of values of the coupling
constantl that is consistent with both inequalities~27! and
~28!, but for sufficiently large values ofn, the allowed range
for l is at values too large to be consistent with the observed
density fluctuations of the Universe~which one can calculate
only by going outside the minisuperspace approximation, at
least for the fluctuations!.

For example, one may use the approximate expression
Linde @26# gives ~on p. 185! for the coupling constant of a
power-law potential from the density fluctuations of the uni-
verse:

l;2.5310213n2~4n!2n/2. ~29!

Then, one can readily calculate, using the approximations
above,

p~f0!2p~fm!'
12p

n
fM

2 2
3n

8lfm
n

;48pS 431012

n D 2/n

2
3

8S 431012

n D , ~30!

and this last expression is positive if and only if

n,2.543 007 534 8. ~31!

Of course, the crudeness of the approximations above does
not justify the precision given here for the value ofn at
which the last expression of Eq.~30! vanishes; it merely
suggests that forn greater than roughly 5/2, the minisuper-
space and zero-loop approximations seem to make the
Hartle-Hawking proposal be in conflict with observations if
one cuts off the distribution of nucleating universes at the
Planck density. Such a conflict does not occur for any power-
law potential with a suitably small coupling constantl if one
goes beyond the minisuperspace approximation to eternal
stochastic inflation@22#.

Thus, we see that for a power-law potential, when one
includes the volume factor in the distribution of observers~or
of civilizations, or simply of conscious beings!, the minisu-
perspace and zero-loop approximations for the Hartle-
Hawking no-boundary proposal give results consistent with
our observations of a universe expanding near the critical
density, even when anad hoc cutoff is imposed on the
minisuperspace toy model at the Planck density, if the expo-
nent of the power law is smaller than roughly 2.5. This in-
cludes the simple case of a free massive field but excludes
the case of a quartic potential~though the latter is allowed in
inhomogeneous models giving eternal stochastic inflation
@22#!.

Of course, there are other forms of the potential that
would also make the Hartle-Hawking proposal consistent
with observations by the approximations above. These in-
clude the cases in which the potential has a smooth maxi-
mum ~below the Planck density! at some finite field value,
and the case in which the potential continues to rise for ar-

bitrarily large field values but asymptotically approaches a
finite limit ~also assumed to be below the Plank density so
that no cutoff need be made!.

In both of these cases, one can get an arbitrarily large
volume by having the field nucleate arbitrarily near the maxi-
mum of the potential in the first case, or at an arbitrarily
large field value in the second case. Then the slow-roll ap-
proximation will give an arbitrarily large amount of inflation,
so the volume factor can become arbitrarily large and hence
dominate over any large~but necessarily finite! peak in the
bare probability distribution.~For this peak to be finite, I am
assuming that the cosmological constant is zero or positive,
so that the potential is bounded below by zero, and that in-
flation occurs only when the potential has a positive value,
strictly bounded away from zero.!

It is interesting that the inequality~17! is the same~up to
a small change in the coefficient that is not important at the
level of the approximations being employed here! as the in-
equality ~6! that occurs for some range within an inflaton
potential allowing eternal inflation. Therefore, when the
Hartle-Hawking approximation in the minisuperspace ap-
proximation is consistent with our observations of an ex-
panding universe, then at the level of considering inhomoge-
neous fluctuations, it leads to stochastic inflation and a large
expanding universe also consistent with such observations.
However, the converse is not true, since potentials obeying
the inequality~6! somewhere within the allowed range, and
leading to stochastic inflation within this range, need not in
the minisuperspace approximation necessarily have the peak
in the observational probability distribution be at a nucleat-
ing inflaton valuef0 that is higher than the minimum value
fm. @The inequality~6! merely implies that the observa-
tional probability density is rising withf0 there, but not that
it is necessarily higher there than it is atfm.#

In particular, for any power-law potential~19! with a
small coupling constantl, the inequality~6! is true for @26#

f.S 3n3

128pl D 1/~n12!

~32!

~which is a value belowfPl and hence within the allowed
range if fM>fPl). Thus, stochastic inflation can occur for
any power-law potential~with a positive exponent and a suf-
ficiently small coupling constant!, giving a Hartle-Hawking
state consistent with our observations of a large expanding
universe, even though the minisuperspace approximation, for
exponentsn greater than about 2.5, would suggest that the
state would give typical observations of a recollapsing uni-
verse, if one cut off the probability distribution at the Planck
densityV(fPl)51.

In summary, when one includes the volume of space in
converting from bare probabilities to observational probabili-
ties, then the Hartle-Hawking no-boundary proposal for the
quantum state of the Universe, as well as the tunneling pro-
posal, both seem to have enough space to be consistent with
our observations of a nearly flat expanding universe~rather
than a contracting universe!, at least for a wide class of in-
flaton potentials that obey the inequality~6! somewhere
within the allowed range of the inflaton field, even if one
cuts off the probability distribution for universes nucleating
above the Planck density. This fact has been known to be the
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case for eternal stochastic inflation@21,22#, and here the
pedagogical point is made that the consistency of both pro-
posals with the aforementioned observations occurs even
within the minisuperspace approximation for a certain subset
of the potentials that allow eternal inflation~e.g., for a mas-
sive scalar field, though not for a quartic potential, despite
the fact that the latter does allow eternal stochastic inflation,
and hence consistency with observations in the realistic case
in which one allows inhomogeneous metrics!.

On the other hand, there are inflaton potentials~such as
the power-law potentials with exponents larger than roughly
2.5! that would make the Hartle-Hawking no-boundary pro-
posal, at the zero-loop minisuperspace level with the prob-
ability distribution for nucleating universes cut off at the
Planck density, appear to be inconsistent with our observa-
tions of an expanding universe, even though a calculation
invoking eternal stochastic inflation would show that it is
actually consistent.

One might ask whether it is the zero-loop or the minisu-
perspace approximation~or both! that in these cases makes
such a large difference from eternal stochastic inflation. I
would conjecture that although stochastic inflation requires
one to go beyond the homogeneous minisuperspace approxi-
mation, it may not require one to go beyond the zero-loop
approximation. Very preliminary evidence suggests to me
that one should be able to get something like stochastic in-
flation simply by considering inhomogeneous complex clas-

sical solutions of the Einstein-matter field equations that
obey the no-boundary conditions~when these conditions are
expressed as analytic equations that may be satisfied by com-
plex solutions!. In the zero-loop approximation, the bare
probabilities would then be given simply by the exponential
of minus twice the real part of the Euclidean action~the
imaginary part of the Lorentzian action!, but then to get the
observational probabilities one would need to multiply by
the volume of space on hypersurfaces where the local con-
ditions are suitable for observers or civilizations.

In conclusion, when one tests theories of quantum cos-
mology against our observations of a large universe, even
within the zero-loop minisuperspace approximation, there is
often space for both the no-boundary and the tunneling pro-
posals.
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