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We study the decay of scalar fields, in particular the inflaton, into lighter scalars in a de Sitter spacetime
background. After providing a practical definition of the rate, we focus on the case of an inflaton interacting
with a massless scalar field either minimally or conformally coupled to the curvature. The evolution equation
for the expectation value of the inflaton is obtained to one loop order in perturbation theory and the decay rate
is recognized from the solution. We find the remarkable result that this decay rate displays an equilibrium
Bose-enhancement factor with an effective temperature given by the Hawking tempétiuarewhereH is
the Hubble constant. This contribution is interpreted as the “stimulated emission” of bosons in a thermal bath
at the Hawking temperature. In the context of new inflation scenarios, we show that inflaton decay into
conformally coupled massless fields slows down the rolling of the expectation value. Decay into Goldstone
bosons is also studied. Contact with stochastic inflation is established by deriving the Langevin equation for the
coarse-grained expectation value of the inflaton field to one-loop order in this model. We find that the noise is
Gaussian and correlatédolored and its correlations are related to the dissipati\@ecay”) kernel via a
generalized fluctuation-dissipation relati¢80556-282(97)05614-3

PACS numbes): 98.80.Bp, 98.80.Cq

I. INTRODUCTION fairly well understood within the context of the “old-
reheating” scenarid6—9], but it is much less understood
Nonequilibrium processes play a fundamental role in cosduring theearly stagef inflation.
mological scenarios motivated by particle physics models. In saying this, we have to distinguish between the various
Processes such as thermalization, reheating, and particle daodels of inflation. In “old” or “extended” inflation[10],
cay are important ingredients in most theoretical scenariothe inflaton is trapped in a metastable minimum, from which
that attempt a description of early universe cosmoldgy4. it exits eventually via the nucleation of bubbles of the true
An important ingredient underlying most attempts at a devacuum phase. A critical parameter in these models is the
scription of inflationary cosmologies is that of equilibration, nucleation rate, which is typically calculated assuming that
which is tacitly assumed whenever quasiequilibrium meththe field is equilibrated3,4,11. Such an assumption will
ods are invoked in their study, such as effective potential®nly be justified if the relaxation time of the inflaton in the
and finite temperature field theory. metastable phase, i.e., in de Sitter space, is much smaller
The concept of quasiequilibrium during an inflationary than the time scale for nucleation of a critical bubble.
stage requires a careful understanding of two different time In “new” or “chaotic” inflationary scenariog 7], the su-
scales. One is the expansion time sdale H %, whereH is  praluminal expansion of the universe is driven by the so-
the Hubble parameter, while the other is the field relaxatiorcalled “slow-roll” dynamics of the inflaton. Typically, this
time scald, . A quasiequilibrium situation obtains whenever is studied via the zero or finite temperature effective poten-
t, <ty since in this case particle physics processes occutial. In doing this, the assumption of quasiequilibrium is
much faster than the universe expands, allowing fields tanade, in that one can replace the actual field dynamics by
respond quickly to any changes in the thermodynamic varithat given by a static quantity, the effective potential. This
ables. assumption must be checked, and one way of doing that is by
Can the inflaton of inflationary cosmologies be treated asonsidering the evolution of the inflaton in the presence of
being in quasiequilibrium? The answer to this question decouplings to other fields and computing the field relaxation
pends crucially on the various processes that contribute teate. In particular, if dissipative processes associated with the
the dynamical relaxation of this field. Some of these pro-“‘decay” of the inflaton field into lighter scalars are efficient
cesses are the decay of the inflaton into lighter scalars aduring the slow-roll stage in new or chaotic inflationary sce-
fermions, as well as collisions that, while they leave the totaharios, then these may result in a further slowing down of the
number of particles fixed, will change the phase space distriinflaton field as it rolls down the potential hill.
bution of these particlefs]. Finally, there is the stochastic inflation approach advo-
In this paper we wish to understand the effects of cou-cated by Starobinsk{il2]. In this scenario, inflationary dy-
pling the inflaton to lighter scalars during the inflationary namics is studied with a stochastic evolution equation for the
era. Single-particle decay of the inflaton into lighter scalargnflaton field with a Gaussian white noise that describes the
or fermions in the post-inflationary era, when spacetime camicroscopic fluctuations. As pointed out by Hu and collabo-
be well approximated by a Minkowski metric, is by now rators[13] and Habib and Kandrufl4,15, noise and dissi-
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pation are related via a fundamental generalized fluctuatiorbrief pedagogical review of the closed time path formalism
dissipation theorem anmlustbe treated on the same footing. and the derivation of the nonequilibrium Green’s functions
In this article we study the process of relaxation of thefor free fields in de Sitter spacetime. In Sec. lll the model is
inflaton field via the decay into massless scalar particles iflefined and the methods to obtain the evolution equation are
de Sitter spacetime with the goal of understanding the modisSummarized. Here we study several cases, including minimal
fications in the decay rates and the relevant time scales &1d conformal coupling and the slow-roll regime. We obtain
compared to those in Minkowski spacetime. Our study fo-the remarkable result that the decay rate can be understood
cuses on the description of these processes within “old” orf7om stimulated emission in a bath at the Hawking tempera-
“extended” and “new” inflationary scenarios. Within ture. In Sec. IV we study the effect of Goldstone bosons on
“old" inflation we study the situation in which the inflaton the inflaton evolution, pointing out that Goldstone bosons are

field oscillates around the metastable minimubefore it ~necessarily always minimally coupled. In Sec. V- we make

eventually tunnelsand decays into massless scalars. In th&ontact with stochastic inflation, derive the stochastic Lange-
case of “new” inflation. we address the situation of fhe in. Vin equation for the inflaton zero mode, and obtain the dis-

flaton rolling down a potential hill, near theaximumof the sipative kernel and the noise correlation function, which are
potential, to understand how the, process of “decay” intro_related by a generalized fluctuation-dissipation theorem. The

duces dissipative contributions to the inflaton evolution. resu_ltmg noise is Gaussian but coloreql. In Sec. VI we sum-

We also establish contact with stochastic inflationdey marize our results and propose new '"?es of study. _An ap-
riving the Langevin(stochastit equation for the inflaton PeNdix is devoted to a detailed derivation, establishing the
field and analyzing the generalized fluctuation-dissipation regonsistency .Of t_he flat—spacg limits Of the analytlg structure
lation between the dissipation kernel resulting from the “de-Of, the d|§S|pat|ve Kernel in de Sitter spacetime, with
cay” into massless scalars and the correlations of the stg¥inkowskian calculations.
chastic noise.

At this point we would like to make precise the meaning
of “decay” in a time-dependent background. The usual con-
cept of the transition rate in Minkowski space, i.e., the tran- A. Closed time path formalism
sition probability per unit volume per unit time for a particu- As mentioned in the Introduction we will be studying the

lar (in) state far in the past to @ut) state far into the future, real-time evolution of the zero mode of the inflaton in a

IS no Ion_ger appl!cable Ina tme-d_ependent background. Rel]niverse with a time-dependent background metric. Further-
laxing this definition to finite time interval§or example, by

obtaining the transition probability from sonte to some more, we will restrict our investigations fgerturbativephe-

i Id vield a time-d dent tity affected by th nomena in theories in which the inflaton interacts with other
) would yield a time-dependent quantity afliected by €. yqr fields in a de Sitter universe. We will be primarily
ambiguities of the definition of particle states. In Minkowski

II. NONEQUILIBRIUM FIELD THEORY

transition ratgor decay ratgis related to the imaginary part .

fth If-ener n shell. Such o ndence i r]tons seqd 19] (and references thergirCalculation of particle
of the sefl-energy on shefl. such a correspondence 1S roduction in curved spacetime has also been done using the
available in a time-dependent background. Furthermore, th

. i . . oguliubov transformations; see, e.[23].

time G.’V.OIUt'On of a scalar field is damped _because of the '?’he tools required for studying ti%e-dependent phenom-
redsh!ftlng of the energy due to the expan.dlng b_ackgroyn%na in quantum field theories have been available for quite
even in the absence of interactions. In particular in de Sitte

this damping is exoonential and anv other exponentsP M€ time, and were first used by Schwingé6] and
space this damping 1S exponential and any other expone eldysh[17]. There are many articles in the literature using
damping arising from interactions will be mixed with the

gravitational redshit. these techniques to st.udy time-dependent problkélrﬁsuﬂ.
. . . o However, these techniques have not yet become an integral
We propose taefinethe “decay rate” as the contribution

to the exponential damping of the inflaton evolution due topart of the available methods for studying field theory in
. PO X ping . -~ ~extreme environments. We thus present a concise pedagogi-
the interactions with other fields, which is clearly recognized

: : cal introduction to the subject for the nonpractitioner.
through the dependence on the coupling to these fields. This The nonequilibrium or time-dependent description of a

practlca‘ll definition ,t’hen argues that in order_ to recogn_lzesystem is determined by the time evolution of the density
such a “decay rate” we must study the real-time dynamics

of the nonequilibrium expectation value of the inflaton field ml?trix thatt. de;criﬁessit.rIZig IS in ty;n described by the Liou-

in interaction with other fields, and the identification of this ville equation(in the Schrainger picture

rate should transpire from the actual evolution of this expec- ap(t)

tation value. ihTz[H(t),p(t)]. 2.1
Although the methods presented in this article can be gen-

eralized to arbitrary spatially flat Friedman-Robertson-

Walker (FRW) cosmologies and include decay of a heavyHere we have allowed for an explicitly time-dependent
inflaton into lighter scalars, we study the simpler but relevanyamiltonian which is in fact the case in an expanding uni-

case of inflaton decay into massless scalars in de Sittferse. The formal solution of the Liouville equation is
spacetime. This case affords an analytic perturbative treat-

ment that illuminates the relevant physical features.
The article is organized as follows. In Sec. Il we present a p(H)=U(t)p;U (1), (2.2
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wherep; is the initial density matrix specified at some initial L el
time t=0. The time dependent expectation value of an op- Z[J",J 'Jﬁ]:f DEDElDzzf D3 *D3 D3’
erator is then easily seen to be

xexp(if:{c[z*,ﬁ]—c[z,J]})

(O)) =Tt pU~Ht)OU ()] Trp]. 2.3
) T-ip 8 18
In most cases of interest the initial density matrix is either a xex;{ ! fT SR ]>' 2.9
thermal one or a pure state corresponding to the ground state
of some initial Hamiltonian. In either case, The above expression for the generating functional is a path
integral defined on a complex time contour. Since this path
pi=e AHi (2.4) integral actuglly represents a trace, the ﬁ_e_ld operators at the
boundary points have to satisfy the conditions
Hi=H(t<0). (2.9 SHT)=2A(T-ip)=%,
+ N —N — ry —
The ground state ofl; can be projected out by taking the 2N(T)=27(T")=%,,
B— limit. To study strongly out-of-equilibrium situations
it is usually convenient to introduce a time-dependent Hamil- 3T(T)=32AT)=%,. (2.10

tonian H(t) such that H(t)=H; for —w<t<0 and

H(t)=Hg,(t) for t>0 where H.,(t) is the evolution The superscripts{) and (—) refer to the forward and back-

Hamiltonian that determines the dynamics of the theory. ward parts of the time contour, while the superscrig) (
For thermal initial conditions, E¢2.3) can be written in  refers to the imaginary-time part of the contour. In the limit

a more illuminating form by choosing an arbitrary time T— —o it can be shown that cross correlations between

T<0 for which U(T)=exd —iTH;] so that we may write fields defined at real times and those defined on the

exg—BH]=exd —iH(T—ig—T)]=U(T—iB,T). Inserting imaginary-time contour vanish due to tRéemann-Lebesgue

the identityU ~(T)U(T) =1, commutingU ~(T) with p;, lemma. The fact that the density matrix is thermal ferO
and using the composition property of the evolution operatorshows up in the boundary condition on the fields and the
we get Green’s functions. Thus the generating functional for calcu-

lating real-time correlation functions simplifies to

(OY () =TI U(T—=iB,H)OU(t, ) /THU(T—iB,T)] »
(2.6) Z[J+,J—]=exp{if At Lin(—168/83%) = Ling(161637)]
T

=T U(T—-iB,T)U(T,THU(T',1)

i (1 T
xexp{EJ dtlf dt,Ja(t1)Jp(ts)
XOUt, T /T{U(T-i8,T)], 2.7) T T

X Gap(ty,ta) ¢, 2.1
where we have introduced an arbitrary large positive time anlty 2)] @19

T’. The numerator now represents the process of evolving

from T<O0 tot, inserting the operata®, and evolving to a with a,b=+,—. We will now proceed to a calculation of the

large positive timél'’, backwards fronT’ to T and down the  nonequilibrium Green'’s functions in de Sitter spacetime.

imaginary axis toT—i8;. Eventually one take§ — — o,

T’ —o0, This method can be easily generalized to obtain real-

time correlation functions of a string of operators. ] o .
As usual, an operator insertion may be achieved by intro- 10 obtain the n_oneq_wllbrlum Green’s functions we focus

ducing sources into the time evolution operators and taking &" @ free scalar field in a FRW background metrig20].

functional derivative with respect to the source. Thus we ard he generating functional of nonequilibrium Green’s func-

led to the following generating functional, in terms of time tions is written in terms of a path integral along the closed

B. Nonequilibrium Green'’s functions in de Sitter spacetime

evolution operators in the presence of sources: time path(CTP), Eqg. (2.11), with a free Lagrangian density
Lo(2*) given by
Z[J",37 F=Tr{U(T-iB,T;3-HU(T, T';J37) Lo(S*)=1[a%(1)S 2—a(t)(¥S )2
XU(T" T35, 2.8 —a%(D)(M2+ ¢R)S 2]~ [+ — -], (2.12

with T— —o, T'—o0. One can obtain a path integral repre- whereR=6(a/a+a?/a?).

sentation for the generating functionab—21] by inserting a We prepare the system such that it is thermal tfarO
complete set of field eigenstates between the time evolutiowith temperature 3. At t=0, we switch the interactions on
operators, and follow the resulting time evolution of the coupled fields.
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As seen in the previous section, the CTP formulation of non+ules of field theory in Minkowski space when we take the
equilibrium field theory imposes certain boundary conditionsflat-space or the short-distande—{ ) limits. These bound-

on the fields(2.10. ary conditions are similar to those invoked by Bunch and
Rewriting the Lagrangian as a quadratic form3i we  Davies [22,23. For the de Sitter space case, with
obtain the Green’s function equation a(t)=expHt), the mode functions are the Bessel functions

[23], J.. (ke HY/H), providedr is not an integer, where

# a v? )
Szt 2 H(MPHER)

G(x,t;x’,t") M 9
adt p=i) g + 126 . (2.21)
, H 4
S (x—x") (213
=3 A2 e : ;
a“q(t)a“(t") For the values of andM for which » becomes real these
) ) _ _ ] Bessel functions become manifestly real and the solutions
We use spatial translational invariance to define that fulfill the boundary condition§2.20) are obtained as
o linear combinations of these functions. In order to obtain the
Gk(t-t,):f d3xek *G(x,t;0t"), (2.14  full Green's functions the constantd”,B~,A~,B~ Eq.

(2.19, are determined by implementing the boundary condi-
so that the spatial Fourier transform of the Green’s functiorf'ons [18-20

obeys
Y ot =fo(t),
¢ +3él d +k2+ M2+ £R) |Gy (t,t') = St £ F<
a2 o dt a2 ( ER) |Gy(t, )—W- fr (t,t)—fo(t,t)=1,
(2.15 - ' _
_ . - N f (T—=iB,t)=1(T,1). (2.22
The solution can be cast in a more familiar form by writing
F(tt) The first two conditions are obtained from the continuity of
"= K the Green’s function and the jump discontinuity in its first
Gttt = =~ 2.1 Jjump ty
(L) =53 Ata¥qt’) (216 derivative. The third boundary condition is just a conse-

quence of the periodicity of the fields in imaginary time,

so that the functiori,(t,t") obeys the second-order differen- \ynich followed from the assumption that the density matrix

tial equation is that of a system in thermal equilibrium at tinie<0. Al-
42 35 332) K2 though we allowed for a thermal initial density matrix, we
—— _a+i2 +—+(M2+ §R)} fo(t,t)=o8(t—t"). will focus only on the zero temperature case, since during the
dt 2a 4a a de Sitter era the temperature is rapidly redshifted to zero.

(217 The most general case for the Green'’s function can be found
in [20]. Implementing these conditions for the case of imagi-

The general solution of this equation is of the form nary » and zero temperatureg o) we find

fr(t,t) =1 (1,t)O(t—t")+ o (t,t")O(t' —1), 2.1
() =F () O(t—t) +F (L) Ot —1) (218 @i
wher_ef,f andfy are solutions to the homogeneous equation G (L) = 2Hsin( 7rv)e3Ht2g3Ht /2’
obeying the appropriate boundary conditions. They can be
expanded in terms of normal mode solutions to the homoge- — 7l (2)3,(2)
H . < N — v v
neous equation: G (t,t")= SHSIn( ) 22 (2.23
f (L) =AU (HUL(t")+B Ut ) U (1),
e Ht e HU
fo(t,t) =AU (U (") +B Ut Ui (1). (2.19 z=k I z'=k o (2.24
The choice of mode functions can be made unique for aand is given by Eq.(2.2])
iven ¢ andM by requiring that v AN
g ¢ yreq g In the case of interest for this article, that of a massless
lim U, (t)~e scalar field either conformally or minimally coupled to the
k—o curvature, the Bessel functions in the above expressions must
be replaced by the corresponding Hankel functions. These
or two cases correspond to
H —iwpt
Ao =e (i) M=0=0=Uy() = HW (ke "H), 2.29
o= Vk?>+ M2, 220 (i) M=0¢=§=U(t)=HD (ke "/H). (2.29

HereH=a(t)/a(t) is the Hubble parameter. Stated simply, Finally, the Green’s functions for these two cases of a mass-
these conditions require that we must necessarily recover tHess scalar field, in terms afandz’, are
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—imHP(2)HP (")

> 1y —
G (t,t)= AHe3HU2g3H 2

(2.27

—imHP(2HP(2)
4He3HtIZe3Ht’/2 !

Ge(tt)= (2.28

with »=23/2 for minimally coupled orv=1/2 for confor-
mally coupled. From the expressions 8f andG, we can
compute the required two-point functions

(TSI () =G>(r,t;r t)O(t—t’)
+GS(rr e —t),
(2.29

(TET (RO (F.1)) =G (F.ur )0t 1)
+G(r 5, t)0(t—t),
(2.30
_i<T2+(_)(F’t)E_(+)(P,t/)>=G<(>)(F,t;F’,t’)_
(2.31

In our subsequent analysis we will always work in the
B—oo limit (zero initial temperatudeunless stated other-
wise.

Ill. MODEL AND THE METHOD

We now turn to the main topic of this work, the study of
an inflaton, described by a field coupled to a massless
scalar fieldo with the nonequilibrium Lagrangian density

L= %[esHt('Iﬁz_th(V”q)+)2_e3Ht(mL2D+ 12§(1,H2)¢>+2
+63Ht&+2_th(€U+)2_ 1283Ht§ H20_+2]

+3eM[gd o2+ h(t)d 1] (3.2

—[+—=-1]. (3.2

We have introduced a “magnetic(source termh(t) for
two reasons.

(1) Such a term will be generated by renormalization from
tadpole graphs; therefore, we introdudg) as a counterterm
to cancel these contributions,

(2) h(t) will serve as a Lagrange multiplier to define our
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and references thergito obtain its equation of motion. This
is implemented by first shifting® by its expectation value in
the nonequilibrium state as follows:

PE(XD=dO TP (XD, SO=(PT(xD), 3.3
and then enforcing the tadpole condition which is simply a
consequence of E¢3.3),

(P (x,1))=0, (3.9

¢(t) being the spatially homogeneous inflaton zero mode

that drives inflation. We also require that™ (x,t))=0 to all
orders, which means that the field does not acquire an
expectation value. After the shift of the inflaton fig8.3),
the nonequilibrium action reads

S=f d3xdt

Lo()+Lo(o™)+yt e[ —p—3H¢
h
—mczp¢]+eg"”g¢((r+)2+e3H‘g¢//+(a+)2+e3Ht§¢+

—(+—- )] , (3.9
where L, represents the free theories for teand o fields.
The tadpole conditior(3.4) is implemented by calculating
the expectation value of the field operaipt by inserting it
into the nonequilibrium path integral and expanding in pow-
ers ofg about the free theory and setting the resulting ex-
pression to zero. In particular we evaluate the following ex-
pression to ordeg? in perturbation theory:

<¢ﬁ(x’,t>>=f Dy 1D[o* ]! (SISl =Dy *(x 1)

X exp{ f d3x’dt’

M 10+ S g0

M- p—3H¢

/g h
+e3H1 §¢+((T+)2+63Ht Ei/lJr

|-o.

—(+—-) (3.6

problem as an initial condition problem. That is, we will fix The equation of motion is obtained by independently setting
h(t) such that the divergences from tadpole graphs contribthe coefficients of " (x) " (x’)) and (¢*(x)~(x')) to
uting an inhomogeneous term to the equation of motion argero. This is justified because these two correlators are inde-
canceled and the initial value of the inflaton field is fixed for pendent functions. It is easily seen that the condition
t<0. Such a procedure will be implemented below when we(¢~)=0 yields exactly the same equations.

obtain the equation of motion for the expectation value of the This procedure gives rise to an equation of motion for the

inflaton.

zero modeg(t) and is in fact equivalent to extremizing the

Clearly, in de Sitter spacetime the coupling to the curva-one-loop effective action which incorporates the equilibrium
ture only serves to redefine the mass of the fields. For thboundary conditions &t<0.

inflaton, we just absorb this term in a redefinition of the
mass, and sefs, =0 without any loss of generality.

It is worth noting that this scheme, referred to as dne-
plitude expansionalso assumes that the amplitude of the

To study the time evolution of the expectation value ofzero mode#(t) is “small” so that terms such ag¢(t)o?

the inflaton field we invoke the tadpole meth@age Ref[19]

may be treated perturbatively.
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To one-loop ordefO(g?)] we obtain the following form  The k integral can be done by introducing a small conver-

of the equation of motion: gence factor as follows:
. . g 92 t ® ©o a
¢+3H¢+m§,¢—§<02>(t)—imf d7K(t,7) (1) f sin( ak)dk= limIm f e'(atiokgk| = lim g
- 0 e—0 0 e—0 €

(3.19

Implementing the above prescription and absorbing a posi-
tive finite piece intoe yields

h(t)
-—-=0, 3.7

K(t,7)= J:kzdk[sz(T,t)—sz(T,t)]e3HT. (3.9 H [eMt-n_1]

K(t,7)=—i 4 (") [T _1)24 &2 (3.19

Spatial translational invariance guarantees tlae) is only
time dependent. We can combine theindependent contri-
butions to the equation of motion into a single function

The equation of motion then becomes

d+3Hp+m2 ¢
~ h(t) g 2 H(t—7)
h(t)= ——+=(?)(t). (3.9 gH [t [e —1]
2 2<U ) _16772f0d7(eH(t—7))[(eH(t—7)_1)2+62] &(7)

If the o is conformally coupled to the curvaturgr?) repre- -
sents a quadratically divergent piece which must be sub- =h(t). (3.16
tracted away by a renormalization of the “magnetic field”
h. On the other hand, if is minimally coupled, one obtains
the well-known linearly growing contributiofB] after sub-
tracting away the divergence leading to a modified inhomo
geneous term in the zero mode equation of motion:

A remarkable point to note is that although time transla-
tion isnota symmetry in de Sitter spacetime, nonetheless the
term inside the integral is in the form of a convolution, and
the equation, being linear i, can be solved via Laplace
transforms. This is presumably due to thé4() symmetry
_ gH3t h(t) of de Sitter space.

=82 52 (3.10 Notice thate serves as a short-distance regulator, and the
e—0 limit cannot be taken inside the integral because doing

We will, however, show explicitly in the next section that SO results in a logarithmic short-distance singularity in the

this term doesiot enter in the calculation of the perturbative €quation of motion. This divergence is isolated by perform-
“decay rate” in this theory. ing an integration by parts, keeping te&lependence, result-

We useh(t) as a Lagrange multiplier to enforce the con- ing in the equation of mation

straint that fot<0, ¢(t)=¢;, ¢(t)=0 is a solution of the ) _ 9%H B(1) B(1)
effective equation of motion for the expectation value. In this  ¢(t)+3H ¢(t)+mfp¢(t)— 62 " h Ine— H
manner, we define an initial value problem with Cauchy data ™
on a spacelike surface for the dynamics in which the expec- &, ¢(T)
tation value of the inflaton field is “released” from some + _'[|n(1—e—Ht)+e—Ht]+f dr—g(t—r)]
initial value at timet=0. Fort>0 the equation of motion H H
becomes “T), (3.17
. - 2 t —~
é(t)+3H ¢(t)+mi¢(t)—i%2j drK(t,7)p(7)="h(t), Et—7)=[In(l—e H-y e H=D] (318
0

(3.1)  This expression makes it clear that the divergence can be
absorbed in a mass renormalization,

$(t=0)=¢;, ¢(t=0)=0, (3.12 ,

g
with the kernel given by Eq(3.8). mé,R:mé—'_W(lnE—’_ 1). (3.19
We now proceed to study the solution to this equation of
motion in the cases of conformal and minimal coupling. |y what follows we will refer tomg as the renormalized
mass to avoid cluttering the notation.

A. Conformally coupled masslessr Taking the Laplace transform of the equations of motion,
For a conformally coupled massless scalar, the Green’geflrllng
functions are given by Eq$2.27) and(2.28 with the Hankel -
functions as in Eq(2.26). E(s)=f e Slg(t)dt, (3.20
0

The kernel has a particularly simple form in this case:

= siM2k(e H"—e HY/H ~ oo
K(t,7)=—ifodksm[ (2ee2Hte—e;” ) ]. (3.13 g(s)=fo e S'%(t)dt, (3.21
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'ﬁ(s)=f esh(t)dt, (3.22 35— F(sTSH)TRG 54
0 s+ 3Hs+m3 + (g%/1672) 3(s)
and using the initial conditiog(t=0)=0, we find This expression clearly shows that the information on the
_ _ _ “decay rate” is obtained from the imaginary part of the
32¢(s)—s¢i+3H(s¢(s)—¢i)+m§,’R¢(s) poles of the denominator and that the “effective magnetic
2 field” h(t) whose Laplace transform(s) is explicit in Eq.
+ 9_2'5(3)’(7,(5) =h(s), (3.23  (3.3Dis not relevant to understand this “decay rate.” In fact
167 as we will show shortly, the “decay rate” is determined only
by the “self-energy” 2 (s). Since our goal is to understand
S(s)= —sfwdte*St[In(l—e*H‘)nL e H = —sZ(s). the “decay rate,” we seh(s)=0 without loss of generality.
0 The denominator in the above expression is the inverse

(3.24 propagator for the massive scalar, evaluated at zero spatial
momentum and, (s) is the one-loop correction to the self-

energy. However, from Eq3.30 we see thak (s) is ana-

It is well known that fields in de Sitter space can belytic in the s plane with simple poles &= —nH, with n an
thought of, in some contexts, as being embedded in a thermalteger~ 1. This is a surprising result, because we expect
bath at a temperatutd/2, the so-called Gibbons-Hawking that, as in Minkowski space, there would be a cut in she
temperaturg¢24]. How do we see these effects in the contextplane, which since the particles in the loop are massless
of our calculation? would run along the entire imaginary axis. Obviously, this is

First we notice that the Green'’s functio(®.23), (2.24), not what happens—the analytic structurevésy differentin
(2.27, and (2.28 and the kernel$3.15 and (3.18 in Eq. de Sitter spacetime from that in Minkowski spacetime. In

B. Gibbons-Hawking temperature

(3.17) obey the periodicity condition, ifmaginary time fact we find thaté(s) has two simple poles, perturbed from
o their original positions byD(g?) corrections. We will under-
K(t—7)=K| t—7+ TW) (3.25  stand this result by taking the flat-space limit in a later sec-
tion.

The real-time dynamics of the zero mode of the inflaton is

These kernels can be analytically continued to imaginary,qw found by inverting the Laplace transform by complex
time t—7=—iy and expanded in a discrete series in termsptegration:

of the Matsubara frequencies

cHie ds
2m 1 H e N CP = (332

= —=Ty==. (3.26 c—i
B B Ho2m

where the Bromwich contour is taken to the right of all the

Ty is recognized as the Gibbons-Hawking temperature insingularities.

this spacetim§23]. Then as a function of imaginary time Eq. The poles of(s) can be obtained by setting
(3.18 can be written as ’

Wn

2

12 s24+ 3Hs+m3 + %’i(spo. (3.33
fon)=g- 3 &E (o), (3.29 "
We analyze the i3 >9H? and 4m3 <9H? cases sepa-
B : rately. In the first case, withmz >9H?2, we have that in the
:(wn):f dne ' “n7&(n). (3.28  absence of interactions the inflaton undergoes damped oscil-
0 lations redshifted by the expansion. At zeroth order the poles
We find (3.33 are at
H . —3H  4m§—9H?
== +
E(wn)=—ﬂH(w_—6n,1), =1 (329 o=t (334
n
_ We absorb the real part of the self-energy shellin a
From this expressior3(s) can be obtained at once: further (finite) redefinition of the renormalized mass.
" L L Since 3(s) is a meromorphic function o, R4 > (sg)]=
~ ~ s T, - : L
=_ = - - |- R€ 3 (sg)]. Then to this order the “pole mass” is given b
S(s)=—SE(s) ; H(nH sirnl " soh- (3.30 g2 (sp)] p 9 y
9°Re3(s5)]
This Laplace transform has simple poles at minus the Mat- m§?=mj, + 167 - (3.35
subara frequencies corresponding to the Hawking tempera-
ture. Obviously this mass is independent of the renormalization

Finally we obtain the solution for the Laplace transform scheme. We also define the subtracted self-energy
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S*(s)=3(s)—~Rd 3 (s¢) ], and at this stage it is convenient 2 Brm%*—9H%/4
to introduce the “effective mass” _g an 2 . g’tant ByM ¢/2)
9H? 32m\mi°—9H?/4 32mMg
Mé: mgz— T, (336) (34])
in terms of which, to ordeg?, we find This expression fol" is a monotonically increasing function

of H. WhenH =0, it matches with the flat-space decay rate

—3H \/ 9° ~
st=——*i\/M2+ S*(s™) g
2 ¢ 167 1-‘Minkowski:m . (3.42
-3H _g%Im3(sy) .
=——=*iMg=xi 3202y +0(g”). (3.37

We thus obtain the result that the inflaton decay proceeds
more rapidly in a de Sitter background than in Minkowski
spacetime.

The Bromwich countour for the inverse Laplace trans-  The rate(3.41) can be written in a more illuminating man-
form can now be deformed by wrapping around the imaginer as

nary axis and picking up the polg9]. The resulting expres-
sion has the Breit-Wigner form of a sharp resonance centered g2coth Bywo/2) g?[1+2n,(wg)]

at the “pole mass” that is very narrow in the weak coupling =" 3omM = 39-M o (3.43
limit, leading to the time evolution of the inflaton given by ¢ ¢

1
wo=—1Sg, Ny(wo)= o (3.49
d(t)=Zp e 2% T2eoqMyt+a),  (3.39 0 ePrwo—1

This is a remarkable result—the decay rate is almost the
same as that in Minkowski space, but in a thermal bath at the

where Hawking temperaturgl9,27). Habib[15] has also found an
intriguing relationship with the Hawking temperature in the
) ) ) 2012 probability distribution functional in his studies of stochastic
9H 2g°B’ 12g°HB  18g“H-B’ inflation
Z?=1+ 7~ oo VR 23 ' 2
4Mg  327°Mg  1287°My  1287°Myg If we now look at the 4ng,<9H? case, we see that the
inflaton ceases to propagate; i.e., its Compton wavelength
3H g2 / A’ 9H2A’ 18H2B approaches the horizon size and there is no oscillatory be-
— arctam — n n _ , L X . :
a=arc ar{ My 16772\ My SM% 16M§>) havior in the classical evolution of the zero mode
9H2 —-1/2
T ¢(t)=(—z—1) pie”>H%sinh([M gt + B),
B=IM[2*(8)]s=—3H2+im» amg,
s 2|M
A'=Rd d2*(s) tanhB= |3HCD| . (3.4
L s s=—3H/2+iM
The one-loop contribution is the same as in the previous case
_a'i*(s) but now the poles of(s) lie on the real axis:
B'=Im p (3.39
S Jsshitimg . —3H 9H?-4mj
The most interesting of these quantities is the damping rate,
iven b =
given by . —3H  \OH2—4m2 —4(g¥1672)3 (s)
S = =+ .
21 S (ot 2 2
gIm=*(sg)
= 3.4
We define
The imaginary part of the self-energy in the above expres-
sion can be evaluated using standard sum form(tlasse E(s§)=CiD (3.4

sums also appear finite temperature field thd@g,26) and
is found to be and absorkC into a finite mass renormalization
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g°C . —3H 3H)\2 2 < .
m$2=mc2p+ Ez (348) SfITi \/(7 +,u,2—167722(57) (353)
Inverting the transform we obtain _
K Sy T g’ G (3.59
~Sy + ) .
¢(t)=z¢ie3“"2e“’zsinr<5t+/3 . (349 ° 167" \[(BHI2)%H
with Z being the(finite) wave function renormalization, i.e., . —3H 3H\?2 5
the residue at the poles, and So= 5 EV | T (3.59
K= \9HZ2—4m%?, (3.50 Forg=0 the pole that is on the positive real axig,, is

the one that dominates the evolution of the inflaton down the
potential hill (the growing modg Sincesy >0 we find that
g?tar{ (7/2) 9 — (4m%2/H?)] mi 2my
= for —=>H>——.
ot 0
351 S(5)=3 2>
. . Z N(Sp +nH)
We also see that the numerator of the damping rate in Eq.
(3.46 diverges atH=m?/\2>2m%/3, which indicates the
breakdown of perturbation theory.

The decay rate may again be written in the form that
makes explicit the effect of the Hawking temperature and th
“stimulated decay” with the Bose-Einstein distribution
function at the Hawking temperature:

0, (3.56

and we conclude that, to this order, the pole on the positive
real axis is shifted towards the origin. Therefore the rate of
rowth of the growing mode is diminished by the decay into
ighter scalars and the “rolling” is slowed down. This is
physically reasonable, since the “decay” results in a transfer
of energy from the inflaton to the massless scalars and the
rolling of the field down the potential hill is therefore slowed
B g2 1+ 2np(wo)] down by this decay process.

9 1
327 \ /ZHz— m’(;z C. Minimally coupled masslesso

Now we turn to thet,=0 case. The Green’s functions are

We can also study how the “decay” of the inflaton into given by Egs.(2.27) and (2.28 with the Hankel functions
lighter scalars modifies the “slow-roll” evolution such as (2.25. There are many features in common with the previous
would occur in new inflationary models. Since we are ascase: The kernel is translationally invariant in time and peri-
suming a small field amplitude for our pertubation theory toodic in imaginary time with periodicity8,. Thus it can
make sense, we cannot treat chaotic inflationary scenarios #yain be expanded in terms of Matsubara frequencies and the
the same way. Laplace transform carried out in a straightforward manner.

For this we now sem3<0 and study the situation in However, for minimal coupling we find a new logarithmic
which the inflaton is “rolling” from the top of the potential infrared divergence in the kernel along with the ultraviolet
hill, during the stage of quasiexponential expansion. In thidogarithmic singularity of the conformally coupled case.
situation the amplitude expansion is valid when the zercdTherefore, thek integral in the kernel must be performed

mode is close to the origin and at early times. with an infrared cutoffu.. The logarithmic ultraviolet diver-
In this case it is convenient to writes=— u?. Now the  gence is handled in as before, and after this subtraction we
poles are on the real axis at the positions find the self-energy to be
§o=1/6
- > 1 1 s 4H X1 1 1
Y(s)=) H{— — - —— ) — -
(s) 21: <nH .s+nH> s+ H 3 zlzn<s+nH s+3H+nH)
1 1 4H 2 14
- — —In2-2H|=-In(H — 35
+<s s+3H)[3 " 3 Inl /”)+9} (359
+4H 1 1 4H?|1 1
3\s+H s+2H 3 [s2 (s+3H)?|
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We notice that the self-energy for the conformally coupledfrom what one would expect in flat spacetime. We find that

case is contained in the above expression. It is also interesthe self-energy for the case whede is unstable doesot

ing to note that the imaginary part of the self-energy, ondisplay cuts in thes plane. Though the reason for this strange

shell, receives no contribution from the infrared-divergentpehavior is not clear at present, we can try to understand it
piece, which only contributes to a further renormalization ofby taking the flat-space limit, i.e., thd—0 limit. In this

the “pole mass” mg°. We now focus on the case |imit, it suffices to look atX(s) for £,=1/6. It is easily

4mg—9H?>0. shown that the additional terms in E&.25 are vanishingly
The expression for the decay rate is obtained by evaluatma|l in theH— 0 limit. We thus obtain

ing the imaginary part of the self-energy at the psje[see
Eq. (3.40] and found to be

§o=1/6 o
2 +A2n (wo)] 4H? 8H?® lim 3 (s)= lim| >, H 1)
=9 ol 4 + , o0 hool \nH s+nH/ s+H
327 My my Tmy
35 o1

. o ) 9 =J (——— dx—1 (3.59
with Eq. (3.44). The qualitative behavior of the decay rate as H\X  STX
a function ofH is similar to that in the conformally coupled
case. We see thdt(¢,=0)>T(¢,=1/6)>T(Minkowski). =In(s/m)+In(m/H)—1, (3.60

D. Analytic structure of the self-energy

As mentioned earlier, the analytic structure of the self-wherem is a mass scale that serves as an infrared regulator.
energy in the de Sitter background is drastically differentHence,

_ So;
© S?+[m3+(g%1672)In(m/H) — 1]+ (g%/167?)In(s/m) °

b(s) (3.61)

The above expression has a cut which can be chosen to 9® [~
run from O to—o, so that it is to the left of the Bromwich ~ #(t)= ‘75in do
contour. The discrete singularities of the self-energy at 0
s= —nH have merged into a continuum in the sntallimit wCOoSwt
to give a cut along the negative real axis in thelane. In X[wz—mfp—(92/16772)In(w/m)]2+(92/3277)2'
addition, there are two simple poles in the first Riemann
sheet at-img+0O(g?). Inverting the transform yields (3.63

A deformation of the contour of integration shows that Egs.
5 (3.62 and (3.63 are in fact identical and hence we have
- I istency(see the Appendjx Although the limitsH—0
ty=Zd e T2coq myt + a) — b: f d consis ppend] g _
(=24, Mt a) = ¢ 1672 ) @ andm,—0 do not commute insofar as the analytic structure
in the's plane is concerned, the time evolution obtained from
the inverse Laplace transform is unambiguously the same.

wefwt

X2+ M2 + (g216m)In(wlm) 2+ (g2/16m)2

(3.62 IV. O(2) MODEL AND GOLDSTONE BOSONS

While the inflaton is typically taken to be a singlet of any
gauge or global symmetry, there is no reason that it could not
We see here a Breit-Wigner form plus contributions fromtransform nontrivially under a continuous global symmetry.
across the cut. If this occurs and the symmetry is broken spontaneously, the
A flat-space analysis witm, # 0, carried out in a previ- interesting possibility arises of dissipation of energy into
ous work[19], reveals a very different picture. In particular, Goldstone bosons. Even if the inflaton is a singlet, one could
we find two cuts extending from= *=2im, to *ie and two  ask about the evolution of fields that belong to multiplets of
simple poles which move off into the second Riemann sheed global continuous symmetry, during inflation. Our primary
above the two-particle threshold wher,>2m,.. However,  motivation, however, is to study dissipative processes of the
upon inverting the transform and takimg,— 0, we obtain  inflaton via the decay into Goldstone bosons in de Sitter
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spacetime as new nonequilibrium mechanisms. situation, the contribution to the decay rate from the massive

The effect may be studied in the(®) linear o model, in  mode would be subdominant due to the kinematics and the

which the inflaton is part of the @) doublet, with Lagrang- Goldstone modes would provide the dominant contribution
ian density to the decay rate. Thus, neglectig(t,7) the equation of
motion has exactly the same form as KE8.5). The subse-

quent analysis and results would be identical to those ob-

1 i . i R . - - . . .
= §[e3Ht<I>2—th(VCI>)2+e3H‘772—th(Vrr)z] tained above in the section on minimally coupled fields.

1 st 2 X X X o A ) - V. LANGEVIN EQUATION
+ -3 (u?—126H%) (P*+ 7°) — 3N — (P2 + 77

2 (u 28R ) 4!( ) Our results allow us to make contact with the issue of
decoherence and the stochastic description of inflationary

cosmology[12-15.

Assuming thatu?>12¢H2, in the symmetry broken phase Decoherence is a fundamental aspect of dissipational dy-

the field® acquires a vacuum expectation valuEV) namics and i_n the description of non_equili_brium processes in
the early univers¢13—15. The relationship between fluc-

6(uZ—12EH2) tuation and dissipation as well as a stochastic approach to the
(D)= — (4.2 dynamics of inflation can be explored by means of the
Langevin equation.

and the Goldstone bosons are left with no mass terms, and 1hiS Section is devoted to obtaining the corresponding
hence are massless, minimally coupled fields in de sittek-@ngevin equation for the nonequilibrium expectation value

+h(t)®. 4.1

spacetimd28]; this is a fairly well-known result. o_f the_inflaton field(zero modgin 'Fhe o_ne-lo_op approxima-
We now write tion within the model addressed in this article.
The first step in deriving a Langevin equation is to deter-
6(uZ—12EH2) mine the “system” and “bath” variables, and subsequently
d(x,t)= +¢(t)+¢(x,t) (4.3  integrate out the “bath” variables to obtain an influence

A functional for the “system” degrees of freedoh3-15.

and use the tadpole method to impose We first separate out the expectation value and impose the
tadpole conditions as follows:

(H(x,1) =0,
O = +y*, (DX, 1))= (1), £(x,1))=0.
(m(x,0)=0. (4.9 P PO =E0. =

Using Eq.(4.3) it is easy to see that couplings of the form . ) . i i

w2 are automatically induced in the Lagrangian. CarryingThe non_eqwh_bnum effective action is defined in terms of the
out the same analysis as before and keeping only terms up fg9rangian given by Ed3.2) as

first order in¢(t), we find the equation of motion

el Sefi= f Dy Dy Do Do eS¢ 1-Sol¢ 1}
K¢(t, T)

. . ’ 3au? [t
¢+3H¢+m (t)¢_|2_77'2_ dr
° « @S0l 1~ S0 1} ifSolo*1 - Solo 1}

1 -
+gKa(tn)|S(r)=N(1), (4.5 x e (Sl " 67,0 =Sl v 67071}
where where S, represents the action for free fields, aBg con-
tains all the remaining parts of the action. The effective ac-
Kt,r)= | KK GZ2(rt)— G 27 t)]e®". tion for the zero modes is obtained by tracing out all the
(t.7) fo [GiH(nh) =G ()] degrees of freedom corresponding to the nonzero m@afes

the “bath” variables, in a consistent loop expansion. It is
Herem?(t) is given by the tree-level mass ternu2plus  useful to introduce the center-of-male(t)] and relative
contributions proportional to the tadpoler®)(t). Since the [R(t)] coordinates as
Goldstone boson is always minimally coupled to the curva-
ture, (w2)(t) will grow linearly with time and result in a R(1)
nontrivial time dependence for the mass of the massive mode P (1) =p(t) x——. (5.2
¢. In this case the methods of the earlier section are not 2
applicable, and the definition of a “decay rate” will be
plagued by time-dependent ambiguities. Remembering the definitions of the Green’s functions in
Such a time dependence will, however, be absent in a dEgs.(2.29—(2.31), we expand exjf,,) up to orderg? and
Sitter space that exists forever, in which case the contribueonsistently impose the tadpole condition to obtain the effec-
tion from the tadpole will simply be a divergence that is tive action per unit volumébecause the expectation value is
renormalized through a redefinition of the mass. In such daken to be translationally invariant
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Se ig? (= t
3”=f dt[£o<¢+>—£o<¢—)]—%gﬁxdtj%dt’f dka®(t)a’(t )R ()G (L) = GA(L,t')]

ig? (= w -
—% dtJ dt'Jd3ka3(t)a3(t’)R(t)R(t’)[sz(t,t’)+Gk<2(t,t’)]+h(t)R(t)+termsindependentagﬁ.

(5.3

As before h(t) results from subtracting the Where the stochastic noise varialg¢t) has Gaussian, but

#-independent contribution of the tadpole frdrft). colored correlations
Now, it is not difficult to verify that the nonequilibrium
Green’s functions given by Eq&2.16 and(2.19 and obey- {(&)))=0, ({(&M)EM)))=K(t,t). (5.10

ing the boundary condition®@.22 have the property,

>0y T a<(t 1) T* The double brackets stand for averages with respect to the
Ci (L) =[G (L) 64 Gaussian probability distributio®] £]. The noise is colored
This property guarantees that the second term in the effectiv@nd additive. Because of the properties of the Green’s func-
action is real, while the third term is pure imaginary. Thetions(5.4), the noise kernefwhich contributes to the imagi-
imaginary, nonlocal, acausal part of the effective actionhary part of the effective actioris simply thereal part of

gives a contribution to the path integral that may be writtenGy, “(t,t'). The dissipative kernefwhich gives rise to the
in terms of a stochastic field as nonlocal term in the Langevin equatjoon the other hand is

given by theimaginary partof Gk>2(t,t’). Consequently, the

1 , , , fluctuation-dissipation theorens revealed in theHilbert
exp{— Ef dtf dUR(DAALTIR( )} transformrelationship between the real and imaginary parts
of the analytic functiorﬁfz(t,t’). The equation of motion
fo DfP[f]exp{ij dtg(t)R(t)}, (3.11) is now recognized_ to result from E¢.9) by taking
the average over the noise.

1 One could now obtain the corresponding Fokker-Planck
_ _ = / ~1t ¢ / equation that describes the evolution of the probability dis-
ALl exp{ 2] dtf v gA T (L) )}’ 6.9 tribution function for¢ [12,29.
We must emphasize here that all the results discussed so

with far in this section are independent of the specifics of the
2 FRW background spacetime, the masses of the fields, and the
K(tt')=— 9 Sf d3kad(t)a3(t" [ G A(t,t") temperature of the initial thermal state. The importance of
167 the Langevin equation resides at the fundamental level in
+GEY )] (5.6) that it provides a direct link between fluctuation and dissipa-
ke Amn ' tion including all the memory effects and multiplicative as-
The nonequilibrium path integral now becomes pects of the noise correlation functions.

In particular in stochastic inflationary models it is typi-
cally assumed12] that the noise term is Gaussian and white
Sreﬁ(¢*R)+f dtg(t)R(t)H* (uncorrelategl This simplified stochastic description, in
(5.7 terms of Gaussian white noise, leads to a scale invariant
spectrum of scalar density perturbatiqdg]. Although this
with Sl ¢, R] being the real part of the effective action and description is rather compelling, within the approximations
with P[£] the Gaussian probability distribution for the sto- made in our analysis we see that fordield with an arbi-

Zoc f DPDRDEP] g]exp{ i

chastic noise variable. trary mass and arbitrary couplings to the curvature there is no
The Langevin equation is obtained via the saddle pointegime in which the correlations of the noise te@nl0 can
condition[13] be described by a Markoviaé function in time[13]. One
could speculate that some other couplings or higher-order
SSrett = (1) (5.9 effects or, perhaps, some peculiar initial states could lead to
OR(1) |5, ' a Gaussian white noise, but then one concludes that Gaussian
white noise correlations are by no means a generic feature of
leading to the microscopic field theory.
@ [t | Vge can specléllerl]te thgt olgr rgsultfof Gauisian pu]:tl corre-
-~ Y2, 9 I R PN Y ated noise could have implications for stochastic inflation.
¢+3HG+Myp+i 167r3f7xdt f dka’(t)[G (L) In particular itmaylead to departures from a scale-invariant

(Harrison-Zel'dovich spectrum of primordial scalar density
&(t) perturbations, which can now be calculated within a particu-

_ <2 ’ "N_TR —
Ci (L)) —h(D) as(t)’ &9 microscopic model using the nonequilibrium field-
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theoretical tools described in this work. Of course this re-evel the connection between the decay rate and the Hawking
quires further and deeper study, which is beyond the scope aémperature of a batim equilibriun®? In particular, is this
this article. connection maintained at higher orders?
(2) Is it possible to relate the “decay rate” to the rate of
particle production via the interaction? Such a relation in
VI. CONCLUSIONS AND FURTHER QUESTIONS Minkowski spacetime is a consequence of the existence of a
spectral representation for the self-energy but such a repre-

massless scalars in de Sitter space. The motivation was %entation is not available i.n a time-dependent background.
understand the nonequilibrium mechanisms of inflaton relax- Answers to these questions will undoubtedly offer a much

ation during the stage of quasi-inflationary expansion in_need_ed deeper understanding of nonequilibrium processes in
early universe cosmology, in old, new, and stochastic inﬂalnﬂat'on‘"’lry cosmology.
tionary scenarios. Chaotic inflation models cannot be treated

within our approximation scheme since the field will typi- ACKNOWLEDGMENTS
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pling, allowing for both minimal and conformal coupling to
the curvature.

We obtained a decay rate at one loop order that displays a
remarkable property. With some minor modifications it can In this appendix, we show explicitly that Eg8.62 and
be interpreted as the stimulated decay of the inflaton in 3.63 are in fact identical expressions. The behavior of
thermal bathat the Hawking temperature. This decay rate is¢(t) in Minkowski [given by Eq.(3.57)] was obtained in
larger than that of Minkowski space because of the BoseRef. [19] where m, was allowed to have nonzero values.
enhancement factors associated with the Hawking temperadow, the results from this reference must obviously coincide
ture. The decay rate of the minimally coupled case is largewith the flat-space limitsl—0) derived in this paper. To
than that of the conformal case which in turn is larger tharsee this, consider E¢3.63:
the Minkowski rate. We have shown explicitly that in the )
case of new inflation, the dissipation of the inflaton energy _ g *
associated with the decay into conformally coupled massless $()= ¢ Wfo do
scalars slows down further the rolling of the inflaton down

In this article we have studied the decay of inflatons into

APPENDIX

the potential hill. We have also studied decay into Goldstone y wCOoSwt

bosons. [ w?—m3 —(g?/1672)In(w/m) 1%+ (g%/327)?
To establish contact with the stochastic inflationary sce-

nario, we derived the Langevin equation for the coarse- bi e ot

grained expectation value of the inflaton field to one-loop =R f —ido(we™)

order. We find that this stochastic equation has a Gaussian
but correlated(colored noise. The two-point correlation 1
funqnon of the noise _an_d th_e d|3$|p§itlve kernel fulfill a gen- wz—mé—(gzlle‘mz)ln(w/m)—igzl327-r
eralized fluctuation-dissipation relation.
There are several potentially relevant implications of our 1
results for old, new, and stochastic inflation. In the case of  w?2—m — (g% 1679)In(w/m) +ig%/327
old inflation we see that dissipative processes in the meta-
stable maximum can contribute substantially to the “equili-The branch cut due to the logarithm in the denominator runs
bration” of the inflaton oscillations, and more so because offrom 0 to + %, and the contour of integration may be chosen
the enhanced stimulated decay for a large Hubble constan run from 0 to+ on the first sheet. It is easy to see that
In the case of new inflation, we have seen that these dissipghe integrand has four simple poles, one in each quadrant. In
tive effects help slow the rolling of the inflaton field down particular, the pole in the first quadrant is at
the potential hill, possibly extending the stage of exponential
expansion. .
Within the context of stochastic inflation, our results point ®1= Mg+ mln(mq,/m)ﬂ 64mmg
to the possibility of incorporating deviations from a scale-
invariant spectrum of primordial scalar density perturbations Furthermore, the exponential is well behaved at infinity in
by the noise correlations, which manifest the underlying mi-the first quadrant. We can therefore deform the contour of
croscopic correlations of the field theory. This is a possibilityintegration so that it runs from 0 te-ice, picking up the
that is worth exploring further. residue from one simple pole. Writing=iz, and noticing
Our results also point to further interesting questions. that the logarithm picks up an imaginary paft/2 we now
(1) Is it possible to understand at a more fundamentahave

2 2

(A1)
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1

& ., 1 B
¢(t)_?Re{fo dz(ize t)(—zz—mfl,—(92/1671-2)In(z/m)—ig2/167r — 72— m3—(g%/167?)In(z/m)

_iweiwt
+Res

Zefzt

P

w?—m3—(g%/167?)In(w/m) —ig?/32r

w=w1:|

g F i}
F| 167 )0 d‘[22+mé,+(g2/1@n2)|n(z/m)]2+(92/1677)2

( wei“’t(w—wl)

w— 0)1

+ ZWR{ lim

Absorbing the real part of the self-energy on shell as an additional mass renormalization, and going through the subsequent

algebra we obtain our result

2

w?—ma—(g%/1672)In(w/m) — ig2/3277)

} .

ze 2

2
g g2 g *
= - gt/64mm . .
d(t) ¢(0)( 1+ 327T2mq)2)e *cog Mpt) — o 16772.[0 dL[22+m§,+(g

2/167)In(z/m) 1%+ (g?%/16m)?
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