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Scalar field dynamics in Friedmann-Robertson-Walker spacetimes
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We study the nonlinear dynamics of quantum fields in matter- and radiation-dominated universes, using the
nonequilibrium field theory approach combined with the nonperturbative Hartree and thélaggroxima-
tions. We examine the phenomenon of explosive particle production due to spinodal instabilities and paramet-
ric amplification in expanding universes with and without symmetry breaking. For a variety of initial condi-
tions, we compute the evolution of the inflaton, its quantum fluctuations, and the equation of state. We find
explosive growth of quantum fluctuations, although particle production is somewhat sensitive to the expansion
of the universe. In the largd limit for symmetry-breaking scenarios, we determine generic late time solutions
for any flat Friedmann-Robertson-WalkéfRW) cosmology. We also present a complete and numerically
implementable renormalization scheme for the equation of motion and the energy momentum tensor in flat
FRW cosmologies. In this scheme the renormalization constants are independent of time and of the initial
conditions.[S0556-282(97)02616-1

PACS numbes): 98.80.Cq

[. INTRODUCTION the inflaton is treated as a classical field or within perturba-
tion theory are, in many cases, inadequate. In fact, despite
Over the last 15 years, there has been a sustained effort the tiny couplings usually assumed for the inflaton, the un-
study the evolution of scalar fields within the context of thestable growth of modes during preheating causes the dynam-
early universe. These efforts have been largely fueled by thies to become nonperturbatiy24—26.
introduction of inflation[1,2] which has been shown to be a  In this work, we study the dynamics of scalar fields in an
possible solution of the horizon and flatness problems. Irexpanding isotropic universe using the nonequilibrium
addition to model building and other discussions of how scaclosed time path formalisfiCTP) [16], keeping track of the
lar field theories can produce inflation, the question of theevolution of both the zero mode of the inflaton and its fluc-
reheating of the universe, the transfer of energy from thduations. We treat the dynamics using two nonperturbative
inflaton to other particle modes, has received much attentioachemes. These are the Hartree approximation appropriate to
[3]. The reason for this is that exponential expansion during: theory with discrete symmetry and the leading order large
inflation causes the universe to become very cold, as thdl approximation of arO(N) vector model which describes
energy in fields other than the inflaton is redshifted away. Irtheories with continuous symmetry, satisfying the corre-
order to achieve the standard results of nucleosynthesis, arsgponding Ward identitie§7,21,22,27,28 Both of these are
possibly other early processes, the universe must be reheatagan field theory approximations, and as such they cannot
to temperatures above those at which these important pr@&ccount for the particle scattering processes that would allow
cesses take place. Early efforts to account for the necessatiye universe to reenter the hot big bang scenario after infla-
reheating introducedd hoc decay widths to the inflaton, tion. Eventually, these processes should be taken into ac-
assuming the energy transfer occurred through singleeount to determine the final reheating temperature. Here we
particle decay4]. However, more recently, it has been real- will concern ourselves only with processes occurring before
ized that there are much more efficient processes, those tfiermalization.
either spinodal decomposition in the case ofnaw) infla- In particular, we will study the process of preheating us-
tionary phase transition and parametric amplification in theng a wide range of initial conditions while the study of the
case of chaotic inflationary scenariis-15. Such mecha- inflationary stage will be discussed elsewhg28]. Taking
nisms, in which the rate of energy transfer grows exponeneur cues from the evolution of the equation of state in the
tially, are referred to generally as preheating. inflationary and preheating phases, we analyze the dynamics
Recently we have treated the dynamical processes of imf preheating in fixed radiation and matter-dominated
flation and preheatinf7] within a fully nonequilibrium for-  Friedmann-Robertson-Walker cosmologies both analytically
malism [16—20. Such a treatment is necessary due to theand numerically. We follow the equation of state during the
expansion of the universe and the nature of the rapidlyevolution to ensure that our evolution obeys the appropriate
evolving dynamics of preheating. Nonequilibrium analysesgravitational dynamics.
have shown a wealth of new phenomena which were missed In the next section, we set up the closed time path formal-
in equilibrium studieg7,14,15,21-28 ism, describe our models and the two approximations we
It has also become clear that the early analyses in whickvill use to study the evolution, and write down our evolution
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equations for the zero mode and the fluctuations. In Sec. IlI[The quantityp(ty,) determines the initial condition for the
we discuss some important issues regarding the renormalizavolution. We choose this initial condition to describe a state
tion aspects of the problem, including the renormalization ofof local equilibrium in conformal time, which is also identi-
the energy and pressure densities in an expanding backed with the conformal adiabatic vacuum for short wave-
ground. Section IV begins with early time solutions in thelengths. In the Appendix we provide an analysis and discus-
slow roll scenario followed by a full numerical analysis of sion of different initial conditions and their physical content
the various cases. We conclude the section with late timevithin the context of expanding cosmologies.
analyses of the largll evolution equations in the case of a  Given the evolution of the density matr{2.2), ensemble
symmetry-broken potential. In the conclusions, we contrasaverages of operators are given by the expres@gain in
our work with other analyses in the literature and discusghe Schrdinger picture
avenues which may be pursued to further improve our , ,
knowledge of these important cosmological problems. An (O(t»:Tr[U(to,t)OU(t,t JU(t',to)p(to) ]
appendix is provided with a discussion of our choice of ini- Trp(tg) '
tial conditions and their physical implications.

Our main results are as follows. In the situations we anawhere we have inserted the identity(t,t")U(t’,t) with t’
|yze’ we find that the expansion of the universe allows foran arbitrary time which will be taken to |nf|n|ty The state is
significant particle production, although this production isfirst evolved forward from the initial time, to t when the
somewhat sensitive to the exact expansion rate and is effe@perator is inserted. We then evolve this state forward to
tively shut off for high enough rates. In the case of atimet’ and back again to the initial time.
symmetry-broken potential, we determine that in the large The actual evolution of various quantities in the theory
N limit, the quantum fluctuations decrease for late times agan now be evaluated by either constructing the appropriate
1/a?(t), while these fluctuations and the zero mode satisfy g3reen’s functions as ifv], or by choosing an explicit ansatz
sum rule consistent with Goldstone’s theorem. In addition tdor the functional form of the time dependent density matrix
these results, we present a consistent renormalization of tH® that the trace in Eq2.3) may be explicitly evaluated as a
energy momentum tensor in a flat Friedmann-Robertsonfunctional integral(see[22]). The methods are equivalent,
Walker (FRW) spacetime within both the largd and the and provi_de the results which will be presented below for the
Hartree approximations. Such a result is an essential comp&ases of interest.

nent of any consistent analysis of the backreaction problem Since we are currently interested in the problem of pre-
in an expanding universe. heating at the end of inflation, we will work in a spatially flat

We compute the renormalized energy densﬂ;yand the Friedmann-Robertson-Walker baCkgrOUnd with scale factor

pressurep, as a function of time. Averaging over the field a(t) and line element:

oscillations, we find immediately after preheating a cold mat- 5 5 -

ter equation of statep=0) in the slow roll scenarios. In ds’=dt*—a*(t)dx’. 2.4
chaotic scenarios, the equation of state just after preheating
between that of radiationpE=e/3) and matter where the
matter dominated regime is reached only for late times. The 1

time scale over which the equation of state becomes matter L= \/—_g EVMd)V“CI)—V(d)) . (2.5
dominated depends on the distribution of created particles in

momentum space in addition to the approximation scheme
implemented. A. Hartree approximation

2.3

Bur Lagrangian density has the form

In the Hartree approximation, our theory is that of a

Il. THE FORMALISM AND MODELS single-component scalar field>,(>?,t), with theZ, symmetry

... ®——®. The potential can be written as
We present here the framework of the nonequilibrium

closed time path formalism. For a more complete discussion, 1, > N,
the reader is referred {@], or the alternative approach given V(®)=5(M™+ER) P+ 7 @7, (2.6)
in [22].
The time evolution of a system is determined in thewhereR is the Ricci scalar. We decompose the field into its
Schralinger picture by the functional Liouville equation zero mode¢(t)=<CI>()Z,t)> and fluctuationsp(i,t) about it:

dp(t) D(X,1)= (1) + P(X,1). 2.7
= =[H®.p(V], 2.3
The potential(2.6) may then be expanded in terms of these
fields.
Wherep is the denSity matrix and we allow for an eXpIICItIy The Hartree approximation is achieved by making the po-

time dependent Hamiltonian as is necessary to treat quantugntial quadratic in the fluctuation fielg by invoking the
fields in a time dependent background. Formally, the solufactorization

tions to this equation for the time evolving density matrix are
given by the time evolution operatdd,(t,t’), in the form PR = 3P0 (X, 1), (2.9

p(1)=U(t,t) p(to)U (1, to). (2.2 P, — 8PP (X, D)) 2,0 — B(PA(X,1))2. (2.9



56 SCALAR FIELD DYNAMICS IN FRIEDMANN- . .. 1941

This factorization yields a quadratic theory in which the ef- ) Y )
fects of interactions are encoded in the time dependent mass V(P)= —(m +ER)D- q)+8N (®-P)°.  (2.19
which is determined self-consistently.
The equations of motion for the zero mode and the flucyye now break up the field into a single scalar field and
tuations are given by the tadpole equation an N—1 component vectorr as®=(o,) and allow the
o field to have a non-zero expectation value. Taking the

(#(x,1))=0. (210 decomposition
Introducing the Fourier mode functiond,(t), they can be o(X,1) = VN(t) + x(X,1), (2.17)
written as

where N¢(t) is the expectation value af and y is the

( ). 3 fluctuation about this value. If we write the “pion” field as
¢(t)+3a(t)¢(t)+[m +§R(t)]¢(t)+ g (U+3 ¢(t)
N-1
p— ﬂ_

X{($A(1))=0 , (2.1 #(Z,t) = ¥(&,1) (1,1,...,1), (2.18

a(t) d K2 we reach the leading order largé limit by assuming the

A
+m?+ ER(L) + > H2(t) factorization

a2 Cam dt a(t)
P — 2P (X, D) (XD — (BA(X,D)2, (2,19

A
+5(A(D) [ =0, (212 .

W~1, (xH~1, ¢~1. (2.20

(P2(1)= j 22 )3|Uk(t)|2' (213 we see that since there ake- 1 pion fields, contributions
from the fieldy can be neglected in the formal limit as they
are of order IN with respect those ofy and ¢.
Again, we determine the equations of motion via condi-
tion (2.10. The zero-mode equation becomes

The initial conditions on the mode functions are

1
Uk(to) = —=.,
\/wk(t ) ( )
’ $(1)+3 (t)¢(t>+[m2+§7z(t>]¢(t>+ B0+ 5 (D)
Uy(ty) = —m—mk(to) U(to), (2.14 X(yA(1))=0, (2.2)
. _ _ while the equations for the modes, the fluctuation, and the
with the frequencieso,(to) given by initial conditions are identical to the Hartree case given by
5 5 o Egs.(2.12—(2.14. Notice that we have used identical nota-
w(to) =[k=+ M=(tg) ] tions in the two cases to avoid cluttering and also to stress

the similarity between the two approximations. In particular,
we note that the only difference in the expressions for the
(- 1/OR(1) two case$Eqgs. (2.12 and(2.21), respectivelyis a factor of
3 appearing in the self-interaction term in the equations for
2 5 the zero mode. However, as we will see, the two approxima-
+§¢ (t)+§<‘/’ (t»}' (2.19 tions are describing theories with distinct symmetries and
there will be qualitative differences in the results.
A detailed analysis and discussion of the choice of initial An important point to note in the larghl equations of
conditions and the frequencig®.15 is provided in the motion is that the form of the equation for the zero mode
Appendix. As discussed there, this choice corresponds t62.21) is the same as for the=0 mode function(2.12). It
the largek modes being in the conformal adiabatic vac-will be this identity that allows solutions of these equations
uum state. In what follows we will subtract the compos-in a symmetry-broken scenario to satisfy Goldstone’s theo-
ite operatory?(t) at the initial time and absorb the term rem.
(M2)(4(to)) in a renormalization of the mass. Furthermore,
we choose the scale of time such tlety)=1 in both ra- lIl. RENORMALIZATION AND ENERGY MOMENTUM
diation and matter dominated cosmologies.

M2(t)=a(t)| m?*+

Upon examination of the equal time correlat@rl3, one
finds that the integral is divergent and thus must be regu-
lated. This can be done by a number of methods, but we

To discuss the largeN limit, we now treat® as an require a scheme which is amenable to numerical calcula-
N-component vector in a theory with the continuousNp( tion. We therefore introduce a large momentum cutoff which
symmetry. The potential is renders the integral finite, and one finds that it is possible to

B. Large N limit
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remove the terms depending both quadratically and logarithwhere y is a combinatorial factor taking on the valge=1

mically on the cutoff by a renormalization of the parametersin the largeN limit and y=1/3 in the Hartree approximation.

of the theony[ 22]. After these terms are subtracted, the cutoffThe subtracted equal time correlator is now given by

may be taken to infinity, and the remaining quantity is both

physical and finite. A similar process is required to regulate

the expressions for the energy density and the pressure as

will be described in more detail belof23]. <¢2(t)>r:f
In terms of the variables introduced in Sec. Il above, the

renormalization of Eq(2.13 proceeds almost identically in

the Hartree and largd approximations. The WKB analysis (k= x)

that reveals the largk-behavior of the mode functions is 4k3

described in detail in the Appendix wherein we quote the

relevant expressions for the largebehavior for the mode Ne o, )

functions and their derivatives. Denoting bare and renormal- +o [P O+HPO) ]| (-

ized parameters with subscrifgsaandr, respectively, and the

momentum cutoff and subtraction point Asand k, respec-

tively, and using the results of the Appendix, we find the

renormalization scheme

vk [l 1
(2m3 2 2kad1)

{(a—uan(wm?

(3.9

A further finite subtraction aty is performed and ab-
sorbed in a further finite and time independent renormaliza-
tion of the mass. Notice in particular that in order for the
, (3.1 renormalization of the mass to be time independent, we must

require that the cutofA be fixed inphysicalcoordinates and
therefore have the form «ca(t).
N Our treatment of the renormalization of the energy mo-
= - In(A/x)/1602" (3.2 mentum tensor is similar to the approacH 28], extended to
r the nonperturbative Hartree and lafgepproximations. The
expressions for the expectation values of the energy density,
Np ;
Eo= & +——(&—1/6)In(A/x), 3.3 g, and the trage of the stress energy; 3p, wherep is the
1672 pressure density are

Ap A2
mp+ _bz 2y
167 a“(t)

Ap
6’772

2
r

1+ In(A/ k)

Ap

1., 1 A m? a . 1. 1 1 A
R= g gt g b g EB3ORHBE bt S (U)o (VD4 5P + g[26%(0) + (4)?]

— £GY(4)+ 66 (i), 35

4

-3 . N 2m
eI g2y 2m2¢2+77¢4+ N Eelet e

N

¢¢+¢2+3§¢¢) —(1-68)(y?)

6 A
+ az§<<vw>z>+<2—6§>mz<¢2>—feﬁ<1—6§><w2>+§[<2—65)¢2<w2>+<w2>2—6§<w2><¢f2>r], (36

where we have used the equations of motion in deriving this expression for the(3réceThe quantitiesG),=—7R and

G8= —3(%;1/a)2 are the trace and the time-time components of the Einstein curvature té@épris given by Eq.(2.13,
(¢?), by Eq.(3.4), and we have defined the integrals

d3k
2\ _ 2 2
(V)= [ 5o KL, @7
- d*
<‘/’>:f2(277)3|uk(t)| : 3.9

The composite operatcinpiﬁ) is symmetrized by removing a normal ordering constant to yield

d3k d|Uk(t)|2
(27-,)3 dt

1 . . _ 1
| 39
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Each of these integrals is divergent and must be regularized. We proceed in the same manner as above, imposing an ultraviolet
cutoff, A, and computing the higk-expansions of th&J,, this time to fourth order in X/ We find the following divergences
in e ande —3p:

A4 A2 4

e o — 176604 m2 N[ mE N RS

(N)diflewza“lewzaztz“f UBIGSH M+ (674 (W0)0) |+ — 5| =5 ~Mi g (#°+ (W) —g ()’
0| 2 Ar 2 2 2,,0 é\)\r d 9 5

+2(& = 1/6)Go| My +— (% +(¢%)r) | +(& = 1/6)*Ho—6(&—1/6) — > = (°+(¥)0) |, (3.10

e—3p A? [ a?
( ) 26~ 1O)GY+ 12— 16) 5 +2mF + 1, (67 +(42),)
di

N |, 16n%a2
2
y AT —2mﬁ‘—2m?xr<¢2+<wz>r>—5(¢2+<wz>r>2+2<§r—1/6>6“ m?+ﬁ<¢2+<¢2>r>>
1672 2 m 2
2 A d? 2 2 é)‘f d 2 2
+(&—1/6)°H%—6(&,— 1/6) 7 g2'¢ AN +3; 5 (A0 || (3.11

The quantitieng andHj/, are the time-time component and scribed here produces a stress energy tensor which is both
trace of a geometrical tensor given by the variation withfinite and covariantly conservedn addition to being ame-
respect to the metric of higher derivative terms appearing imable to numerical study. An alternative renormalized com-
the gravitational actiorfsuch asR?). For the present case, putational scheme in which covariant regularization is pos-
they are given in terms of the Ricci scalar by the expressionsible is presented by Baacke, Heitmann, ant:&ld [31]. It
should be possible to extend such a scheme to expanding

0 a? 1, spacetimes.
Ho=—-6 5R+¥R— 1—272 , (3.12
IV. EVOLUTION
u . a. We focus our study of the evolution on radiation- or
HL.=—6 R+35R ' (313 matter-dominated cosmologies, as the case for de Sitter ex-

pansion has been studied previou2@]. We write the scale
Equations(3.10 and (3.11) are closely related to Eqs. factor asa(t)=(t/t)" with n=1/2 andn=2/3 correspond-
(3.17 in [23]. However, they are not identical since the ini- ing to radiation- and matter-dominated backgrounds, respec-
tial conditions chosen ifi23] were different from the ones tively. Note that the value df, determines the initial Hubble
selected in the present paper. Furthermore, weéad in  constant since

[23]. .
The energy momentum is made finite by subtraction of a(ty) n
the divergent piece63.10 and (3.11) from the expressions H(to)= aty) = E-

for the energy density3.5 and the tracg3.6). Within the

context of covariant regularization schemes such as dimenye now solve the system of equatiof&11)—(2.13 in the
sional regularization and covariant point splittif@80], such  Hartree approximation, with Eq2.21) replacing Eq.(2.11)

a procedure has been shown to adequately renormalize coyr the largeN limit. We begin by presenting an early time
plings appearing in the semiclassical Einstein equation, exanalysis of the slow roll scenario. We then undertake a thor-
tended to account for higher derivative terms and a possiblgygh numerical investigation of various cases of interest. For

cosmological constanK. This equation has the form the symmetry-broken case, we also provide an investigation
of the late time behavior of the zero mode and the quantum
G, 4 oAt Kg, - (T (3.14 fluctuations.
887Gy arty 87Gy v ' In what follows, we scale all variables in terms of the

magnitude of the renormalized mass, takimg|=1. We
whereG, is Newton'’s constant and is the coupling to the also define the variable

higher order gravitational term. However, regularization via

an ultraviolet cutoff is not a covariant scheme and we find 7?()=Np2(1)12

that the quadratic and quartic divergence structure of the en-

ergy momentum in this scheme does not have the corre@nd write

form to consistently renormalize the parameters of the semi-

classical theory. Nevertheless, the subtraction procedure de- g2 (D) =N{J%(1)) /2, g=\/87?=10"12
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We drop the subscript denoting the renormalized param-

eters, and we will assume minimal coupling to the curvature, d=— 7lot5+1
&,=0. In the most of the cases of intere®<1, so that

finite &, has little effect.

i (to)— %l V<to>}. 4.5

Taking the asymptotic forms of the modified Bessel func-
A. Early time solutions for slow roll tions, we find that for intermediate timegt) grows as

For early times in a slow roll scenaripm?=—1,

7(tg) <1], we can neglect in Eq$2.11) or (2.21) and in Eq. t>1 ¢ 92— 6n 1
(2.12 both the quadratic and cubic termsdt) as well as p(t) _—t"%1-—+0 —” (4.6
the quantum fluctuations (y?(t)), [recall that T N2w 8t t

(#%(to)),=0]. Thus, the differential equations for the zero
mode(2.11) or (2.21) and the mode function®.12 become
linear equations. In terms of the scaled variables introduce o . )
above, witha(t)=(t/ty)" (n=2/3 for a matter-dominated proximations(4.1) ar_1d (4..2) will qwckly break down. For
cosmology whilen=1/2 for a radiation-dominated cosmol- the case ShOW'? i Fig. J[V\_”th n=2/§, H(IO)_:O'l_’
ogy) we have 7(ty)=10"7, and(t,) = 0], we find that this approximation
is valid up tot—ty=10.
. 3n. The equations for the mode functiof%2) can be solved
() + T”(t) —7(t)=0, (4D in closed form for the modes in the case of a radiation domi-
nated cosmology witm=1/2. The solutions are

M\/e see thatp(t) grows very quickly in time, and the ap-

d> 3nd k2
+— =+

—1{U(tH=0. (4.2

d2 tdt () 3 K, 3
( O) Uk(t):Cke_tU Z_TO’E, )
The solutions to the zero mode equati@nl) are
(3 Kty 3
p(t)y=ct™ "1 (t)+dt™"K (1), 4.3 +de M| - 52t 4.7)

where v=(3n—1)/2, and|,(t) and K,(t) are modified
Bessel functions. The coefficients,andd, are determined

by the initial condiions on 7. For 7(to)=ne and Here,U(-) and M(-) are confluent hypergeometric func-

tions[32] [in another common notatioM (-)=;F4(-)], and

7(to)=0, we have the ¢, andd, are coefficients determined by the initial con-
ditions (2.14) on the modes. The solutions can also be writ-
. v . . . .
c= UotSH K ,(to)— —Ky(to)}, (4.4 ten in terms of parabolic cylinder functlons.
to For larget we have the asymptotic form
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t>1 . A PE! K2+ M2(to) | [
U (t diel(2t) ~ (34Kt 1+o(—” to) = | K2+ M2(to)tanH ————=| | .
1)~ dee(2) 2 T(3/4—K2ty/2)l t ilto) (to) | M2(ty)]
o (-3t ) 1 These frequencies have the attractive feature that they match
+ce(2t) P10 1] |- (4.8 the conformal adiabatic frequencies given by Ej15 for

large values ok while remaining positive for smak. We

Again, these expressions only apply for intermediate timegnd_that such a choice of_initial conditions changes the quan-
before the nonlinearities have grown significantly. titative value of the particle number by a few percent, but
leaves the qualitative results unchanged.

While this case should show some qualitative features of
the corresponding process of preheating in slow roll infla-

We now present the numerical analysis of the dynamication, we note that since quantum fluctuations can grow to be
evolution of scalar fields in time dependent, matter- andarge during the de Sitter phaéeee[23]), a proper treatment
radiation-dominated cosmological backgrounds. We use iniof preheating after slow roll inflation must account for the
tial values of the Hubble constant such thi(tt;)=0.1. For  full gravitational back reaction. This will be the subject of a
expansion rates much less than this value the evolution willuture article[33]. In the present case, we impose a back-
look similar to Minkowski space, which has been studied inground cosmology dominated by ordinary radiation or mat-
great detail elsewherg’,21,28. As will be seen, the equa- ter. We plot the the zero modg(t), the equal time correlator
tion of state found numerically is, in the majority of cases,g2(t), the total number of produced particlgbl(t) (see the
that of cold matter. We therefore use a matter-dominated\ppendix for a discussion of our definition of particlethe
expansion for the evolution in much of the analysis that fol-number of particlegN,(t) as a function of wave number for
lows. While it presents some inconsistency at late times, thboth intermediate and late times, and the ratio of the pressure
evolution in radiation-dominated universes remains largelyand energy densitigs(t)/e(t) (giving the equation of state
unchanged, although there is greater initial growth of quan- Figures 1a)—1(e) show these quantities in the lardé
tum fluctuations due to the scale factor growing more slowlyapproximation for a matter-dominated cosmology with an
in time. Using the largeN and Hartree approximations to initial condition on the zero mode given by
study theories with continuous and discrete symmetries rez(t,=0)=10"", 5(t,=0)=0 and for an initial expansion
spectively, we treat three important cases. They @e rate of H(tp)=0.1. This choice for the initial value of
m°<0, 75(tg)<1; (2) m°<0, n(te)>1; (3) M™>0,  stems from the fact that the quantum fluctuations only have
n(to)>1. _ _ ~ time to grow significantly for initial values satisfying
_ In presenting the figures, we have shifted the origin of ,; y<./g; for valuesy(t,)> \/g the evolution is essentially
time such that—t’=t—t,. This places the initial timelo,  classical. This result is clear from the intermediate time de-
at the origin. In these shifted coordinates, the scale factor isendence of the zero mode and the low momentum mode
given by functions given by expressiord.6) and (4.8), respectively.
)n After the initial growth of the fluctuatiom?, [Fig. 1(b)]

B. Numerical analysis

t+7

we see that the zero modEig. 1(a)] approaches the value
given by the minimum of the tree level potentiaj=1,
while g2 decays for late times as

a(t)=

where, once againn=2/3 and n=1/2 in matter- and

radiation-dominated backgrounds respectively, and the value C C
of 7 is determined by the Hubble constant at the initial time: g3 = az_(t) =
H(t,=0)= E_ For these late times, the Ward identity corresponding to the
T O(N) symmetry of the field theory is satisfied, enforcing the
condition
Case 1.m?<0, 75(tg)<1. This is the case of an early
universe phase transition in which there is little or no biasing —1+ 73(t)+g2(t)=0. 4.9

in the initial configurationby biasing we mean that the ini-

tial conditions break the;— —  symmetry. The transition Hence, the zero mode approaches the classical minimum as
occurs from an initial temperature above the critical tempera-

ture, T>T,., which is quenched at, to the temperature

2(t) =1 — ————
T¢<T,. This change in temperature due to the rapid expan- 7(t)=1 a’(t)”
sion of the universe is modeled here by an instantaneous
change in the mass from an initial valog=T2/T2-1 to a Figure 1c) depicts the number of particles produced. Af-

final valuem?= —1. We will use the valuemi2= 1 in what ter an initial burst of particle production, the number of par-
follows. This quench approximation is necessary since thdicles settles down to a relatively constant value. Notice that
low momentum frequencie€.15 appearing in our initial the number of particles produced is approximately of order
conditions(2.14) are complex for negative mass squared andl/g. In Fig. 1(d), we show the number of particles as a func-
small n(tg). An alternative choice is to use initial frequen- tion of the wave numbelk. For intermediate times we see
cies given by the simple structure depicted by the dashed line in the figure,
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while for late times this quantity becomes concentrated moreompared to the larghl case, and the distribution of par-

at low values of the momentuin ticles is more extended. Since the effective mass of the par-
Finally, Fig. 1(e) shows that the field begins with a de ticles is nonzero, we expect a matter-dominated equation of

Sitter equation of statp= —e but evolves quickly to a state state[Fig. 2(e)] for later times. The fact that the Hartree

dominated by ordinary matter, with an equation of stat¢  approximation does not satisfy Goldstone’s theorem means

eraged over the oscillation time scafe=0. This last result  that the resulting particles must be massive, explaining why

is a bit surprising as one expects from the conditi9) that  somewhat fewer particles are produced.

the particles produced in the final state are massless Gold- Fingly, we show the special case in which there is no

stone _bo_sonépions) which should h_ave_the equation of state initial biasing in the field,;(ty=0)=0, »(t,=0)=0, and

of radiation. However, as shown in Fig(d, the produced H(ty) =0.1 in Figs. 3a)—3(d). With such an initial condition,

particles are of low momentunk<<1, and while the effec- h N d the laidimi .
tive mass of the particles is zero to very high accuracy whefe Hartree approximation an the lary 'm'F are equiva-
lent. The zero mode remains zero for all time, so that the

averaged over the oscillation time scale, the effective mas ) ) > -
makes small oscillations about zero so that the dispersiofiuantity g(t) [Fig. 3(@)] satisfies the sum rule4.9) by

relation for these particles differs from that of radiation. Inreaching the value one without decaying for late times. No-
addition, since the produced particles have little energy, théice that many more particles are produced in this ¢&sg
contribution to the energy density from the zero mode, which3(b)]; the growth of the particle number for late times is due
contributes to a cold matter equation of state, remains sigto the expansion of the universe. The particle distribution
nificant. [Fig. 3(c)] is similar to that of the slow roll case in Fig. 1.
In Figs. 2a)—2(e) we show the same situation depicted in The equation of statfFig. 3(d)] is likewise similar.
Fig. 1 using the Hartree approximation. The initial condition In each of these cases of slow roll dynamics, increasing
on the zero mode isy(to=0)=3x10"7; the factor of the Hubble constant has the effect of slowing the growth of
J3 appears due to the different scaling in the zero-modéoth » andg3. The equation of state will be that of a de
equations(2.11) and(2.21), which causes the minimum of Sitter universe for a longer period before moving to a matter-
the tree level effective potential in the Hartree approximationrdominated equation of state. Otherwise, the dynamics is
to have a value ofy= /3. Again, the Hubble constant has much the same as in Figs. 1-3.
the valueH(t;)=0.1. Here, we see again that there is an Case 2m?<0, 7(ty)>1. We now examine the case of
initial burst of particle production agX [Fig. 2b)] grows  preheating occurring in a chaotic inflationary scenario with a
large. However, the zero mod&ig. 2@] quickly reaches symmetry-broken potential. In chaotic inflation, the zero

the minimum of the potential and the condition mode begins with a valugy(t)>1. During the de Sitter
phaseH> 1, and the field initially evolves classically, domi-
—1+7%(1)/3+g2(1)=0 (410  nated by the first-order derivative term appearing in the zero-

mode equationisee Egs(2.11) and(2.21)]. Eventually, the
is approximately satisfied by forcing the valueg¥ quickly ~ zero mode rolls down the potential, ending the de Sitter
to zero. There are somewhat fewer particles produced hegghase and beginning the preheating phase. We consider the
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field dynamics in the FRW universe where preheating occursicle production through the process of parametric amplifica-
after the end of inflation. We thus take the initial temperaturetion [Fig. 4(c)] and causes the fluctuatig® to grow[Fig.
to be zero,T=0. 4(b)]. Eventually, the zero mode loses enough energy that it
Figure 4 shows our results for the quantities(t), is restricted to one of the two minima of the tree level effec-
g2 (t), gN(t), gNi(t), andp(t)/e(t) for the evolution in the  tive potential. The subsequent evolution closely follows that
large N approximation within aradiation-dominated gravi- of case 1 above witlyS, decaying in time as &f(t)~ 1/
tational background wittH(tp) =0.1. The initial condition  with # given by the sum rulé4.9). The spectrunfiFig. 4(d)]
on the zero mode is chosen to have the representative valggdicates a single unstable band of particle production domi-
n(to=0)=4 with 7(t,=0)=0. Initial values of the zero nated by the modes=1/2 to abouk=3 for late times. The
mode much smaller than this will not produce significantstructure within this band becomes more complex with time
growth of quantum fluctuations; initial values larger than thisand shifts somewhat toward lower momentum modes. Such a
produces qualitatively similar results, although the resultingshift has already been observed in Minkowski spacetimes
number of particles will be greater and the time it takes for[ 7]. Figure 4e) shows the equation of state which we see to
the zero mode to settle into its asymptotic state will bebe somewhere between the relations for matter and radiation
longer. for times out as far as=400, but slowly moving to a matter
We see from Fig. &) that the zero mode oscillates rap- equation of state. Since matter redshifts as'(t) while ra-
idly, while the amplitude of the oscillation decreases due tadiation redshifts as &f(t), the equation of state should
the expansion of the universe. This oscillation induces pareventually become matter dominated. Given the equation of

(a) ()
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. Vv{oo 200 300 400 0.4
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© @ radiation-dominated evolution ofa) the zero
1.2 gl (t) 80 mode 7(t) vst, (b) the quantum fluctuation op-
1 Ny erator g%(t) vst, (c) the number of particles
0.8 60 gN(t) vst, (d) the particle distributiogN,(t) vs
0.6 40 k at t=76.4 (dashed ling and t=392.8 (solid
0.4 2 " line), and(e) the ratio of the pressure and energy
0.2 y density p(t)/e(t) vst for the parameter values

100 200 300 200" 551 1.5 oo 3k m?=—1, p(te)=4, n(ty)=0, g=10"
H(to)=0.1.
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FIG. 5. Symmetry-broken, chaotic, lards¢,
matter-dominated evolution @) the zero mode
7(t) vst, (b) the quantum fluctuation operator
g2(t) vst, (c) the number of particlegN(t) vs
t, (d) the particle distributiongN,(t) vs k at
t=50.8 (dashed ling and t=399.4 (solid line),
and (e) the ratio of the pressure and energy den-
sity p(t)/e(t) vs t for the parameter values
m’=—1, p(t)=4, n(t)=0, g¢g=10"%
H(ty)=0.1.

state indicated by Fig.(d), we estimate that this occurs for two wells more quickly and slightly less particles are pro-
times of ordet=10*. The reason the equation of state in thisduced. For late times, the fluctuatigk [Fig. 5b)] decays
case differs from that of cold matter as was seen in Figs. 1-8s 14%(t)=1/4*3. Again we see an equation of stdteig.
is that the particle distribution produced by parametric am-5(e)] which evolves from a state between that of pure radia-

plification is concentrated at higher momerita; 1.

tion or matter toward one of cold matter.

Figure 5 shows the corresponding case with a matter- The Hartree case is depicted in Fig. 6 for a matter-
dominated background. The results are qualitatively verydominated universe, with the initial condition on the zero
similar to those described for Fig. 4 above. Because of thenode 7(t,=0)=4+/3. Again, the evolution begins in much

faster expansion, the zero mofieig. 5a)] finds one of the
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the same manner as in the lafgeapproximation with oscil-

FIG. 6. Symmetry-broken, chaotic, Hartree,
matter-dominated evolution @f) the zero mode
7(t) vst, (b) the quantum fluctuation operator
g2 (t) vst, (c) the number of particlegN(t) vs
t, (d) the particle distributiongN,(t) vs k at
t=151.3(dashed lingandt=397.0(solid line),
and (e) the ratio of the pressure and energy den-
sity p(t)/e(t) vs t for the parameter values
m?=—1, 5(ty)=4x3Y2 5(ts)=0, g=10"1
H(ty)=0.1.
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lation of the zero modgFig. 6(a)], which eventually settles Case 3.m?>0, 75(ty)>1. The final case we examine is
into one of the two minima of the effective potential. that of a simple chaotic scenario with a positive mass term in
Whereas in the larg&l approximation, the zero mode ap- the Lagrangian. Again, preheating can begin only after the
proaches the minimum asymptoticallgs given by Eq(4.9)  inflationary phase of exponential expansion; this allows us to
and our late time analysis beldwin the Hartree approxima- take a zero-temperature initial state for the FRW stage.
tion we see that the zero mode finds the minimum quickly ~Figure 9 shows this situation in the larljeapproximation
and proceeds to oscillate about that value. The two-poinfor @ matter-dominated cosmology. The zero mogét),
correlator[Fig. 6b)] quickly evolves toward zero without oscillates in time while .decaylng in amplitude from its initial
growing large. Particle production in the Hartree approxima~value of 7(tq=0)=5, 5(to=0)=0 [Fig. 9@], while the
tion [Figs. Gc) and &d)] is again seen to be inefficient com- guantum fluctuationg2, grows rapidly for early times due
pared to that of the larghl case above. Figure(® again to parametric resonan¢€igs. 9b)]. We choose here an ini-
shows that the equation of state is matter dominated for alial condition on the zero mode which differs from that of
but the earliest times. Figs. 4 and 5 above since there is no significant growth of
A larger Hubble constant prevents significant particle pro-quantum fluctuations for smaller initial values. From Fig.
duction unless the initial amplitude of the zero mode is like-9(d), we see that there exists a single unstable band at values
wise increased such that the relatigfty)>H(t,) is satis- of roughly k=1 to k=3, although careful examination re-
fied. For very large amplitudey(ty)>1, to the extent that veals that the unstable band extends all the way=®. The
the mass term can be neglected and while the quantum fluequation of state is depicted by the quanfify)/(t) in Fig.
tuation term has not grown to be large, the equations o8(e). As expected in this massive theory, the equation of
motion (2.11), (2.12, and(2.21) are scale invariant with the state is matter dominated.
scaling p—un, H—uH, t—t/u, andk— uk, whereu is The final case is the Hartree approximation, shown in Fig.
an arbitrary scale. 10. Here, parametric amplification is entirely inefficient
For completeness, we show the case of the evolution withivhen expansion of the universe is included and we require
initial values of the Hubble constant given bi(t,)=5 and  an initial condition on the zero mode of(t,=0)=12\3 to
H(tg) =2, respectively, in Figs. 7 and 8 using radiation- provide even meager growth of quantum fluctuations. We
dominated expansion. Here, we have used the l&rggp-  have used a matter-dominated gravitational background with
proximation and have made an appropriate increase in thid(ty)=0.1. We see that while the zero mode oscilldfég.
initial value of the zero mode such that the fluctuatififigs.  10(a)], there is little growth in quantum fluctuation&ig.
7(b) and 8b)] grow significantly [we have chosen 10(b)] and few particles producelig. 10c)]. Examining
7(tg) =40 in Fig. 7 and#n(t;)=16 in Fig. §. While the the particle distributiofiFig. 10d)], it is found that the bulk
dynamics looks much like that of Figs. 4—6 above, we pointof these particles is produced within a single resonance band
out that the particle distributiofFigs. 1d) and 8d)] is ex-  extending fromk=15 to k=16. This resonance develops at
tended to higher values with the result being that the equaearly time during the large amplitude oscillation of the zero
tion of state[Figs. 7e) and 8e)] is weighted more toward mode. These results are explained by a simple resonance
that of radiation. band analysis described below.
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At first glace, it is not entirely clear why there are so  The solution to this problem is inherent in the band struc-
many more particles produced in the lalyecase of Fig. 9 ture of the two cases when combined with an understanding
than in the Hartree case of Fig. 10. Since in the present cas# the dynamics in an expanding spacetime. First, we note
the Hubble time is long compared to the oscillation timethat, for early times whegX <1, the zero mode is well fit
scale of the zero modéj<1, we would expect a forbidden by the functionz(t) = nof(t)/a(t) wheref(t) is an oscilla-
band for early times at the location given approximately bytory function taking on values from-1 to 1. This is clearly
the Minkowski results provided in Reff34]. In fact, we find  seen from the envelope functiofy/a(t) shown in Fig. 10g)
this to be the case. However, we know from previous studiesrecall thatg> <1 during the entire evolution in this cgse
that in Minkowski space a similar number of particles is Second, the momentum that appears in the equations for the
produced in both the Hartree and lafgecaseq21,34]. modes(2.12) is the physicalmomentumk/a(t). We there-

@) (b

FIG. 9. Symmetry-unbroken, chaotic, large
(@ . N, matter-dominated evolution ofa) the zero
mode 7(t) vst, (b) the quantum fluctuation op-
erator g%(t) vst, (c) the number of particles
gN(t) vst, (d) the particle distributiorgN,(t) vs

k at t=77.4 (dashed ling and t=399.7 (solid
line), and(e) the ratio of the pressure and energy
density p(t)/e(t) vst for the parameter values
m?=+1, 7p(t)=5, #n(tr)=0, g=10""2
H(ty)=0.1.

o o o o o ©
o PN W s o




56 SCALAR FIELD DYNAMICS IN FRIEDMANN- . ..

(b)

1951

1. 5xlO_
1 .xlO_ gz (t)
5.x10
100 200 300 400t
FIG. 10. Symmetry-unbroken, chaotic, Har-
© (@ tree, matter-dominated evolution ¢ the zero
1.2%10 " 35107 ; mode 7(t) vst, (b) the quantum fluctuation op-
1.x10 gN(t) 2.5x10:; N :': erator g2 (t) vs t, (c) the number of particles
8.x10 2.x10_ k ] gN(t) vst, (d) the particle distributiogN,(t) vs
6.%10_ 1.5210 k at t=50.5 (dashed ling and t=2391.2 (solid
4.x10_ 1.x10_ line), and(e) the ratio of the pressure and energy
2.x18 5.x10 density p(t)/e(t) vst for the parameter values
' 00 200 300 400" 0 5 10 15 2 me=+1, 5(ty)=12x3Y2 7(t,)=0, g=10"12

100 200 300 400t

H(to)=0.1.

fore write the approximate expressions for the locations otation of the resonance band of Fig.(d0 However, with
the forbidden bands in FRW by using the Minkowski resultstime the band shifts its location toward higher values of co-

of [34] with the substitutionsy3— y73/a?(t) (where the fac-

moving momentum as given by E(.12, cutting off par-

tor of y accounts for the difference in the definition of the ticle production in that initial band. There is continuing par-

nonlinear coupling between this study arj®4]) and
q’—k?/a?(t).

ticle production for higher modes, but since the Floquet
index is decreased due to the reduced amplitude of the zero

Making these substitutions, we find for the location in mode, since there is no enhancement of production of par-

comoving momentunk of the forbidden band in the larde
(Fig. 9 and HartregFig. 10 cases:

2

o<k?< o

> (large N), (4.11)

2 4 2
2
@+3a2(t)sk2<a2(t)( \/ |
2 3a%(t)  ai(t)

(Hartres. (4.12

The important feature to notice is that while the location of
the unstable banto a first approximationin the case of the
continuousO(N) theory is the same as in Minkowski and
does not change in time, the location of the band is tim
dependent in the discrete theory described by the nonpertur

bative Hartree approximation.
While nq/a(t)>1, the Hartree relation reduces to

2 2
o 7o
—=<k’<—. (4.13
2 V3

ticles in these mode&@s these modes begin with at most of
order 1 particles and because the band continues to shift to
higher momenta while becoming smaller in width, this par-
ticle production never becomes significant.

We emphasize that this result is not an artifact of the
approximations used but rather reflects an important differ-
ence between the behaviors of the theory with discrete sym-
metry described by the Hartree approximation and the theory
with continuous symmetry described by the lafgdimit. In
the case of a continuous symmetry, the dynamics must sat-
isfy the appropriate Ward identities corresponding to that
symmetry. The Hartree approximation does not respect these
identities and is therefore only appropriate for describing the
discrete symmetry. Likewise, the discrete case is not well
described by the larg®l approximation. Mathematically,
these differences show up in the form of the differing band
structure described above, and we conclude that preheating is
inefficient in simple models in which the relevant field obeys
n unbroken discrete symmetry.

" As in the symmetry-broken case of Figs. 4-6, the equa-
tions of motion for large amplitude and relatively early times
are approximately scale invariant. In Figs. 11 and 12 we
show the case of the larghl evolution in a radiation-
dominated universe with initial Hubble constants of
H(tg)=5 and H(ty)=2, respectively, with appropriately
scaled initial values of the zero mode @f(t;)=40 and

This is the same as the Minkowski result for large amplitude »(ty) = 16. Again, the qualitative dynamics remains largely
and one finds that this expression accurately predicts the lainchanged from the case of a smaller Hubble constant.
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C. Late time behavior sum rule, we can write down the analytical expressions for
the late time behavior of the fluctuations and the zero mode.

We see clearly from the numerical evolution that in the
y Using Eq.(4.14), the mode equatiof2.12 becomes

case of a symmetry-broken potential, the late time la¥ge
solutions obey the sum rule 42

dt2

att) d k2

ﬁ a + az(t) U,(t)=0.

(4.15
2 Ar 2 Ar 2
—Imel+ = ¢5(1) + - (Y1), =0. (4.14
This equation can be solved exactly if we assume a power
This sum rule is a consequence of the late time Ward idenlaw dependence for the scale factdit) = (t/ty)". The solu-

tities which enforce Goldstone’s theorem. Because of thigion is
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ktgtl‘“) the inflaton field moves to the minimum of its tree level
—_— potential. The exception to this behavior is the case when the
n—-1 : . .
inflaton begins exactly at the unstable extremum of its po-
Kkttt n tential for which the fluctuations grow out to the minimum of
W) , the potential and do not decay. Initial production of particles
due to parametric amplification is significantly greater in
(4.16 chaotic scenarios with symmetry-broken potentials than in
] the corresponding theories with positive mass terms in the
whereJ, andY, are Bessel and Neumann functions, respecy agrangian, given similar initial conditions on the zero mode
tively, and the constants, andd, carry dependence on the of the inflaton.
initial conditions and on the dynamics up to the point at  gince there are a number of articles in the literature treat-
which the sum rule is satisfied. _ ing the problem of preheating, it is useful to review the
~ These functions have several important properties. In pafqnjique features of the present work. First, we have treated
ticular, in radiation- or matter-dominated universes;l, ihe problemdynamically without using the effective poten-
and for values of wave number satisfyikgrt~*~"/tg, the  tial (an equilibrium construgtto determine the evolution.
mode functions decay in time asa{f)~t™". Since the sum Second, we have provided consistent nonperturbative calcu-
rule applies for late timed,—t,>1 in dimensionless units, |ations of the evolution to bring out some of the most rel-
we see that all values d&€ except a very small band about evant aspects of the late time behavior. In particular, we
k=0 redshift as H(t). Thek=0 mode, however, remains found that the quantum back reaction naturally inhibits cata-
constant in time, explaining the support evidenced in thestrophic growth of fluctuations and provides a smooth tran-
numerical results for values of smadl(see Figs. 1 and)3  sition to the late time regime in which the quantum fluctua-
These results mean that the quantum fluctuation has a lat®ns decay as the zero mode approaches its asymptotic state.
time dependence df?(t)),~ 1/a%(t). The late time depen- Third, the dynamics studied obeys the constraint of covariant
dence of the zero mode is given by this expression combinedonservation of the energy momentum tensor.
with the sum rule(4.14). These results are accurately repro-  The next stage of this analysis is to allow dynamical evo-
duced by our numerical analysis. Note that qualitatively thiSution of the scale factor, to follow the evolution of the in-
late time dependence is independent of the choice of initiaflaton through the de Sitter stage and into the stage of par-
conditions for the zero mode, except that there is no growthicle production. As the expansion rates for which there is
of modes neak=0 in the case in which particles are pro- significant particle production is somewhat restrictive, it is

Ui(t) =it 3231 500002

+ dkt(l3n>/2Y(1—3n)/(2—2n)(

duced via parametric amplificatidifFigs. 4 and & yet to be seen whether in a theory with fully dynamical
For the radiation- fi=3) and matter-dominatedné& 2) gravitational expansion such particle production will be a
universes, Eq(4.16 reduces to elementary functions: significant factor. This analysis is currently underwag|.
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(4.17

It is also of interest to examine the>1 case. Here, the
modes of interest satisfy the conditida<t"~ %/t for late
times. These modes are constant in time and one sees that theThe issue of renormalization and initial conditions is best
modes ardrozen In the case of a de Sitter universe, we canunderstood in conformal time which is a natural framework
formally take the limitn—c and we see thaall modes for adiabatic renormalization and regularization.
become frozen at late times. This case was studied in detail Quantization in conformal time proceeds by writing the

in [23]. metric element as

APPENDIX: CONFORMAL TIME ANALYSIS
AND INITIAL CONDITIONS

V. CONCLUSIONS ds?=C?(7)(dr2—dx?). (A1)

We have shown that there can be significant particle prognqer a conformal rescaling of the field
duction through quantum fluctuations after inflation. How-
ever, this production is somewhat sensitive to the expansion - -
of the universe. From our analysis of the equation of state, D (x,t)=x(x,7)/C(7), (A2)
we see that the late time dynamics is given by a matter-
dominated cosmology. We have also shown that the quantutine action for a scalar fielfith the obvious generalization
fluctuations of the inflaton decay for late times aa?{f),  to N componentsbecomes, after an integration by parts and
while in the case of a symmetry-broken inflationary model,dropping a surface term,
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5 1 , 1. and those of the Bunch-Davies vacuum for large momentum
=J d“xdr E(X’) —5 (V"= W), (A3)  [30]. To see this clearly, consider the WKB solutions of the
mode equationfA9) of the form
with -
R Dk(T):eX[{ f Ry ( T’)dr’), (A12)
Vo) =CHDVI®/C(n]-CH)5x°  (A4) °
with the functionR,(7) obeying the Riccati equation
where R=6C"(7)/C3(7) is the Ricci scalar, and primes
stand for derivatives with respect to conformal time
The conformal time Hamiltonian operator, which is the
generator of translations in, is given by

Ry +R2+k2+ M2(7)=0. (A13)

This equation possesses the solution

1 1. B Rik(7)  Row(7)  Ray(7)
=f d3x[§H§+ SV (AS) Ri(7)= =ik +Royl7) =1 —j—+— 57— ~1— 3
with 11, being the canonical momentum conjugate xtp Rak(7)
IT, = x'. Separating the zero mode of the figfd + K4 (A14)
X(X,7)=xo( 1)+ x(X,7), (A6)  and its complex conjugate. We find for the coefficients

and performing the larg®l or Hartree factorization on the 1

fluctuations we find that the Hamiltonian becomes linear plus Rox=0, Rl,kZEMZ(T)- Rox=— ERi,k,
qguadratic in the fluctuations, and similar to a Minkowski

space-time Hamiltonian with adependent mass term given 1 1

by R3,k:§(Ré,k_ Rik): Rax=— E(Ré,k+ 2R1Roy)-
(A15)

M?(1)=C%(7)| m*+

1 A AN —
é— —)R+ =x5(n)+ 5(x? }
6 270 AL The solutionsf,(7) obeying the boundary conditiorf#\11)
(A7) are obtained as linear combinations of this WKB solution

We can now follow the steps and use the result§2ai and its complex conjugate

for the conformal time evolution of the density matrix by 1

settinga(t) =1 in the proper equations of that reference and  f, (7)= ————[(1+y)D(7)+(1—y)D} (7],

replacing the frequencies by “ 2w (T [ YRk VD7)
(A16)

wR(r)=k>+ M?(7), (A8) N _ - _
where the coefficienty is obtained from the initial condi-
and the expectation value in EA7) is obtained in thisr  tions. It is straightforward to find that the real and imaginary
evolved density matrix. The time evolution of the kernels inparts are given by
the density matrixsee[22]) is determined by the mode func-
tions that obey Yr=1+0(1k%), v=0(1Kk3). (A17)

92 Therefore the larg& mode functions satisfy the adiabatic
—2+k2+/\/12(7') f(7)=0. (A9)  vacuum initial conditiong30]. This, in fact, is the rationale
for the choice of the initial condition6A11).

Following the analysis presented [i82] we find in con-

The Wronskian of these mode functions formal time that
W(E, £%) = f8 —f, 8 (A10)
o= [ SKnnr
is a constant. It is natural to impose initial conditions such 2(2m)

that at the initialr the density matrix describes a situation of

local thermodynamic equilibrium and therefore commutesTne Heisenberg field operatope(x,7) and their canonical

with the conformal time Hamiltonian at the initial time. This momentaHX(x 7) can be expanded as

implies that the initial conditions of the mode functions &
f(7) should be chosen to Heee[22]) —> 1 KX
k X(X,7)= W[akfk(T)+a—kf:(T)]el X

1 Al19
)= = fir)=—iNox(ro) (A1 (A19)

> dSk ’ e
M (X,7)= | = adin+alf (116,
These initial conditions correspond to the choice of mode () f \/§(2w)3’2[ak dntasdic (le
functions which coincide with the first-order adiabatic modes (A20)
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with the time independent creation and annihilation operators There is an important physical consequence of this choice
a, anda] obeying canonical commutation relations. Sinceof initial conditions, which is revealed by analyzing the evo-
the fluctuation fields in comoving and conformal time arelution of the density matrix.

related by a conformal rescaling In the largeN or Hartree(also to one-loopapproxima-
tion, the density matrix is Gaussian, and defined by a nor-
. X(X,7) malization factor, a complex covariance that determines the
(x,1)= Clr) (A21)  diagonal matrix elements and a real covariance that deter-

mines the mixing in the Schdinger representation as dis-
it is straightforward to see that the mode functions in comov-£ussed i 22] (and references thergin

ing time are related to those in conformal time simply as In conformal time quantization and in the Scimger
representation in which the field is diagonal the conformal
fi(7) time evolution of the density matrix is via the conformal
U(t)= co (A22)  time Hamiltonian(A5). The evolution equations for the co-

variances are obtained from those given[22] by setting

— P Pl — 12 2
Therefore the initial conditionéA11) on the conformal time  &(t)=1 and using the frequencies,(7) =k"+M"(7). In
mode functions imply the initial conditions for the mode particular, by setting the covariance of the diagonal elements

functions in comoving time are given by (given by Eq.(2.20 in [22]; see also Eq(2.44) of [22]),
U (t )_—1 U to)=[—iw(79) —H(ty) JU(to) f&*(r)
k(to)= oy K(to)=[ —Twy(7o (to)JUi(to), Afr) =i (A27)
(A23) k (7)

where we have chosen the normalization of the scale facth,e find that with the initial condition§A11), the conformal
such thaa(to) = C(o) = 1. time density matrix is that of local equilibrium a in the
For renormal_|zat|on purposes we need the ldcgeehav- sense that it commutes with the conformal time Hamiltonian.
ior of |U(t)|%,|Uy(t)|?, which are determined by the large- However, it is straightforward to see that the comoving time
k behavior of the conformal time mode functions and itsdensity matrixdoes notcommute with thecomoving time
derivative. These are given by Hamiltonian at the initial time,.
An important corollary of this analysis and comparison
with other initial conditions used in comoving time is that
' assuming initial conditions of local equilibrium in comoving
(A24) time leads to divergences that depend on the initial condition
as discussed at length [B2]. This dependence of the renor-
malization counterterms on the initial condition was also re-
alized by Leutwyler and Mallik19] within the context of the
CTP formulation. Imposing the initial conditions correspond-
ing to local thermal equilibrium irconformaltime, we see
that (i) the renormalization counterterms do not depend on
the initial conditions andii) the mode functions are identi-
fied with those corresponding to the adiabatic vacuum for
We note that the largk-behavior of the mode functions large momenta.
to the order needed to renormalize the quadratic and |oga- Thus this analysis justifies the use of the initial conditions
rithmic divergences is insensitive to the initial conditions.on thecomovingmode functiongA23). Furthermore, being
This situation must be contrasted with the case in which théhat the comoving time density matrix does not describe at
initial conditions in comoving time are imposed as describecny time a condition of local thermodynamic equilibrium,
in [22,23, thus the merit in considering the initial conditions the “temperature” that enters in the mixing covariance in

1

[fu(n)2=7| 1 SR

Ri(m)  1[R(7) 3,
T +E( 7 TR

1+

Rl,k(7)+1<_ k(7)) 3 )

[f(n)]?=k @ tal T TR

4. (A25)

in conformal time described in this work. the density matrix is understood as a parameter describing a
The correspondence with the comoving time mode funcmixed state with the notion of temperature at local thermo-
tions is given by dynamic equilibrium in conformal time quantization.
For our main analysis we choose this “temperature” to
()2 be zero so that the resulting density matrix describes a pure
|U(D)]%= 5 , state, which for the large momentum modes coincides with
C(7) the conformal adiabatic vacuum.
Particle number We write the Fourier components of the
. 5 1 ||fu(7)|? , H d ) field y and its canonical momentuhb, given by Eqs(A19)
|Uk(t)| :CZ—(T) CZ(T) - C(7) dr |fk(7')| . and(A20) as
(A26)
These_ are asymptotic forms used in the renormalization pro- Yi(r) = i[akfk(T) +al (7], (A28)
gram in Sec. lll. \/5
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1 !
I (1= sladfn+alfi (Nl (A29)

These(conformal time Heisenberg operators can be written
equivalently in terms of the dependent creation and anni-
hilation operators

T)e—iwk(70)7+'5l( T)ei“’k(TO)T],

(A30)

_ 1 _
7)=——[a
X( —Zwk(ro)[ k(

o(79) ~
2 [ag

( T)e—iwk(’ro)T_'al( T)ei“’k(TO)T]_

(A31)

I k(n)=—i

The operators,(7),a, are related by a Bogoliubov trans-
formation. The number of particles referred to the initial
Fock vacuum of the modefy, is given by

D. BOYANOVSKY et al.

2

o 1 (7)]2 1 |fu(7)
Nk(T):<al(7)ak(7)>:Zf:Eg) w2( 1) ft(:)
k(7o
1
L (A32)

or alternatively, in terms of the comoving mode functions
U (t)=f(7)/C(7) we find

i

Using the largek expansion of the conformal mode func-
tions given by Eqs(A24) and (A25) we find the largek
behavior of the particle number to B¢ ~_O(1/k*), and
the total number of particleéwith reference to the initial
state atry) is therefore finite.

1 [t +HUD|® 1

w20 Ut || 2
(A33)

_ @[ Uyt |2
4 {U(0)]
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