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For the first time we calculate quantitatively the influence of inhomogeneities on the global expansion factor
by averaging the Friedmann equation. In the framework of the relativistic second-order Zel’dovich-
approximation scheme for irrotational dust we use observational results in the form of the normalization
constant fixed by the Cosmic Background Explorer results and we check different power spectra, namely, for
adiabatic cold dark matter~CDM!, isocurvature CDM, hot dark matter, warm dark matter, strings, and textures.
We find that the influence of the inhomogeneities on the global expansion factor is very small. So the error in
determining the age of the universe using the Hubble constant in the usual way is negligible. This does not
imply that the effect is negligible for local astronomical measurements of the Hubble constant. Locally the
determination of the redshift-distance relation can be strongly influenced by the peculiar velocity fields due to
inhomogeneities. Our calculation does not consider such effects, but is constrained to comparing globally
homogeneous and averaged inhomogeneous matter distributions. In addition we relate our work to previous
treatments.@S0556-2821~97!00816-3#

PACS number~s!: 98.80.Hw, 04.25.Nx, 98.62.Ai

I. INTRODUCTION

Lower limits of the age of the universe are observation-
ally determined in many ways. Measurements of isotopic
ratios of radioactive nuclei determine the ages of meteorites
by 4.5 Gyr@1,2#. Studies of the cooling of white dwarfs@3#
lead to an age of our galaxy of at least 10 Gyr. Galactic ages
could be determined to lie in a range of 12.6 to 19.6 Gyr by
measuring the abundance ratio of different isotopes of ele-
ments@1,4#. Measurements of the luminosity of stars located
at the turn-off point of the Hertzsprung Rusell diagram de-
termine the ages of globular clusters to lie in a range of 12 to
18 Gyr @5–7#. On the other hand, upper limits of the age of
the universe can be derived using cosmological models. Us-
ing a standard Friedmann-Lemaıˆtre-Robertson-Walker
~FLRW! model with vanishing cosmological constant
(L50), the inverse of the Hubble parameter as measured
today, H0

21, provides an upper limit of the age of the uni-
verse~the index 0 indicates values at the present time!. Re-
cent measurements of cepheid variables in the virgo cluster
@8,9# lead to a Hubble parameter of aboutH0580 km/
~s Mpc! ~upper limit H0

21'12.2 Gyr!, leading to an age of
8.15 Gyr for a flat universe with vanishing cosmological
constant. This is far below the observational lower limits
cited above. There are several ways out of this dilemma.

The first is believing in a lower value of the Hubble pa-
rameter. There are two reasons for that: first there exist other
observational results@10#; secondly the redshift-distance re-
lation can be influenced by the inhomogeneities, which will
influence the Hubble constant.

The second is to believe that the high value of the Hubble
constant comes from the fact that we live in an underdensed
region of the universe, whereas on average over the whole
universe the expansion parameter is smaller@11#.

The third is believing in some nonvanishing cosmological

constant@8,12#, where under some circumstances no upper
limit can be derived (t0.H0

21), and the age of the universe
can be about 30 Gyr or even higher@12#.

In this paper we want to investigate still another way. In
the usual calculation of its age, the universe is assumed to be
exactly isotropic and homogeneous. This might be a good
approximation due to the high isotropy of the microwave-
background radiation, so that the FLRW description might
be valid in some averaged sense. On the other hand, the
inhomogeneities are large, even on large scales, for example,
at a scale of;10 Mpc the density constrastd5dr/r might
reach unity. In the early universe deviations from homoge-
neity and isotropy were small, but after the deviations be-
came nonlinear, these inhomogeneities could influence the
global expansion factor. This effect is called by us the back-
reactions of the inhomogeneities. As a result of these back-
reactions the value of the Hubble parameter cannot be taken
in the usual way for a determination of the age of the uni-
verse. We will calculate quantitatively the effect of the back-
reactions and we will see how large the deviations from the
usual age determinations are. This paper is organized as fol-
lows. In Sec. II we present the basic equations and the aver-
aged Friedmann equation in a general form. In Sec. III we
use the results of the relativistic Zel’dovich-type approxima-
tion to second order~Russet al. @13#! based on the tetrad
formalism in cosmology~Kasai@14#! and calculate the back-
reactions using different power spectra and the normalization
constant fixed by the Cosmic Background Explorer~COBE!
results. This paper was influenced by the pioneering paper
from Bildhauer and Futamase@15#; we compare our results
with theirs and others~Buchert and Ehlers@16,17#, Futamase
@18,19#! in Sec. IV. Section V is devoted to conclusions.

II. THE FRIEDMANN EQUATION IN AN
INHOMOGENEOUS UNIVERSE

In this section, we summarize a general relativistic treat-
ment to describe the nonlinear evolution of an inhomoge-
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neous irrotational1 universe@14,20,21#. The models we con-
sider contain irrotational dust with energy densityr and
four-velocity um. We will neglect the curvature constantk
and a possible cosmological constantL. Neglecting the fluid
pressure and the vorticity is a reasonable assumption in a
cosmological context. In comoving synchronous coordinates,
the line element can be written in the form~indices
m,n, . . . , runfrom 0 to 3 and indicesi , j , . . . , runfrom 1
to 3)

ds252c2dt21gi j dxidxj ~2.1!

andum5(c,0,0,0). Then, Einstein’s field equations read

1

2
@3Ri

ic
21~ui

; i !
22ui

; ju
j
; i #5

8pG

c2
r, ~2.2!

ui
; j i i2ui

; i i j50, ~2.3!

u̇i
; j1uk

;ku
i
; j1

3Ri
jc

25
4pG

c2
rd i

j , ~2.4!

where 3Ri
j is the three-dimensional Ricci-tensor,

ui
; j5

1

2
gikġjk ~2.5!

is the extrinsic curvature,i denotes the covariant derivative
with respect to the three metricgi j , and an overdot denotes
]/]t. We introduce the conformal factora(t) as

gi j 5a~ t !2g i j ~2.6!

and we introduce the quantityVi
j , describing the deviation

from a homogeneous and isotropic expansion

Vi
j[ui

; j2
ȧ~ t !

a~ t !
d i

j5
1

2
g ikġ jk . ~2.7!

Then we can write two of the Einstein equations in the fol-
lowing form, which we call the Friedmann equations:
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a~ t !2
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and

ä~ t !

a~ t !
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4pG
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1

3
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1
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V̇k

k2
2ȧ~ t !

3a~ t !
Vk

k . ~2.9!

We introduce the averaging procedure@22#

^A&5
1

VEV
AAgd3x, ~2.10!

whereg[detgi j . V is the comoving volume of a compact
domainD(t) of the fluid @16,17#. V should be sufficiently
large so that we can assume periodic boundary conditions.
The scale factoraD(t) describes the expansion of this vol-
ume. Therefore the expansion rate of the universe is defined
by

3
ȧD~ t !

aD~ t !
[

V̇

V
53

ȧ~ t !

a~ t !
1^Vk

k&. ~2.11!

We then average the Friedmann equations, apply the com-
mutation rule, and neglect higher order terms~see Appendix
A! to get the averaged Friedmann equations in the form

ȧD~ t !2

aD~ t !2
5

8pG
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and

äD~ t !

aD~ t !
52

4pG

3c2
^r&1
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^~Vk

k!
22Vl

kV
k
l&. ~2.13!

These are the general equations for the evolution of the ex-
pansion factor of an inhomogeneous universe. They do not
depend on a specific model of the universe. Equation~2.13!
has already been discovered by Buchert and Ehlers@16,17#
~see Sec. IV!.

III. MODEL OF THE INHOMOGENOUS UNIVERSE

We use the solution of the relativistic Zel’dovich approxi-
mation to second order~Russet al. @13#! based on the tetrad
formalism ~Kasai @14#! to get

ȧD~ t !2

aD~ t !2
5

8pG

3c2
rb~ t !2

1

t in
2 EV

100

243aD
2 c2t in

2
C ,kC ,kd

3x.

~3.1!

The functionC(x) is related to the initial displacements of
the particles, to first order it represents the potential of the
density fluctuations 2C ,k

,k5d(x,t in). Here we put
aD(t in)51 andV(t in)51. For a justification of Eq.~3.1! see
Appendix B. We use the background relationships

rb~ t in!5
c2

6pGtin
2

and

t in5
2

3H0~11zin!3/2
, ~3.2!

whereH0 is the present value for the Hubble parameter

H0
2[

ȧD
2 ~ t0!

aD
2 ~ t0!

5
8pG

3c2
@rb~ t0!1rcorr~ t0!#

[
8pG

3c2
rb~ t0!@11dcorr~ t0!#. ~3.3!

1We do not consider here the effect of rotation, which might turn
the effect of the inhomogeneities in the opposite direction, i.e.,
tending to increase the age of the universe.
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We then get

ȧD
2 ~ t !

aD
2 ~ t !

5
H0

2

11dcorr~ t0!S aD
3 ~ t0!

aD
3 ~ t !

1
aD

2 ~ t0!

aD
2 ~ t !

dcorr~ t0!D
~3.4!

with

dcorr~ t0!52
25

108
1026h0

2~11zin!4 Mpc22E
V
C ,mC ,md3x

~3.5!

and H05100h0 km/~s Mpc!. We integrate the Friedmann
equation~3.4! to get the age of the universe:

t05
2

3

A11dcorr~ t0!

H0
S 3

2E0

1 Axdx

A11xdcorr~ t0!
D . ~3.6!

Sincedcorr(t0) has a negative sign the age of the inhomoge-
neous universe is less than the age of a corresponding homo-
geneous one calculated with a given Hubble constant. Here,
we want to estimate these differences quantitatively. The flat
background allows a Fourier decompositiond(x,t in)
5(kdke

ik•x, so we get

E
V
C ,mC ,md3x5(

k

1

k2
udku2, ~3.7!

whereudku2 is the power spectrum of density fluctuations

udku25P~k!. ~3.8!

What we need is to know the power spectrum at initial time
t in , where the fluctuations are still linear and just start to
move into the nonlinear regime. We choosezin58 @23#. The
power spectrum evolves according to@24#

P~k,t in!5
1

~11zin!2
P~k,tpr!T

2~k!, ~3.9!

whereT(k) is a transfer function and the primordial power
spectrum is assumed to be

P~k,tpr!5Akn. ~3.10!

The normalization constant is fixed by the COBE results

ACOBE5S 96p2

5 DV0
21.54c4H0

24S Qrms

Tg0
D 2

. ~3.11!

The COBE rms fluctuation is given to beQrms59.3mK @25#,
if we taken51 ~scale invariant primordial power spectrum!,
which is the most reasonable value@26#. The temperature of
the microwave background radiation isTg0

52.73 K. The
volume will be taken large enough so that we can convert the
sum into an integral

(
k
→

1

~2p!3E d3k ~3.12!

to get

dcorr~ t0!52
25

216p2
1026h0

2~11zin!2AE kT2~k!dk.

~3.13!

In the following we will assumeh050.8 andV tot51. For
the normalization constant one findsA'4.353105 Mpc4. In
the following we will calculate the age of the universe using
different transfer functionsT(k) and power spectraP(k),
whereAkT(k)25P(k,t0).

A. Adiabatic cold dark matter fluctuations

The transfer function for adiabatic cold dark matter
~CDM! fluctuations is given by@27#

TCDM, ad~k!5
ln~112.34q!

2.34q
@113.89q1~16.1q!21~5.46q!3

1~6.71q!4#21/4, ~3.14!

where

q[
ku1/2

VCDMh0
2 Mpc21

. ~3.15!

Hereu5rer/(1.68rg) is a measure of the ratio of the energy
density in relativistic particles~photons plus neutrinos! to
that contained in photons. We will setu51, corresponding
to three flavors of relativistic neutrinos plus the photons, and
we will takeVCDM51. VaryingVCDM will change the result
only slightly. The result isdcorr(t0)522.5031023 and the
age of the universe becomes

t0'0.99953
2

3H0
. ~3.16!

B. Isocurvature cold dark matter fluctuations

The transfer function for isocurvature CDM fluctuations
reads@27#

TCDM, isoc~k!5F11
~40q!2

11215q1~16q!2~110.5q!21

1~5.6q!8/5G25/4

, ~3.17!

where

q[
k

VCDMh0
2 Mpc21

. ~3.18!

We again will take VCDM51. The result is
dcorr(t0)525.6331024 and the age of the universe reads

t0'0.999893
2

3H0
. ~3.19!
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C. Hot dark matter 1 adiabatic CDM

If we assume only one species of massive neutrinos, adia-
batic fluctuations give@27#

Tn,ad~k!5exp@20.16~kRf n!2~kRf n!2/2#

3@111.6q1~4.0q!3/21~0.92q!2#21,

~3.20!

where

q[
k

Vnh0
2 Mpc21

and

Rf n52.6~Vnh0
2!21 Mpc. ~3.21!

We will take Vn50.3 and in the adiabatic CDM transfer
function we setVCDM50.7. The total power spectrum is
then given byP(k)5@0.3APn(k)10.7APCDM(k)#2. The re-
sult is dcorr(t0)526.9531024 and the age of the universe
becomes

t0'0.999863
2

3H0
. ~3.22!

D. Warm dark matter fluctuations

Adiabatic fluctuations of warm dark matter give@27#

Twarm, ad~k!'expF2
kRfw

2
2

~kRfw!2

2 GTCDM, ad~k!,

~3.23!

where

TCDM, ad~k!5@111.7q1~4.3q!3/21q2#21 ~3.24!

and

q[
k

VCDMh0
2 Mpc21

and

Rfw50.2S gCDM, dec

100 D 24/3

~VCDMh0
2!21 Mpc. ~3.25!

HeregCDM, dec is the effective number of particle degrees of
freedom when the CDM particles decoupled, values range
from 60–300, we will setgCDM, dec5300 andVCDM51. The
result isdcorr(t0)522.9031023 corresponding to an age of
the universe of

t0'0.999423
2

3H0
. ~3.26!

E. String and texture models

The power spectrum of a cosmic string network evolving
in a flat universe dominated by CDM is given by@28,29#

P~k!5
Ak

@11a2k1~a3k!21~a4k!3#@11~a5k!2#2
,

~3.27!

where a257.57h0
22, a355.89h0

22, a451.93h0
22, and

a550.000357h0
22. This power spectum assumes that the

string network is characterized by a scaling solution and that
the power is dominated by the coherent motions of loop
strings; perturbations induced by string loops are neglected
@28#.

The power spectrum of a CDM universe with perturba-
tions seeded by textures is given by@30,31#

P~k!5
Ak

$11@ak1~bk!3/21~gk!2#n%2/n
, ~3.28!

with n51.2, a519.4h0
22, b56.6h0

22, and g53.0h0
22,

where we still setV051. Although the non-Gaussian nature
of the string and texture models means that the power spec-
trum does not provide a full description of the density field
even in the linear regime, the power spectrum is still a well-
defined quantity, and it is meaningful to compare it to obser-
vations@28# and give excellent fits to it@31#. The result for
the string and texture models are almost exactly the same
and givedcorr(t0)528.8831023. The age of the universe in
this case becomes

t0'0.99823
2

3H0
. ~3.29!

IV. COMPARISON WITH PREVIOUS WORKS

A. Newtonian treatment

For a comparison with the Newtonian treatment by
Buchert and Ehlers@16,17# we have to identify their¹v with
our ui

; i and their¹u with our Vk
k . Their result

äD

aD
52

4pG

3

M

V
1

1

3
^~uk

,k!
22uk

,mum
,k& ~4.1!

is found to agree exactly with ours in Eq.~2.13!, except for
the derivatives, which are covariant in our case. Equation
~23! in @17# is an extension to describe a globally anisotropic
universe. They concluded, that their Eq.~9! in @16# and Eq.
~19! in @17# must also hold in general relativity, because they
were derived by averaging the Raychaudhuri equation. In our
treatment the Raychaudhuri equation can be derived by com-
bining Eq. ~2.2! and the trace of Eq.~2.4!, replacing
ui

; j5(1/3)Qd i
j1s i

j . So it is possible to recover all their
results, exept for the vorticity, which we assume to vanish in
our treatment.

B. Futamase’s approximation scheme

Futamase@18,19# calculated the backreactions based on
his approximation scheme, where he introduced two small
parameters representing the amplitude of the metric fluctua-
tions and the ratio between the scale of the variation of this
metric fluctuations and the scale ofa(t) and the background
metric. Then in@18# he used a cosmological post-Newtonian
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approximation. In@19# he employed the 311 splitting of
space time, then the Isaacson averaging@32# is performed on
the background spatial hypersurface. His results in his Eq.
~3.16! @18# or in Eq. ~68! @19# are of the same order as ours,
but the factors are different. There are several reasons for
that discrepancy: first in his approximation scheme he ne-
glected some terms, we do not use such an approximation.
Secondly he did not introduce a scale factoraD(t) defined by
the expansion of a comoving volume. He introduced the con-
formal factora(t), then he rescaled this scale factor by ne-
glecting terms such aŝh̄ k

k&. Thirdly his averaging process
in @18# is not defined using the square root of the real metric
under the integral, rather he used the square root of the back-
ground metric, which is essentially unity for a flat back-
ground. He also used this averaging process at the end of
@19# to recover the results of@15#.

C. Bildhauer and Futamase

Bildhauer and Futamase@15# calculated the backreactions
of the inhomogeneities based on the work of Futamase@18#
and the Newtonian Zel’dovich approximation~Buchert@33#!.
Their result@Eq. ~25!, see also Eq.~84! in @19## reads, with
b[dcorr(t0),

dcorr~ t0!5
19

36
1026h0

2~11zin!4
1

m2
^uUW u2&, ~4.2!

where we want to indicate a typing error:M1 defined in their
Eq. ~25! is not the same as in their Eq.~22!, the factork2/m2

is incorporated into M1. With m22^uUW u2&
5m22^u¹sinu2&5^C ,mC ,m& this is of the same order as our
result, only the factor is different. The reasons are the same
as those in the previous subsection. Another error was found
by Futamase@19#: M1557p3 should readM1557/8, the
mistake comes from the use of the wrong integration region
@0,2p# instead of@0,d#. They derived at the conclusion that
the underestimation of the age of the universe is approxi-
mately 30%, which is not correct since they just assumed
dcorr(t0) to be of order unity instead of calculating it quanti-
tatively as we did here.

V. CONCLUDING REMARKS

We have calculated quantitatively the influence of the in-
homogeneities on the global expansion factor of a flat uni-
verse with vanishing cosmological constant in the framework
of a Zel’dovich-type relativistic approximation scheme using
the results from COBE. The first result is that the backreac-
tions act as an additional energy density, which is propor-
tional toaD

22 , so we can interpret the averaged expansion as
Friedmannian with a small positive spatial curvature. The
second result is that this influence is very small. As a conse-
quence of this the modification of the age of the universe
calculated in the usual way~i.e., assuming a homogeneous
universe! with a given Hubble constant is negligible. In all
models considered here relative differences were less than
'231023. This does not imply that the inhomogeneities are
negligible for local astronomical measurements of the
Hubble constant. Locally the determination of the redshift-
distance relation can be strongly influenced by the peculiar

velocity fields due to inhomogeneities@d5Hz
211O(2)#.

Our calculation does not consider such effects, but is con-
strained to comparing globally homogeneous and averaged
inhomogeneous matter distributions. Calculating the modifi-
cation of the redshift-distance relation will be the subject of
future investigations. As a result the age problem of the uni-
verse that arises in high-density models can only be solved
either with a lower Hubble constant, with a nonzero cosmo-
logical constant, or with a reduced age of globular clusters.
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APPENDIX A: COMMUTATION RULE

The time derivative of an averaged quantity reads

d

dt
^A&52

V̇

V
^A&1

1

VEV
~ȦAg1A ˙Ag!d3x. ~A1!

This leads to the commutation rule@22,16,17#

d

dt
^A&2^Ȧ&52^u&^A&1^Au&, ~A2!

where

u5

˙Ag

Ag

and

^u&53
ȧD~ t !

aD~ t !
. ~A3!

To convert Eqs.~2.8! and~2.9! to the Eqs.~2.12! and~2.13!
we used

d

dt
^Vk

k&2^V̇k
k&5^~Vk

k!
2&2^Vk

k&
2 ~A4!

and neglected the term̂Vk
k&

2, because it is a higher order
quantity.

APPENDIX B: MODEL OF THE INHOMOGENEOUS
UNIVERSE

The result of the relativistic Zel’dovich approximation to
second order@13# is the following metric tensor:
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where we seta5250/81. Since their difference is only of
second order, we could replacea(t) by aD(t). The determi-
nant we only need, to first order,
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The averaged Friedmann equations read
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Integration and the assumption of periodic boundary condi-
tions lead to

E
V
C ,m

,md3x50. ~B7!

The Fourier transformationd(x,t in)5(kdke
ik•x together

with *Vexp@ i (k2k8)x#d3x5dkk8 leads to
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The averaged density is treated as

8pG
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1
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5
8pG

3

M

V
[

8pG

3c2
rb~ t !, ~B10!

where we used the conservation lawr(t in)Ag(t in)
5r(t)Ag(t). Note that even in a case where the averaged
second scalar invariant would not vanish our treatment
would still be consistent, since in every case

d

dtS ȧD
2

aD
2 D 52

ȧD

aD
S äD

aD
2

ȧD
2

aD
2 D ~B11!

is satisfied.
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