
Inflaton decay in de Sitter spacetime

D. Boyanovsky
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

R. Holman and S. Prem Kumar
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

~Received 31 May 1996!

We study the decay of scalar fields, in particular the inflaton, into lighter scalars in a de Sitter spacetime
background. After providing a practical definition of the rate, we focus on the case of an inflaton interacting
with a massless scalar field either minimally or conformally coupled to the curvature. The evolution equation
for the expectation value of the inflaton is obtained to one loop order in perturbation theory and the decay rate
is recognized from the solution. We find the remarkable result that this decay rate displays an equilibrium
Bose-enhancement factor with an effective temperature given by the Hawking temperatureH/2p, whereH is
the Hubble constant. This contribution is interpreted as the ‘‘stimulated emission’’ of bosons in a thermal bath
at the Hawking temperature. In the context of new inflation scenarios, we show that inflaton decay into
conformally coupled massless fields slows down the rolling of the expectation value. Decay into Goldstone
bosons is also studied. Contact with stochastic inflation is established by deriving the Langevin equation for the
coarse-grained expectation value of the inflaton field to one-loop order in this model. We find that the noise is
Gaussian and correlated~colored! and its correlations are related to the dissipative~‘‘decay’’ ! kernel via a
generalized fluctuation-dissipation relation.@S0556-2821~97!05614-2#

PACS number~s!: 98.80.Bp, 98.80.Cq

I. INTRODUCTION

Nonequilibrium processes play a fundamental role in cos-
mological scenarios motivated by particle physics models.
Processes such as thermalization, reheating, and particle de-
cay are important ingredients in most theoretical scenarios
that attempt a description of early universe cosmology@1–4#.
An important ingredient underlying most attempts at a de-
scription of inflationary cosmologies is that of equilibration,
which is tacitly assumed whenever quasiequilibrium meth-
ods are invoked in their study, such as effective potentials
and finite temperature field theory.

The concept of quasiequilibrium during an inflationary
stage requires a careful understanding of two different time
scales. One is the expansion time scaletH5H21, whereH is
the Hubble parameter, while the other is the field relaxation
time scalet r . A quasiequilibrium situation obtains whenever
t r!tH since in this case particle physics processes occur
much faster than the universe expands, allowing fields to
respond quickly to any changes in the thermodynamic vari-
ables.

Can the inflaton of inflationary cosmologies be treated as
being in quasiequilibrium? The answer to this question de-
pends crucially on the various processes that contribute to
the dynamical relaxation of this field. Some of these pro-
cesses are the decay of the inflaton into lighter scalars or
fermions, as well as collisions that, while they leave the total
number of particles fixed, will change the phase space distri-
bution of these particles@5#.

In this paper we wish to understand the effects of cou-
pling the inflaton to lighter scalars during the inflationary
era. Single-particle decay of the inflaton into lighter scalars
or fermions in the post-inflationary era, when spacetime can
be well approximated by a Minkowski metric, is by now

fairly well understood within the context of the ‘‘old-
reheating’’ scenario@6–9#, but it is much less understood
during theearly stagesof inflation.

In saying this, we have to distinguish between the various
models of inflation. In ‘‘old’’ or ‘‘extended’’ inflation@10#,
the inflaton is trapped in a metastable minimum, from which
it exits eventually via the nucleation of bubbles of the true
vacuum phase. A critical parameter in these models is the
nucleation rate, which is typically calculated assuming that
the field is equilibrated@3,4,11#. Such an assumption will
only be justified if the relaxation time of the inflaton in the
metastable phase, i.e., in de Sitter space, is much smaller
than the time scale for nucleation of a critical bubble.

In ‘‘new’’ or ‘‘chaotic’’ inflationary scenarios@7#, the su-
praluminal expansion of the universe is driven by the so-
called ‘‘slow-roll’’ dynamics of the inflaton. Typically, this
is studied via the zero or finite temperature effective poten-
tial. In doing this, the assumption of quasiequilibrium is
made, in that one can replace the actual field dynamics by
that given by a static quantity, the effective potential. This
assumption must be checked, and one way of doing that is by
considering the evolution of the inflaton in the presence of
couplings to other fields and computing the field relaxation
rate. In particular, if dissipative processes associated with the
‘‘decay’’ of the inflaton field into lighter scalars are efficient
during the slow-roll stage in new or chaotic inflationary sce-
narios, then these may result in a further slowing down of the
inflaton field as it rolls down the potential hill.

Finally, there is the stochastic inflation approach advo-
cated by Starobinskii@12#. In this scenario, inflationary dy-
namics is studied with a stochastic evolution equation for the
inflaton field with a Gaussian white noise that describes the
microscopic fluctuations. As pointed out by Hu and collabo-
rators@13# and Habib and Kandrup@14,15#, noise and dissi-
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pation are related via a fundamental generalized fluctuation-
dissipation theorem andmustbe treated on the same footing.

In this article we study the process of relaxation of the
inflaton field via the decay into massless scalar particles in
de Sitter spacetime with the goal of understanding the modi-
fications in the decay rates and the relevant time scales as
compared to those in Minkowski spacetime. Our study fo-
cuses on the description of these processes within ‘‘old’’ or
‘‘extended’’ and ‘‘new’’ inflationary scenarios. Within
‘‘old’’ inflation we study the situation in which the inflaton
field oscillates around the metastable minimum~before it
eventually tunnels! and decays into massless scalars. In the
case of ‘‘new’’ inflation, we address the situation of the in-
flaton rolling down a potential hill, near themaximumof the
potential, to understand how the process of ‘‘decay’’ intro-
duces dissipative contributions to the inflaton evolution.

We also establish contact with stochastic inflation byde-
riving the Langevin~stochastic! equation for the inflaton
field and analyzing the generalized fluctuation-dissipation re-
lation between the dissipation kernel resulting from the ‘‘de-
cay’’ into massless scalars and the correlations of the sto-
chastic noise.

At this point we would like to make precise the meaning
of ‘‘decay’’ in a time-dependent background. The usual con-
cept of the transition rate in Minkowski space, i.e., the tran-
sition probability per unit volume per unit time for a particu-
lar ~in! state far in the past to a~out! state far into the future,
is no longer applicable in a time-dependent background. Re-
laxing this definition to finite time intervals~for example, by
obtaining the transition probability from somet i to some
t f) would yield a time-dependent quantity affected by the
ambiguities of the definition of particle states. In Minkowski
spacetime the existence of time translational invariance al-
lows a spectral representation of two-point functions and the
transition rate~or decay rate! is related to the imaginary part
of the self-energy on shell. Such a correspondence is not
available in a time-dependent background. Furthermore, the
time evolution of a scalar field is damped because of the
redshifting of the energy due to the expanding background
even in the absence of interactions. In particular in de Sitter
space this damping is exponential and any other exponential
damping arising from interactions will be mixed with the
gravitational redshift.

We propose todefinethe ‘‘decay rate’’ as the contribution
to the exponential damping of the inflaton evolution due to
the interactions with other fields, which is clearly recognized
through the dependence on the coupling to these fields. This
practical definition then argues that in order to recognize
such a ‘‘decay rate’’ we must study the real-time dynamics
of the nonequilibrium expectation value of the inflaton field
in interaction with other fields, and the identification of this
rate should transpire from the actual evolution of this expec-
tation value.

Although the methods presented in this article can be gen-
eralized to arbitrary spatially flat Friedman-Robertson-
Walker ~FRW! cosmologies and include decay of a heavy
inflaton into lighter scalars, we study the simpler but relevant
case of inflaton decay into massless scalars in de Sitter
spacetime. This case affords an analytic perturbative treat-
ment that illuminates the relevant physical features.

The article is organized as follows. In Sec. II we present a

brief pedagogical review of the closed time path formalism
and the derivation of the nonequilibrium Green’s functions
for free fields in de Sitter spacetime. In Sec. III the model is
defined and the methods to obtain the evolution equation are
summarized. Here we study several cases, including minimal
and conformal coupling and the slow-roll regime. We obtain
the remarkable result that the decay rate can be understood
from stimulated emission in a bath at the Hawking tempera-
ture. In Sec. IV we study the effect of Goldstone bosons on
the inflaton evolution, pointing out that Goldstone bosons are
necessarily always minimally coupled. In Sec. V we make
contact with stochastic inflation, derive the stochastic Lange-
vin equation for the inflaton zero mode, and obtain the dis-
sipative kernel and the noise correlation function, which are
related by a generalized fluctuation-dissipation theorem. The
resulting noise is Gaussian but colored. In Sec. VI we sum-
marize our results and propose new lines of study. An ap-
pendix is devoted to a detailed derivation, establishing the
consistency of the flat-space limits of the analytic structure
of the dissipative kernel in de Sitter spacetime, with
Minkowskian calculations.

II. NONEQUILIBRIUM FIELD THEORY

A. Closed time path formalism

As mentioned in the Introduction we will be studying the
real-time evolution of the zero mode of the inflaton in a
universe with a time-dependent background metric. Further-
more, we will restrict our investigations toperturbativephe-
nomena in theories in which the inflaton interacts with other
matter fields in a de Sitter universe. We will be primarily
concerned with defining and calculating quantities such as
the perturbative ‘‘decay rate’’ of the inflaton. For studies of
nonperturbative particle production in nonequilibrium situa-
tions see@19# ~and references therein!. Calculation of particle
production in curved spacetime has also been done using the
Boguliubov transformations; see, e.g.,@23#.

The tools required for studying time-dependent phenom-
ena in quantum field theories have been available for quite
some time, and were first used by Schwinger@16# and
Keldysh@17#. There are many articles in the literature using
these techniques to study time-dependent problems@18,19#.
However, these techniques have not yet become an integral
part of the available methods for studying field theory in
extreme environments. We thus present a concise pedagogi-
cal introduction to the subject for the nonpractitioner.

The nonequilibrium or time-dependent description of a
system is determined by the time evolution of the density
matrix that describes it. This is in turn described by the Liou-
ville equation~in the Schro¨dinger picture!

i\
]r~ t !

]t
5@H~ t !,r~ t !#. ~2.1!

Here we have allowed for an explicitly time-dependent
Hamiltonian which is in fact the case in an expanding uni-
verse. The formal solution of the Liouville equation is

r~ t !5U~ t !r iU
21~ t !, ~2.2!
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wherer i is the initial density matrix specified at some initial
time t50. The time dependent expectation value of an op-
erator is then easily seen to be

^O&~ t !5Tr@r iU
21~ t !OU~ t !#/Tr@r i #. ~2.3!

In most cases of interest the initial density matrix is either a
thermal one or a pure state corresponding to the ground state
of some initial Hamiltonian. In either case,

r i5e2bHi, ~2.4!

Hi5H~ t,0!. ~2.5!

The ground state ofHi can be projected out by taking the
b→` limit. To study strongly out-of-equilibrium situations
it is usually convenient to introduce a time-dependent Hamil-
tonian H(t) such that H(t)5Hi for 2`<t<0 and
H(t)5Hevol(t) for t.0 where Hevol(t) is the evolution
Hamiltonian that determines the dynamics of the theory.

For thermal initial conditions, Eq.~2.3! can be written in
a more illuminating form by choosing an arbitrary time
T,0 for which U(T)5exp@2iTHi# so that we may write
exp@2bHi#5exp@2iHi(T2ib2T)#5U(T2ib,T). Inserting
the identityU21(T)U(T)51, commutingU21(T) with r i ,
and using the composition property of the evolution operator,
we get

^O&~ t !5Tr@U~T2 ib,t !OU~ t,T!#/Tr@U~T2 ib,T!#
~2.6!

5Tr@U~T2 ib,T!U~T,T8!U~T8,t !

3OU~ t,T!#/Tr@U~T2 ib,T!#, ~2.7!

where we have introduced an arbitrary large positive time
T8. The numerator now represents the process of evolving
from T,0 to t, inserting the operatorO, and evolving to a
large positive timeT8, backwards fromT8 to T and down the
imaginary axis toT2 ib i . Eventually one takesT→2`,
T8→`. This method can be easily generalized to obtain real-
time correlation functions of a string of operators.

As usual, an operator insertion may be achieved by intro-
ducing sources into the time evolution operators and taking a
functional derivative with respect to the source. Thus we are
led to the following generating functional, in terms of time
evolution operators in the presence of sources:

Z@J1,J2,Jb#5Tr@U~T2 ib,T;Jb!U~T,T8;J2!

3U~T8,T;J1!#, ~2.8!

with T→2`, T8→`. One can obtain a path integral repre-
sentation for the generating functional@16–21# by inserting a
complete set of field eigenstates between the time evolution
operators,

Z@J1,J2,Jb#5E DSDS1DS2E DS1DS2DSb

3expS i E
T

T8
$L@S1,J1#2L@S2,J2#% D

3expS i E
T

T2 ib

L@Sb,Jb# D . ~2.9!

The above expression for the generating functional is a path
integral defined on a complex time contour. Since this path
integral actually represents a trace, the field operators at the
boundary points have to satisfy the conditions

S1~T!5Sb~T2 ib!5S,

S1~T8!5S2~T8!5S2 ,

S2~T!5Sb~T!5S1 . ~2.10!

The superscripts (1) and (2) refer to the forward and back-
ward parts of the time contour, while the superscript (b)
refers to the imaginary-time part of the contour. In the limit
T→2` it can be shown that cross correlations between
fields defined at real times and those defined on the
imaginary-time contour vanish due to theRiemann-Lebesgue
lemma. The fact that the density matrix is thermal fort,0
shows up in the boundary condition on the fields and the
Green’s functions. Thus the generating functional for calcu-
lating real-timecorrelation functions simplifies to

Z@J1,J2#5expH i E
T

T8
dt@Lint~2 id/dJ1!2Lint~ id/dJ2!#J

3expH i

2ET

T8
dt1E

T

T8
dt2Ja~ t1!Jb~ t2!

3Gab~ t1 ,t2!J , ~2.11!

with a,b51,2. We will now proceed to a calculation of the
nonequilibrium Green’s functions in de Sitter spacetime.

B. Nonequilibrium Green’s functions in de Sitter spacetime

To obtain the nonequilibrium Green’s functions we focus
on a free scalar fieldS in a FRW background metric@20#.
The generating functional of nonequilibrium Green’s func-
tions is written in terms of a path integral along the closed
time path~CTP!, Eq. ~2.11!, with a free Lagrangian density
L0(S6) given by

L0~S6!5 1
2 @a3~ t !Ṡ122a~ t !~¹W S1!2

2a3~ t !~M21jR!S12#2@1→2#, ~2.12!

whereR56(ä/a1ȧ2/a2).
We prepare the system such that it is thermal fort,0

with temperature 1/b. At t50, we switch the interactions on
and follow the resulting time evolution of the coupled fields.
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As seen in the previous section, the CTP formulation of non-
equilibrium field theory imposes certain boundary conditions
on the fields~2.10!.

Rewriting the Lagrangian as a quadratic form inS6 we
obtain the Green’s function equation

F ]2

]t2 13
ȧ

a

]

]t
2

¹2

a2 1~M21jR!GG~x,t;x8,t8!

5
d4~x2x8!

a3/2~ t !a3/2~ t8!
. ~2.13!

We use spatial translational invariance to define

Gk~ t,t8!5E d3xeikW•xWG~x,t;0,t8!, ~2.14!

so that the spatial Fourier transform of the Green’s function
obeys

F d2

dt2
13

ȧ

a

d

dt
1

k2

a2 1~M21jR!GGk~ t,t8!5
d~ t2t8!

a3/2~ t !a3/2~ t8!
.

~2.15!

The solution can be cast in a more familiar form by writing

Gk~ t,t8!5
f k~ t,t8!

a3/2~ t !a3/2~ t8!
, ~2.16!

so that the functionf k(t,t8) obeys the second-order differen-
tial equation

F d2

dt2
2S 3ä

2a
1

3ȧ2

4a2D 1
k2

a2 1~M21jR!G f k~ t,t8!5d~ t2t8!.

~2.17!

The general solution of this equation is of the form

f k~ t,t8!5 f k
.~ t,t8!Q~ t2t8!1 f k

,~ t,t8!Q~ t82t !, ~2.18!

wheref k
. and f k

, are solutions to the homogeneous equation
obeying the appropriate boundary conditions. They can be
expanded in terms of normal mode solutions to the homoge-
neous equation:

f k
.~ t,t8!5A.Uk~ t !Uk* ~ t8!1B.Uk~ t8!Uk* ~ t !,

f k
,~ t,t8!5A,Uk~ t !Uk* ~ t8!1B,Uk~ t8!Uk* ~ t !. ~2.19!

The choice of mode functions can be made unique for a
given j andM by requiring that

lim
k→`

Uk~ t !;e2 ikt

or

lim
H→0

Uk~ t !;e2 ivkt,

vk5Ak21M2. ~2.20!

HereH[a( ṫ)/a(t) is the Hubble parameter. Stated simply,
these conditions require that we must necessarily recover the

rules of field theory in Minkowski space when we take the
flat-space or the short-distance (k→`) limits. These bound-
ary conditions are similar to those invoked by Bunch and
Davies @22,23#. For the de Sitter space case, with
a(t)5exp(Ht), the mode functions are the Bessel functions
@23#, J6n(ke2Ht/H), providedn is not an integer, where

n5 iAM2

H2 112j2
9

4
. ~2.21!

For the values ofj and M for which n becomes real these
Bessel functions become manifestly real and the solutions
that fulfill the boundary conditions~2.20! are obtained as
linear combinations of these functions. In order to obtain the
full Green’s functions the constantsA.,B.,A,,B, Eq.
~2.19!, are determined by implementing the boundary condi-
tions @18–20#

f k
.~ t,t !5 f k

,~ t,t !,

ḟ k
.~ t,t !2 ḟ k

,~ t,t !51,

f k
.~T2 ib,t !5 f k

,~T,t !. ~2.22!

The first two conditions are obtained from the continuity of
the Green’s function and the jump discontinuity in its first
derivative. The third boundary condition is just a conse-
quence of the periodicity of the fields in imaginary time,
which followed from the assumption that the density matrix
is that of a system in thermal equilibrium at timeT,0. Al-
though we allowed for a thermal initial density matrix, we
will focus only on the zero temperature case, since during the
de Sitter era the temperature is rapidly redshifted to zero.
The most general case for the Green’s function can be found
in @20#. Implementing these conditions for the case of imagi-
nary n and zero temperature (b→`) we find

Gk
.~ t,t8!5

2pJn~z!J2n~z8!

2Hsin~pn!e3Ht/2e3Ht8/2
,

Gk
,~ t,t8!5

2pJ2n~z!Jn~z8!

2Hsin~pn!e3Ht/2e3Ht8/2
, ~2.23!

z5k
e2Ht

H
, z85k

e2Ht8

H
, ~2.24!

andn is given by Eq.~2.21!.
In the case of interest for this article, that of a massless

scalar field either conformally or minimally coupled to the
curvature, the Bessel functions in the above expressions must
be replaced by the corresponding Hankel functions. These
two cases correspond to

~ i! M50,j50⇒Uk~ t !5H ~1!
3/2~ke2Ht/H !, ~2.25!

~ ii ! M50,j5 1
6 ⇒Uk~ t !5H ~1!

1/2~ke2Ht/H !. ~2.26!

Finally, the Green’s functions for these two cases of a mass-
less scalar field, in terms ofz andz8, are
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Gk
.~ t,t8!5

2 ipHn
~1!~z!Hn

~2!~z8!

4He3Ht/2e3Ht8/2
, ~2.27!

Gk
,~ t,t8!5

2 ipHn
~2!~z!Hn

~1!~z8!

4He3Ht/2e3Ht8/2
, ~2.28!

with n53/2 for minimally coupled orn51/2 for confor-
mally coupled. From the expressions forGk

. andGk
, we can

compute the required two-point functions

i ^TS1~rW,t !S1~rW8,t8!&5G.~rW,t;rW8,t8!Q~ t2t8!

1G,~rW,t;rW8,t8!Q~ t82t !,

~2.29!

i ^TS2~rW,t !S2~rW8,t8!&5G.~rW,t;rW8,t8!Q~ t82t !

1G,~rW,t;rW8,t8!Q~ t2t8!,

~2.30!

2 i ^TS1~2 !~rW,t !S2~1 !~rW8,t8!&5G,~. !~rW,t;rW8,t8!.
~2.31!

In our subsequent analysis we will always work in the
b→` limit ~zero initial temperature! unless stated other-
wise.

III. MODEL AND THE METHOD

We now turn to the main topic of this work, the study of
an inflaton, described by a fieldF coupled to a massless
scalar fields with the nonequilibrium Lagrangian density

L5 1
2 @e3HtḞ122eHt~¹W F1!22e3Ht~mF

2 112jFH2!F12

1e3Htṡ122eHt~¹W s1!2212e3HtjsH2s12#

1 1
2 e3Ht@gF1s121h~ t !F1# ~3.1!

2@1→2#. ~3.2!

We have introduced a ‘‘magnetic’’~source! termh(t) for
two reasons.

~1! Such a term will be generated by renormalization from
tadpole graphs; therefore, we introduceh(t) as a counterterm
to cancel these contributions,

~2! h(t) will serve as a Lagrange multiplier to define our
problem as an initial condition problem. That is, we will fix
h(t) such that the divergences from tadpole graphs contrib-
uting an inhomogeneous term to the equation of motion are
canceled and the initial value of the inflaton field is fixed for
t,0. Such a procedure will be implemented below when we
obtain the equation of motion for the expectation value of the
inflaton.

Clearly, in de Sitter spacetime the coupling to the curva-
ture only serves to redefine the mass of the fields. For the
inflaton, we just absorb this term in a redefinition of the
mass, and setjF50 without any loss of generality.

To study the time evolution of the expectation value of
the inflaton field we invoke the tadpole method~see Ref.@19#

and references therein! to obtain its equation of motion. This
is implemented by first shiftingF by its expectation value in
the nonequilibrium state as follows:

F6~xW ,t !5f~ t !1c6~xW ,t !, f~ t !5^F6~xW ,t !&, ~3.3!

and then enforcing the tadpole condition which is simply a
consequence of Eq.~3.3!,

^c6~xW ,t !&50, ~3.4!

f(t) being the spatially homogeneous inflaton zero mode
that drives inflation. We also require that^s6(xW ,t)&50 to all
orders, which means that thes field does not acquire an
expectation value. After the shift of the inflaton field~3.3!,
the nonequilibrium action reads

S5E d3xdtHL0~c1!1L0~s1!1c1e3Ht@2f̈23Hḟ

2mF
2 f#1e3Ht

g

2
f~s1!21e3Ht

g

2
c1~s1!21e3Ht

h

2
c1

2~1→2 !J , ~3.5!

whereL0 represents the free theories for thec ands fields.
The tadpole condition~3.4! is implemented by calculating
the expectation value of the field operatorc6 by inserting it
into the nonequilibrium path integral and expanding in pow-
ers of g about the free theory and setting the resulting ex-
pression to zero. In particular we evaluate the following ex-
pression to orderg2 in perturbation theory:

^c1~xW ,t !&5E D@c6#D@s6#ei ~S0[ 1] 2S0[ 2] !c1~xW ,t !

3expH E d3x8dt8Fe3Ht8@2f̈23Hḟ

2mF
2 f#c11e3Ht8

g

2
f~s1!2

1e3Ht8
g

2
c1~s1!21e3Ht8

h

2
c1

2~1→2 !G J 50. ~3.6!

The equation of motion is obtained by independently setting
the coefficients of̂ c1(x)c1(x8)& and ^c1(x)c2(x8)& to
zero. This is justified because these two correlators are inde-
pendent functions. It is easily seen that the condition
^c2&50 yields exactly the same equations.

This procedure gives rise to an equation of motion for the
zero modef(t) and is in fact equivalent to extremizing the
one-loop effective action which incorporates the equilibrium
boundary conditions att,0.

It is worth noting that this scheme, referred to as theam-
plitude expansion, also assumes that the amplitude of the
zero modef(t) is ‘‘small’’ so that terms such asgf(t)s2

may be treated perturbatively.
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To one-loop order@O(g2)# we obtain the following form
of the equation of motion:

f̈13Hḟ1mF
2 f2

g

2
^s2&~ t !2 i

g2

4p2E
2`

t

dtK~ t,t!f~t!

2
h~ t !

2
50, ~3.7!

K~ t,t!5E
0

`

k2dk@Gk
.2~t,t !2Gk

,2~t,t !#e3Ht. ~3.8!

Spatial translational invariance guarantees that^s2& is only
time dependent. We can combine thef-independent contri-
butions to the equation of motion into a single function

h̃~ t !5
h~ t !

2
1

g

2
^s2&~ t !. ~3.9!

If the s is conformally coupled to the curvature,^s2& repre-
sents a quadratically divergent piece which must be sub-
tracted away by a renormalization of the ‘‘magnetic field’’
h. On the other hand, ifs is minimally coupled, one obtains
the well-known linearly growing contribution@3# after sub-
tracting away the divergence leading to a modified inhomo-
geneous term in the zero mode equation of motion:

h̃~ t !5
gH3t

8p2 1
h~ t !

2
. ~3.10!

We will, however, show explicitly in the next section that
this term doesnot enter in the calculation of the perturbative
‘‘decay rate’’ in this theory.

We useh̃(t) as a Lagrange multiplier to enforce the con-
straint that fort,0, f(t)5f i , ḟ(t)50 is a solution of the
effective equation of motion for the expectation value. In this
manner, we define an initial value problem with Cauchy data
on a spacelike surface for the dynamics in which the expec-
tation value of the inflaton field is ‘‘released’’ from some
initial value at timet50. For t.0 the equation of motion
becomes

f̈~ t !13Hḟ~ t !1mF
2 f~ t !2 i

g2

4p2E
0

t

dtK~ t,t!f~t!5 h̃~ t !,

~3.11!

f~ t50!5f i , ḟ~ t50!50, ~3.12!

with the kernel given by Eq.~3.8!.
We now proceed to study the solution to this equation of

motion in the cases of conformal and minimal coupling.

A. Conformally coupled masslesss

For a conformally coupled massless scalar, the Green’s
functions are given by Eqs.~2.27! and~2.28! with the Hankel
functions as in Eq.~2.26!.

The kernel has a particularly simple form in this case:

K~ t,t!52 i E
0

`

dk
sin@2k~e2Ht2e2Ht!/H#

2e2Hte2Ht . ~3.13!

The k integral can be done by introducing a small conver-
gence factor as follows:

E
0

`

sin~ak!dk5 lim
e→0

ImF E
0

`

ei ~a1 i e!kdkG5 lim
e→0

a

a21e2 .

~3.14!

Implementing the above prescription and absorbing a posi-
tive finite piece intoe yields

K~ t,t!52 i
H

4

@eH~ t2t!21#

~eH~ t2t!!@~eH~ t2t!21!21e2#
. ~3.15!

The equation of motion then becomes

f̈13Hḟ1mF
2 f

2
g2H

16p2E
0

t

dt
@eH~ t2t!21#

~eH~ t2t!!@~eH~ t2t!21!21e2#
f~t!

5 h̃~ t !. ~3.16!

A remarkable point to note is that although time transla-
tion is not a symmetry in de Sitter spacetime, nonetheless the
term inside the integral is in the form of a convolution, and
the equation, being linear inf, can be solved via Laplace
transforms. This is presumably due to the O~4,1! symmetry
of de Sitter space.

Notice thate serves as a short-distance regulator, and the
e→0 limit cannot be taken inside the integral because doing
so results in a logarithmic short-distance singularity in the
equation of motion. This divergence is isolated by perform-
ing an integration by parts, keeping thee dependence, result-
ing in the equation of motion

f̈~ t !13Hḟ~ t !1mF
2 f~ t !2

g2H

16p2H 2
f~ t !

H
lne2

f~ t !

H

1
f i

H
@ ln~12e2Ht!1e2Ht#1E dt

ḟ~t!

H
j~ t2t!J

5 h̃~ t !, ~3.17!

j~ t2t!5@ ln~12e2H~ t2t!!1e2H~ t2t!#. ~3.18!

This expression makes it clear that the divergence can be
absorbed in a mass renormalization,

mF,R
2 5mF

2 1
g2

16p2 ~ lne11!. ~3.19!

In what follows we will refer tomF as the renormalized
mass to avoid cluttering the notation.

Taking the Laplace transform of the equations of motion,
defining

f̃~s!5E
0

`

e2stf~ t !dt, ~3.20!

j̃ ~s!5E
0

`

e2stj~ t !dt, ~3.21!
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h̃~s!5E
0

`

e2sth̃~ t !dt, ~3.22!

and using the initial conditionḟ(t50)50, we find

s2f̃~s!2sf i13H~sf̃~s!2f i !1mF,R
2 f̃~s!

1
g2

16p2 S̃~s!f̃~s!5 h̃~s!, ~3.23!

S̃~s!52sE
0

`

dte2st@ ln~12e2Ht!1e2Ht#52sj̃ ~s!.

~3.24!

B. Gibbons-Hawking temperature

It is well known that fields in de Sitter space can be
thought of, in some contexts, as being embedded in a thermal
bath at a temperatureH/2p, the so-called Gibbons-Hawking
temperature@24#. How do we see these effects in the context
of our calculation?

First we notice that the Green’s functions~2.23!, ~2.24!,
~2.27!, and ~2.28! and the kernels~3.15! and ~3.18! in Eq.
~3.17! obey the periodicity condition, inimaginary time,

K~ t2t!5KS t2t1
2p i

H D . ~3.25!

These kernels can be analytically continued to imaginary
time t2t52 ih and expanded in a discrete series in terms
of the Matsubara frequencies

vn5
2pn

bH
,

1

bH
5TH5

H

2p
. ~3.26!

TH is recognized as the Gibbons-Hawking temperature in
this spacetime@23#. Then as a function of imaginary time Eq.
~3.18! can be written as

j~h!5
1

bH
(

n52`

`

eivnhJ~vn!, ~3.27!

J~vn!5E
0

bH
dhe2 ivnhj~h!. ~3.28!

We find

J~vn!52bHS H

vn
2dn,1D , n>1. ~3.29!

From this expression,S̃(s) can be obtained at once:

S̃~s!52sj̃ ~s!5(
1

`

HS 1

nH
2

1

s1nHD2
s

s1H
. ~3.30!

This Laplace transform has simple poles at minus the Mat-
subara frequencies corresponding to the Hawking tempera-
ture.

Finally we obtain the solution for the Laplace transform

f̃~s!5
f i~s13H !1 h̃~s!

s213Hs1mF
2 1~g2/16p2! S̃~s!

. ~3.31!

This expression clearly shows that the information on the
‘‘decay rate’’ is obtained from the imaginary part of the
poles of the denominator and that the ‘‘effective magnetic
field’’ h̃(t) whose Laplace transformh̃(s) is explicit in Eq.
~3.31! is not relevant to understand this ‘‘decay rate.’’ In fact
as we will show shortly, the ‘‘decay rate’’ is determined only
by the ‘‘self-energy’’S(s). Since our goal is to understand
the ‘‘decay rate,’’ we seth̃(s)50 without loss of generality.

The denominator in the above expression is the inverse
propagator for the massive scalar, evaluated at zero spatial

momentum andS̃ (s) is the one-loop correction to the self-

energy. However, from Eq.~3.30! we see thatS̃ (s) is ana-
lytic in the s plane with simple poles ats52nH, with n an
integerÞ1. This is a surprising result, because we expect
that, as in Minkowski space, there would be a cut in thes
plane, which since the particles in the loop are massless
would run along the entire imaginary axis. Obviously, this is
not what happens—the analytic structure isvery differentin
de Sitter spacetime from that in Minkowski spacetime. In
fact we find thatf̃(s) has two simple poles, perturbed from
their original positions byO(g2) corrections. We will under-
stand this result by taking the flat-space limit in a later sec-
tion.

The real-time dynamics of the zero mode of the inflaton is
now found by inverting the Laplace transform by complex
integration:

f~ t !5E
c2 i`

c1 i`

estf̃~s!
ds

2p i
, ~3.32!

where the Bromwich contour is taken to the right of all the
singularities.

The poles off̃(s) can be obtained by setting,

s213Hs1mF
2 1

g2

16p2S̃ ~s!50. ~3.33!

We analyze the 4mF
2 .9H2 and 4mF

2 ,9H2 cases sepa-
rately. In the first case, with 4mF

2 .9H2, we have that in the
absence of interactions the inflaton undergoes damped oscil-
lations redshifted by the expansion. At zeroth order the poles
~3.33! are at

s0
65

23H

2
6 i

A4mF
2 29H2

2
. ~3.34!

We absorb the real part of the self-energyon shell in a
further ~finite! redefinition of the renormalized mass.

Since S̃(s) is a meromorphic function ofs, Re@ S̃ (s0
1)#5

Re@ S̃ (s0
2)#. Then to this order the ‘‘pole mass’’ is given by

mF*
25mF

2 1
g2Re@S~s0

6!#

16p2 . ~3.35!

Obviously this mass is independent of the renormalization
scheme. We also define the subtracted self-energy
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S̃* (s)5 S̃(s)2Re@ S̃ (s0
1)#, and at this stage it is convenient

to introduce the ‘‘effective mass’’

MF
2 5mF*

22
9H2

4
, ~3.36!

in terms of which, to orderg2, we find

s65
23H

2
6 iAMF

2 1
g2

16p2 S̃ * ~s1!

5
23H

2
6 iM F6 i

g2ImS̃~s0
6!

32p2MF
1O~g4!. ~3.37!

The Bromwich countour for the inverse Laplace trans-
form can now be deformed by wrapping around the imagi-
nary axis and picking up the poles@19#. The resulting expres-
sion has the Breit-Wigner form of a sharp resonance centered
at the ‘‘pole mass’’ that is very narrow in the weak coupling
limit, leading to the time evolution of the inflaton given by

f~ t !5Zf ie
23Ht/2e2Gt/2cos~MFt1a!, ~3.38!

where

Z2511
9H2

4MF
2 2

2g2B8

32p2MF
2

12g2HB

128p2MF
3 2

18g2H2B8

128p2MF
3 ,

a5arctanF2
3H

2MF
1

g2

16p2S A8

2MF
1

9H2A8

8MF
3 2

18H2B

16MF
4 D G ,

B5Im@ S̃ * ~s!#s523H/21 iM F
,

A85ReF ] S̃* ~s!

]s
G

s523H/21 iM F

,

B85ImF ] S̃ * ~s!

]s
G

s523H/21 iM F

. ~3.39!

The most interesting of these quantities is the damping rate,
given by

G5
g2ImS̃* ~s0

1!

16p2MF
. ~3.40!

The imaginary part of the self-energy in the above expres-
sion can be evaluated using standard sum formulas~these
sums also appear finite temperature field theory@25,26#! and
is found to be

G5

g2tanhS bHAmF*
229H2/4

2
D

32pAmF*
229H2/4

5
g2tanh~bHMF/2!

32pMF
.

~3.41!

This expression forG is a monotonically increasing function
of H. WhenH50, it matches with the flat-space decay rate

GMinkowski5
g2

32pmF
. ~3.42!

We thus obtain the result that the inflaton decay proceeds
more rapidly in a de Sitter background than in Minkowski
spacetime.

The rate~3.41! can be written in a more illuminating man-
ner as

G5
g2coth~bHv0/2!

32pMF
5

g2@112nb~v0!#

32pMF
, ~3.43!

v052 is0
1 , nb~v0!5

1

ebHv021
. ~3.44!

This is a remarkable result—the decay rate is almost the
same as that in Minkowski space, but in a thermal bath at the
Hawking temperature@19,27#. Habib @15# has also found an
intriguing relationship with the Hawking temperature in the
probability distribution functional in his studies of stochastic
inflation.

If we now look at the 4mF
2 ,9H2 case, we see that the

inflaton ceases to propagate; i.e., its Compton wavelength
approaches the horizon size and there is no oscillatory be-
havior in the classical evolution of the zero mode:

f~ t !5S 9H2

4mF
2 21D 21/2

f ie
23Ht/2sinh~ uMFut1b!,

tanhb5
2uMFu

3H
. ~3.45!

The one-loop contribution is the same as in the previous case
but now the poles off̃(s) lie on the real axis:

s0
65

23H

2
6

A9H224mF
2

2
,

s65
23H

2
6
A9H224mF

2 24~g2/16p2! S̃ ~s6!

2
.

~3.46!

We define

S~s0
6!5C6D ~3.47!

and absorbC into a finite mass renormalization
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mF*
25mF

2 1
g2C

16p2 . ~3.48!

Inverting the transform we obtain

f~ t !5Zf ie
23Ht/2e2Gt/2sinhS K

2
t1b D , ~3.49!

with Z being the~finite! wave function renormalization, i.e.,
the residue at the poles, and

K5A9H224mF*
2, ~3.50!

G5
g2tan@~p/2!A92~4mF*

2/H2!]

16pA9H224mF*
2

for
mF*

A2
.H.

2mF*

3
.

~3.51!

We also see that the numerator of the damping rate in Eq.
~3.46! diverges atH5mF* /A2.2mF* /3, which indicates the
breakdown of perturbation theory.

The decay rate may again be written in the form that
makes explicit the effect of the Hawking temperature and the
‘‘stimulated decay’’ with the Bose-Einstein distribution
function at the Hawking temperature:

G5
g2@112nb~v0!#

32pA9

4
H22mF*

2

, v052 is0
1 . ~3.52!

We can also study how the ‘‘decay’’ of the inflaton into
lighter scalars modifies the ‘‘slow-roll’’ evolution such as
would occur in new inflationary models. Since we are as-
suming a small field amplitude for our pertubation theory to
make sense, we cannot treat chaotic inflationary scenarios in
the same way.

For this we now setmF
2 ,0 and study the situation in

which the inflaton is ‘‘rolling’’ from the top of the potential
hill, during the stage of quasiexponential expansion. In this
situation the amplitude expansion is valid when the zero
mode is close to the origin and at early times.

In this case it is convenient to writemF
2 52m2. Now the

poles are on the real axis at the positions

s65
23H

2
6AS 3H

2 D 2

1m22
g2

16p2S̃ ~s6! ~3.53!

's0
67

g2

16p2

S̃ ~s6!

A~3H/2!21m2
, ~3.54!

s0
65

23H

2
6AS 3H

2 D 2

1m2. ~3.55!

For g50 the pole that is on the positive real axis,s0
1 , is

the one that dominates the evolution of the inflaton down the
potential hill ~the growing mode!. Sinces0

1.0 we find that

S̃ ~s0
1!5(

2

` s0
1

n~s0
11nH!

.0, ~3.56!

and we conclude that, to this order, the pole on the positive
real axis is shifted towards the origin. Therefore the rate of
growth of the growing mode is diminished by the decay into
lighter scalars and the ‘‘rolling’’ is slowed down. This is
physically reasonable, since the ‘‘decay’’ results in a transfer
of energy from the inflaton to the massless scalars and the
rolling of the field down the potential hill is therefore slowed
down by this decay process.

C. Minimally coupled masslesss

Now we turn to thejs50 case. The Green’s functions are
given by Eqs.~2.27! and ~2.28! with the Hankel functions
~2.25!. There are many features in common with the previous
case: The kernel is translationally invariant in time and peri-
odic in imaginary time with periodicitybH . Thus it can
again be expanded in terms of Matsubara frequencies and the
Laplace transform carried out in a straightforward manner.
However, for minimal coupling we find a new logarithmic
infrared divergence in the kernel along with the ultraviolet
logarithmic singularity of the conformally coupled case.
Therefore, thek integral in the kernel must be performed
with an infrared cutoffm. The logarithmic ultraviolet diver-
gence is handled in as before, and after this subtraction we
find the self-energy to be

~3.57!
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We notice that the self-energy for the conformally coupled
case is contained in the above expression. It is also interest-
ing to note that the imaginary part of the self-energy, on
shell, receives no contribution from the infrared-divergent
piece, which only contributes to a further renormalization of
the ‘‘pole mass’’ mF*

2 . We now focus on the case
4mF

2 29H2.0.
The expression for the decay rate is obtained by evaluat-

ing the imaginary part of the self-energy at the poles0
1 @see

Eq. ~3.40!# and found to be

~3.58!

with Eq. ~3.44!. The qualitative behavior of the decay rate as
a function ofH is similar to that in the conformally coupled
case. We see thatG(js50).G(js51/6).G(Minkowski).

D. Analytic structure of the self-energy

As mentioned earlier, the analytic structure of the self-
energy in the de Sitter background is drastically different

from what one would expect in flat spacetime. We find that
the self-energy for the case whereF is unstable doesnot
display cuts in thes plane. Though the reason for this strange
behavior is not clear at present, we can try to understand it
by taking the flat-space limit, i.e., theH→0 limit. In this
limit, it suffices to look atS(s) for js51/6. It is easily
shown that the additional terms in Eq.~3.25! are vanishingly
small in theH→0 limit. We thus obtain

lim
H→0

S~s!5 lim
H→0

F(
1

`

HS 1

nH
2

1

s1nHD2
s

s1HG
5E

H

`S 1

x
2

1

s1xDdx21 ~3.59!

5 ln~s/m!1 ln~m/H !21, ~3.60!

wherem is a mass scale that serves as an infrared regulator.
Hence,

f̃~s!5
sf i

s21@mF
2 1~g2/16p2!ln~m/H !21#1~g2/16p2!ln~s/m!

. ~3.61!

The above expression has a cut which can be chosen to
run from 0 to2`, so that it is to the left of the Bromwich
contour. The discrete singularities of the self-energy at
s52nH have merged into a continuum in the smallH limit
to give a cut along the negative real axis in thes plane. In
addition, there are two simple poles in the first Riemann
sheet at6 imF1O(g2). Inverting the transform yields

f~ t !5Zf ie
2Gt/2cos~mFt1a!2f i

g2

16p2E
0

`

dv

3
ve2vt

@v21mF
2 1~g2/16p2!ln~v/m!#21~g2/16p!2 .

~3.62!

We see here a Breit-Wigner form plus contributions from
across the cut.

A flat-space analysis withmsÞ0, carried out in a previ-
ous work@19#, reveals a very different picture. In particular,
we find two cuts extending froms562ims to 6 i` and two
simple poles which move off into the second Riemann sheet
above the two-particle threshold whenmF.2ms . However,
upon inverting the transform and takingms→0, we obtain

f~ t !5f i

g2

16p2E
0

`

dv

3
vcosvt

@v22mF
2 2~g2/16p2!ln~v/m!#21~g2/32p!2 .

~3.63!

A deformation of the contour of integration shows that Eqs.
~3.62! and ~3.63! are in fact identical and hence we have
consistency~see the Appendix!. Although the limitsH→0
andms→0 do not commute insofar as the analytic structure
in thes plane is concerned, the time evolution obtained from
the inverse Laplace transform is unambiguously the same.

IV. O „2… MODEL AND GOLDSTONE BOSONS

While the inflaton is typically taken to be a singlet of any
gauge or global symmetry, there is no reason that it could not
transform nontrivially under a continuous global symmetry.
If this occurs and the symmetry is broken spontaneously, the
interesting possibility arises of dissipation of energy into
Goldstone bosons. Even if the inflaton is a singlet, one could
ask about the evolution of fields that belong to multiplets of
a global continuous symmetry, during inflation. Our primary
motivation, however, is to study dissipative processes of the
inflaton via the decay into Goldstone bosons in de Sitter
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spacetime as new nonequilibrium mechanisms.
The effect may be studied in the O~2! linear s model, in

which the inflaton is part of the O~2! doublet, with Lagrang-
ian density

L5
1

2
@e3HtḞ22eHt~¹W F!21e3Htṗ22eHt~¹W p!2#

1
1

2
e3Ht~m2212jH2!~F21p2!2e3Ht

l

4!
~F21p2!2

1h~ t !F. ~4.1!

Assuming thatm2.12jH2, in the symmetry broken phase
the fieldF acquires a vacuum expectation value~VEV!

^F&5A6~m2212jH2!

l
, ~4.2!

and the Goldstone bosons are left with no mass terms, and
hence are massless, minimally coupled fields in de Sitter
spacetime@28#; this is a fairly well-known result.

We now write

F~x,t !5A6~m2212jH2!

l
1f~ t !1c~x,t ! ~4.3!

and use the tadpole method to impose

^c~x,t !&50,

^p~x,t !&50. ~4.4!

Using Eq.~4.3! it is easy to see that couplings of the form
cp2 are automatically induced in the Lagrangian. Carrying
out the same analysis as before and keeping only terms up to
first order inf(t), we find the equation of motion

f̈13Hḟ1m2~ t !f2 i
3lm2

2p2 E
0

t

dtFKf~ t,t!

1
1

9
Kp~ t,t!Gf~t!5 h̃~ t !, ~4.5!

where

K~ t,t!5E
0

`

k2dk@Gk
.2~t,t !2Gk

,2~t,t !#e3Ht.

Herem2(t) is given by the tree-level mass term 2m2 plus
contributions proportional to the tadpole^p2&(t). Since the
Goldstone boson is always minimally coupled to the curva-
ture, ^p2&(t) will grow linearly with time and result in a
nontrivial time dependence for the mass of the massive mode
f. In this case the methods of the earlier section are not
applicable, and the definition of a ‘‘decay rate’’ will be
plagued by time-dependent ambiguities.

Such a time dependence will, however, be absent in a de
Sitter space that exists forever, in which case the contribu-
tion from the tadpole will simply be a divergence that is
renormalized through a redefinition of the mass. In such a

situation, the contribution to the decay rate from the massive
mode would be subdominant due to the kinematics and the
Goldstone modes would provide the dominant contribution
to the decay rate. Thus, neglectingKf(t,t) the equation of
motion has exactly the same form as Eq.~3.5!. The subse-
quent analysis and results would be identical to those ob-
tained above in the section on minimally coupled fields.

V. LANGEVIN EQUATION

Our results allow us to make contact with the issue of
decoherence and the stochastic description of inflationary
cosmology@12–15#.

Decoherence is a fundamental aspect of dissipational dy-
namics and in the description of nonequilibrium processes in
the early universe@13–15#. The relationship between fluc-
tuation and dissipation as well as a stochastic approach to the
dynamics of inflation can be explored by means of the
Langevin equation.

This section is devoted to obtaining the corresponding
Langevin equation for the nonequilibrium expectation value
of the inflaton field~zero mode! in the one-loop approxima-
tion within the model addressed in this article.

The first step in deriving a Langevin equation is to deter-
mine the ‘‘system’’ and ‘‘bath’’ variables, and subsequently
integrate out the ‘‘bath’’ variables to obtain an influence
functional for the ‘‘system’’ degrees of freedom@13–15#.

We first separate out the expectation value and impose the
tadpole conditions as follows:

F65f61c6, ^F6~xW ,t !&5f6~ t !, ^s6~xW ,t !&50.
~5.1!

The nonequilibrium effective action is defined in terms of the
Lagrangian given by Eq.~3.2! as

eiSeff5E Dc1Dc2Ds1Ds2ei $S0[f1] 2S0[f2] %

3ei $S0[c1] 2S0@c2] %ei $S0[s1] 2S0[s2] %

3ei $Sint[c
1,f1,s1] 2Sint[c

2,f2,s2] %,

whereS0 represents the action for free fields, andSint con-
tains all the remaining parts of the action. The effective ac-
tion for the zero modes is obtained by tracing out all the
degrees of freedom corresponding to the nonzero modes~or
the ‘‘bath’’ variables!, in a consistent loop expansion. It is
useful to introduce the center-of-mass@f(t)# and relative
@R(t)# coordinates as

f6~ t !5f~ t !6
R~ t !

2
. ~5.2!

Remembering the definitions of the Green’s functions in
Eqs.~2.29!–~2.31!, we expand exp(iSint) up to orderg2 and
consistently impose the tadpole condition to obtain the effec-
tive action per unit volume~because the expectation value is
taken to be translationally invariant!,
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Seff

V
5E dt@L0~f1!2L0~f2!#2

ig2

16p3E
2`

`

dtE
2`

t

dt8E d3ka3~ t !a3~ t8!R~ t !f~ t8!@Gk
.2~ t,t8!2Gk

,2~ t,t8!#

2
ig2

32p3E
2`

`

dtE
2`

`

dt8E d3ka3~ t !a3~ t8!R~ t !R~ t8!@Gk
.2~ t,t8!1Gk

,2~ t,t8!#1 h̃~ t !R~ t !1terms independent off.

~5.3!

As before h̃(t) results from subtracting the
f-independent contribution of the tadpole fromh(t).

Now, it is not difficult to verify that the nonequilibrium
Green’s functions given by Eqs.~2.16! and~2.19! and obey-
ing the boundary conditions~2.22! have the property,

Gk
.~ t,t8!5@Gk

,~ t,t8!#* . ~5.4!

This property guarantees that the second term in the effective
action is real, while the third term is pure imaginary. The
imaginary, nonlocal, acausal part of the effective action
gives a contribution to the path integral that may be written
in terms of a stochastic field as

expF2
1

2E dtE dt8R~ t !K~ t,t8!R~ t8!G
}E DjP@j#expF i E dtj~ t !R~ t !G ,

P@j#5expF2
1

2E dtE dt8j~ t !K21~ t,t8!j~ t8!G , ~5.5!

with

K~ t,t8!52
g2

16p3E d3ka3~ t !a3~ t8!@Gk
.2~ t,t8!

1Gk
,2~ t,t8!#. ~5.6!

The nonequilibrium path integral now becomes

Z}E DfDRDjP@j#expH i FSreff~f,R!1E dtj~ t !R~ t !G J ,

~5.7!

with Sreff@f,R# being the real part of the effective action and
with P@j# the Gaussian probability distribution for the sto-
chastic noise variable.

The Langevin equation is obtained via the saddle point
condition @13#

dSreff

dR~ t ! U
R50

5j~ t !, ~5.8!

leading to

f̈13Hḟ1mF
2 f1 i

g2

16p3E
2`

t

dt8E d3ka3~ t8!@Gk
.2~ t,t8!

2Gk
,2~ t,t8!#f~ t8!2 h̃~ t !5

j~ t !

a3~ t !
, ~5.9!

where the stochastic noise variablej(t) has Gaussian, but
colored correlations

^^j~ t !&&50, ^^j~ t !j~ t8!&&5K~ t,t8!. ~5.10!

The double brackets stand for averages with respect to the
Gaussian probability distributionP@j#. The noise is colored
and additive. Because of the properties of the Green’s func-
tions ~5.4!, the noise kernel~which contributes to the imagi-
nary part of the effective action! is simply thereal part of
Gk

.2(t,t8). The dissipative kernel~which gives rise to the
nonlocal term in the Langevin equation! on the other hand is
given by theimaginary partof Gk

.2(t,t8). Consequently, the
fluctuation-dissipation theoremis revealed in theHilbert
transformrelationship between the real and imaginary parts
of the analytic functionGk

.2(t,t8). The equation of motion
~3.11! is now recognized to result from Eq.~5.9! by taking
the average over the noise.

One could now obtain the corresponding Fokker-Planck
equation that describes the evolution of the probability dis-
tribution function forf @12,29#.

We must emphasize here that all the results discussed so
far in this section are independent of the specifics of the
FRW background spacetime, the masses of the fields, and the
temperature of the initial thermal state. The importance of
the Langevin equation resides at the fundamental level in
that it provides a direct link between fluctuation and dissipa-
tion including all the memory effects and multiplicative as-
pects of the noise correlation functions.

In particular in stochastic inflationary models it is typi-
cally assumed@12# that the noise term is Gaussian and white
~uncorrelated!. This simplified stochastic description, in
terms of Gaussian white noise, leads to a scale invariant
spectrum of scalar density perturbations@12#. Although this
description is rather compelling, within the approximations
made in our analysis we see that for as field with an arbi-
trary mass and arbitrary couplings to the curvature there is no
regime in which the correlations of the noise term~5.10! can
be described by a Markoviand function in time @13#. One
could speculate that some other couplings or higher-order
effects or, perhaps, some peculiar initial states could lead to
a Gaussian white noise, but then one concludes that Gaussian
white noise correlations are by no means a generic feature of
the microscopic field theory.

We can speculate that our result of Gaussian but corre-
lated noise could have implications for stochastic inflation.
In particular itmay lead to departures from a scale-invariant
~Harrison-Zel’dovich! spectrum of primordial scalar density
perturbations, which can now be calculated within a particu-
lar microscopic model using the nonequilibrium field-
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theoretical tools described in this work. Of course this re-
quires further and deeper study, which is beyond the scope of
this article.

VI. CONCLUSIONS AND FURTHER QUESTIONS

In this article we have studied the decay of inflatons into
massless scalars in de Sitter space. The motivation was to
understand the nonequilibrium mechanisms of inflaton relax-
ation during the stage of quasi-inflationary expansion in
early universe cosmology, in old, new, and stochastic infla-
tionary scenarios. Chaotic inflation models cannot be treated
within our approximation scheme since the field will typi-
cally start at values that are large enough so that the ampli-
tude expansion is not valid. Having recognized the inherent
difficulties in defining a decay rate in a time-dependent back-
ground, we have given a practical definition that requires
understanding the real-time evolution of the inflaton interact-
ing with lighter fields. This led us to a model in which an
inflaton interacts with massless scalars via a trilinear cou-
pling, allowing for both minimal and conformal coupling to
the curvature.

We obtained a decay rate at one loop order that displays a
remarkable property. With some minor modifications it can
be interpreted as the stimulated decay of the inflaton in a
thermal bathat the Hawking temperature. This decay rate is
larger than that of Minkowski space because of the Bose-
enhancement factors associated with the Hawking tempera-
ture. The decay rate of the minimally coupled case is larger
than that of the conformal case which in turn is larger than
the Minkowski rate. We have shown explicitly that in the
case of new inflation, the dissipation of the inflaton energy
associated with the decay into conformally coupled massless
scalars slows down further the rolling of the inflaton down
the potential hill. We have also studied decay into Goldstone
bosons.

To establish contact with the stochastic inflationary sce-
nario, we derived the Langevin equation for the coarse-
grained expectation value of the inflaton field to one-loop
order. We find that this stochastic equation has a Gaussian
but correlated~colored! noise. The two-point correlation
function of the noise and the dissipative kernel fulfill a gen-
eralized fluctuation-dissipation relation.

There are several potentially relevant implications of our
results for old, new, and stochastic inflation. In the case of
old inflation we see that dissipative processes in the meta-
stable maximum can contribute substantially to the ‘‘equili-
bration’’ of the inflaton oscillations, and more so because of
the enhanced stimulated decay for a large Hubble constant.
In the case of new inflation, we have seen that these dissipa-
tive effects help slow the rolling of the inflaton field down
the potential hill, possibly extending the stage of exponential
expansion.

Within the context of stochastic inflation, our results point
to the possibility of incorporating deviations from a scale-
invariant spectrum of primordial scalar density perturbations
by the noise correlations, which manifest the underlying mi-
croscopic correlations of the field theory. This is a possibility
that is worth exploring further.

Our results also point to further interesting questions.
~1! Is it possible to understand at a more fundamental

level the connection between the decay rate and the Hawking
temperature of a bathin equilibrium? In particular, is this
connection maintained at higher orders?

~2! Is it possible to relate the ‘‘decay rate’’ to the rate of
particle production via the interaction? Such a relation in
Minkowski spacetime is a consequence of the existence of a
spectral representation for the self-energy but such a repre-
sentation is not available in a time-dependent background.

Answers to these questions will undoubtedly offer a much
needed deeper understanding of nonequilibrium processes in
inflationary cosmology.
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APPENDIX

In this appendix, we show explicitly that Eqs.~3.62! and
~3.63! are in fact identical expressions. The behavior of
f(t) in Minkowski @given by Eq.~3.57!# was obtained in
Ref. @19# where ms was allowed to have nonzero values.
Now, the results from this reference must obviously coincide
with the flat-space limits (H→0) derived in this paper. To
see this, consider Eq.~3.63!:

f~ t !5f i

g2

16p2E
0

`

dv

3
vcosvt

@v22mF
2 2~g2/16p2!ln~v/m!#21~g2/32p!2

5
f i

p
ReF E

0

`

2 idv~veivt!

3S 1

v22mF
2 2~g2/16p2!ln~v/m!2 ig2/32p

2
1

v22mF
2 2~g2/16p2!ln~v/m!1 ig2/32p D G .

The branch cut due to the logarithm in the denominator runs
from 0 to1`, and the contour of integration may be chosen
to run from 0 to1` on the first sheet. It is easy to see that
the integrand has four simple poles, one in each quadrant. In
particular, the pole in the first quadrant is at

v15mF1
g2

32p2mF
ln~mF /m!1 i

g2

64pmF
. ~A1!

Furthermore, the exponential is well behaved at infinity in
the first quadrant. We can therefore deform the contour of
integration so that it runs from 0 to1 i`, picking up the
residue from one simple pole. Writingv5 iz, and noticing
that the logarithm picks up an imaginary partip/2 we now
have
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f~ t !5
f i

p
ReF E

0

`

dz~ ize2zt!S 1

2z22mF
2 2~g2/16p2!ln~z/m!2 ig2/16p

2
1

2z22mF
2 2~g2/16p2!ln~z/m! D

1ResS 2 iveivt

v22mF
2 2~g2/16p2!ln~v/m!2 ig2/32p DU

v5v1

G
5

f i

p H 2
g2

16pE0

`

dz
ze2zt

@z21mF
2 1~g2/16p2!ln~z/m!#21~g2/16p!2

12pReF lim
v→v1

S veivt~v2v1!

v22mF
2 2~g2/16p2!ln~v/m!2 ig2/32p D G J .

Absorbing the real part of the self-energy on shell as an additional mass renormalization, and going through the subsequent
algebra we obtain our result

f~ t !5f~0!S 11
g2

32p2mF
2De2g2t/64pmFcos~mFt !2f i

g2

16p2E
0

`

dz
ze2zt

@z21mF
2 1~g2/16p2!ln~z/m!#21~g2/16p!2 .
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