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High energy particles from monopoles connected by strings
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Monopole-antimonopole pairs connected by strings and monopole-string network®l wigh strings at-
tached to each monopole can be formed at phase transitions in the early universe. In such hybrid defects,
monopoles accelerate under the string tension and can reach ultrarelativistic Lorentz YaelorgVe study
the radiation of gauge quanta by accelerating monopoles. For monopoles with a chromomagnetic charge, we
also discuss the high-energy hadron production through emission of virtual gluons and their subsequent frag-
mentation into hadrons. The relevant parameter for gauge boson radiakibia iwhereM is the boson mass
anda is the proper acceleration of the monopole. Kb a, the gauge bosons can be considered as massless
and the typical energy of the emitted quanteEis ya. In the opposite limitM >a, the radiation power is
exponentially suppressed and gauge quanta are emitted with a typical dhergi in a narrow range
AE/E~(a/M)*2 Cosmological monopole-string networks can produce photons and hadrons of extremely
high energies. For a wide range of parameters these energies can be much greater than the Planck scale.
[S0556-282(97)04216-1

PACS numbefs): 98.80.Cq, 11.27%d, 13.87.Fh, 14.80.Hv

. INTRODUCTION (MM) pairs connected by strings. If both of the phase tran-

] ) sitions in Eq.(2) occur during the radiation era, then the
Monopoles connected by strings can be formed in a sezyerage monopole separation is always smaller than the

quence of symmetr_y-breaking phase t_ransitio_ns in the earl¥|ubble radius, and whel M_pairs get connected by strings
universe[1,2]. A typical sequence of this sort is and begin oscillating, they typically dissipate the bulk of
G—oHXU(1)—HXZy. 1) their energy to friction in less than a Hubble tif&5].

o _ N A more interesting possibility arises in the context of in-
For a semisimple grou@, the first of these phase transitions flationary scenario, when monopoles are formed during in-
gives rise to monopoles, and at the second phase transitigrtion but are not completely inflated away. Strings can ei-
each monopole gets attached\istrings. FON=3, a single  ther be formed later during inflation, or in the post-
infinite network is formed which permeates the entire uni'inflationary epoch. In this case, the strings connecihiyl

verse[3]. The magnetic fluxes of monopoles in the network airs can be very long. The correlation length of striggs

are channeled into the strings that connect them. But th an initially be much smaller than the average monopole

monopoles typically have additipnal, unconfined magnetic;q arationd; then the strings connecting monopoles have
charges. The gauge fields associated with these charges ownian shapes. But in the course of the evolutidgrows

include electromagnetic or gluorj fields, but may also COMe4aster thard, due to small loop production, and to the damp-
spond to broken gauge symmetries and have nonzero mass force acting on the strings. Eventuallybecomes com-

The cosmological evolution of monopole-string networks ; .
. . . arable to the monopole separation, and we are left with
has been discussed in Rf4], where it was argued that the P P P

networks evolve in a self-similar manner, with a characterisM pairs connected by more or less straight strings. At later
tic scale growing proportionally to cosmic timeThe typical t|me§, the pa|rslos.cnlate and gra}dgally Iqse their energy by
energy of the monopoles also grows likeand the mono- gravitational radiation and by radiation of light gauge bosons
poles become highly relativistic. Radiation of gauge quantall the monopoles have unconfined magnetic chargéfien

by accelerating monopoles is the main energy loss mechsrlhe energy of a st_ring connecting_g pair. Is dissipgtgd, the
nism of the networks. Relativistic particles emitted by themonopoles and antimonopoles annihilate into relativistic par-

: ; ticles.
monopolegor the decay products of these partiglesntrib- . .
ute to the spectrum of high-energy cosmic rays. Although monopole-antimonopole pairs connected by

For the symmetry-breaking sequence strings do not typically survive until the present time, they
can produce a characteristic feature in the spectrum of the

G—HXU(1)—H, 2) stochastic gravitational wave backgroJd. The magnitude
of this feature depends, in particular, on the intensity of the
which can be regarded as a special case of #j.with gauge boson radiation, which determines the lifetime of the
N=1, the cosmological evolution is quite different. In this pairs.
case, each monopole is attached to a single string, and the The production of high-energy particles by topological
second phase transition results in monopole-antimonopoldefects is interesting as a mechanism of emission of ultra-
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high energy patrticles, in particular photons, nucleons, and >’ u
neutrinos. The energies of such particles can be much higher =—\", 3
than have been observed until now. Particle production by ds m

cosmic strings [7] and by annihilating monopole- . . .
antimonopole pair§8] has been previously discussed in theWhere u is the mass per unit lengttand tensiop of the
literature. Here, we shall calculate the radiation power and>0to-Nambu stringm is the monopole mass; is the proper
the spectrum of gauge bosons, both massless and massiti@e of the monopole, ani” is a unit vector orthogonal to
emitted by an oscillating monopole-antimonopole pair. If thethe monopole world line and oriented into the string world
magnetic charge of the monopoles is of electromagnetic nasheet. It follows immediately from Eq3) that

ture, then the radiation can be treated in the same way as that
of an accelerating charge, and our problem reduces to a prob-
lem in classical electrodynamics. In the case of a chromo-
magnetic charge, the picture is more complicated. The
monopoles emit heavy virtual gluons which originate a par-s the proper acceleration of the monopoles. Equa@mran
ton cascade. The hadrons are produced in the usual way balso be rewritten in a three-dimensional form:

yond the confinement radius. The decay of pions results in

7’
a= 4

high-energy neutrino radiation. The heavy gauge bosons, Y3x(t)=ay®n, (5)
such asW andZ, can also be produced for some range of
parameters of th&M pair and the string. wherey=(1—x?)"2is the Lorentz factor of the monopole,

The problem studied here is in fact a general theoretical() js the Lorentz factor of the string at the location of the
prOblem: the radiation of heaVy partiCleS by an acceleratingnonop(_ﬂe’ anah is a unit vector pointing from the monopo|e
monopole. Our results can be reformulated in terms of they the direction of the string. Equatior(8) and (5) have a
basic parameters of a shock problem, the proper accelerati@fimple physical meaning: in the instantaneous rest frame of
of the monopole. the monopole, the magnitude of its acceleration is given by

The dynamics oMM pairs connected by strings is rather Eq. (4) and the direction is given by the direction of the
complicated and has not been studied in any detail in thetring. The motion of the string is described by the usual
litterature. We shall, therefore, concentrate on the simplesGoto-Nambu equations. A simple solution of Eg). describ-
case of an oscillating pair connected by a straight string, fojng an oscillatingV M pair connected by a straight string is
which the equations of motion can be solved exactly. It is nof11)
clear yet what influence the existence of a microstructure

along the string might have on both its dynamics and its gn(t)

radiation. Such investigation will be reserved for a future X(O=*——[v-~ Vi+(yo vo—alth?], (6a)
work on the dynamics df1M pairs[9]. In addition, we shall

consider the case of a harmonic oscillator motion of the y(t)=2(t)=0, (6b)

monopoles which has some of the features expected in more
general monopole-string configurations. Taken together, thﬁ/herevo and y0=(1—v§)’1’2 are, respectively, the maxi-

analyses of thes_e two cases W'". aI_Iow us to draw a reasof, | velocity and the maximal Lorentz factors of the mono-
ably complete picture of the radiation spectrum in the gen-

eral case. poles, reached at=0. The upper and lower signs correspond
After reviewing the general formalism for gauge boson!© M andM, respectively.

radiation in the next section, we calculate the radiation spec- 1he solution (6) is valid for [t|<yqvo/a. At t

trum of massless gauge bosons in Sec. IIl. Radiation of mag= — Yovo/a, the monopoles are at rest, with the string hav-

sive gauge bosons is analyzed in Sec. IV. The spectrum dpg its maximum lengthL =2(y,—1)/a. At t=+youo/a,

hadrons resulting from radiation of gluons and their subseth® monopoles come to rest again, with their positions inter-

quent fragmentation are discussed in Sec. V. Finally, Sec. \§hanged. Equation(6) describes only half a period

changing the positions of the monopole and antimonopole. A

peculiar feature of this solutio(6) is that the monopole ac-
Il. GENERAL FORMALISM celerations abruptly change direction when the monopoles
meet and pass one another. Between these sign changes the
The characteristic monopole radidg, and string thick- monopoles move at constant proper accelera@onThe
ness és are determined primarily by the corresponding monopole and antimonopole meettat0 and could be ex-
symmetry-breaking scales,, and 7. Typically, Sn~7,"  pected to annihilate. However, this solution is considered as
and 5;~ 77;1. We shall assume that the two symmetery-an approximation for an almost straight configuration where
breaking scales are well separate,<#,,, and thus the the monopole and antimonopole would merely come close to
monopole radius is much smaller than the string thicknessgach other and would not collide. Besides, as we already
<< ds. mentioned, the monopole radii are much smaller than the
Assuming also that the string length is much greater tharstring thickness, thus the monopoles are not likely to collide,
its thickness, we can treat monopoles as point particles anelven for a straight string.
strings as infinitely thin lines. The monopole equations of To find the radiation power of gauge bosons by acceler-
motion can then be written 440] ating monopoles, we first consider radiation by ordinary
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gauge charges. The gauge fiélt(x) produced by the four-

currentj#(x) is determined by the equations
Fro ,+M?A7=j7, (7)

whereF,,=d,A,

—d,A, is the field strength an# is the
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Before we proceed with the calculation of the radiation
spectrum, we shall briefly comment on the limits of applica-
bility of the classical treatment of the radiation process that
we adopt in this paper. The problem of radiation by a mono-
pole pulled by a contracting string is equivalent to that of a
monopole moving in a longitudinal magnetic field, or of an

gauge boson mass. The current corresponding to a pair @iectric charge moving in a longitudinal electric field. Such

equal and opposite point charges is

700 =0gx% 6% (x—x,. (1)) —gx” 6P (x—x_(1)), (8

wherex+(t) andx_(t) are the trajectories of the charges and

processes in strong fields are characterigk®l14 by the
invariant y given by

x=(a/m%/(F,,p,)2=f/m?, (16)

x%.=dx%/dt. In the case of a periodic motion, the radiation Whereq, m, andp, are, respectively, the charge, mass, and

power can be found from the equations

dp,
P=; P.,= 2 fdn 10 (9)

dF’n kwn

a0 an S i (0n,K)j#(wn, k). (10

Here, dP,/dQ) is the
w,=2mn/T per unit solid angle in the direction ok,
[k|=(w2—M?)*2 T is the period of the oscillation, and

i“(wp k)= %font exp(iwnt)f d3x exp( —ik-X)j4(xt)
(11

is the Fourier transform of the current. Equatid) is de-
rived in the Appendix. The derivation is similar to that of the

gravitational radiation power in Weinberg's boflk?2].

Because of electric-magnetic duality, the same equations
apply to radiation by magnetic monopoles. Hence, the radia-
tion power from an oscillating M pair can be found from
Egs.(8)—(11) with q interpreted as the magnetic charge.

radiation power at frequency

momentum of the radiating particle aMds the force acting

on the particle in its instantaneous rest frame. In the case of
a monopole connected to a string, the corresponding param-
eter is y=u/m?=a/m. The casey<1 corresponds to the
quasiclassical regimgl3]. Hence, our classical treatment of
radiation is justified provided that<m?.

Ill. RADIATION OF MASSLESS GAUGE BOSONS

We begin by calculating the radiation of massless gauge
bosons by an oscillatin!M pair described by Eq6). In
this case, Eqs(13) and (15) for the radiation power can be
transformed to

f (1= u?)[Sy(w)]*duy, 17

777000

(n7/2v4)(1—1/vq)
cos(ué)

\/( N )2 272
2v¢ 4)/%112

0

Sn(U)=f

0

X sin dé, (19

For a one-dimensional motion, the current has only twovhere we have introduced new integration variables

nonzero component§® and j?.
V.,i”=0, which in Fourier space can be written as

wni®=ky*, 12
wherek,=k*. Combining this with Eq(10), we have

dP, w.k k2 )
a0 _87T2( ﬁ |Jl(wn!k)| (13)

The motion of theMM pair in Eq.(6) has the properties
(149

(14b)

X () =—=Xx_(t)=—x, (1),

X, (t)=—X, (t+T/2).

It is also conserved,

u=k,/w, and é&=nmax,(t)/2yqvo. These integrals cannot
be evaluated analytically. However, the high-frequency
asymptotic behavior can be obtained as an expansion in pow-
ers of 1h. This can be done simply by repeatedly integrating
by parts in Eq(18) [11].

The leading term of the expansion is

2vy 143U

u)~ , 19
S~ Mzﬁ (19
and the corresponding power spectrum is
a 2
P,~A qnyo , (20)

where

In such a case, it is easily seen that the system radiates only

in odd modes, and that for odd, we have

8q Tl4.
ji(wn k)= 7]{) X(t)dt cogwnt)cog kex (1) ].
(15

[70+3X ')’0 1)]2
A= — — dx. 21
f( e op

For ultrarelativistic monopolesyy>1, this can be approxi-
mated as
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FIG. 1. A log-log plot of the gauge quanta radiation spectrum FIG. 2. Total power of massless gauge quanta emission
P./(ga)? in the casey,=10 (solid line) with its high-frequency  P/(qa)? as a function ofy,. It quickly tends to a limit of 1/3.
approximation(22) (dashed ling The corresponding spectrum for
the harmonic solution has been addddtted ling for comparison.  patween the monopole and antimonopole fields is negligible.

This means that the total power radiated by the system is

2 close to twice the power radiated by the monopole alone.
(22 The radiation intensity of a single charge moving with
proper acceleratiom is [15] P=q%a?/6w. Thus, for high

The 1h expansion is valid as long as the first neglected ternY€locities of the monopole and antimonopglg>1, the to-
is small compared to the leading terf@2). A somewhat (@l POWer tends to
lengthy but straightforward calculation gives the condition
n>y2. At lower frequencies, then dependence is rather
complicated and analytic approximations are difficult to ob-
tain.

We computed the radiation spectrum numerically by inte

16

N~ —l

573

qayo
n

~ 1 2
P~5—(qa? 29

. ; . ""“"The numerically calculated power has been plotted as a func-
grating Egs(17) and(18) for various values ofy,. A generic tion of y, in Fig. 2 and indeed quickly tends to this
example of this spectrum, obtained fgg= 10, is plotted in asymptotic limit.

Fig. 1. It 9Xh'b't5 the expected behavi@?) at h'gh frequen- The monopole trajectory6) that we studied so far is
cies and is approximately 2f|at at lower frequencies. The rang,iher special. As we already mentioned, the monopole ac-
sition happens around~ vy, which is the characteristic fre-  celerations change discontinuously as the monopoles pass
quency w~ y5wq, at which most of the power is radiated. one another. It is this feature that is responsible for the

We note that in the rest frame of the monopole it is power-law (rather than exponentiafalloff of P, at large
e n. To see how the character of the spectrum is changed in a
Wrest~ ®] Yo~ Yow1~a. (23)  more generic case when the acceleration varies smoothly, we

) considered a simple harmonic-oscillator-type motion of the
The total power radiated by the system can be evaluateghonopoles:

directly using the standard formulas of electrodynamics:

(q X4 (t)=Xg sin Qt=—x_(t). (26)

2 rq 1
P= 4?7_) JOdU(l_uz)fo df{['yg(u_vog)Z_l_l_uz]_:;/z

The period of this motion i =27/}, the maximum veloc-
+[Y2(u+tveé)?+1—u?] %32, (24) ity reached by the monopolesug= (x,, and the maximum
Lorentz factor isy,=(1—v3) Y2 The parameters, and
When the monopole and antimonopole reach ultrarelativistié¢) should, of course, satisiy,={x,<1, but we can shoose
speeds, their radiation becomes focused in their respectiug, to be arbitrarily close to 1. The proper acceleration of the
forward directions, which are opposite, and thus interferencenonopoles in Eq(26) is
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Q2x,sin Ot -100 '
(27)

a(t)=— .
® [1—Q2x3 cogOt]%? .

Its maximum value determined by conditiat,,) =0 is \

reached at sifidt,,=*+1/\2yqv, if vo>1/\3. It is given by \\ |

2
2 -15.0 +
an=——=175(). 28
m 3\/§70 ( )

For ultrarelativistic monopolesgy>1, the acceleration re-
mains of this order of magnitude,~ y3(}, only for a brief
interval of time:

In(Pn/qzaz)

1/2

am _

At~(..—> ~(yo0) L. (29
|

Since Pocaﬁ] this part of the oscillation period gives the
dominant contribution to the radiation power in the massless
case.

The power radiated in massless gauge bosons by the har
monic solution(26) can be computed from the standard for- -25.0 ‘ -

mulas(13) and (15). It gives -loo =0 InncYa) 00 50

2 ’ 1 1 2 FIG. 3. A log-log plot of the gauge quanta radiation spectrum
Pn=;(an) . du E —1 |35 (nuwy), (30 P./(qa)? from the harmonic solutiof26) in the casey,=25 (solid
line) with its high-frequency(36) (long dashed line and low-

whereJ, is thenth Bessel function. frequency(35) (dashed ling approximations.

For large frequency modes>1 and a parameter<1,

; : _ __112\3/2
the Bessel function can be expanded using the formula A Simple change of variablé=2n(1-u®)>/3 enables us to

evaluate the integral:

e—zn(l—x2)3’2/3
J2(nx)= 31 QQq)? (23 dée ¢
272 Jo [1—(3¢&/2n)%%)32
to get the simplified expression for the power
J P P g Q@2 (= . (09)?
2 2,32 ~ d§e = . (35)
(Qq)z 1 (1 )ezn(lu vo) Y93 @ 272 Jo 22
P,~n|l— f dul 5 —1|—F—=5— (32
m 0 u V1=utvg So the spectrum is expected to be flat in this frequency

. . o : range.
At high frequencies, the radiation is focused in the mono For very high-frequency modes> yg, we can expand the

poles forward direction, which corresponds ue-1. This t of th tial in E6B2) du=1 d
translates in Eq(32) to the steep falloff of the exponential. argument of e exponential in CB. arounqu=.., an
simply take all the other slower varying terms as being con-

For not too high frequency modes<h= yé, the expres- tant. This dives
sion of the Fourier transform of the current can be somewha? ’ 9
simplified:

T/4

2 202z [ 2nv2p/
8 Py~ —(Qqg)ne” " VOJ vdve™ "oV 70
io(nQ,k)=— | dt sinnQt)sinu(1-1/y3)sinQt)], 4 °
0

T 301242 3
,yOQ q e—2n/370

aq [ /2 ~—" (36)
%?qf dv sin(nv)sinnusinv], (33 27?05 N
0

) . . The radiation spectruni30) was computed numerically
where u=Kk,/Q. This corresponds basically to taking for various values ofy,. A generic example of this spectrum
vo=11injo. Thus, in this frequency range, the approximationgptained fory,= 25 is given in Fig. 3. As found in Eq35),

(32) takes the form the low-frequency behavior is flat, up to frequencies
04\2 r1d 5 w~anYo. The expected high-frequency behavi86) then
p %n(_q) f _um ex;{ — _n(l_uz)a/z)_ sets in at higher frequencies. Compared to the spectrum ob-
" ™ 0 u? 3 tained for the exact solutiof6), this spectrum is very simi-

(39 lar: flat at lower frequencies, then decaying fast. But, for the
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harmonic solution, the flat part has a smaller value, extends
farther in frequencies, and the falloff at higher frequencies is P,=2

much faster.

The total power radiated by the two monopoles is easy to . .
evaluate when they are ultrarelativistig>1. In this limit, where only the upper bound in the integral has changed. The

as explained previously, interference between the monopol@aSSIe.SS. gauge boson radla_t(d@) IS obwousl_y recovere_d
and antimonopole fields is negligible and the total power ig"" the limitM—0 orn—e. Using the asymptolic expression
just the sum of the power emitted by the monopole and aan the Bessel functiori31), valid for n>1, we obtain
timonopole separately. The radiation intensity for a single 2
charge moving with a proper acceleratid@7) is [15] P~ q_an
P=9q%a%/16y,. Thus, for ultrarelativisc monopoles 2
vo>1, the total power tends to

qZQZ

T

Up 1
nzfo du(E—l)Jﬁ(nUUo), (40)

un  du /1—u2)
0 \ll_uzvo\ u2
xexd —2n(1-u?v?)%2). (42)

pmianfn:%),gQZqZ_ (37)  In the case of massive gauge bosons witk-a,,, where
870 an, is the maximal acceleration, both functions in front of the

) ) exponent can be taken at value-u, and after integration
Contrary to the previous case, E®5), this has an extra | 4 gptain

factor y, in the denominator. It comes from the fact that for
-1

ultrarelativistic monopoles, the main contribution to the total 2 ,2\m2 2\ —3R2 2. 2n 2
: : ; q° voM M YovoM 1
power comes from the interval of tim&t in Eq. (29) when P~ 53 TP 5 -
their acceleration is near its maximum, so that 27 vg n“Q) n“Q) n
2 2 ; ; ;
P.~q2amAlt/T~q2am/ ¥o. This total power is also consistent exd — f(m)], 42)
with the picture of a spectrum consisting of a low-frequency
flat behaviorP,~Avy, * up ton~ y3 as shown in Eq(35),  where
and then a negligible exponentially decreasing high- 2o
frequency behavior which can be ignored. This gives a use- 2n éngz
ful approximation for the spectrum of massless gauge f(n=3 = 1+ 207 (43
bosons: Yo
) ) The function(43) has a minimum
(Q29) T 4
P(E): EPO for E<—’)/OQEE0,
22 3 PN (44)
m: )
(389 760
P(E)=0 for E>E,, (38D which is reached at
which has the same total power as the exact spectrum and o \/EYOUOM 45
will be a good approximation for large factors. N=Nm= QO (49
It is instructive to compare the results we obtained in this o _

section with the case of synchrotron radiation by a chargdhe second derivative df(n) atn=n, is
moving at a constant speed in a circular orfif]. The
power  spectrum in this case exhibits a peak around f :i Q (46
w~v%Q, wherey is the Lorentz factor an€ is the angular "B oM

frequency of the rotating charge. The proper acceleration of
the charge isa~y?Q), so once again the characteristic fre- The spectrun(42) has a maximum ab~n,.
quency isw~ vya. Atvery largen>(M/ap)ny,, we obtain the spectrurd7)
of a massless casas it must be according to E¢0).
At np,<n<(M/a,)n,, the energy flux is exponentially

IV. RADIATION OF MASSIVE GAUGE BOSONS suppressed as

We will now consider the radiation of massive gauge

bosons of masM. For simplicity, we will consider only the P~ q_2 YoM? 1 exp(— 2n/73) (47)
harmonic-oscillation solutiofi26) in this section. " 27?2 2 n? sHYo):

The power radiated in massive gauge bosons is still given
by the general formuld13) but now k= w,u,, where we At M/Q<n<n,, the energy flux is also exponentially
have introduced suppressed as

Up=v1-M?%w? (39
1This cannot be seen directly from E@2) as the dominant term
and w,=n{). The current and its Fourier transform remain in this regime was already neglected. To get this extra term, the
the same as in the massless case, and thus we obtain a véagtor (1—u?) in Eq. (41) must be kept and integrated with the
similar formula: exponential term.
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pole moving with a proper acceleratianand Lorentz factor

v. This is possible to do because fdr>a,, the radiation is
strongly dominated by four very short bursts during the pe-
riod T. The time dependence of the radiated power is deter-
mined mainly by the factor

P 2 Mv
(t)ox ex 3a0)’
and the bursts occur at the maxima of the proper acceleration
a(t). Expanding a(t) near the maximum,

a(t)~an+ 2a,(t—t,)? and using Eq(27) we obtain an
estimate for the duration of the bursts

-

It is (am/Muvg)Y? times shorter than the corresponding du-

ration in the massless caéz9).
The fact that the dominant part of the radiation comes out

in short bursts ad~ a,,, suggests the following ansatz for the
instantaneous power:

1/2 1/2

1/&1m

a, 3anm
UOQVO\MUO

|am| Mvo

(52

;
P(am, 7/E)~k 7 -Pra(E. ). (53)

ere, y=+2/3y,, is the Lorentz factor of a harmonically

(dotted ling. The massless case from Fig. 3 has also been adde'(_)l = 7 h
oscillating monopole at the moment when it reaches

(solid line).

2 QZ 2n013,,3/n203
—4EX[(—§M UO/n 0°).
Vo

Pn =~ ﬁ (48)

In the region of the maximum,,, the spectrum is

q®> Q2 voM
27 oF % Vg | el m(n—nn)?)
0

a=ap,, k~1 is a numerical coefficient, anB,(E,Q) is
given by Eq.(49). We expect Eq(593) to be valid forE near
the maximum of the spectrum at least f{&—E|/E,<1.
Integrating the instantaneous spectr(#8) over the period
T, with a(t) and y(t) for the harmonic-oscillator motion,
and comparing with the averaged oscillator specti4®),
we determine the normalizing constant 2/2/(3\/). The
total power and the spectrum for a relativistigs 1) mono-

Pn~ 1272 4 pole moving with proper acceleratican and Lorentz factor
0 (49 v are thus given by
Ther(_afqre, in the case we are consideM@gm, the char- P(a)= EanM oxd — E M (54
acteristic energy of emitted gauge bosons is 8 3a)/’
E~nmQ~yM, (50) N @ alM|2 p( o M
while in the massless case itEs~ yoa,,. _ (a,7.8)= 12m\/7 7\ @ ex 3 a
The power spectréd0) have been computed numerically )
and are shown in Fig. 4 for various valuesMfa,,. Note xXexd —fee(E—Em)7], (55
that our analytical formulas given above are valid only for
M/a,>1. One can see that at large valuesidhese spectra Where
tend to the massless spectrum shown by a solid line.
The total radiated power, obtained by integrating @), Em=13YM, (56)
2w @7 yaQ? 2 My, 4 1
~\/ 5 — 5 VMug/an exp — 5 feEe=55——. (57)
3 672 v orm 3 an EE27 May?

(51
Equations(56) and (57) indicate that the gauge quanta are

is exponentially suppressed in the cade-a,,. emitted with a characteristic energy~yM in a narrow
The formulas above are valid for harmonically oscillating range:

monopoles with a frequencf2. We can reformulate these

results for the instantaneous radiation power from a mono- (58

AE/E~(a/M)¥2,
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In the case of a vector field ,(x) considered above, there 1
is a compensation in the energy-momentum tensor between fo XWh(x)dx= fy, (63)
the two terms corresponding to two nonvanishing compo-

nents of the fielde.g.,A; andA3). Such a compensation is _ .
absent for a dscglaro field 4)?2() with an [i)nteraction wheref,, is the fraction of energy transferred to hadrons of

L(x)=q¢(x)j(x), where type h, Xo= VA/a, and

0= [ dro®ox(a) (59 o= 2”. (64

andr is the proper time along the trajectory of the source. In

this case, a similar analysis, fdd>a, gives the following The valueb=(1/127)(33—2f) determines the QCD cou-

expression for the instantaneous radiation power of a mon(p“ng constant in the one-loop approximation as

pole moving with acceleratioa and Lorentz factory>1: =bIn(a®/A?), wheref is the number of quark flavors

unfrozen at a given value ofa. Numerically, o

3V3 , , =0.121/bIn®%(a?/ A?). Note that the fragmentation function

Ps=g,dvaMexp -3 —J. (€0 (62) differs significantly from the function introduced by Hill

[8] which was subsequently used in much of the literature on

cosmic rays from topological defects.

V- PRODUCTION OF HIGH-ENERGY HADRONS The fragmentation functiokV,(x) has a maximum at

We shall consider here the production of high-energy had-

rons by an accelerating monopole through the most relevant X=Xm=Xq eXpl— a/2). (65
process for this purpose: emission of “heavy” off-mass-
shell gluons. The origin of this maximum is related to the effect of coher-

The grand unified theoryGUT) monopole haqd16] a  ent radiation of soft gluons by a jet of partofs8,19. At
chromomagnetic charge, which is screened beyond the cogmallx the size of emitted gluons is larger than the width of
finement radius. The monopole-gluon coupling constant ishe parton beam. A jet, therefore, radiates soft gluons as a
l/egcp- Production of off-mass-shell gluons occurs in thesingle source with a color charge equal to the algebraic sum
same way as the radiation of massive gauge bo$BBeS.  of the color charges of partons in the beam.

IV). The virtualities of gluongQ? higher thana® are expo- For ultrarelativistic monopoles, the approximati¢g)
nentially suppressed and thUS the typical virtuality and enfor the spectrum of massless gauge bosons can be used in-
ergy of the emitted gluon ia® and ya, respectively. A vir-  stead of the exact spectrum. Then, the integration in(&%).

tual gluon decays into two partons, thus starting a partorior the hadron spectrum can be performed and we obtain, for
cascade, which is described by the Gribov-Lipatov-Altarelli-E, <E,

Parisi equation17]. Beyond the confinement radius, this
cascade is converted into a hadronic jet. This picture is quite
similar to hadron production ire*e” annihilation or in  Ny(E,) = E—thE—
deep-inelastic scattering. We expect it to apply as long as
a>A, whereA=0.234 GeV is the QCD scale. —o2i4
The spectrum of hadroris radiated by a monopole mov- 7 $(In(x)/ Vo)~ ¢(In(E°X°/Eh)/\/_)
ing with a proper acceleratioa can be expressed with the Xo é( \/— 12)
help of a fragmentation functiow,,(a,Eg,x) as (66)

Ny(Ep) = ng dEgNg(Eq)Wh(a,Eq . X)/Eq,  (61) where we have introduced the auxiliary function
Ep

wherex=E,/E4 andNg4(E,) is the spectrum of heavy gauge H(X)= f+ e tdt. (67)
bosons calculated in Sec. V. Actually, one can use the mass- x

less spectrum when considering virtualities less ta&nin

the rest frame of the monopole, the typical virtuality andWe obviously haveN,(E;)=0, while the low-energy
energy of the gluon are, respective#?, anda, similar to the  asymptotic behavior of the spectrum is

virtual photon ine*e™ annihilation. We shall use the frag-

mentation function based on the calculations of R&8| p —a54 4 / E
(see also more general expression in R&f]) which de- Nh(E)m—the 7 $(In(xo)/ Vo) =2 (68)
pends only on the parameter Eo " X0  ¢(Joo/2) En
We(x) = K _ In?x/xq 62 A numerical example for the hadrofmucleon spectrum,
h(X)= x & oy |’ 62 Wwhich corresponds ta=100 GeV anda=10 TeV is shown

in Fig. 5. The value off, can be taken as 0.1, which is
whereKy, is the normalization constant, taken from the con-roughly valid for nucleons. The shape of the spectrum de-
dition pends only on the parameter
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due to the chromodynamic charge of the monopole. As in the
general case of heavy quanta, the radiation of gluons with
virtualities |Q|?>a is exponentially suppressed and, there-
fore, most gluons are produced wit|?><a, where the
massless limit is approximately valid. Beyond the confine-
ment radius, high-energy gluons fragment into hadrons; the
corresponding fragmentation function is given by E&p).

The obtained formulas for radiation of accelerating mono-
pole can be straightforwardly generalized to any other accel-
erating particle.

The calculations in this paper have been performed as-
suming that the radiation back reaction does not significantly
affect the motion of the monopoles. This is justified if the
energy radiated in one perid¥ 2L is small compared to the
total energyul. In the case of massless gauge bosons, the
corresponding condition §?u/3mm?<1, or n.< 7,,. Here,
ns and zn,, are the symmetry-breaking scales of strings and
monopoles, respectively, and we have used the relations

,u,~277'7]§, m~4my,le, egdr~1. (70

The constraint is weaker in the case of massive gauge
bosons, when the radiation power can be exponentially sup-
pressed.

We now briefly discuss the interaction of ultrarelativistic
monopoles with the microwave background. Disregarding
v— 3y splitting, one can see that efficient interaction is pos-
sible only for very large Lorentz factors of the monopole,
when a microwave photon can produce an electron-positron

We have analyzed the radiation of massless and massiy&ir in the monopole’s magnetic field. The threshold Lorentz
gauge bosons by accelerating monopoles. In the massle&&tor is ymin=2mMe/€y,=1.6X 10°, where e,,~6.4xX 10" *
case, we calculated the radiation spectrum for an oscillatingV is the mean energy of microwave background photons.

MM pair connected by a straight string and for a monopol

An ultrarelativistic monopole can interact with microwave

undergoing a harmonic-oscillator motion. Combining thisradiation through its magnetic and chromomagnetic charges.
with the standard analysis of the synchrotron radiation, wd-€t us first consider the former case.

arrive at the following qualitative picture.

For a monopole of magnetic charge moving with a
proper accelerationa, the total radiated power is
P=q2%a?/6x. In our casea=u/m, where u is the string
tension andm is the monopole mass. In the instantaneou

It is convenient to consider this interaction in the mono-
pole’s rest frame, where photons produgee™ pairs in the
magnetic field of the monopoleyttH—H-+e*+e7). The
resulting energy loss of the monopole is negligible, mostly
Que to the very small fraction of energy lost by the mono-

rest frame of the monopole, the characteristic energy of th@ole in a collision: at maximum it isf=2m./m~1

emitted quanta iE_rest~a, and thus in the observer’s frame it
is

E~va, (69)
wherevy is the Lorentz factor of the monopole. ABe E the

spectral power is strongly suppressed, while for E the
spectrum is somewhat dependent on the type of mdfimn
example, the spectrum is flat for a harmonic oscillator an

has a maximum &~ E for a circular motiop.

X 107 2Y(m/10'7 GeV) L. The cross section is roughly de-
termined by the impact parameter wheez 1. This process
also results in production of high-energy positrons and elec-
trons. However, the production rate is small and energy of
electrons(positrong at the maximum of production rate is
~10° GeV, not of great observational interest.

A chromomagnetic charge of the monopole gives rise to

quark-antiquark productiony+ M —M +q+ q) due to ex-
hange of a gluon between a quark and the monopole. This

Clc)rocess is similar to electromagnetic pair production in the

Coulomb field of a nucleusy+Z—Z+e*+e7); an essen-

The same picture applies in the case of massive gauggl difference is that the maximum distance is determined

bosons, as long as their mass is sufficiently smMdHlga. In
the opposite limit of large mas#) > a, the radiation power
is exponentially suppressésee Eq.(51)iand gauge quanta

now by the confinement radius. The cross section
(~10"27 cn?) and the fraction of energy lost in one colli-
sion (f~2m_/m) are again too small to provide consider-

are emitted with a characteristic energy- yM in a narrow  able energy losses. The typical energy of produced hadrons
range AE/E~(a/M)Y2. The interesting case for practical (e.g., pionyand photons are in the range of practical interest
applications is the production of hadrons by an accelerating~10'° GeV), however, the energy output is much smaller
monopole. It effectively occurs through radiation of gluonsthan that due to direct radiation by the monopole.
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Let us finally estimate the typical energy of quanta emit-dous energy, and if they are ever observed, it appears that

ted by monopoles in monopole-string networks. topological defects would be the only possible explanation.
In a monopole-string network, witN strings attached to
each monopole, the proper acceleration of a monopole is ACKNOWLEDGMENTS

determined by the vector sum of the tension forces exerted )
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_ o , . APPENDIX: GAUGE BOSON RADIATION SPECTRUM

wherek = const and is the cosmic time. This scale gives the ) o o

average distance between monopoles and the average lengthThe electromagnetic radiation of a periodic electromag-

of string segments. The typical energy of a monopole is  Netic source has been extensively studied and is well under-
stood[15]. However, for the purpose of this work we will

En~ pué~ urt. (72 need a generalization of the standard formulas to the case of
) ) radiation ofmassivegauge bosons.
The corresponding Lorentz factor 48~ (1/m)«t, and from We consider a gauge boson fiedd of massM coupled
Eq. (69 the typical energy of quanta emitted at timnes to a source ternj*:
E~(u2/m)kt. (73 L=—3FFF ,,+M2A#A  +A - (A1)

Assuming that radiation of gauge quanta is the dominanf 0 this Lagrangian corresponds the equations of motion
energy loss mechanism of the networks, one flddshat the 2N nu
parametel is given by (O+MHA#=]#, (A2)

K~ gl ann?, (74) and the energy-momentum tensor for the bosons

T,.,=—2(9,A)(d,AN)— LgH". A3
wherea=e?/47 ande is the gauge coupling. Networks can mr (9 A)(0AT) — L3 (A3)

also lose energy by production of closed loops of string andhe power radiated in bosons can be found from
of small nets. The effect of these mechanisms is hard to

estimate without numerical simulations of the network dy- 5
namics. For the time being, E/4) should be regarded as a P()=r f dQS (1), (Ad)
lower bound onk, the upper bound being due to causality,
£<t. Hence, where
wlam?< x=<1. (75) S =—2(3A\) (3, A) (A5)

It is clear from Eqgs.(72) and (73) that the energies of is the radial outgoing energy flux aritl is a de_rivgtive V\_’ith
monopoles themselves and of the quanta they emit can gEESPect to the radial distance=|x|. For a periodic motion,
arbitrarily large at sufficiently late times. In particular, the IS POWer can be averaged over a period to get
emitted particles can have super-Planckian energies, dt
E>mp, wherem; is the Planck mass. From Ed33), (75), P=r2f _f dQS(t). (A6)
and(70), it follows that at the present time, T

In the case of massless gauge boddns0, Eq.(A2) can
be solved exactly using the Lienhart-Wiechert potentials,
e\@!hich greatly simplifies the problem. For a massive gauge

E/mp=10%( 5%/ 7im3), (76)

and thus the emitted particles are super-Planckian provid

that boson there is no such solution. However, E&R) is linear
and can be solved in Fourier space. We, therefore, introduce
7}3/ 7Ames10"28, 77 the Fourier transforms
Thi i 1 '
is covers a wide range of parameter values. For example, A (@, k)= _J' dtf d3xe @tk ALt x), (A7)
one could have GUT-scale monopoles,~10'® GeV, and T Y

intermediate-scale stringsps=10° GeV, or electroweak-
scale strings and light monopoles with,<10" GeV.

The interaction of super-Planckian particles with the mi-
crowave background and with cosmic magnetic fields, the
resulting cosmic ray fluxes, and some other defect modelwhereT is the period of the source and,=27n/T. Equa-
that can give rise to such particles will be discussed elsetion (A2) becomes
where[20]. Conventional astrophysical acceleration mecha- s 2 ) .
nisms are not capable to account for particles of such tremen- (k*= wp+ M)A (wnk) = ]*(wq k). (A9)

1 .
jﬂ(wn,k)=?j dtf d3xe(ent=kXjut x) (A8)
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This equation is trivially solved to get f d3x’ eikolx—x'| elkor
= | —*(t,x)= i “(wpq,Kon),
oot . 477|X—X,| ] ( ) 47TFJ ( n 0 )
AM(x):; e A (x), (A10) (A14)
Bk jHw,,K) where we have introduced= x| andn=x/r. The radial en-
A#(X):f e elk-xk2 o (Al1) ergy flux (A5) can then be expressed to first order in as
r - 0_|8
where we have introduced .
S=— =552 (wke)€ ™ Ventit(w, kon)j% (@m.kon).
k2= w2—M?2 (A12) 8arr“n.m
o n ' (A15)
ExpressionA11) for A4(x) can be greatly simplified in the
particular case we are interested in, where it is evaluated at Bhen the total powe(A6) becomes
point x far from the source so that at any point of the source
X', [x|>|x']:
| P:; Pn, (A16)
t . ,
Aﬂ(wn,x)=f?J' d3xjH(t,x")
Kown . %
Py 71 (o Kol (wn kom), (A1)

k?dk . -
sz—zf sin 6d6d ¢e' [x—x"|cos 6
k _k0i|8

(A13)

whereP,, is obviously the power radiated by the moule
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