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Monopole-antimonopole pairs connected by strings and monopole-string networks withN.2 strings at-
tached to each monopole can be formed at phase transitions in the early universe. In such hybrid defects,
monopoles accelerate under the string tension and can reach ultrarelativistic Lorentz factorsg@1. We study
the radiation of gauge quanta by accelerating monopoles. For monopoles with a chromomagnetic charge, we
also discuss the high-energy hadron production through emission of virtual gluons and their subsequent frag-
mentation into hadrons. The relevant parameter for gauge boson radiation isM /a whereM is the boson mass
anda is the proper acceleration of the monopole. ForM!a, the gauge bosons can be considered as massless
and the typical energy of the emitted quanta isE;ga. In the opposite limitM@a, the radiation power is
exponentially suppressed and gauge quanta are emitted with a typical energyE;gM in a narrow range
DE/E;(a/M )1/2. Cosmological monopole-string networks can produce photons and hadrons of extremely
high energies. For a wide range of parameters these energies can be much greater than the Planck scale.
@S0556-2821~97!04216-1#

PACS number~s!: 98.80.Cq, 11.27.1d, 13.87.Fh, 14.80.Hv

I. INTRODUCTION

Monopoles connected by strings can be formed in a se-
quence of symmetry-breaking phase transitions in the early
universe@1,2#. A typical sequence of this sort is

G→H3U~1!→H3ZN . ~1!

For a semisimple groupG, the first of these phase transitions
gives rise to monopoles, and at the second phase transition
each monopole gets attached toN strings. ForN>3, a single
infinite network is formed which permeates the entire uni-
verse@3#. The magnetic fluxes of monopoles in the network
are channeled into the strings that connect them. But the
monopoles typically have additional, unconfined magnetic
charges. The gauge fields associated with these charges may
include electromagnetic or gluon fields, but may also corre-
spond to broken gauge symmetries and have nonzero masses.

The cosmological evolution of monopole-string networks
has been discussed in Ref.@4#, where it was argued that the
networks evolve in a self-similar manner, with a characteris-
tic scale growing proportionally to cosmic timet. The typical
energy of the monopoles also grows liket, and the mono-
poles become highly relativistic. Radiation of gauge quanta
by accelerating monopoles is the main energy loss mecha-
nism of the networks. Relativistic particles emitted by the
monopoles~or the decay products of these particles! contrib-
ute to the spectrum of high-energy cosmic rays.

For the symmetry-breaking sequence

G→H3U~1!→H, ~2!

which can be regarded as a special case of Eq.~1! with
N51, the cosmological evolution is quite different. In this
case, each monopole is attached to a single string, and the
second phase transition results in monopole-antimonopole

(MM̄ ) pairs connected by strings. If both of the phase tran-
sitions in Eq. ~2! occur during the radiation era, then the
average monopole separation is always smaller than the

Hubble radius, and whenMM̄ pairs get connected by strings
and begin oscillating, they typically dissipate the bulk of
their energy to friction in less than a Hubble time@2,5#.

A more interesting possibility arises in the context of in-
flationary scenario, when monopoles are formed during in-
flation but are not completely inflated away. Strings can ei-
ther be formed later during inflation, or in the post-
inflationary epoch. In this case, the strings connectingMM̄
pairs can be very long. The correlation length of stringsj
can initially be much smaller than the average monopole
separationd; then the strings connecting monopoles have
Brownian shapes. But in the course of the evolution,j grows
faster thand, due to small loop production, and to the damp-
ing force acting on the strings. Eventually,j becomes com-
parable to the monopole separation, and we are left with
MM̄ pairs connected by more or less straight strings. At later
times, the pairs oscillate and gradually lose their energy by
gravitational radiation and by radiation of light gauge bosons
~if the monopoles have unconfined magnetic charges!. When
the energy of a string connecting a pair is dissipated, the
monopoles and antimonopoles annihilate into relativistic par-
ticles.

Although monopole-antimonopole pairs connected by
strings do not typically survive until the present time, they
can produce a characteristic feature in the spectrum of the
stochastic gravitational wave background@6#. The magnitude
of this feature depends, in particular, on the intensity of the
gauge boson radiation, which determines the lifetime of the
pairs.

The production of high-energy particles by topological
defects is interesting as a mechanism of emission of ultra-
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high energy particles, in particular photons, nucleons, and
neutrinos. The energies of such particles can be much higher
than have been observed until now. Particle production by
cosmic strings @7# and by annihilating monopole-
antimonopole pairs@8# has been previously discussed in the
literature. Here, we shall calculate the radiation power and
the spectrum of gauge bosons, both massless and massive,
emitted by an oscillating monopole-antimonopole pair. If the
magnetic charge of the monopoles is of electromagnetic na-
ture, then the radiation can be treated in the same way as that
of an accelerating charge, and our problem reduces to a prob-
lem in classical electrodynamics. In the case of a chromo-
magnetic charge, the picture is more complicated. The
monopoles emit heavy virtual gluons which originate a par-
ton cascade. The hadrons are produced in the usual way be-
yond the confinement radius. The decay of pions results in
high-energy neutrino radiation. The heavy gauge bosons,
such asW and Z, can also be produced for some range of
parameters of theMM̄ pair and the string.

The problem studied here is in fact a general theoretical
problem: the radiation of heavy particles by an accelerating
monopole. Our results can be reformulated in terms of the
basic parameters of a shock problem, the proper acceleration
of the monopole.

The dynamics ofMM̄ pairs connected by strings is rather
complicated and has not been studied in any detail in the
litterature. We shall, therefore, concentrate on the simplest
case of an oscillating pair connected by a straight string, for
which the equations of motion can be solved exactly. It is not
clear yet what influence the existence of a microstructure
along the string might have on both its dynamics and its
radiation. Such investigation will be reserved for a future
work on the dynamics ofMM̄ pairs@9#. In addition, we shall
consider the case of a harmonic oscillator motion of the
monopoles which has some of the features expected in more
general monopole-string configurations. Taken together, the
analyses of these two cases will allow us to draw a reason-
ably complete picture of the radiation spectrum in the gen-
eral case.

After reviewing the general formalism for gauge boson
radiation in the next section, we calculate the radiation spec-
trum of massless gauge bosons in Sec. III. Radiation of mas-
sive gauge bosons is analyzed in Sec. IV. The spectrum of
hadrons resulting from radiation of gluons and their subse-
quent fragmentation are discussed in Sec. V. Finally, Sec. VI
contains some concluding remarks.

II. GENERAL FORMALISM

The characteristic monopole radiusdm and string thick-
ness ds are determined primarily by the corresponding
symmetry-breaking scaleshm and hs . Typically, dm;hm

21

and ds;hs
21 . We shall assume that the two symmetery-

breaking scales are well separated,hs!hm , and thus the
monopole radius is much smaller than the string thickness,
dm!ds .

Assuming also that the string length is much greater than
its thickness, we can treat monopoles as point particles and
strings as infinitely thin lines. The monopole equations of
motion can then be written as@10#

d2xn

ds2
5

m

m
ln, ~3!

where m is the mass per unit length~and tension! of the
Goto-Nambu string,m is the monopole mass,t is the proper
time of the monopole, andln is a unit vector orthogonal to
the monopole world line and oriented into the string world
sheet. It follows immediately from Eq.~3! that

a5
m

m
~4!

is the proper acceleration of the monopoles. Equation~3! can
also be rewritten in a three-dimensional form:

g3ẍ~ t !5ag~s!n, ~5!

whereg5(12 ẋ2)21/2 is the Lorentz factor of the monopole,
g (s) is the Lorentz factor of the string at the location of the
monopole, andn is a unit vector pointing from the monopole
in the direction of the string. Equations~3! and ~5! have a
simple physical meaning: in the instantaneous rest frame of
the monopole, the magnitude of its acceleration is given by
Eq. ~4! and the direction is given by the direction of the
string. The motion of the string is described by the usual
Goto-Nambu equations. A simple solution of Eq.~5! describ-
ing an oscillatingMM̄ pair connected by a straight string is
@11#

x~ t !56
sgn~ t !

a
@g02A11~g0 v02autu!2#, ~6a!

y~ t !5z~ t !50, ~6b!

wherev0 and g05(12v0
2)21/2 are, respectively, the maxi-

mal velocity and the maximal Lorentz factors of the mono-
poles, reached att50. The upper and lower signs correspond
to M andM̄ , respectively.

The solution ~6! is valid for utu<g0v0 /a. At t
52g0v0 /a, the monopoles are at rest, with the string hav-
ing its maximum lengthL52(g021)/a. At t51g0v0/a,
the monopoles come to rest again, with their positions inter-
changed. Equation~6! describes only half a period
T54g0v0 /a, the other half period being obtained by ex-
changing the positions of the monopole and antimonopole. A
peculiar feature of this solution~6! is that the monopole ac-
celerations abruptly change direction when the monopoles
meet and pass one another. Between these sign changes the
monopoles move at constant proper accelerationa. The
monopole and antimonopole meet att50 and could be ex-
pected to annihilate. However, this solution is considered as
an approximation for an almost straight configuration where
the monopole and antimonopole would merely come close to
each other and would not collide. Besides, as we already
mentioned, the monopole radii are much smaller than the
string thickness, thus the monopoles are not likely to collide,
even for a straight string.

To find the radiation power of gauge bosons by acceler-
ating monopoles, we first consider radiation by ordinary
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gauge charges. The gauge fieldAm(x) produced by the four-
current j m(x) is determined by the equations

Fns
,n1M2As5 j s, ~7!

whereFns5]nAs2]sAn is the field strength andM is the
gauge boson mass. The current corresponding to a pair of
equal and opposite point charges is

j n~x!5qẋ1
n d~3!

„x2x1~ t !…2qẋ2
n d~3!

„x2x2~ t !…, ~8!

wherex1(t) andx2(t) are the trajectories of the charges and
ẋ6

n 5dx6
n /dt. In the case of a periodic motion, the radiation

power can be found from the equations

P5(
n

Pn5(
n
E dV

dPn

dV
, ~9!

dPn

dV
52

kvn

8p2
j m* ~vn ,k! j m~vn ,k!. ~10!

Here, dPn /dV is the radiation power at frequency
vn52pn/T per unit solid angle in the direction ofk,
uku5(vn

22M2)1/2, T is the period of the oscillation, and

j m~vn ,k!5
1

TE0

T

dt exp~ ivnt !E d3x exp~2 ik•x! j m~x,t !

~11!

is the Fourier transform of the current. Equation~10! is de-
rived in the Appendix. The derivation is similar to that of the
gravitational radiation power in Weinberg’s book@12#.

Because of electric-magnetic duality, the same equations
apply to radiation by magnetic monopoles. Hence, the radia-
tion power from an oscillatingMM̄ pair can be found from
Eqs.~8!–~11! with q interpreted as the magnetic charge.

For a one-dimensional motion, the current has only two
nonzero componentsj 0 and j 1. It is also conserved,
¹n j n50, which in Fourier space can be written as

vnj 05kxj 1, ~12!

wherekx[k1. Combining this with Eq.~10!, we have

dPn

dV
5

vnk

8p2S 12
kx

2

vn
2D u j 1~vn ,k!u2. ~13!

The motion of theMM̄ pair in Eq.~6! has the properties

x1~ t !52x2~ t !52x1~2t !, ~14a!

x1~ t !52x1~ t1T/2!. ~14b!

In such a case, it is easily seen that the system radiates only
in odd modes, and that forn odd, we have

j 1~vn ,k!5
8q

T E
0

T/4

ẋ~ t !dt cos~vnt !cos@kxx1~ t !#.

~15!

Before we proceed with the calculation of the radiation
spectrum, we shall briefly comment on the limits of applica-
bility of the classical treatment of the radiation process that
we adopt in this paper. The problem of radiation by a mono-
pole pulled by a contracting string is equivalent to that of a
monopole moving in a longitudinal magnetic field, or of an
electric charge moving in a longitudinal electric field. Such
processes in strong fields are characterized@13,14# by the
invariantx given by

x5~q/m3!A~Fmnpn!25 f /m2, ~16!

whereq, m, andpn are, respectively, the charge, mass, and
momentum of the radiating particle andf is the force acting
on the particle in its instantaneous rest frame. In the case of
a monopole connected to a string, the corresponding param-
eter is x5m/m25a/m. The casex!1 corresponds to the
quasiclassical regime@13#. Hence, our classical treatment of
radiation is justified provided thatm!m2.

III. RADIATION OF MASSLESS GAUGE BOSONS

We begin by calculating the radiation of massless gauge
bosons by an oscillatingMM̄ pair described by Eq.~6!. In
this case, Eqs.~13! and ~15! for the radiation power can be
transformed to

Pn5
2q2a2

pg0
2v0

2E0

1

~12u2!@Sn~u!#2du, ~17!

Sn~u!5E
0

~np/2v0!~121/g0!

cos~uj!

3sinFAS np

2v0
2j D 2

2
n2p2

4g0
2v0

2Gdj, ~18!

where we have introduced new integration variables
u5kx /vn and j5npax1(t)/2g0v0. These integrals cannot
be evaluated analytically. However, the high-frequency
asymptotic behavior can be obtained as an expansion in pow-
ers of 1/n. This can be done simply by repeatedly integrating
by parts in Eq.~18! @11#.

The leading term of the expansion is

Sn~u!'
2v0

npg0
2

113u2v0
2

~12u2v0
2!3

, ~19!

and the corresponding power spectrum is

Pn'AS qag0

n D 2

, ~20!

where

A5
8

p3E0

1

~12x2!
@g0

213x2~g0
221!#2

@g0
22x2~g0

221!#6
dx. ~21!

For ultrarelativistic monopoles,g0@1, this can be approxi-
mated as
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Pn'
16

5p3S qag0

n D 2

. ~22!

The 1/n expansion is valid as long as the first neglected term
is small compared to the leading term~22!. A somewhat
lengthy but straightforward calculation gives the condition
n@g0

2. At lower frequencies, then dependence is rather
complicated and analytic approximations are difficult to ob-
tain.

We computed the radiation spectrum numerically by inte-
grating Eqs.~17! and~18! for various values ofg0. A generic
example of this spectrum, obtained forg0510, is plotted in
Fig. 1. It exhibits the expected behavior~22! at high frequen-
cies and is approximately flat at lower frequencies. The tran-
sition happens aroundn;g0

2 which is the characteristic fre-

quencyv̄;g0
2v1, at which most of the power is radiated.

We note that in the rest frame of the monopole it is

v rest;v̄/g0;g0v1;a. ~23!

The total power radiated by the system can be evaluated
directly using the standard formulas of electrodynamics:

P5
~qa!2

4p E
0

1

du~12u2!E
0

1

dj$@g0
2~u2v0j!2112u2#23/2

1@g0
2~u1v0j!2112u2#23/2%2. ~24!

When the monopole and antimonopole reach ultrarelativistic
speeds, their radiation becomes focused in their respective
forward directions, which are opposite, and thus interference

between the monopole and antimonopole fields is negligible.
This means that the total power radiated by the system is
close to twice the power radiated by the monopole alone.
The radiation intensity of a single chargeq moving with
proper accelerationa is @15# P5q2a2/6p. Thus, for high
velocities of the monopole and antimonopoleg0@1, the to-
tal power tends to

P'
1

3p
~qa!2. ~25!

The numerically calculated power has been plotted as a func-
tion of g0 in Fig. 2 and indeed quickly tends to this
asymptotic limit.

The monopole trajectory~6! that we studied so far is
rather special. As we already mentioned, the monopole ac-
celerations change discontinuously as the monopoles pass
one another. It is this feature that is responsible for the
power-law ~rather than exponential! falloff of Pn at large
n. To see how the character of the spectrum is changed in a
more generic case when the acceleration varies smoothly, we
considered a simple harmonic-oscillator-type motion of the
monopoles:

x1~ t !5x0 sin Vt52x2~ t !. ~26!

The period of this motion isT52p/V, the maximum veloc-
ity reached by the monopoles isv05Vx0, and the maximum
Lorentz factor isg05(12v0

2)21/2. The parametersx0 and
V should, of course, satisfyv05Vx0,1, but we can shoose
v0 to be arbitrarily close to 1. The proper acceleration of the
monopoles in Eq.~26! is

FIG. 1. A log-log plot of the gauge quanta radiation spectrum
Pn/(qa)2 in the caseg0510 ~solid line! with its high-frequency
approximation~22! ~dashed line!. The corresponding spectrum for
the harmonic solution has been added~dotted line! for comparison.

FIG. 2. Total power of massless gauge quanta emission
P/(qa)2 as a function ofg0. It quickly tends to a limit of 1/3p.
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a~ t !52
V2x0sin Vt

@12V2x0
2 cos2Vt#3/2

. ~27!

Its maximum value determined by conditionȧ(tm)50 is
reached at sinVtm561/A2g0v0, if v0.1/A3. It is given by

am5
2

3A3
g0

2V. ~28!

For ultrarelativistic monopoles,g@1, the acceleration re-
mains of this order of magnitude,a;g0

2V, only for a brief
interval of time:

Dt;S am

uämu
D 1/2

;~g0V!21. ~29!

Since P}am
2 this part of the oscillation period gives the

dominant contribution to the radiation power in the massless
case.

The power radiated in massless gauge bosons by the har-
monic solution~26! can be computed from the standard for-
mulas~13! and ~15!. It gives

Pn5
2

p
~nVq!2E

0

1

duS 1

u2
21D Jn

2~nuv0!, ~30!

whereJn is thenth Bessel function.
For large frequency modesn@1 and a parameterx,1,

the Bessel function can be expanded using the formula

Jn
2~nx!.

1

2np

e22n~12x2!3/2/3

A12x2
~31!

to get the simplified expression for the power

Pn'nS Vq

p D 2E
0

1

duS 1

u2
21D e22n~12u2v0

2
!3/2/3

A12u2v0
2

. ~32!

At high frequencies, the radiation is focused in the mono-
poles forward direction, which corresponds tou;1. This
translates in Eq.~32! to the steep falloff of the exponential.

For not too high frequency modes 1!n&g0
2, the expres-

sion of the Fourier transform of the current can be somewhat
simplified:

j 0~nV,k!5
8q

T E
0

T/4

dt sin~nVt !sin@nu~121/g0
2!sin~Vt !#,

'
4q

p E
0

p/2

dv sin~nv !sin@nusin v#, ~33!

where u5kx /V. This corresponds basically to taking
v051 in j 0. Thus, in this frequency range, the approximation
~32! takes the form

Pn'nS Vq

p D 2E
0

1du

u2
A12u2 expS 2

2n

3
~12u2!3/2D .

~34!

A simple change of variablej52n(12u2)3/2/3 enables us to
evaluate the integral:

Pn'
~Vq!2

2p2 E
0

2n/3 dje2j

@12~3j/2n!2/3#3/2

'
~Vq!2

2p2 E
0

`

dje2j5
~Vq!2

2p2
. ~35!

So the spectrum is expected to be flat in this frequency
range.

For very high-frequency modesn@g0
3, we can expand the

argument of the exponential in Eq.~32! aroundu51, and
simply take all the other slower varying terms as being con-
stant. This gives

Pn'
2

p2
~Vq!2ne22n/3g0

3E
0

1`

vdve22nv0
2v/g0

'
g0

3V2q2

2p2v0
4

e22n/3g0
3

n
. ~36!

The radiation spectrum~30! was computed numerically
for various values ofg0. A generic example of this spectrum
obtained forg0525 is given in Fig. 3. As found in Eq.~35!,
the low-frequency behavior is flat, up to frequencies
v̄;amg0. The expected high-frequency behavior~36! then
sets in at higher frequencies. Compared to the spectrum ob-
tained for the exact solution~6!, this spectrum is very simi-
lar: flat at lower frequencies, then decaying fast. But, for the

FIG. 3. A log-log plot of the gauge quanta radiation spectrum
Pn/(qa)2 from the harmonic solution~26! in the caseg0525 ~solid
line! with its high-frequency~36! ~long dashed line! and low-
frequency~35! ~dashed line! approximations.
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harmonic solution, the flat part has a smaller value, extends
farther in frequencies, and the falloff at higher frequencies is
much faster.

The total power radiated by the two monopoles is easy to
evaluate when they are ultrarelativisticg0@1. In this limit,
as explained previously, interference between the monopole
and antimonopole fields is negligible and the total power is
just the sum of the power emitted by the monopole and an-
timonopole separately. The radiation intensity for a single
charge moving with a proper acceleration~27! is @15#
P59q2am

2 /16g0. Thus, for ultrarelativistic monopoles
g0@1, the total power tends to

P'
9

8g0
q2am

2 5 1
6 g0

3V2q2. ~37!

Contrary to the previous case, Eq.~25!, this has an extra
factor g0 in the denominator. It comes from the fact that for
ultrarelativistic monopoles, the main contribution to the total
power comes from the interval of timeDt in Eq. ~29! when
their acceleration is near its maximumam so that
P;q2am

2 Dt/T;q2am
2 /g0. This total power is also consistent

with the picture of a spectrum consisting of a low-frequency
flat behaviorPn;Ag0

24 up to n;g0
3 as shown in Eq.~35!,

and then a negligible exponentially decreasing high-
frequency behavior which can be ignored. This gives a use-
ful approximation for the spectrum of massless gauge
bosons:

P~E!5
~Vq!2

2p2
[P0 for E,

p2

3
g0

3V[E0 ,

~38a!

P~E!50 for E.E0 , ~38b!

which has the same total power as the exact spectrum and
will be a good approximation for largeg factors.

It is instructive to compare the results we obtained in this
section with the case of synchrotron radiation by a charge
moving at a constant speed in a circular orbit@15#. The
power spectrum in this case exhibits a peak around
v̄;g3V, whereg is the Lorentz factor andV is the angular
frequency of the rotating charge. The proper acceleration of
the charge isa'g2V, so once again the characteristic fre-
quency isv̄;ga.

IV. RADIATION OF MASSIVE GAUGE BOSONS

We will now consider the radiation of massive gauge
bosons of massM . For simplicity, we will consider only the
harmonic-oscillation solution~26! in this section.

The power radiated in massive gauge bosons is still given
by the general formula~13! but now k5vnun , where we
have introduced

un5A12M2/vn
2 ~39!

and vn5nV. The current and its Fourier transform remain
the same as in the massless case, and thus we obtain a very
similar formula:

Pn52
q2V2

p
n2E

0

un
duS 1

u2
21D Jn

2~nuv0!, ~40!

where only the upper bound in the integral has changed. The
massless gauge boson radiation~40! is obviously recovered
in the limit M→0 or n→`. Using the asymptotic expression
of the Bessel function~31!, valid for n@1, we obtain

Pn'
q2

p2
V2nE

0

un du

A12u2v0
2S 12u2

u2 D
3exp@2 2

3 n~12u2v0
2!3/2#. ~41!

In the case of massive gauge bosons withM@am , where
am is the maximal acceleration, both functions in front of the
exponent can be taken at valueu5un and after integration
we obtain

Pn'
q2

2p2

g0
2M2

v0
2 S 12

M2

n2V2D 23/2S 11
g0

2v0
2M2

n2V2 D 21
1

n2

3exp@2 f ~n!#, ~42!

where

f ~n!5
2

3

n

g0
3S 11

g0
2v0

2M2

n2V2 D 3/2

. ~43!

The function~43! has a minimum

f m5A3
Mv0

g0
2V

, ~44!

which is reached at

n5nm5A2
g0v0M

V
. ~45!

The second derivative off (n) at n5nm is

f nn5
2

A3

V

g0
4v0M

. ~46!

The spectrum~42! has a maximum atn'nm .
At very largen@(M /am)nm , we obtain the spectrum~37!

of a massless case,1 as it must be according to Eq.~40!.
At nm!n,(M /am)nm , the energy flux is exponentially

suppressed as

Pn'
q2

2p2

g0
2M2

v0
2

1

n2
exp~2 2

3 n/g0
3!. ~47!

At M /V!n!nm , the energy flux is also exponentially
suppressed as

1This cannot be seen directly from Eq.~42! as the dominant term
in this regime was already neglected. To get this extra term, the
factor (12u2) in Eq. ~41! must be kept and integrated with the
exponential term.
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Pn'
q2

2p2

V2

v0
4

exp~2 2
3 M3v0

3/n2V3!. ~48!

In the region of the maximumnm , the spectrum is

Pn'
q2

12p2

V2

v0
4

expS 2A3
v0M

g0
2V

D exp@2 1
2 f nn~n2nm!2#.

~49!

Therefore, in the case we are consideringM@am , the char-
acteristic energy of emitted gauge bosons is

E'nmV'g0M , ~50!

while in the massless case it isE'g0am .
The power spectra~40! have been computed numerically

and are shown in Fig. 4 for various values ofM /am . Note
that our analytical formulas given above are valid only for
M /am@1. One can see that at large values ofn these spectra
tend to the massless spectrum shown by a solid line.

The total radiated power, obtained by integrating Eq.~49!,

P'A2p

3

q2

6p2

g0
3V2

v0
4

AMv0 /am expS 2
2

3

Mv0

am
D ,

~51!

is exponentially suppressed in the caseM@am .
The formulas above are valid for harmonically oscillating

monopoles with a frequencyV. We can reformulate these
results for the instantaneous radiation power from a mono-

pole moving with a proper accelerationa and Lorentz factor
g. This is possible to do because forM@am the radiation is
strongly dominated by four very short bursts during the pe-
riod T. The time dependence of the radiated power is deter-
mined mainly by the factor

P~ t !} expS 2
2

3

Mv
a~ t ! D ,

and the bursts occur at the maxima of the proper acceleration
a(t). Expanding a(t) near the maximum,

a(t)'am1 1
2 äm(t2tm)2, and using Eq.~27! we obtain an

estimate for the duration of the bursts

t;S am

uämu

3am

Mv0
D 1/2

;
1

v0Vg0
S am

Mv0
D 1/2

. ~52!

It is (am /Mv0)1/2 times shorter than the corresponding du-
ration in the massless case~29!.

The fact that the dominant part of the radiation comes out
in short bursts ata'am suggests the following ansatz for the
instantaneous power:

P~am ,g,E!'k
T

4t
Phar~E,V!. ~53!

Here, g5A2/3gm is the Lorentz factor of a harmonically
oscillating monopole at the moment when it reaches
a5am , k;1 is a numerical coefficient, andPhar(E,V) is
given by Eq.~49!. We expect Eq.~53! to be valid forE near
the maximum of the spectrum at least foruE2Emu/Em!1.
Integrating the instantaneous spectrum~53! over the period
T, with a(t) and g(t) for the harmonic-oscillator motion,
and comparing with the averaged oscillator spectrum~49!,
we determine the normalizing constantk52A2/(3Ap). The
total power and the spectrum for a relativistic (g@1) mono-
pole moving with proper accelerationa and Lorentz factor
g are thus given by

P~a!5
A3

8p
q2aM expS 2

2

3

M

a D , ~54!

P~a,g,E!5
q2

12pAp

a

gS M

a D 1/2

expS 2
2

3

M

a D
3exp@2 f EE~E2Em!2#, ~55!

where

Em5A3gM , ~56!

f EE5
4

27

1

Mag2
. ~57!

Equations~56! and ~57! indicate that the gauge quanta are
emitted with a characteristic energyE;gM in a narrow
range:

DE/E;~a/M !1/2. ~58!

FIG. 4. A log-log plot of the massive gauge quanta radiation
spectrumPn /(qa)2 for g0525 andM /am taking the values 0.1
~long dashed line!, 0.5 ~dashed line!, 1 ~dash-dotted line! and 5
~dotted line!. The massless case from Fig. 3 has also been added
~solid line!.
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In the case of a vector fieldAm(x) considered above, there
is a compensation in the energy-momentum tensor between
the two terms corresponding to two nonvanishing compo-
nents of the field~e.g.,A0 andA3). Such a compensation is
absent for a scalar fieldf(x) with an interaction
L(x)5qf(x) j (x), where

j ~x!5E dtd~4!
„x2x~t!… ~59!

andt is the proper time along the trajectory of the source. In
this case, a similar analysis, forM@a, gives the following
expression for the instantaneous radiation power of a mono-
pole moving with accelerationa and Lorentz factorg@1:

Ps5
3A3

8p
q2g2aM expS 2

2

3

M

a D . ~60!

V. PRODUCTION OF HIGH-ENERGY HADRONS

We shall consider here the production of high-energy had-
rons by an accelerating monopole through the most relevant
process for this purpose: emission of ‘‘heavy’’ off-mass-
shell gluons.

The grand unified theory~GUT! monopole has@16# a
chromomagnetic charge, which is screened beyond the con-
finement radius. The monopole-gluon coupling constant is
1/aQCD. Production of off-mass-shell gluons occurs in the
same way as the radiation of massive gauge bosons~Sec.
IV !. The virtualities of gluonsQ2 higher thana2 are expo-
nentially suppressed and thus the typical virtuality and en-
ergy of the emitted gluon isa2 andga, respectively. A vir-
tual gluon decays into two partons, thus starting a parton
cascade, which is described by the Gribov-Lipatov-Altarelli-
Parisi equation@17#. Beyond the confinement radius, this
cascade is converted into a hadronic jet. This picture is quite
similar to hadron production ine1e2 annihilation or in
deep-inelastic scattering. We expect it to apply as long as
a.L, whereL50.234 GeV is the QCD scale.

The spectrum of hadronsh radiated by a monopole mov-
ing with a proper accelerationa can be expressed with the
help of a fragmentation functionWh(a,Eg ,x) as

Nh~Eh!5E
Eh

Eg
max

dEgNg~Eg!Wh~a,Eg ,x!/Eg , ~61!

wherex5Eh /Eg andNg(Eg) is the spectrum of heavy gauge
bosons calculated in Sec. V. Actually, one can use the mass-
less spectrum when considering virtualities less thana2. In
the rest frame of the monopole, the typical virtuality and
energy of the gluon are, respectively,a2 anda, similar to the
virtual photon ine1e2 annihilation. We shall use the frag-
mentation function based on the calculations of Ref.@18#
~see also more general expression in Ref.@19#! which de-
pends only on the parameterx:

Wh~x!5
Kh

x
expS 2

ln2x/x0

s0
D , ~62!

whereKh is the normalization constant, taken from the con-
dition

E
0

1

xWh~x!dx5 f h , ~63!

where f h is the fraction of energy transferred to hadrons of
type h, x05AL/a, and

s05
1

12bA 2p

3as
3
. ~64!

The valueb5(1/12p)(3322 f ) determines the QCD cou-
pling constant in the one-loop approximation as
as

215bln(a2/L2), where f is the number of quark flavors
unfrozen at a given value ofa. Numerically, s0

50.121Abln3/2(a2/L2). Note that the fragmentation function
~62! differs significantly from the function introduced by Hill
@8# which was subsequently used in much of the literature on
cosmic rays from topological defects.

The fragmentation functionWh(x) has a maximum at

x5xm5x0 exp~2s0/2!. ~65!

The origin of this maximum is related to the effect of coher-
ent radiation of soft gluons by a jet of partons@18,19#. At
smallx the size of emitted gluons is larger than the width of
the parton beam. A jet, therefore, radiates soft gluons as a
single source with a color charge equal to the algebraic sum
of the color charges of partons in the beam.

For ultrarelativistic monopoles, the approximation~38!
for the spectrum of massless gauge bosons can be used in-
stead of the exact spectrum. Then, the integration in Eq.~61!
for the hadron spectrum can be performed and we obtain, for
Eh<E0,

Nh~Eh!5
P0

E0
f h

E0

Eh

3
e2s0

2/4

x0

f„ln~x0!/As0…2f„ln~E0x0/Eh!/As0…

f~As0/2!
,

~66!

where we have introduced the auxiliary function

f~x!5E
x

1`

e2t2dt. ~67!

We obviously have Nh(E0)50, while the low-energy
asymptotic behavior of the spectrum is

Nh~E!'
P0

E0
f h

e2s0
2/4

x0

f„ln~x0!/As0…

f~As0/2!

E0

Eh
. ~68!

A numerical example for the hadron~nucleon! spectrum,
which corresponds toa5100 GeV anda510 TeV is shown
in Fig. 5. The value off h can be taken as 0.1, which is
roughly valid for nucleons. The shape of the spectrum de-
pends only on the parametera.
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VI. CONCLUDING REMARKS

We have analyzed the radiation of massless and massive
gauge bosons by accelerating monopoles. In the massless
case, we calculated the radiation spectrum for an oscillating
MM̄ pair connected by a straight string and for a monopole
undergoing a harmonic-oscillator motion. Combining this
with the standard analysis of the synchrotron radiation, we
arrive at the following qualitative picture.

For a monopole of magnetic chargeq moving with a
proper acceleration a, the total radiated power is
P5q2a2/6p. In our case,a5m/m, where m is the string
tension andm is the monopole mass. In the instantaneous
rest frame of the monopole, the characteristic energy of the
emitted quanta isĒrest;a, and thus in the observer’s frame it
is

Ē;ga, ~69!

whereg is the Lorentz factor of the monopole. ForE@ Ē the
spectral power is strongly suppressed, while forE, Ē the
spectrum is somewhat dependent on the type of motion~for
example, the spectrum is flat for a harmonic oscillator and
has a maximum atE; Ē for a circular motion!.

The same picture applies in the case of massive gauge
bosons, as long as their mass is sufficiently small,M!a. In
the opposite limit of large mass,M@a, the radiation power
is exponentially suppressed@see Eq.~51!#, and gauge quanta
are emitted with a characteristic energyĒ;gM in a narrow
range DE/E;(a/M )1/2. The interesting case for practical
applications is the production of hadrons by an accelerating
monopole. It effectively occurs through radiation of gluons

due to the chromodynamic charge of the monopole. As in the
general case of heavy quanta, the radiation of gluons with
virtualities uQu2.a is exponentially suppressed and, there-
fore, most gluons are produced withuQu2<a, where the
massless limit is approximately valid. Beyond the confine-
ment radius, high-energy gluons fragment into hadrons; the
corresponding fragmentation function is given by Eq.~62!.

The obtained formulas for radiation of accelerating mono-
pole can be straightforwardly generalized to any other accel-
erating particle.

The calculations in this paper have been performed as-
suming that the radiation back reaction does not significantly
affect the motion of the monopoles. This is justified if the
energy radiated in one periodP•2L is small compared to the
total energymL. In the case of massless gauge bosons, the
corresponding condition isq2m/3pm2!1, orhs!hm . Here,
hs and hm are the symmetry-breaking scales of strings and
monopoles, respectively, and we have used the relations

m;2phs
2 , m;4phm /e, eg/4p;1. ~70!

The constraint is weaker in the case of massive gauge
bosons, when the radiation power can be exponentially sup-
pressed.

We now briefly discuss the interaction of ultrarelativistic
monopoles with the microwave background. Disregarding
g→3g splitting, one can see that efficient interaction is pos-
sible only for very large Lorentz factors of the monopole,
when a microwave photon can produce an electron-positron
pair in the monopole’s magnetic field. The threshold Lorentz
factor is gmin52me /ebb51.63109, whereebb'6.431024

eV is the mean energy of microwave background photons.
An ultrarelativistic monopole can interact with microwave
radiation through its magnetic and chromomagnetic charges.
Let us first consider the former case.

It is convenient to consider this interaction in the mono-
pole’s rest frame, where photons producee1e2 pairs in the
magnetic field of the monopole (g1H→H1e11e2). The
resulting energy loss of the monopole is negligible, mostly
due to the very small fraction of energy lost by the mono-
pole in a collision: at maximum it isf 52me /m'1
310220(m/1017 GeV)21. The cross section is roughly de-
termined by the impact parameter wherex>1. This process
also results in production of high-energy positrons and elec-
trons. However, the production rate is small and energy of
electrons~positrons! at the maximum of production rate is
;106 GeV, not of great observational interest.

A chromomagnetic charge of the monopole gives rise to
quark-antiquark production (g1M→M1q1 q̄ ) due to ex-
change of a gluon between a quark and the monopole. This
process is similar to electromagnetic pair production in the
Coulomb field of a nucleus (g1Z→Z1e11e2); an essen-
tial difference is that the maximum distance is determined
now by the confinement radius. The cross section
(;10227 cm2) and the fraction of energy lost in one colli-
sion (f ;2mp /m) are again too small to provide consider-
able energy losses. The typical energy of produced hadrons
~e.g., pions! and photons are in the range of practical interest
(;1010 GeV), however, the energy output is much smaller
than that due to direct radiation by the monopole.

FIG. 5. A log-log plot of the hadron spectrum~66! for a5100
GeV ~solid line! anda510 TeV~dashed line! with their low-energy
approximations~68! ~respectively, dotted line, dash-dotted line!.
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Let us finally estimate the typical energy of quanta emit-
ted by monopoles in monopole-string networks.

In a monopole-string network, withN strings attached to
each monopole, the proper acceleration of a monopole is
determined by the vector sum of the tension forces exerted
by the strings. By order of magnitude it is still given by
a;m/m. The cosmological evolution of monopole-string
networks is expected to be characterized by a single length
scale:

j~ t !;kt, ~71!

wherek5const andt is the cosmic time. This scale gives the
average distance between monopoles and the average length
of string segments. The typical energy of a monopole is

Em;mj;mkt. ~72!

The corresponding Lorentz factor isg;(m/m)kt, and from
Eq. ~69! the typical energy of quanta emitted at timet is

Ē;~m2/m2!kt. ~73!

Assuming that radiation of gauge quanta is the dominant
energy loss mechanism of the networks, one finds@4# that the
parameterk is given by

k;m/am2, ~74!

wherea5e2/4p ande is the gauge coupling. Networks can
also lose energy by production of closed loops of string and
of small nets. The effect of these mechanisms is hard to
estimate without numerical simulations of the network dy-
namics. For the time being, Eq.~74! should be regarded as a
lower bound onk, the upper bound being due to causality,
j&t. Hence,

m/am2&k&1. ~75!

It is clear from Eqs.~72! and ~73! that the energies of
monopoles themselves and of the quanta they emit can get
arbitrarily large at sufficiently late times. In particular, the
emitted particles can have super-Planckian energies,
E@mP , wheremP is the Planck mass. From Eqs.~73!, ~75!,
and ~70!, it follows that at the present time,

Ē/mP*1056~hs
6/hm

4 mP
2 !, ~76!

and thus the emitted particles are super-Planckian provided
that

hs
3/hm

2 mP@10228. ~77!

This covers a wide range of parameter values. For example,
one could have GUT-scale monopoles,hm;1016 GeV, and
intermediate-scale strings,hs*109 GeV, or electroweak-
scale strings and light monopoles withhm&107 GeV.

The interaction of super-Planckian particles with the mi-
crowave background and with cosmic magnetic fields, the
resulting cosmic ray fluxes, and some other defect models
that can give rise to such particles will be discussed else-
where@20#. Conventional astrophysical acceleration mecha-
nisms are not capable to account for particles of such tremen-

dous energy, and if they are ever observed, it appears that
topological defects would be the only possible explanation.
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APPENDIX: GAUGE BOSON RADIATION SPECTRUM

The electromagnetic radiation of a periodic electromag-
netic source has been extensively studied and is well under-
stood @15#. However, for the purpose of this work we will
need a generalization of the standard formulas to the case of
radiation ofmassivegauge bosons.

We consider a gauge boson fieldAm of massM coupled
to a source termj m:

L52 1
2 FmnFmn1M2AmAm1Am j m. ~A1!

To this Lagrangian corresponds the equations of motion

~h1M2!Am5 j m, ~A2!

and the energy-momentum tensor for the bosons

Tmn522~]mAl!~]nAl!2Lgmn. ~A3!

The power radiated in bosons can be found from

P~ t !5r 2E dVSr~ t !, ~A4!

where

Sr522~]0Al!~] rA
l! ~A5!

is the radial outgoing energy flux and] r is a derivative with
respect to the radial distancer 5uxu. For a periodic motion,
this power can be averaged over a period to get

P5r 2E dt

T E dVSr~ t !. ~A6!

In the case of massless gauge bosonsM50, Eq.~A2! can
be solved exactly using the Lienhart-Wiechert potentials,
which greatly simplifies the problem. For a massive gauge
boson there is no such solution. However, Eq.~A2! is linear
and can be solved in Fourier space. We, therefore, introduce
the Fourier transforms

Am~vn ,k!5
1

TE dtE d3xei ~vnt2k•x!Am~ t,x!, ~A7!

j m~vn ,k!5
1

TE dtE d3xei ~vnt2k•x! j m~ t,x!, ~A8!

whereT is the period of the source andvn52pn/T. Equa-
tion ~A2! becomes

~k22vn
21M2!Am~vnk!5 j m~vn ,k!. ~A9!
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This equation is trivially solved to get

Am~x!5(
n

e2 ivntAn
m~x!, ~A10!

An
m~x!5E d3k

~2p!3
eik•x

j m~vn ,k!

k22k0
26 i«

, ~A11!

where we have introduced

k0
25vn

22M2. ~A12!

Expression~A11! for An
m(x) can be greatly simplified in the

particular case we are interested in, where it is evaluated at a
point x far from the source so that at any point of the source
x8, uxu@ux8u:

Am~vn ,x!5E dt

T E d3x8 j m~ t,x8!

3E k2dk

k22k0
26 i«

E sin ududfeikux2x8ucosu

~A13!

5E d3x8eik0ux2x8u

4pux2x8u
j m~ t,x8!'

eik0r

4pr
j m~vn ,k0n!,

~A14!

where we have introducedr 5uxu andn5x/r . The radial en-
ergy flux ~A5! can then be expressed to first order in 1/r as

Sr52
1

8p2r 2(n,m
~vnk0!ei ~m2n!vnt j m~vn ,k0n! j m* ~vm ,k0n!.

~A15!

Then the total power~A6! becomes

P5(
n

Pn , ~A16!

Pn5
k0vn

8p2
j m~vn ,k0n! j m* ~vn ,k0n!, ~A17!

wherePn is obviously the power radiated by the moden.
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