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We study the nonlinear dynamics of quantum fields in matter- and radiation-dominated universes, using the
nonequilibrium field theory approach combined with the nonperturbative Hartree and the largeN approxima-
tions. We examine the phenomenon of explosive particle production due to spinodal instabilities and paramet-
ric amplification in expanding universes with and without symmetry breaking. For a variety of initial condi-
tions, we compute the evolution of the inflaton, its quantum fluctuations, and the equation of state. We find
explosive growth of quantum fluctuations, although particle production is somewhat sensitive to the expansion
of the universe. In the largeN limit for symmetry-breaking scenarios, we determine generic late time solutions
for any flat Friedmann-Robertson-Walker~FRW! cosmology. We also present a complete and numerically
implementable renormalization scheme for the equation of motion and the energy momentum tensor in flat
FRW cosmologies. In this scheme the renormalization constants are independent of time and of the initial
conditions.@S0556-2821~97!02616-7#

PACS number~s!: 98.80.Cq

I. INTRODUCTION

Over the last 15 years, there has been a sustained effort to
study the evolution of scalar fields within the context of the
early universe. These efforts have been largely fueled by the
introduction of inflation@1,2# which has been shown to be a
possible solution of the horizon and flatness problems. In
addition to model building and other discussions of how sca-
lar field theories can produce inflation, the question of the
reheating of the universe, the transfer of energy from the
inflaton to other particle modes, has received much attention
@3#. The reason for this is that exponential expansion during
inflation causes the universe to become very cold, as the
energy in fields other than the inflaton is redshifted away. In
order to achieve the standard results of nucleosynthesis, and
possibly other early processes, the universe must be reheated
to temperatures above those at which these important pro-
cesses take place. Early efforts to account for the necessary
reheating introducedad hoc decay widths to the inflaton,
assuming the energy transfer occurred through single-
particle decay@4#. However, more recently, it has been real-
ized that there are much more efficient processes, those of
either spinodal decomposition in the case of a~new! infla-
tionary phase transition and parametric amplification in the
case of chaotic inflationary scenarios@5–15#. Such mecha-
nisms, in which the rate of energy transfer grows exponen-
tially, are referred to generally as preheating.

Recently we have treated the dynamical processes of in-
flation and preheating@7# within a fully nonequilibrium for-
malism @16–20#. Such a treatment is necessary due to the
expansion of the universe and the nature of the rapidly
evolving dynamics of preheating. Nonequilibrium analyses
have shown a wealth of new phenomena which were missed
in equilibrium studies@7,14,15,21–23#.

It has also become clear that the early analyses in which

the inflaton is treated as a classical field or within perturba-
tion theory are, in many cases, inadequate. In fact, despite
the tiny couplings usually assumed for the inflaton, the un-
stable growth of modes during preheating causes the dynam-
ics to become nonperturbative@24–26#.

In this work, we study the dynamics of scalar fields in an
expanding isotropic universe using the nonequilibrium
closed time path formalism~CTP! @16#, keeping track of the
evolution of both the zero mode of the inflaton and its fluc-
tuations. We treat the dynamics using two nonperturbative
schemes. These are the Hartree approximation appropriate to
a theory with discrete symmetry and the leading order large
N approximation of anO(N) vector model which describes
theories with continuous symmetry, satisfying the corre-
sponding Ward identities.@7,21,22,27,28#. Both of these are
mean field theory approximations, and as such they cannot
account for the particle scattering processes that would allow
the universe to reenter the hot big bang scenario after infla-
tion. Eventually, these processes should be taken into ac-
count to determine the final reheating temperature. Here we
will concern ourselves only with processes occurring before
thermalization.

In particular, we will study the process of preheating us-
ing a wide range of initial conditions while the study of the
inflationary stage will be discussed elsewhere@23#. Taking
our cues from the evolution of the equation of state in the
inflationary and preheating phases, we analyze the dynamics
of preheating in fixed radiation and matter-dominated
Friedmann-Robertson-Walker cosmologies both analytically
and numerically. We follow the equation of state during the
evolution to ensure that our evolution obeys the appropriate
gravitational dynamics.

In the next section, we set up the closed time path formal-
ism, describe our models and the two approximations we
will use to study the evolution, and write down our evolution
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equations for the zero mode and the fluctuations. In Sec. III,
we discuss some important issues regarding the renormaliza-
tion aspects of the problem, including the renormalization of
the energy and pressure densities in an expanding back-
ground. Section IV begins with early time solutions in the
slow roll scenario followed by a full numerical analysis of
the various cases. We conclude the section with late time
analyses of the largeN evolution equations in the case of a
symmetry-broken potential. In the conclusions, we contrast
our work with other analyses in the literature and discuss
avenues which may be pursued to further improve our
knowledge of these important cosmological problems. An
appendix is provided with a discussion of our choice of ini-
tial conditions and their physical implications.

Our main results are as follows. In the situations we ana-
lyze, we find that the expansion of the universe allows for
significant particle production, although this production is
somewhat sensitive to the exact expansion rate and is effec-
tively shut off for high enough rates. In the case of a
symmetry-broken potential, we determine that in the large
N limit, the quantum fluctuations decrease for late times as
1/a2(t), while these fluctuations and the zero mode satisfy a
sum rule consistent with Goldstone’s theorem. In addition to
these results, we present a consistent renormalization of the
energy momentum tensor in a flat Friedmann-Robertson-
Walker ~FRW! spacetime within both the largeN and the
Hartree approximations. Such a result is an essential compo-
nent of any consistent analysis of the backreaction problem
in an expanding universe.

We compute the renormalized energy density,«, and the
pressure,p, as a function of time. Averaging over the field
oscillations, we find immediately after preheating a cold mat-
ter equation of state (p50) in the slow roll scenarios. In
chaotic scenarios, the equation of state just after preheating is
between that of radiation (p5«/3) and matter where the
matter dominated regime is reached only for late times. The
time scale over which the equation of state becomes matter
dominated depends on the distribution of created particles in
momentum space in addition to the approximation scheme
implemented.

II. THE FORMALISM AND MODELS

We present here the framework of the nonequilibrium
closed time path formalism. For a more complete discussion,
the reader is referred to@7#, or the alternative approach given
in @22#.

The time evolution of a system is determined in the
Schrödinger picture by the functional Liouville equation

i
]r~ t !

]t
5@H~ t !,r~ t !#, ~2.1!

wherer is the density matrix and we allow for an explicitly
time dependent Hamiltonian as is necessary to treat quantum
fields in a time dependent background. Formally, the solu-
tions to this equation for the time evolving density matrix are
given by the time evolution operator,U(t,t8), in the form

r~ t !5U~ t,t0!r~ t0!U21~ t,t0!. ~2.2!

The quantityr(t0) determines the initial condition for the
evolution. We choose this initial condition to describe a state
of local equilibrium in conformal time, which is also identi-
fied with the conformal adiabatic vacuum for short wave-
lengths. In the Appendix we provide an analysis and discus-
sion of different initial conditions and their physical content
within the context of expanding cosmologies.

Given the evolution of the density matrix~2.2!, ensemble
averages of operators are given by the expression~again in
the Schro¨dinger picture!

^O~ t !&5
Tr@U~ t0 ,t !OU~ t,t8!U~ t8,t0!r~ t0!#

Trr~ t0!
, ~2.3!

where we have inserted the identity,U(t,t8)U(t8,t) with t8
an arbitrary time which will be taken to infinity. The state is
first evolved forward from the initial timet0 to t when the
operator is inserted. We then evolve this state forward to
time t8 and back again to the initial time.

The actual evolution of various quantities in the theory
can now be evaluated by either constructing the appropriate
Green’s functions as in@7#, or by choosing an explicit ansatz
for the functional form of the time dependent density matrix
so that the trace in Eq.~2.3! may be explicitly evaluated as a
functional integral~see @22#!. The methods are equivalent,
and provide the results which will be presented below for the
cases of interest.

Since we are currently interested in the problem of pre-
heating at the end of inflation, we will work in a spatially flat
Friedmann-Robertson-Walker background with scale factor
a(t) and line element:

ds25dt22a2~ t !dxW2. ~2.4!

Our Lagrangian density has the form

L5A2gF1

2
¹mF¹mF2V~F!G . ~2.5!

A. Hartree approximation

In the Hartree approximation, our theory is that of a
single-component scalar field,F(xW ,t), with theZ2 symmetry
F→2F. The potential can be written as

V~F!5
1

2
~m21jR!F21

l

4!
F4, ~2.6!

whereR is the Ricci scalar. We decompose the field into its
zero modef(t)5^F(xW ,t)& and fluctuationsc(xW ,t) about it:

F~xW ,t !5f~ t !1c~xW ,t !. ~2.7!

The potential~2.6! may then be expanded in terms of these
fields.

The Hartree approximation is achieved by making the po-
tential quadratic in the fluctuation fieldc by invoking the
factorization

c3~xW ,t !→3^c2~xW ,t !&c~xW ,t !, ~2.8!

c4~xW ,t !→6^c2~xW ,t !&c2~xW ,t !23^c2~xW ,t !&2. ~2.9!
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This factorization yields a quadratic theory in which the ef-
fects of interactions are encoded in the time dependent mass
which is determined self-consistently.

The equations of motion for the zero mode and the fluc-
tuations are given by the tadpole equation

^c~xW ,t !&50. ~2.10!

Introducing the Fourier mode functions,Uk(t), they can be
written as

f̈~ t !13
ȧ~ t !

a~ t !
ḟ~ t !1@m21jR~ t !#f~ t !1

l

6
f3~ t !1

l

2
f~ t !

3^c2~ t !&50 , ~2.11!

F d2

dt2
13

ȧ~ t !

a~ t !

d

dt
1

k2

a2~ t !
1m21jR~ t !1

l

2
f2~ t !

1
l

2
^c2~ t !&GUk~ t !50 , ~2.12!

^c2~ t !&5E d3k

2~2p!3
uUk~ t !u2. ~2.13!

The initial conditions on the mode functions are

Uk~ t0!5
1

Avk~ t0!
,

U̇k~ t0!5F2
ȧ~ t0!

a~ t0!
2 ivk~ t0!GUk~ t0!, ~2.14!

with the frequenciesvk(t0) given by

vk~ t0!5@k21M2~ t0!#1/2,

M2~ t !5a2~ t !Fm21~j21/6!R~ t !

1
l

2
f2~ t !1

l

2
^c2~ t !&G . ~2.15!

A detailed analysis and discussion of the choice of initial
conditions and the frequencies~2.15! is provided in the
Appendix. As discussed there, this choice corresponds to
the large-k modes being in the conformal adiabatic vac-
uum state. In what follows we will subtract the compos-
ite operatorc2(t) at the initial time and absorb the term
~l/2!^c2(t0)& in a renormalization of the mass. Furthermore,
we choose the scale of time such thata(t0)51 in both ra-
diation and matter dominated cosmologies.

B. Large N limit

To discuss the largeN limit, we now treat F as an
N-component vector in a theory with the continuous O(N)
symmetry. The potential is

V~F!5
1

2
~m21jR!F•F1

l

8N
~F•F!2. ~2.16!

We now break up the fieldF into a single scalar fields and
an N21 component vectorpW as F5(s,pW ) and allow the
s field to have a non-zero expectation value. Taking the
decomposition

s~xW ,t !5ANf~ t !1x~xW ,t !, ~2.17!

whereANf(t) is the expectation value ofs and x is the
fluctuation about this value. If we write the ‘‘pion’’ field as

~2.18!

we reach the leading order largeN limit by assuming the
factorization

c4~xW ,t !→2^c2~xW ,t !&c2~xW ,t !2^c2~xW ,t !&2, ~2.19!

with

^c2&;1, ^x2&;1, f;1. ~2.20!

We see that since there areN21 pion fields, contributions
from the fieldx can be neglected in the formal limit as they
are of order 1/N with respect those ofc andf.

Again, we determine the equations of motion via condi-
tion ~2.10!. The zero-mode equation becomes

f̈~ t !13
ȧ~ t !

a~ t !
ḟ~ t !1@m21jR~ t !#f~ t !1

l

2
f3~ t !1

l

2
f~ t !

3^c2~ t !&50, ~2.21!

while the equations for the modes, the fluctuation, and the
initial conditions are identical to the Hartree case given by
Eqs.~2.12!–~2.14!. Notice that we have used identical nota-
tions in the two cases to avoid cluttering and also to stress
the similarity between the two approximations. In particular,
we note that the only difference in the expressions for the
two cases@Eqs. ~2.12! and~2.21!, respectively# is a factor of
3 appearing in the self-interaction term in the equations for
the zero mode. However, as we will see, the two approxima-
tions are describing theories with distinct symmetries and
there will be qualitative differences in the results.

An important point to note in the largeN equations of
motion is that the form of the equation for the zero mode
~2.21! is the same as for thek50 mode function~2.12!. It
will be this identity that allows solutions of these equations
in a symmetry-broken scenario to satisfy Goldstone’s theo-
rem.

III. RENORMALIZATION AND ENERGY MOMENTUM

Upon examination of the equal time correlator~2.13!, one
finds that the integral is divergent and thus must be regu-
lated. This can be done by a number of methods, but we
require a scheme which is amenable to numerical calcula-
tion. We therefore introduce a large momentum cutoff which
renders the integral finite, and one finds that it is possible to
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remove the terms depending both quadratically and logarith-
mically on the cutoff by a renormalization of the parameters
of the theory@22#. After these terms are subtracted, the cutoff
may be taken to infinity, and the remaining quantity is both
physical and finite. A similar process is required to regulate
the expressions for the energy density and the pressure as
will be described in more detail below@23#.

In terms of the variables introduced in Sec. II above, the
renormalization of Eq.~2.13! proceeds almost identically in
the Hartree and largeN approximations. The WKB analysis
that reveals the large-k behavior of the mode functions is
described in detail in the Appendix wherein we quote the
relevant expressions for the large-k behavior for the mode
functions and their derivatives. Denoting bare and renormal-
ized parameters with subscriptsb andr , respectively, and the
momentum cutoff and subtraction point asL andk, respec-
tively, and using the results of the Appendix, we find the
renormalization scheme

mb
21

lb

16p2

L2

a2~ t !
5mr

2F11
lb

16p2
ln~L/k!G , ~3.1!

lb5
l r

12gl r ln~L/k!/16p2
, ~3.2!

jb5j r1
lb

16p2
~j r21/6!ln~L/k!, ~3.3!

whereg is a combinatorial factor taking on the valueg51
in the largeN limit and g51/3 in the Hartree approximation.
The subtracted equal time correlator is now given by

^c2~ t !& r5EL d3k

~2p!3H uUk~ t !u2

2
2

1

2ka2~ t !

1
u~k2k!

4k3 F ~j r21/6!R~ t !1mr
2

1
l r

2
@f2~ t !1^c2~ t !& r #G J . ~3.4!

A further finite subtraction att0 is performed and ab-
sorbed in a further finite and time independent renormaliza-
tion of the mass. Notice in particular that in order for the
renormalization of the mass to be time independent, we must
require that the cutoffL be fixed inphysicalcoordinates and
therefore have the formL}a(t).

Our treatment of the renormalization of the energy mo-
mentum tensor is similar to the approach of@29#, extended to
the nonperturbative Hartree and largeN approximations. The
expressions for the expectation values of the energy density,
«, and the trace of the stress energy,«23p, wherep is the
pressure density are

«

N
5

1

2
ḟ21

1

2
m2f21

gl

8
f41

m4

2gl
2jG0

0f216j
ȧ

a
fḟ1

1

2
^ċ2&1

1

2a2
^~¹c!2&1

1

2
m2^c2&1

l

8
@2f2^c2&1^c2&2#

2jG0
0^c2&16j

ȧ

a
^cċ&, ~3.5!

«23p

N
52ḟ212m2f21

gl

2
f41

2m4

gl
2jGm

mf216jS ff̈1ḟ213
ȧ

a
fḟ D 2~126j!^ċ2&

1
126j

a2
^~¹c!2&1~226j!m2^c2&2jGm

m~126j!^c2&1
l

2
@~226j!f2^c2&1^c2&226j^c2&^c2& r #, ~3.6!

where we have used the equations of motion in deriving this expression for the trace~3.6!. The quantitiesGm
m52R and

G0
0523(ȧ/a)2 are the trace and the time-time components of the Einstein curvature tensor,^c2& is given by Eq.~2.13!,

^c2& r by Eq. ~3.4!, and we have defined the integrals

^~¹c!2&5E d3k

2~2p!3
k2uUk~ t !u2, ~3.7!

^ċ2&5E d3k

2~2p!3
uU̇k~ t !u2. ~3.8!

The composite operator^cċ& is symmetrized by removing a normal ordering constant to yield

1

2
~^cċ&1^ċc&!5

1

4E d3k

~2p!3

duUk~ t !u2

dt
. ~3.9!
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Each of these integrals is divergent and must be regularized. We proceed in the same manner as above, imposing an ultraviolet
cutoff, L, and computing the high-k expansions of theUk , this time to fourth order in 1/k. We find the following divergences
in « and«23p:

S «

ND
div

5
L4

16p2a4
1

L2

16p2a2F2~j r21/6!G0
01mr

21
l r

2
~f21^c2& r !G1

ln~L/k!

16p2 F2
mr

4

2
2mr

2 l r

2
~f21^c2& r !2

l r
2

8
~f21^c2& r !

2

12~j r21/6!G0
0S mr

21
l r

2
~f21^c2& r ! D1~j r21/6!2H0

026~j r21/6!
ȧ

a

l r

2

d

dt
~f21^c2& r !G , ~3.10!

S «23p

N D
div

5
L2

16p2a2F2~j r21/6!Gm
m112~j r21/6!

ȧ2

a2
12mr

21l r~f21^c2& r !G
1

ln~L/k!

16p2 F22mr
422mr

2l r~f21^c2& r !2
l r

2

2
~f21^c2& r !

212~j r21/6!Gm
mS mr

21
l r

2
~f21^c2& r ! D

1~j r21/6!2Hm
m26~j r21/6!S l r

2

d2

dt2
~f21^c2& r !13

ȧ

a

l r

2

d

dt
~f21^c2& r !D G . ~3.11!

The quantitiesH0
0 andHm

m are the time-time component and
trace of a geometrical tensor given by the variation with
respect to the metric of higher derivative terms appearing in
the gravitational action~such asR2). For the present case,
they are given in terms of the Ricci scalar by the expressions

H0
0526S ȧ

a
Ṙ1

ȧ2

a2
R2

1

12
R2D , ~3.12!

Hm
m526S R̈13

ȧ

a
ṘD . ~3.13!

Equations~3.10! and ~3.11! are closely related to Eqs.
~3.17! in @23#. However, they are not identical since the ini-
tial conditions chosen in@23# were different from the ones
selected in the present paper. Furthermore, we hadj r50 in
@23#.

The energy momentum is made finite by subtraction of
the divergent pieces~3.10! and ~3.11! from the expressions
for the energy density~3.5! and the trace~3.6!. Within the
context of covariant regularization schemes such as dimen-
sional regularization and covariant point splitting@30#, such
a procedure has been shown to adequately renormalize cou-
plings appearing in the semiclassical Einstein equation, ex-
tended to account for higher derivative terms and a possible
cosmological constant,K. This equation has the form

Gn
m

8pGN
1aHn

m1
Kgn

m

8pGN
52^Tn

m&, ~3.14!

whereGN is Newton’s constant anda is the coupling to the
higher order gravitational term. However, regularization via
an ultraviolet cutoff is not a covariant scheme and we find
that the quadratic and quartic divergence structure of the en-
ergy momentum in this scheme does not have the correct
form to consistently renormalize the parameters of the semi-
classical theory. Nevertheless, the subtraction procedure de-

scribed here produces a stress energy tensor which is both
finite and covariantly conservedin addition to being ame-
nable to numerical study. An alternative renormalized com-
putational scheme in which covariant regularization is pos-
sible is presented by Baacke, Heitmann, and Pa¨tzold @31#. It
should be possible to extend such a scheme to expanding
spacetimes.

IV. EVOLUTION

We focus our study of the evolution on radiation- or
matter-dominated cosmologies, as the case for de Sitter ex-
pansion has been studied previously@23#. We write the scale
factor asa(t)5(t/t0)n with n51/2 andn52/3 correspond-
ing to radiation- and matter-dominated backgrounds, respec-
tively. Note that the value oft0 determines the initial Hubble
constant since

H~ t0!5
ȧ~ t0!

a~ t0!
5

n

t0
.

We now solve the system of equations~2.11!–~2.13! in the
Hartree approximation, with Eq.~2.21! replacing Eq.~2.11!
in the largeN limit. We begin by presenting an early time
analysis of the slow roll scenario. We then undertake a thor-
ough numerical investigation of various cases of interest. For
the symmetry-broken case, we also provide an investigation
of the late time behavior of the zero mode and the quantum
fluctuations.

In what follows, we scale all variables in terms of the
magnitude of the renormalized mass, takingumr

2u51. We
also define the variable

h2~ t ![lf2~ t !/2

and write

gS~ t ![l^c2~ t !& r /2, g[l/8p2510212.
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We drop the subscriptr denoting the renormalized param-
eters, and we will assume minimal coupling to the curvature,
j r50. In the most of the cases of interest,R!1, so that
finite j r has little effect.

A. Early time solutions for slow roll

For early times in a slow roll scenario@m2521,
h(t0)!1#, we can neglect in Eqs.~2.11! or ~2.21! and in Eq.
~2.12! both the quadratic and cubic terms inh(t) as well as
the quantum fluctuations ^c2(t)& r @recall that
^c2(t0)& r50#. Thus, the differential equations for the zero
mode~2.11! or ~2.21! and the mode functions~2.12! become
linear equations. In terms of the scaled variables introduced
above, witha(t)5(t/t0)n (n52/3 for a matter-dominated
cosmology whilen51/2 for a radiation-dominated cosmol-
ogy! we have

ḧ~ t !1
3n

t
ḣ~ t !2h~ t !50, ~4.1!

F d2

dt2
1

3n

t

d

dt
1

k2

~ t/t0!2n
21GUk~ t !50. ~4.2!

The solutions to the zero mode equation~4.1! are

h~ t !5ct2nI n~ t !1dt2nKn~ t !, ~4.3!

where n[(3n21)/2, and I n(t) and Kn(t) are modified
Bessel functions. The coefficients,c and d, are determined
by the initial conditions on h. For h(t0)5h0 and
ḣ(t0)50, we have

c5h0t0
n11F K̇n~ t0!2

n

t0
Kn~ t0!G , ~4.4!

d52h0t0
n11F İ n~ t0!2

n

t0
I n~ t0!G . ~4.5!

Taking the asymptotic forms of the modified Bessel func-
tions, we find that for intermediate timesh(t) grows as

h~ t !
t@1
5

c

A2p
t23n/2etF12

9n226n

8t
1OS 1

t2D G . ~4.6!

We see thath(t) grows very quickly in time, and the ap-
proximations~4.1! and ~4.2! will quickly break down. For
the case shown in Fig. 1@with n52/3, H(t0)50.1,
h(t0)51027, andḣ(t0)50#, we find that this approximation
is valid up tot2t0.10.

The equations for the mode functions~4.2! can be solved
in closed form for the modes in the case of a radiation domi-
nated cosmology withn51/2. The solutions are

Uk~ t !5cke
2tUS 3

4
2

k2t0

2
,
3

2
,2t D

1dke
2tM S 3

4
2

k2t0

2
,
3

2
,2t D . ~4.7!

Here, U(•) and M (•) are confluent hypergeometric func-
tions@32# @in another common notation,M (•)[1F1(•)#, and
the ck anddk are coefficients determined by the initial con-
ditions ~2.14! on the modes. The solutions can also be writ-
ten in terms of parabolic cylinder functions.

For larget we have the asymptotic form

FIG. 1. Symmetry-broken, slow roll, large
N, matter-dominated evolution of~a! the zero
modeh(t) vs t, ~b! the quantum fluctuation op-
erator gS(t) vs t, ~c! the number of particles
gN(t) vs t, ~d! the particle distributiongNk(t) vs
k at t5149.1 ~dashed line! and t5398.2 ~solid
line!, and~e! the ratio of the pressure and energy
density p(t)/«(t) vs t for the parameter values

m2521, h(t0)51027, ḣ(t0)50, g510212,
H(t0)50.1.
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2 G~3/42k2t0/2!
F11OS 1

t D G
1cke

2t~2t !~23/41k2t0/2!F11OS 1

t D G . ~4.8!

Again, these expressions only apply for intermediate times
before the nonlinearities have grown significantly.

B. Numerical analysis

We now present the numerical analysis of the dynamical
evolution of scalar fields in time dependent, matter- and
radiation-dominated cosmological backgrounds. We use ini-
tial values of the Hubble constant such thatH(t0)>0.1. For
expansion rates much less than this value the evolution will
look similar to Minkowski space, which has been studied in
great detail elsewhere@7,21,28#. As will be seen, the equa-
tion of state found numerically is, in the majority of cases,
that of cold matter. We therefore use a matter-dominated
expansion for the evolution in much of the analysis that fol-
lows. While it presents some inconsistency at late times, the
evolution in radiation-dominated universes remains largely
unchanged, although there is greater initial growth of quan-
tum fluctuations due to the scale factor growing more slowly
in time. Using the largeN and Hartree approximations to
study theories with continuous and discrete symmetries re-
spectively, we treat three important cases. They are~1!
m2,0, h(t0)!1; ~2! m2,0, h(t0)@1; ~3! m2.0,
h(t0)@1.

In presenting the figures, we have shifted the origin of
time such thatt→t85t2t0. This places the initial time,t0,
at the origin. In these shifted coordinates, the scale factor is
given by

a~ t !5S t1t

t D n

,

where, once again,n52/3 and n51/2 in matter- and
radiation-dominated backgrounds respectively, and the value
of t is determined by the Hubble constant at the initial time:

H~ t050!5
n

t
.

Case 1.m2,0, h(t0)!1. This is the case of an early
universe phase transition in which there is little or no biasing
in the initial configuration~by biasing we mean that the ini-
tial conditions break theh→2h symmetry!. The transition
occurs from an initial temperature above the critical tempera-
ture, T.Tc , which is quenched att0 to the temperature
Tf!Tc . This change in temperature due to the rapid expan-
sion of the universe is modeled here by an instantaneous
change in the mass from an initial valuemi

25T2/Tc
221 to a

final valuemf
2521. We will use the valuemi

251 in what
follows. This quench approximation is necessary since the
low momentum frequencies~2.15! appearing in our initial
conditions~2.14! are complex for negative mass squared and
small h(t0). An alternative choice is to use initial frequen-
cies given by

vk~ t0!5Fk21M2~ t0!tanhS k21M2~ t0!

uM2~ t0!u
D G 1/2

.

These frequencies have the attractive feature that they match
the conformal adiabatic frequencies given by Eq.~2.15! for
large values ofk while remaining positive for smallk. We
find that such a choice of initial conditions changes the quan-
titative value of the particle number by a few percent, but
leaves the qualitative results unchanged.

While this case should show some qualitative features of
the corresponding process of preheating in slow roll infla-
tion, we note that since quantum fluctuations can grow to be
large during the de Sitter phase~see@23#!, a proper treatment
of preheating after slow roll inflation must account for the
full gravitational back reaction. This will be the subject of a
future article@33#. In the present case, we impose a back-
ground cosmology dominated by ordinary radiation or mat-
ter. We plot the the zero modeh(t), the equal time correlator
gS(t), the total number of produced particlesgN(t) ~see the
Appendix for a discussion of our definition of particles!, the
number of particlesgNk(t) as a function of wave number for
both intermediate and late times, and the ratio of the pressure
and energy densitiesp(t)/«(t) ~giving the equation of state!.

Figures 1~a!–1~e! show these quantities in the largeN
approximation for a matter-dominated cosmology with an
initial condition on the zero mode given by
h(t050)51027, ḣ(t050)50 and for an initial expansion
rate of H(t0)50.1. This choice for the initial value ofh
stems from the fact that the quantum fluctuations only have
time to grow significantly for initial values satisfying
h(t0)!Ag; for valuesh(t0)@Ag the evolution is essentially
classical. This result is clear from the intermediate time de-
pendence of the zero mode and the low momentum mode
functions given by expressions~4.6! and ~4.8!, respectively.

After the initial growth of the fluctuationgS @Fig. 1~b!#
we see that the zero mode@Fig. 1~a!# approaches the value
given by the minimum of the tree level potential,h51,
while gS decays for late times as

gS.
C

a2~ t !
5
C

t4/3.

For these late times, the Ward identity corresponding to the
O(N) symmetry of the field theory is satisfied, enforcing the
condition

211h2~ t !1gS~ t !50. ~4.9!

Hence, the zero mode approaches the classical minimum as

h2~ t !.12
C

a2~ t !
.

Figure 1~c! depicts the number of particles produced. Af-
ter an initial burst of particle production, the number of par-
ticles settles down to a relatively constant value. Notice that
the number of particles produced is approximately of order
1/g. In Fig. 1~d!, we show the number of particles as a func-
tion of the wave number,k. For intermediate times we see
the simple structure depicted by the dashed line in the figure,
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while for late times this quantity becomes concentrated more
at low values of the momentumk.

Finally, Fig. 1~e! shows that the field begins with a de
Sitter equation of statep52« but evolves quickly to a state
dominated by ordinary matter, with an equation of state~av-
eraged over the oscillation time scale! p50. This last result
is a bit surprising as one expects from the condition~4.9! that
the particles produced in the final state are massless Gold-
stone bosons~pions! which should have the equation of state
of radiation. However, as shown in Fig. 1~d!, the produced
particles are of low momentum,k!1, and while the effec-
tive mass of the particles is zero to very high accuracy when
averaged over the oscillation time scale, the effective mass
makes small oscillations about zero so that the dispersion
relation for these particles differs from that of radiation. In
addition, since the produced particles have little energy, the
contribution to the energy density from the zero mode, which
contributes to a cold matter equation of state, remains sig-
nificant.

In Figs. 2~a!–2~e! we show the same situation depicted in
Fig. 1 using the Hartree approximation. The initial condition
on the zero mode ish(t050)5A331027; the factor of
A3 appears due to the different scaling in the zero-mode
equations,~2.11! and ~2.21!, which causes the minimum of
the tree level effective potential in the Hartree approximation
to have a value ofh5A3. Again, the Hubble constant has
the valueH(t0)50.1. Here, we see again that there is an
initial burst of particle production asgS @Fig. 2~b!# grows
large. However, the zero mode@Fig. 2~a!# quickly reaches
the minimum of the potential and the condition

211h2~ t !/31gS~ t !50 ~4.10!

is approximately satisfied by forcing the value ofgS quickly
to zero. There are somewhat fewer particles produced here

compared to the largeN case, and the distribution of par-
ticles is more extended. Since the effective mass of the par-
ticles is nonzero, we expect a matter-dominated equation of
state @Fig. 2~e!# for later times. The fact that the Hartree
approximation does not satisfy Goldstone’s theorem means
that the resulting particles must be massive, explaining why
somewhat fewer particles are produced.

Finally, we show the special case in which there is no

initial biasing in the field,h(t050)50, ḣ(t050)50, and
H(t0)50.1 in Figs. 3~a!–3~d!. With such an initial condition,
the Hartree approximation and the largeN limit are equiva-
lent. The zero mode remains zero for all time, so that the
quantity gS(t) @Fig. 3~a!# satisfies the sum rule~4.9! by
reaching the value one without decaying for late times. No-
tice that many more particles are produced in this case@Fig.
3~b!#; the growth of the particle number for late times is due
to the expansion of the universe. The particle distribution
@Fig. 3~c!# is similar to that of the slow roll case in Fig. 1.
The equation of state@Fig. 3~d!# is likewise similar.

In each of these cases of slow roll dynamics, increasing
the Hubble constant has the effect of slowing the growth of
both h and gS. The equation of state will be that of a de
Sitter universe for a longer period before moving to a matter-
dominated equation of state. Otherwise, the dynamics is
much the same as in Figs. 1–3.

Case 2.m2,0, h(t0)@1. We now examine the case of
preheating occurring in a chaotic inflationary scenario with a
symmetry-broken potential. In chaotic inflation, the zero
mode begins with a valueh(t)@1. During the de Sitter
phase,H@1, and the field initially evolves classically, domi-
nated by the first-order derivative term appearing in the zero-
mode equation@see Eqs.~2.11! and ~2.21!#. Eventually, the
zero mode rolls down the potential, ending the de Sitter
phase and beginning the preheating phase. We consider the

FIG. 2. Symmetry-broken, slow roll, Hartree,
matter-dominated evolution of~a! the zero mode
h(t) vs t, ~b! the quantum fluctuation operator
gS(t) vs t, ~c! the number of particlesgN(t) vs
t, ~d! the particle distributiongNk(t) vs k at
t5150.7 ~dashed line! and t5396.1 ~solid line!,
and ~e! the ratio of the pressure and energy den-
sity p(t)/«(t) vs t for the parameter values

m2521, h(t0)531/231027, ḣ(t0)50,
g510212, H(t0)50.1.
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field dynamics in the FRW universe where preheating occurs
after the end of inflation. We thus take the initial temperature
to be zero,T50.

Figure 4 shows our results for the quantities,h(t),
gS(t), gN(t), gNk(t), andp(t)/«(t) for the evolution in the
large N approximation within aradiation-dominated gravi-
tational background withH(t0)50.1. The initial condition
on the zero mode is chosen to have the representative value
h(t050)54 with ḣ(t050)50. Initial values of the zero
mode much smaller than this will not produce significant
growth of quantum fluctuations; initial values larger than this
produces qualitatively similar results, although the resulting
number of particles will be greater and the time it takes for
the zero mode to settle into its asymptotic state will be
longer.

We see from Fig. 4~a! that the zero mode oscillates rap-
idly, while the amplitude of the oscillation decreases due to
the expansion of the universe. This oscillation induces par-

ticle production through the process of parametric amplifica-
tion @Fig. 4~c!# and causes the fluctuationgS to grow @Fig.
4~b!#. Eventually, the zero mode loses enough energy that it
is restricted to one of the two minima of the tree level effec-
tive potential. The subsequent evolution closely follows that
of case 1 above withgS decaying in time as 1/a2(t);1/t
with h given by the sum rule~4.9!. The spectrum@Fig. 4~d!#
indicates a single unstable band of particle production domi-
nated by the modesk51/2 to aboutk53 for late times. The
structure within this band becomes more complex with time
and shifts somewhat toward lower momentum modes. Such a
shift has already been observed in Minkowski spacetimes
@7#. Figure 4~e! shows the equation of state which we see to
be somewhere between the relations for matter and radiation
for times out as far ast5400, but slowly moving to a matter
equation of state. Since matter redshifts as 1/a3(t) while ra-
diation redshifts as 1/a4(t), the equation of state should
eventually become matter dominated. Given the equation of

FIG. 3. Symmetry-broken, no roll, matter-
dominated evolution of~a! the quantum fluctua-
tion operatorgS(t) vs t, ~b! the number of par-
ticles gN(t) vs t, ~c! the particle distribution
gNk(t) vs k at t5150.1 ~dashed line! and
t5397.1~solid line!, and~d! the ratio of the pres-
sure and energy densityp(t)/«(t) vs t for the

parameter valuesm2521, h(t0)50, ḣ(t0)50,
g510212, H(t0)50.1.

FIG. 4. Symmetry-broken, chaotic, largeN,
radiation-dominated evolution of~a! the zero
modeh(t) vs t, ~b! the quantum fluctuation op-
erator gS(t) vs t, ~c! the number of particles
gN(t) vs t, ~d! the particle distributiongNk(t) vs
k at t576.4 ~dashed line! and t5392.8 ~solid
line!, and~e! the ratio of the pressure and energy
density p(t)/«(t) vs t for the parameter values

m2521, h(t0)54, ḣ(t0)50, g510212,
H(t0)50.1.
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state indicated by Fig. 4~e!, we estimate that this occurs for
times of ordert5104. The reason the equation of state in this
case differs from that of cold matter as was seen in Figs. 1–3
is that the particle distribution produced by parametric am-
plification is concentrated at higher momenta,k.1.

Figure 5 shows the corresponding case with a matter-
dominated background. The results are qualitatively very
similar to those described for Fig. 4 above. Because of the
faster expansion, the zero mode@Fig. 5~a!# finds one of the

two wells more quickly and slightly less particles are pro-
duced. For late times, the fluctuationgS @Fig. 5~b!# decays
as 1/a2(t)}1/t4/3. Again we see an equation of state@Fig.
5~e!# which evolves from a state between that of pure radia-
tion or matter toward one of cold matter.

The Hartree case is depicted in Fig. 6 for a matter-
dominated universe, with the initial condition on the zero
modeh(t050)54A3. Again, the evolution begins in much
the same manner as in the largeN approximation with oscil-

FIG. 5. Symmetry-broken, chaotic, largeN,
matter-dominated evolution of~a! the zero mode
h(t) vs t, ~b! the quantum fluctuation operator
gS(t) vs t, ~c! the number of particlesgN(t) vs
t, ~d! the particle distributiongNk(t) vs k at
t550.8 ~dashed line! and t5399.4 ~solid line!,
and ~e! the ratio of the pressure and energy den-
sity p(t)/«(t) vs t for the parameter values

m2521, h(t0)54, ḣ(t0)50, g510212,
H(t0)50.1.

FIG. 6. Symmetry-broken, chaotic, Hartree,
matter-dominated evolution of~a! the zero mode
h(t) vs t, ~b! the quantum fluctuation operator
gS(t) vs t, ~c! the number of particlesgN(t) vs
t, ~d! the particle distributiongNk(t) vs k at
t5151.3 ~dashed line! and t5397.0 ~solid line!,
and ~e! the ratio of the pressure and energy den-
sity p(t)/«(t) vs t for the parameter values

m2521, h(t0)54331/2, ḣ(t0)50, g510212,
H(t0)50.1.
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lation of the zero mode@Fig. 6~a!#, which eventually settles
into one of the two minima of the effective potential.
Whereas in the largeN approximation, the zero mode ap-
proaches the minimum asymptotically@as given by Eq.~4.9!
and our late time analysis below#, in the Hartree approxima-
tion we see that the zero mode finds the minimum quickly
and proceeds to oscillate about that value. The two-point
correlator @Fig. 6~b!# quickly evolves toward zero without
growing large. Particle production in the Hartree approxima-
tion @Figs. 6~c! and 6~d!# is again seen to be inefficient com-
pared to that of the largeN case above. Figure 6~e! again
shows that the equation of state is matter dominated for all
but the earliest times.

A larger Hubble constant prevents significant particle pro-
duction unless the initial amplitude of the zero mode is like-
wise increased such that the relationh(t0)@H(t0) is satis-
fied. For very large amplitudeh(t0)@1, to the extent that
the mass term can be neglected and while the quantum fluc-
tuation term has not grown to be large, the equations of
motion ~2.11!, ~2.12!, and~2.21! are scale invariant with the
scalingh→mh, H→mH, t→t/m, andk→mk, wherem is
an arbitrary scale.

For completeness, we show the case of the evolution with
initial values of the Hubble constant given byH(t0)55 and
H(t0)52, respectively, in Figs. 7 and 8 using radiation-
dominated expansion. Here, we have used the largeN ap-
proximation and have made an appropriate increase in the
initial value of the zero mode such that the fluctuations@Figs.
7~b! and 8~b!# grow significantly @we have chosen
h(t0)540 in Fig. 7 andh(t0)516 in Fig. 8#. While the
dynamics looks much like that of Figs. 4–6 above, we point
out that the particle distribution@Figs. 7~d! and 8~d!# is ex-
tended to higher values with the result being that the equa-
tion of state@Figs. 7~e! and 8~e!# is weighted more toward
that of radiation.

Case 3.m2.0, h(t0)@1. The final case we examine is
that of a simple chaotic scenario with a positive mass term in
the Lagrangian. Again, preheating can begin only after the
inflationary phase of exponential expansion; this allows us to
take a zero-temperature initial state for the FRW stage.

Figure 9 shows this situation in the largeN approximation
for a matter-dominated cosmology. The zero mode,h(t),
oscillates in time while decaying in amplitude from its initial
value of h(t050)55, ḣ(t050)50 @Fig. 9~a!#, while the
quantum fluctuation,gS, grows rapidly for early times due
to parametric resonance@Figs. 9~b!#. We choose here an ini-
tial condition on the zero mode which differs from that of
Figs. 4 and 5 above since there is no significant growth of
quantum fluctuations for smaller initial values. From Fig.
9~d!, we see that there exists a single unstable band at values
of roughly k51 to k53, although careful examination re-
veals that the unstable band extends all the way tok50. The
equation of state is depicted by the quantityp(t)/«(t) in Fig.
9~e!. As expected in this massive theory, the equation of
state is matter dominated.

The final case is the Hartree approximation, shown in Fig.
10. Here, parametric amplification is entirely inefficient
when expansion of the universe is included and we require
an initial condition on the zero mode ofh(t050)512A3 to
provide even meager growth of quantum fluctuations. We
have used a matter-dominated gravitational background with
H(t0)50.1. We see that while the zero mode oscillates@Fig.
10~a!#, there is little growth in quantum fluctuations@Fig.
10~b!# and few particles produced@Fig. 10~c!#. Examining
the particle distribution@Fig. 10~d!#, it is found that the bulk
of these particles is produced within a single resonance band
extending fromk.15 to k.16. This resonance develops at
early time during the large amplitude oscillation of the zero
mode. These results are explained by a simple resonance
band analysis described below.

FIG. 7. Symmetry-broken, chaotic, largeN,
radiation-dominated evolution of~a! the zero
modeh(t) vs t, ~b! the quantum fluctuation op-
erator gS(t) vs t, ~c! the number of particles
gN(t) vs t, ~d! the particle distributiongNk(t) vs
k at t5118.9 ~dashed line! and t5394.7 ~solid
line!, and~e! the ratio of the pressure and energy
density p(t)/«(t) vs t for the parameter values

m2521, h(t0)540, ḣ(t0)50, g510212,
H(t0)55.0.
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At first glace, it is not entirely clear why there are so
many more particles produced in the largeN case of Fig. 9
than in the Hartree case of Fig. 10. Since in the present case
the Hubble time is long compared to the oscillation time
scale of the zero mode,H!1, we would expect a forbidden
band for early times at the location given approximately by
the Minkowski results provided in Ref.@34#. In fact, we find
this to be the case. However, we know from previous studies
that in Minkowski space a similar number of particles is
produced in both the Hartree and largeN cases@21,34#.

The solution to this problem is inherent in the band struc-
ture of the two cases when combined with an understanding
of the dynamics in an expanding spacetime. First, we note
that, for early times whengS!1, the zero mode is well fit
by the functionh(t)5h0f (t)/a(t) where f (t) is an oscilla-
tory function taking on values from21 to 1. This is clearly
seen from the envelope functionh0 /a(t) shown in Fig. 10~a!
~recall thatgS!1 during the entire evolution in this case!.
Second, the momentum that appears in the equations for the
modes~2.12! is the physicalmomentumk/a(t). We there-

FIG. 8. Symmetry-broken, chaotic, largeN,
radiation-dominated evolution of~a! the zero
modeh(t) vs t, ~b! the quantum fluctuation op-
erator gS(t) vs t, ~c! the number of particles
gN(t) vs t, ~d! the particle distributiongNk(t) vs
k at t555.1 ~dashed line! and t5194.2 ~solid
line!, and~e! the ratio of the pressure and energy
density p(t)/«(t) vs t for the parameter values

m2521, h(t0)516, ḣ(t0)50, g510212,
H(t0)52.0.

FIG. 9. Symmetry-unbroken, chaotic, large
N, matter-dominated evolution of~a! the zero
modeh(t) vs t, ~b! the quantum fluctuation op-
erator gS(t) vs t, ~c! the number of particles
gN(t) vs t, ~d! the particle distributiongNk(t) vs
k at t577.4 ~dashed line! and t5399.7 ~solid
line!, and~e! the ratio of the pressure and energy
density p(t)/«(t) vs t for the parameter values

m2511, h(t0)55, ḣ(t0)50, g510212,
H(t0)50.1.
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fore write the approximate expressions for the locations of
the forbidden bands in FRW by using the Minkowski results
of @34# with the substitutionsh0

2→gh0
2/a2(t) ~where the fac-

tor of g accounts for the difference in the definition of the
nonlinear coupling between this study and@34#! and
q2→k2/a2(t).

Making these substitutions, we find for the location in
comoving momentumk of the forbidden band in the largeN
~Fig. 9! and Hartree~Fig. 10! cases:

0<k2<
h0

2

2
~ large N!, ~4.11!

h0
2

2
13a2~ t !<k2<a2~ t !SA h0

4

3a4~ t !
1

2h0
2

a2~ t !
1411D

~Hartree!. ~4.12!

The important feature to notice is that while the location of
the unstable band~to a first approximation! in the case of the
continuousO(N) theory is the same as in Minkowski and
does not change in time, the location of the band is time
dependent in the discrete theory described by the nonpertur-
bative Hartree approximation.

While h0 /a(t)@1, the Hartree relation reduces to

h0
2

2
<k2<

h0
2

A3
. ~4.13!

This is the same as the Minkowski result for large amplitude,
and one finds that this expression accurately predicts the lo-

cation of the resonance band of Fig. 10~d!. However, with
time the band shifts its location toward higher values of co-
moving momentum as given by Eq.~4.12!, cutting off par-
ticle production in that initial band. There is continuing par-
ticle production for higher modes, but since the Floquet
index is decreased due to the reduced amplitude of the zero
mode, since there is no enhancement of production of par-
ticles in these modes~as these modes begin with at most of
order 1 particles!, and because the band continues to shift to
higher momenta while becoming smaller in width, this par-
ticle production never becomes significant.

We emphasize that this result is not an artifact of the
approximations used but rather reflects an important differ-
ence between the behaviors of the theory with discrete sym-
metry described by the Hartree approximation and the theory
with continuous symmetry described by the largeN limit. In
the case of a continuous symmetry, the dynamics must sat-
isfy the appropriate Ward identities corresponding to that
symmetry. The Hartree approximation does not respect these
identities and is therefore only appropriate for describing the
discrete symmetry. Likewise, the discrete case is not well
described by the largeN approximation. Mathematically,
these differences show up in the form of the differing band
structure described above, and we conclude that preheating is
inefficient in simple models in which the relevant field obeys
an unbroken discrete symmetry.

As in the symmetry-broken case of Figs. 4–6, the equa-
tions of motion for large amplitude and relatively early times
are approximately scale invariant. In Figs. 11 and 12 we
show the case of the largeN evolution in a radiation-
dominated universe with initial Hubble constants of
H(t0)55 and H(t0)52, respectively, with appropriately
scaled initial values of the zero mode ofh(t0)540 and
h(t0)516. Again, the qualitative dynamics remains largely
unchanged from the case of a smaller Hubble constant.

FIG. 10. Symmetry-unbroken, chaotic, Har-
tree, matter-dominated evolution of~a! the zero
modeh(t) vs t, ~b! the quantum fluctuation op-
erator gS(t) vs t, ~c! the number of particles
gN(t) vs t, ~d! the particle distributiongNk(t) vs
k at t550.5 ~dashed line! and t5391.2 ~solid
line!, and~e! the ratio of the pressure and energy
density p(t)/«(t) vs t for the parameter values

m2511, h(t0)512331/2, ḣ(t0)50, g510212,
H(t0)50.1.
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C. Late time behavior

We see clearly from the numerical evolution that in the
case of a symmetry-broken potential, the late time largeN
solutions obey the sum rule

2umr
2u1

l r

2
f2~ t !1

l r

2
^c2~ t !& r50. ~4.14!

This sum rule is a consequence of the late time Ward iden-
tities which enforce Goldstone’s theorem. Because of this

sum rule, we can write down the analytical expressions for
the late time behavior of the fluctuations and the zero mode.
Using Eq.~4.14!, the mode equation~2.12! becomes

F d2

dt2
13

ȧ~ t !

a~ t !

d

dt
1

k2

a2~ t !
GUk~ t !50. ~4.15!

This equation can be solved exactly if we assume a power
law dependence for the scale factora(t)5(t/t0)n. The solu-
tion is

FIG. 11. Symmetry-unbroken, chaotic, large
N, radiation-dominated evolution of~a! the zero
modeh(t) vs t, ~b! the quantum fluctuation op-
erator gS(t) vs t, ~c! the number of particles
gN(t) vs t, ~d! the particle distributiongNk(t) vs
k at t5117.3 ~dashed line! and t5393.6 ~solid
line!, and~e! the ratio of the pressure and energy
density p(t)/«(t) vs t for the parameter values

m2511, h(t0)540, ḣ(t0)50, g510212,
H(t0)55.0.

FIG. 12. Symmetry-unbroken, chaotic, large
N, radiation-dominated evolution of~a! the zero
modeh(t) vs t, ~b! the quantum fluctuation op-
erator gS(t) vs t, ~c! the number of particles
gN(t) vs t, ~d! the particle distributiongNk(t) vs
k at t5102.1 ~dashed line! and t5251.6 ~solid
line!, and~e! the ratio of the pressure and energy
density p(t)/«(t) vs t for the parameter values

m2511, h(t0)516, ḣ(t0)50, g510212,
H(t0)52.0.
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Uk~ t !5ckt
~123n!/2J~123n!/~222n!S kt0

nt12n

n21 D
1dkt

~123n!/2Y~123n!/~222n!S kt0
nt12n

n21 D ,

~4.16!

whereJn andYn are Bessel and Neumann functions, respec-
tively, and the constantsck anddk carry dependence on the
initial conditions and on the dynamics up to the point at
which the sum rule is satisfied.

These functions have several important properties. In par-
ticular, in radiation- or matter-dominated universes,n,1,
and for values of wave number satisfyingk@t2(12n)/t0

n , the
mode functions decay in time as 1/a(t);t2n. Since the sum
rule applies for late times,t2t0@1 in dimensionless units,
we see that all values ofk except a very small band about
k50 redshift as 1/a(t). The k50 mode, however, remains
constant in time, explaining the support evidenced in the
numerical results for values of smallk ~see Figs. 1 and 3!.
These results mean that the quantum fluctuation has a late
time dependence of^c2(t)& r;1/a2(t). The late time depen-
dence of the zero mode is given by this expression combined
with the sum rule~4.14!. These results are accurately repro-
duced by our numerical analysis. Note that qualitatively this
late time dependence is independent of the choice of initial
conditions for the zero mode, except that there is no growth
of modes neark50 in the case in which particles are pro-
duced via parametric amplification~Figs. 4 and 5!.

For the radiation- (n5 1
2 ) and matter-dominated (n5 2

3 )
universes, Eq.~4.16! reduces to elementary functions:

a~ t !Uk~ t !5cke
2ikt0

1/2t1/2
1dke

22ikt0
1/2t1/2

~RD! ,

a~ t !Uk~ t !5cke
3ikt0

2/3t1/3F11
i

3kt0
2/3t1/3G

1dke
23ikt0

2/3t1/3F12
i

3kt0
2/3t1/3G ~MD!.

~4.17!

It is also of interest to examine then.1 case. Here, the
modes of interest satisfy the conditionk!tn21/t0

n for late
times. These modes are constant in time and one sees that the
modes arefrozen. In the case of a de Sitter universe, we can
formally take the limit n→` and we see thatall modes
become frozen at late times. This case was studied in detail
in @23#.

V. CONCLUSIONS

We have shown that there can be significant particle pro-
duction through quantum fluctuations after inflation. How-
ever, this production is somewhat sensitive to the expansion
of the universe. From our analysis of the equation of state,
we see that the late time dynamics is given by a matter-
dominated cosmology. We have also shown that the quantum
fluctuations of the inflaton decay for late times as 1/a2(t),
while in the case of a symmetry-broken inflationary model,

the inflaton field moves to the minimum of its tree level
potential. The exception to this behavior is the case when the
inflaton begins exactly at the unstable extremum of its po-
tential for which the fluctuations grow out to the minimum of
the potential and do not decay. Initial production of particles
due to parametric amplification is significantly greater in
chaotic scenarios with symmetry-broken potentials than in
the corresponding theories with positive mass terms in the
Lagrangian, given similar initial conditions on the zero mode
of the inflaton.

Since there are a number of articles in the literature treat-
ing the problem of preheating, it is useful to review the
unique features of the present work. First, we have treated
the problemdynamically, without using the effective poten-
tial ~an equilibrium construct! to determine the evolution.
Second, we have provided consistent nonperturbative calcu-
lations of the evolution to bring out some of the most rel-
evant aspects of the late time behavior. In particular, we
found that the quantum back reaction naturally inhibits cata-
strophic growth of fluctuations and provides a smooth tran-
sition to the late time regime in which the quantum fluctua-
tions decay as the zero mode approaches its asymptotic state.
Third, the dynamics studied obeys the constraint of covariant
conservation of the energy momentum tensor.

The next stage of this analysis is to allow dynamical evo-
lution of the scale factor, to follow the evolution of the in-
flaton through the de Sitter stage and into the stage of par-
ticle production. As the expansion rates for which there is
significant particle production is somewhat restrictive, it is
yet to be seen whether in a theory with fully dynamical
gravitational expansion such particle production will be a
significant factor. This analysis is currently underway@33#.
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APPENDIX: CONFORMAL TIME ANALYSIS
AND INITIAL CONDITIONS

The issue of renormalization and initial conditions is best
understood in conformal time which is a natural framework
for adiabatic renormalization and regularization.

Quantization in conformal time proceeds by writing the
metric element as

ds25C2~t!~dt22dxW2!. ~A1!

Under a conformal rescaling of the field

F~xW ,t !5x~xW ,t!/C~t!, ~A2!

the action for a scalar field~with the obvious generalization
to N components! becomes, after an integration by parts and
dropping a surface term,
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S5E d3xdtH 1

2
~x8!22

1

2
~¹W x!22V~x!J , ~A3!

with

V~x!5C4~t!V@F/C~t!#2C2~t!
R
12

x2, ~A4!

whereR56C9(t)/C3(t) is the Ricci scalar, and primes
stand for derivatives with respect to conformal timet.

The conformal time Hamiltonian operator, which is the
generator of translations int, is given by

Ht5E d3xH 1

2
Px

21
1

2
~¹W x!21V~x!J , ~A5!

with Px being the canonical momentum conjugate tox,
Px5x8. Separating the zero mode of the fieldx,

x~xW ,t!5x0~t!1 x̄ ~xW ,t!, ~A6!

and performing the largeN or Hartree factorization on the
fluctuations we find that the Hamiltonian becomes linear plus
quadratic in the fluctuations, and similar to a Minkowski
space-time Hamiltonian with at-dependent mass term given
by

M2~t!5C2~t!Fm21S j2
1

6DR1
l

2
x0

2~t!1
l

2
^ x̄ 2&G .

~A7!

We can now follow the steps and use the results of@22#
for the conformal time evolution of the density matrix by
settinga(t)51 in the proper equations of that reference and
replacing the frequencies by

vk
2~t!5kW21M2~t!, ~A8!

and the expectation value in Eq.~A7! is obtained in thist
evolved density matrix. The time evolution of the kernels in
the density matrix~see@22#! is determined by the mode func-
tions that obey

F d2

dt2
1k21M2~t!G f k~t!50. ~A9!

The Wronskian of these mode functions

W~ f , f * !5 f k8 f k* 2 f kf k*
8 ~A10!

is a constant. It is natural to impose initial conditions such
that at the initialt the density matrix describes a situation of
local thermodynamic equilibrium and therefore commutes
with the conformal time Hamiltonian at the initial time. This
implies that the initial conditions of the mode functions
f k(t) should be chosen to be~see@22#!

f k~t0!5
1

Avk~t0!
f k8~t0!52 iAvk~t0!. ~A11!

These initial conditions correspond to the choice of mode
functions which coincide with the first-order adiabatic modes

and those of the Bunch-Davies vacuum for large momentum
@30#. To see this clearly, consider the WKB solutions of the
mode equation~A9! of the form

Dk~t!5expS E
t0

t

Rk~t8!dt8D , ~A12!

with the functionRk(t) obeying the Riccati equation

Rk81Rk
21k21M2~t!50. ~A13!

This equation possesses the solution

Rk~t!52 ik1R0,k~t!2 i
R1,k~t!

k
1

R2,k~t!

k2
2 i

R3,k~t!

k3

1
R4,k~t!

k4
1••• ~A14!

and its complex conjugate. We find for the coefficients

R0,k50, R1,k5
1

2
M2~t!, R2,k52

1

2
R1,k8 ,

R3,k5
1

2
~R2,k8 2R1,k

2 !, R4,k52
1

2
~R3,k8 12R1,kR2,k!.

~A15!

The solutionsf k(t) obeying the boundary conditions~A11!
are obtained as linear combinations of this WKB solution
and its complex conjugate

f k~t!5
1

2Avk~t0!
@~11g!Dk~t!1~12g!Dk* ~t!#,

~A16!

where the coefficientg is obtained from the initial condi-
tions. It is straightforward to find that the real and imaginary
parts are given by

gR511O~1/k4!, g I5O~1/k3!. ~A17!

Therefore the large-k mode functions satisfy the adiabatic
vacuum initial conditions@30#. This, in fact, is the rationale
for the choice of the initial conditions~A11!.

Following the analysis presented in@22# we find in con-
formal time that

^ x̄ 2~xW ,t!&5E d3k

2~2p!3
u f k~t!u2. ~A18!

The Heisenberg field operatorsx̄ (xW ,t) and their canonical
momentaPx(xW ,t) can be expanded as

x̄ ~xW ,t!5E d3k

A2~2p!3/2@akf k~t!1a2k
† f k* ~t!#eikW•xW,

~A19!

Px~xW ,t!5E d3k

A2~2p!3/2@akf k8~t!1a2k
† f k*

8~t!#eikW•xW,

~A20!
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with the time independent creation and annihilation operators
ak and ak

† obeying canonical commutation relations. Since
the fluctuation fields in comoving and conformal time are
related by a conformal rescaling

c~xW ,t !5
x~xW ,t!

C~t!
, ~A21!

it is straightforward to see that the mode functions in comov-
ing time are related to those in conformal time simply as

Uk~ t !5
f k~t!

C~t!
. ~A22!

Therefore the initial conditions~A11! on the conformal time
mode functions imply the initial conditions for the mode
functions in comoving time are given by

Uk~ t0!5
1

Avk~t0!
, U̇k~ t0!5@2 ivk~t0!2H~ t0!#Uk~ t0!,

~A23!

where we have chosen the normalization of the scale factor
such thata(t0)5C(t0)51.

For renormalization purposes we need the large-k behav-
ior of uUk(t)u2,uU̇k(t)u2, which are determined by the large-
k behavior of the conformal time mode functions and its
derivative. These are given by

u f k~t!u25
1

kF12
R1,k~t!

k2
1

1

k4S R1,k9 ~t!

4
1

3

2
R1,k

2 ~t! D 1•••G ,

~A24!

u f k8~t!u25kF11
R1,k~t!

k2
1

1

k4S 2
R1,k9 ~t!

4
1

3

2
R1,k

2 ~t! D
1•••G . ~A25!

We note that the large-k behavior of the mode functions
to the order needed to renormalize the quadratic and loga-
rithmic divergences is insensitive to the initial conditions.
This situation must be contrasted with the case in which the
initial conditions in comoving time are imposed as described
in @22,23#, thus the merit in considering the initial conditions
in conformal time described in this work.

The correspondence with the comoving time mode func-
tions is given by

uUk~ t !u25
u f k~t!u2

C2~t!
,

uU̇k~ t !u25
1

C2~t!
F u f k8~t!u2

C2~t!
1S H22

H

C~t!

d

dt D u f k~t!u2G .

~A26!

These are asymptotic forms used in the renormalization pro-
gram in Sec. III.

There is an important physical consequence of this choice
of initial conditions, which is revealed by analyzing the evo-
lution of the density matrix.

In the largeN or Hartree~also to one-loop! approxima-
tion, the density matrix is Gaussian, and defined by a nor-
malization factor, a complex covariance that determines the
diagonal matrix elements and a real covariance that deter-
mines the mixing in the Schro¨dinger representation as dis-
cussed in@22# ~and references therein!.

In conformal time quantization and in the Schro¨dinger
representation in which the fieldx is diagonal the conformal
time evolution of the density matrix is via the conformal
time Hamiltonian~A5!. The evolution equations for the co-
variances are obtained from those given in@22# by setting
a(t)51 and using the frequenciesvk

2(t)5k21M2(t). In
particular, by setting the covariance of the diagonal elements
~given by Eq.~2.20! in @22#; see also Eq.~2.44! of @22#!,

Ak~t!52 i
f k8

* ~t!

f k* ~t!
, ~A27!

we find that with the initial conditions~A11!, the conformal
time density matrix is that of local equilibrium att0 in the
sense that it commutes with the conformal time Hamiltonian.
However, it is straightforward to see that the comoving time
density matrixdoes notcommute with thecomoving time
Hamiltonian at the initial timet0.

An important corollary of this analysis and comparison
with other initial conditions used in comoving time is that
assuming initial conditions of local equilibrium in comoving
time leads to divergences that depend on the initial condition
as discussed at length in@22#. This dependence of the renor-
malization counterterms on the initial condition was also re-
alized by Leutwyler and Mallik@19# within the context of the
CTP formulation. Imposing the initial conditions correspond-
ing to local thermal equilibrium inconformal time, we see
that ~i! the renormalization counterterms do not depend on
the initial conditions and~ii ! the mode functions are identi-
fied with those corresponding to the adiabatic vacuum for
large momenta.

Thus this analysis justifies the use of the initial conditions
on thecomovingmode functions~A23!. Furthermore, being
that the comoving time density matrix does not describe at
any time a condition of local thermodynamic equilibrium,
the ‘‘temperature’’ that enters in the mixing covariance in
the density matrix is understood as a parameter describing a
mixed state with the notion of temperature at local thermo-
dynamic equilibrium in conformal time quantization.

For our main analysis we choose this ‘‘temperature’’ to
be zero so that the resulting density matrix describes a pure
state, which for the large momentum modes coincides with
the conformal adiabatic vacuum.

Particle number. We write the Fourier components of the
field x and its canonical momentumPx given by Eqs.~A19!
and ~A20! as

x̄ k~t!5
1

A2
@akf k~t!1a2k

† f k* ~t!#, ~A28!
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Px,k~t!5
1

2
@akf k8~t!1a2k

† f k*
8~t!#. ~A29!

These~conformal time! Heisenberg operators can be written
equivalently in terms of thet dependent creation and anni-
hilation operators

x̄ k~t!5
1

A2vk~t0!
@ ãk~t!e2 ivk~t0!t1 ãk

†~t!eivk~t0!t#,

~A30!

Px,k~t!52 iAvk~t0!

2
@ ãk~t!e2 ivk~t0!t2 ãk

†~t!eivk~t0!t#.

~A31!

The operatorsãk(t),ak are related by a Bogoliubov trans-
formation. The number of particles referred to the initial
Fock vacuum of the modesf k , is given by

Nk~t!5^ ãk
†~t! ãk~t!&5

1

4U f k~t!

f k~0!
U2F11

1

vk
2~t0!

U f k8~t!

f k~t!
U2G

2
1

2
, ~A32!

or alternatively, in terms of the comoving mode functions
Uk(t)5 f k(t)/C(t) we find

Nk~ t !5
a2~ t !

4 UUk~ t !

Uk~0!
U2F11

1

vk
2~0!

UU̇k~ t !1HUk~ t !

Uk~ t !
U2G2

1

2
.

~A33!

Using the large-k expansion of the conformal mode func-
tions given by Eqs.~A24! and ~A25! we find the large-k
behavior of the particle number to beNk ;

k→`O(1/k4), and
the total number of particles~with reference to the initial
state att0) is therefore finite.
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