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It is likely that the observed distribution of the microwave background temperature over the sky is only one
realization of the underlying random process associated with cosmological perturbations of quantum-
mechanical origin. If so, one needs to derive the parameters of the random process, as accurately as possible,
from the data of a single map. These parameters are of the utmost importance, since our knowledge of them
would help us to reconstruct the dynamical evolution of the very early Universe. It appears that the lack of
ergodicity of a random process on a two-sphere does not allow us to do this with arbitrarily high accuracy. We
are left with the problem of finding the best unbiased estimators of the participating parameters. A detailed
solution to this problem is presented in this article. The theoretical error bars for the best unbiased estimates are
derived and discussefS0556-282(197)04616-X]

PACS numbsg(s): 98.70.Vc, 04.30.Nk, 42.50.Dv, 98.80.Cq

I. INTRODUCTION therein, a sort of the “phase bifurcation[5].
The already identified properties of the presently existing
The existing and planned measurements of the cosmilwng-wavelength cosmological perturbations raise sharply
microwave backgroundCMB) anisotropies belong to the the issue of their origin. Although several schemes are logi-
category of astronomical observations which promise a dically possible, it was argudd] that the quantum-mechanical
rect link to fundamental physics and, therefore, they attractieneration of cosmological perturbations was likely to be the

additional attention. one to do the job. If so, not only the existing requirements
The mere detection of the quadrupole anisotropy at there satisfied but also some new specific consequences follow.
level 5ST/T=5x10 ©[1] allows us to conclude that the Uni- In a broad sense, the quantum-mechanical generation of

verse remains to be homogeneous and isotrggdicdimen-  cosmological perturbations means the Sdiriger evolution
sionless deviations are smaller thanat scales much larger of the initial vacuum staté€no “particles” perturbations
than the present-day Hubble radilys and up to distances into the present-day multi-particle stafmany “particles”
about 500 times longer thdp [2]. The significance of this perturbations Even the simplest, linear and quadratic, inter-
result lies in the fact that such large scales are not directlaction Hamiltonians are capable of producing a variety of
observable now and will be accessible only to astronomers ahulti-particle states: coherent statessult of the action of a
a very remote future. At still longer scales, the homogeneityforce, linear Hamiltonians squeezed vacuum stat@esult
and isotropy of the Universe cannot be guaranteed, in thef the parametric influence, quadratic Hamiltonigns
sense that some deviations can be larger than 1 without cosgueezed coherent statesmbination of the two aboyeAll
flicting the CMB observation§2]. The transition from spa- these states have Gaussian wave functions and are in this
tially flat cosmological models to open models does not afsense Gaussian. A single word “Gaussian” is too general to
fect these conclusions considerab8}. distinguish between these states. The difference between
The mere existence of the long-wavelength cosmologicathem lies in the statements regarding the mean valze®
perturbations, responsible for the observed large-angulafer squeezed vacuum states, nonzero for the rest of the
scale anisotropy, requires them to have special phases anddtate$ and the variancegqual for coherent states, nonequal
exist at the previous radiation-dominated stage in the form ofor other statesof the conjugate variables characterizing the
standing, rather than traveling, wavp4. This conclusion state, such as generalized coordinates and momenta, or
follows from the Einstein equations, if we trust them to quadrature components of the field, or, loosely, amplitude
propagate the observed perturbations back in time up to, &nd phase, etc. In case of cosmological perturbations, there is
least, the era of primordial nucleosynthesis without destroyno natural and unavoidable mechanism for generation of co-
ing the homogeneity and isotropy of that era. The distribu-herent states, but there is one such for generation of squeezed
tion of phases can be only very narrdiighly squeezed vacuum states: parametiisuperadiabaticinteraction of the
with two peaks separated by (see[4] and references quantized perturbations with strong variable gravitational
field of the very early Universdsee[4] and references
therein. The fact that the cosmological perturbations are be-
*Electronic address: grishchuk@astro.cf.ac.uk ing generated specifically in the squeezed vacuum quantum
Electronic address: jmartin@ccr.jussieu.fr states(and not, say, in the “most classical” coherent states

0556-2821/97/5@)/192415)/$10.00 56 1924 © 1997 The American Physical Society



56 BEST UNBIASED ESTIMATES FOR THE MICROWAY¥ . .. 1925

dictates a number of properties of the perturbations thenficients, the underlying random process is completely char-
selves and the CMB anisotropies caused by thggh  acterized by the set of variance$ (1=0,1,2,3,..) of the
Squeezing is a physical phenomenon, not a formalism or g, distributions. These quantities are calculable if the cos-
language. mological model is postulated and, vice versa, the cosmo-
Let us imagine that the accurately measured distributionogical model can be determined if these quantities are
of the CMB temperature over the sky is decomposed oveknown from observations. Specifically, the quantitifsare
spherical harmonictfor precise definitions see Sec):lI calculable if the time dependence of the cosmological scale
w4 factor describing the very early Universe is chosen, and as-
ﬂ 0. 0)= 2 2 Yo (0 suming that the rest of the evolution is known. Moreover, for
T ( ’¢)_|=o el CimYim( 6, ¢)- simple cosmological models, the quantit'te%are related to
each other and are all expressible through a small number of
A priori, there may be nothing inherently random or quan-parameters. This happens, for example, if one assumes that
tum mechanical behind this observed distribution of the costhe scale factor of the very early Universe had obeyed one of
mic temperature, in the same sense in which there is nothinthe power-law time dependences. In these cases, the problem
inherently random or quantum mechanical behind, say, thef extracting cosmological information from a given map
observed distribution of the stars of our galaxy over the skysimplifies and reduces to the problem of determining those
If the measured CMB temperature map is a reflection of dew parameters and testing those models. However, the real
given classical distribution of matter and gravitational fields,situation with the data can be more complicafdd The
the derived fixed numbers,, is about all what we can ex- observer may not be willing to believe any of theoretical
tract from the map. The notion of the random temperaturecosmological models, even if he/she accepts the view that
arises if the cosmological perturbations responsible for théhe underlying distributions should be normal zero-mean dis-
anisotropies were randomly generated. We should then intetributions. A more ambitious task than testing each of many
pret a particular perturbation field and the observed numbengossible models is the derivation of the true behavior of the
Cim caused by this field as one specific realization of thevery early Universe from the observations, that is, from the
random process. The objective then is to find out and chambserved set of numberzsf. This is the position that we
acterize the underlying random process, as accurately as pasdopt in this paper. We begin from observations rather than
sible, using the data of a single observed map. from theory. Concretely, we want to answer the following
We maintain the view that the cosmological perturbationsquestion: What can be stated about the set of independent
responsible for the observed anisotropies were generatesf on the grounds of a single observed map?
quantum mechanically. If they could be generated in coher- \We assume that the sky coverage is complete, the fore-
ent states, the mean quantum-mechanical values of the p&jround sources and contaminating signals are under full con-
turbation field would be nonzero, and they would be sur-rol, the instrumental errors are negligibly small, the angular
rounded by smallat the level of the zero-point quantum resolution is arbitrarily high, and the map is constructed from
oscillationg Gaussian fluctuations. Correspondingly, the thethe raw data in the most intelligent and effective wW&y9].
oretical distributions for the,, coefficients would have had At the first sight, under these conditions, an arbitrarily accu-
nonzero means with small Gaussian fluctuations arounghte determination of all ther? should not present a big
them. Roughly speaking, in this case, the mean numericgroplem. Indeed, the angular correlation functiof), con-

values of ST/T would be determined by the mean values Ofstructed as a result of averaging over many mé‘psany
the perturbation field. In contrast, in case of the squeezegnjverses’), has the form

vacuum states, the mean values of the perturbation field and

the mean values of the, coefficients are zero, but the ST ST

Gaussian fluctuations around them are large. Roughly speak- <? (&) T (éz)> =K(9)

ing, in this case, the numerical values 8T/T are deter-

mined by the dispersiofsquare root of variangef the per- 1 2

turbation field. In both cases, the words about Gaussian =— > o?(21+1)P(cosd).

distributions should be taken with a great care. Whatever we 4m (=0

are able to calculate presently, relies on the assumption that

cosmological perturbations are weak and that the absolute If the function K(8) is known, each of thesf can be

value of ST/T is a small, less than 1, number. On the othereasily obtained from it. One simply needs to integrate @ver

hand, if the variableST/T obeys a Gaussiamorma) distri-  the product ofK(5) with the respective Legendre polyno-

bution law, this quantity may take, even though with a smallmial P,(cosé). It is true that we have access to only one

probability density, arbitrarily large values, which is in con- realization of the random process, not to infinitely many im-

flict with our initial assumption. In addition, the short- plied in the construction of th&(8), but this is not an ob-

wavelength perturbations became nonlinear in the course sftacle by itself. If the process is ergodit0,11] (see Sec.

evolution, and many extra physical processes were involvetV), the correlation functions can be built from a single re-

in the producing of the small-angular-scale anisotropiesalization, and the parameters of the random process, such as

However, in this paper, we will ignore these difficulties and cr,z, can be determined with arbitrarily high accuracy. What

will work with exact normal zero-mean distributioiSecs. is required for the ergodicity of a random process in time or

Il and III). in three-space is the decay of correlations in the limit of very
In case of squeezed vacuum guantum states, and the cdarge temporal or spatial separations. Then, the ensemble av-

responding normal zero-mean distributions for thg coef-  erages can be replaced by integrals over time or three-space,
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and the parameters derived from one realization are true p@osmology, we have control over only one record, only one
rameters with probability 1. In theoretical cosmology, theCMB map. The assumptions made above can hardly be
long-distance behavior of the perturbation field is partially inproven rigorously, but one can possibly find evidence in their
our hands. It can be assumed to be appropriate, so that ti&pport. Alternatively, they can be disproved at some level
field in three-space can be made ergodic: the access to ofé confidence. One possibility to test these assumptions was
realization would be sufficient for the determination of all indicated in Ref[6]. The product of two random variables
parameters of the perturbation field. The difficulty apparentlydT/T(€1) and 6T/T(&,) is a new random variable. The
comes about when the three-dimensional ergodic process Robability density functioPDF for v was derived, and its
being reduced to a two-dimensional random process on finctional form was shown to be quite spedid). The mean
sphere, what effectively takes place when cosmological per/alue ofv is K(6) but the variable is not supposed to be a

turbations produce anisotropies in the temperature distribugOOd est|ma_tor _0K(5). since the variance of IS very b|g_..
tion over the sky. It appears that a random process on owever, this big variance should be present in the original

two-sphere can never be ergodic the sense of replacement observational datéefore any angular integrations over the

. ; map are performedf our statistical assumptions are correct.
of the ensemble averages by the integrations over the s)pherﬁ | : : : :
2 . . o ooks unlikely that the quite special functional form of the
and theo| can never be determined with arbitrarily high

; i . PDF forv can be mimicked by the anisotropies caused by
accuracy from a single maSec. IV). Possibly, this is & pertyrhations of any other origin. In view of the forthcoming
;tatement well known to mathematicians but we could no{,55sive “pixelization” of the CMB sky, it will probably be
find an adequate reference. possible to test directly whether the map values of the
Without being able to find the true values of we are  satisfy, at least approximately, the theoretically derived PDF
left with the problem of estimating these parameters as adfor v. In this paper, we effectively assume that this is the
curately as possible. One can imagine that one is given ease.
very precise map of the CMB sky, but the question is whatto Second, in our analysis we do not need to specify the
do with this map. This is a problem from the quite well- nature of the cosmological perturbations responsible for the
developed theory of estimation and statistical inferefsee, = observed large-angular-scale anisotropy. They can be density
for example[12,13)). To evaluate a parameter we need toperturbations, or rotational perturbations, or gravitational
build an estimator, a random variable constructed from th&vaves. However, in order to build a correct general picture,
original random process. The estimator is “unbiased” if its it is very important to know what kind of perturbations we

expectation value is equal to the true value of the parametef® actually dealing with. Hopefully, this question can be
And the estimator is the “best” if its variance is minimal @nswered in future observations, with the help, for example,

among all possible estimators. In Sec. V, we find the bespf Polarization measurementfor a recent paper on the sub-

unbiased estimator far?, and in Sec. VI we find the best J¢t see[15)). So far, one can only rely on the theory. The
unbiased estimator fd(l(é) guantum-mechanical generating mechanism, originally de-

. . . veloped for gravitational waves, can also be applied, under
A concrete numerical value of the best unbiased estlmato(g P g pp

ired at the ob q is the b biased esii rtain conditions, to density perturbations and rotational
acquired at the observed map Is the best un lase estm.]at'e rturbations. The contribution of each type of perturbations
the corresponding parameter. Usually, one is not satisfie

: h to the ST/T can be calculated. According to the calculations
with the best estimate alone, but wants to surround the estht Ref. [16], if the observed large-angular-scale anisotropies

mate by appropriate error bars. This requires new definitiongre indeed caused by cosmological perturbations of
and criteria(see Sec. VIl Approximately, but not exactly, guantum-mechanical origin, gravitational waves are at least
the size of the error box is characterized by the variance s important as density perturbations and provide a some-
the best unbiased estimator. Not surprisingly, since we havghat larger contribution than that of density perturbations.
limited our discussion to normal zero-mean distributions, the

most “natural” estimators turn out to be also the best unbi-
ased estimators, and the maximum likelihood estimators, etc.
In this way, this paper makes contact with previous work on  The quantity which appears naturally in the theory of the

Il. VARIOUS REPRESENTATIONS FOR &T/T

the subjec{14]. CMB anisotropies is a relative variation of the temperature
Before concluding the Introduction we need to make twoseen in a given directiog on the sky:5T/T(€&). This quan-
comments. tity is a function of the angular coordinates on the celestial

First, our analysis is built on the assumptions that thesphere:
observed map is only one realization of a random process,
and that the underlying distributions are normal zero-mean 6T oT
distributions. These assumptions are in fact consequences of T (&= T (0.0). 2.1
the parametric quantum-mechanical generating mechanism
of the perturbations, but they are also testable hypotheses on ¢ 5 convenient to define three different representations
their own. Logically, one needs first to show that one is¢,, this function:
dealing with a random process before trying to find out its
characteristics. If we were experimenting with a noisy volt- ST S
age generator, we could compare several sufficiently long ¢ _ * K
records in order to argue that we were dealing with the dif- T (0.¢) ;o m:zq [8imYin(0,¢)+ & Yin( 0,0 .
ferent realizations of one and the same random process. In (2.2
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% Yo (0,¢) I Using the previous equations it is easy to check that
=> | bf ==+ [bE,Y(6,9) Ci —m=1V2(by,+ib},) =cfi,. We can also express the real
1=0 V2 m=1 and imaginary parts of the coefficients, in terms of the
coefficientsb’, . Explicitly we have
+ Dby Y} : i
Bim Y im( 0:90)]) ) 2.3 Cer: ICO' C:OZO,
3 +1 IC
= CimYim(6,0), 2.4 Chp=—0t, m=1,
20 m=27| imYim(0,¢) (2.9 Im N
where the orthonormal spherical harmonics, either complex ' s
Yim, or real Yi/v2, Y, andY},, are described in the cim=—ﬂ, m=1.
Appendix. In what follows, the indexruns from O tox, and V2

the indexm runs either between-1 and +| or between 1 c s .
andl, as will be explicitly specified. If m=<—1, thenby;,, and by, have to be replaced bl _,

Although the transitions between Eq@.2), (2.3, and 2nd by —m. respectively. Finally, Egsi2.8—(2.10 can be
(2.4) are quite straightforward, each of the representationdverted, and one can express the coefficiejfsin terms of
has its own advantages and we will use them below. Sincthe coefficients, . One obtains
every factorv2 can eventually prove to be very important,

c _
we need a rigorous, even if somewhat pedantic, description bio=Cio. (213
of these representations. The coefficieatg are complex
and can be expressed in terms of their real and imaginary c _i * -
o - : ; im=—= (Cim*+Cjy), mM=1, (212
parts,a;,=a,,+ia,,. In thisa representation, the function V2

STIT(é) is manifestly real, but the number of tlaecoeffi-

cients is larger than necessary. Theepresentation is a little i

cumbersome, but it has to be regarded as canonical in the m=——= (Cm—Cjy), m=1 (2.13
sense that it contains only real and independent coefficients V2

bﬁm (A=c,s) and does not require any extra constraints. The

properties of other representations will be derived from the  Ill. THE PROBABILITY DENSITY FUNCTIONS,
properties of this one. Finally, the coefficierdg, of the ¢ MEAN VALUES, AND VARIANCES

rep/ressznta‘;:on are complex, hand Im' Ordﬁr*tg have real \yo need to formulate our statistical assumptions about
STIT(€), they must satisfy t e relationshiBin=C,,-m-  the CMB temperature. We will start from tte representa-
They can be also written agm=Cj,+icjy,. Then, the last  (on Our assumptions are as followd) all the coefficients

relationship ir‘”p|i€‘5‘3_|rm:C|r,fm andci,=—Cj _p- by, by, andb}, are statistically independent random vari-
Let us now describe how these representations are relatgghjes (2) each individual variable is normally distributed
to one another. _ with a zero mean(3) all variables with the same index
The relationship between tfe representation and th®  paye the same standard deviation. In other words, the
representation is expressed through the equations probability density functions for thb coefficients are given
by the expressions
lo=28]o, (2.9 Y P
1 C\2/5 2
r=v2(aj,+al _.), m=1 (2.6 f(b%,)= = (bjg) /20 (3.2
| imtT & —m), ; e , :
" m ' " 0 V2o
m=—v2(ap,—a _), m=L1 2.7
1 c \2 2
The link between the representation and the representa- f(bj,) = T e~ P21 m=1, (3.2
tion is given by 2o
Cm=am+a‘_.. 1 2
Im=—&mT & —m f(bS )= > e (bf'm)zlz"l, m=1. (3.3
The link between the representation and tHe representa- NETa

tion can be written as The ST/T taken in a given direction is a random variable,

_ e while the 6T/T treated as a function of,¢ is a random
C|o—b|0, (28) .
(stochasti¢ process.
1 Having the PDF’s one can calculate various useful expec-
Cm=— (b —ibS) m=1, (2.9 tation values. For the mean values of theoefficients, one
V2 obtains

<bFO :<me :<bism>:01 m=1.

1
Cim=— (b} _,+ib} _,) ms=-1 (2.10 _ o _
v2 o ’ For the quadratic combinations, the result is
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c 2 2
(bf obl0) =0 811, o UIZ
<allmlaI2m2al3m3aI4m4> (81,1,0m,m91,1 ,Om,m,

b b O 5 , mp,my=1,
< l1my zmz> < I1my ZmZ> O-I 12 “mym, 12 +5I1|45m1m45|2|35m2m3)!

(B m, b7 m,) =(OF m,blm,) =0, my,my=>1. (3.4  and other nonvanishing combinations can be obtained by
permutting the indices,i.

In a similar manner, one can also determine the quartic com- Finally, starting from the postulated distributions in the
binations. b representation, one can also establish the corresponding

We can now deduce the statistical properties of the twequations for the representation. All the coefficients,,
other representations. For therepresentation, all the coef- cj,,, andc;,, (m>0) should be statistically independent, and
ficientsaj,, anda;,, can be taken as statistically independent,their PDF’s should be written as
and their PDF’s can be written as

o (clp)?20f

f(cig)=

e 2(a{m)2/0|2’ V2mo

and

2
f(aj,) = s
|

o= 2ot

2 1
. roy_
V2mo, f(cim) = o e

To find the expectation values one can use these PDF’s, and

f(aj,) =

= (cim)?lot,

can also make a consistency check with the help of Egs. f(Cim) = e Cmol m=1.
(2.5—-(2.7 and (3.1)—(3.3.. The mean values of,, and \/;cn
a|, are obviously zerdand, therefore, this is also the case
for a), anda’,): Note that the standard deviation fef, is different from
those forcj, andcj,,. Obviously, the mean values of the
(al y=(al )=0. coefficientsc|y, ¢|,, andc;,, vanish
) Fr\N_/~f N\ /Al \ —

The quadratic combinations ef ,, anda,,, have the values {Cio) =(Cim) =(Cim) = 0.

2 The mean value of the quadratic combinatiorcifis given

g

i - 1 b
<alr1mlalr2m2> = <a:1mla: 2m2> = 4 0 1I25m1m21 y

r r _ 2
(C1,0C1,0) =01 01,1,

(@] m @l m,) =(&] mal m)=0,
1M1 M2 1M1 22 For other coefficient§wherem; andm, are not both equal

. . to zerg, one obtains
from which one derives 9

2 2
o ol IR MERPO
! Ci.m.C =— +— Mo
<al a >:0 <al a* > 1 818 ' < lymy I2m2> 2 I115,¢m;m, 2 I41,¢my,—m,
1My “lom, ' 1My omy/ = o Gyl Omym,
2 2
S f ishing quartic combinations are given by the ol 7l
ome O' nonvanis 94 9 y <C| m C| m > 6| 4 5m m, o 5| | 5m ,— My
expressions 1My~ 1My 2 1> 2 1'27M 2
2 2 r i YN r —
; ; (o 0'|3 <Cllmlclzm2>_<Cllm1CI2m2>_O'
<allm1aI2m2al3m3al4m4>_ 16 0 i 5m1m25I3I45m3m4 .
This leads to
0'2 0'2
1,91, )
16 5I 5m1m35lzl45m2m4 (c lm1CI2m2> =0 15I 1I25m1 ,— My
2 2 * _ 2
71,91, (ci 1mlclzm2> =0 15I 1I25m1m2- (3.9

+ 1—6 5I1I45m1m45I2I36m2m31
The last equations are also valid fop =m,=0.
2 2 One nonvanishing quartic combination is given by the

rooar 4 iy _ 1t expressiornothers can be obtained by the complex conjuga-
(allmlalzmzalam3al4m4>_ 16 5I1I25m1m25I3I45m3m4a tion)
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self. No doubt, these properties follow from the properties of

the coefficients. Obviously, the process is isotropic in the

+0'|2 0'|2 5I1I45m1,7m45I2I35m2,7m3 sense that the mean value of th&/T is one and the same
voe number(zero in every direction on the sky

_ 2 2
(C1,m, C1,m,C1,m,Cl,m,) = 07, 07,01,1,8m, , ~my 01,1, Omy, —m,

2 2
+ _ Mt
UI10-|36I1I25m1, m25I3I45m3, my

6T
(3.6) <7 (e)> =0. (3.10

Let us now introduce new random variables which will 11,¢ process is also homogeneous in the sense that the angu-
play an important role in what follows. Let us define random|5; correlation function depends only on the angleetween

variablesaf, bf, andcf by the equations two directions, but not on directions themselves. For each
| pair of vectorsg; andé, separated by the angt® the angu-
alzzmzz_ | ama | lar correlation function takes the form
6T 6T
| T (&) = (&) )=K(9)
bf = (bfo)?+ 2, [(bf)?+(bj)?],

L=
| -1 Z,O o?(21+1)P,(coss),

CIZEmZE_I Clmcl*m' (3.1)

whereP,(coss) are the Legendre polynomials.

The three-point correlation functidms well as all corre-
ion functions containing an odd number of term
S8TIT(E)] vanishes:

Using Egs.(2.11)—(2.13 it is easy to show thap?=c?.
One can compute the mean values of these new randomt
variables

2(af)=(bf)=(cf)=(21+ 1o}

an nce e é é =0.

A , 1 , The four-point correlation function is given by the expres-
(a|>—(a|>2=—2|+1 af)?, (3.7  sion
2 < (*)BT(*)(ST(*)ST(*)>
— (8)) =— (&) — (&3) — (&
(o) =(bf)*=(c) —(c}) =57 (D> (39 TV T T T
. — iy 1 @ % 2.

It is important to note that the above relationships are trivial = (am)? 2 2 ojom(2l+1)(2m+1)
consequences of the postulated distributiqBsl)—(3.3). 1=0 m=0
These relationships are always true, regardless of what and X[ P, (C0S313) Py COSS24) + P|(COSS14) P yr(COSS,)
how measured, and regardless of whether we have access to
only one realization of the random procdssly one sky or +P,(c0s512) P (C0SH34) 1,

portion of sky or to infinitely many[But if one wants to use _

a “cosmic” word, one is free to call the relationshigd.7) ~ Where the symbob;; denotes the angle between vectérs

and (3.8) the “cosmic variance.] and éj . In a similar manner one can derive the higher-order
The original probability distributions dictate also the correlation functions and express them through the lower-

PDF’s for these quadratic variables. They are the so-calle@rder ones.

x2 distributions. Denoting2=b% o2 andn= 21+ 1, one can All the derived expressions are consequences of the pos-
; ulated distribution function§3.1)—(3.3). We do not possess
write [12] tulated distribution function$3.1)—(3.3). We d tp
a rigorous mathematical proof of the statement that there
(x2)(n-2/2g- X212 exists a one-to-one correspondence between Bds—(3.3
f(x%,n)= v and the fact that the relevant cosmological perturbations are
(n2—1)12 placed in the squeezed vacuum quantum states. However, we

believe this statement is indeed true. At any rate, the
guantum-mechanical expectation values coincide with the
corresponding ensemble averages if the appropriate identifi-
cations are madgs]. In particular, the quantum-mechanical
expression for the angular correlation function

and for the random variable? we have

(b?)(N=2P2( 52) ~"2g bf/207

f(bf)= (3.9

(nf2—1)12"?2

So far, we have been concerned with the statistical prop- or 6T |
erties of the coefficients in the expansion of the random pro- <0’ T (€1) T (€2)
cessST/T over the orthonormal spherical harmonics. We
can now discuss some properties of the random process itoincides with Eq(3.11) if we identify

o> =|2 C,P,(cosd)

=Imin
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+T

1 1
— 2: i — =
= (21+1)o7=C,. (3.12 lim >T 7Tx(§,t)dt m,

T

The quantityC, explicitly contains the square of the Planck N - . -
length. This quantity is calculable when the law of Cosmo_for every realizatioré. When condition(4.2) is satisfied, the

> ! , ) rocess is called mean ergodic. The conditiér2) can also
logical evolution and the sort of cosmological perturbauons.ge exoressed as the re uiremeﬁtﬂo in the limit T o0
are specified. The value of the lowest multipblg, is also P q T '

determined by the sort of perturbations. In this sense, th#hereay is the variance of the random variable defined by
abstract quantitiess?, which completely characterize the Eq.(4.1). This explains why one is capable of deriving from
random proces€.1), (3.1)—(3.3), are also calculable and are a single realization a true parameter of the ergodic random

given by the expressions process(in this case, the mean valume) with probability 1.
Indeed, for every arbitrarily smad, one has the Tchebysheff
, Am inequality
ST R
o2

i 2 _—
IV. ERGODICITY OF RANDOM PROCESSES P(Ixr—m[<e)=1 €’

ON A LINE AND ON A SPHERE
Let us first recall the ergodic theordr0,1]] for a time- and the probability goes to 1 Wh@iT goes to 0. A sufficient
dependent random procegéé,t) defined on an infinitet condition for the validity of Eq(4.2) is the vanishing of the

line. The symbol¢ indicates different possible realizations. correlations at large temporal separations: limB(7)=0.
Let us assume that the process is stationary, that is, its mean More stringent conditions should be satisfied for the pro-

value does not depend on time, cess to be correlation ergodic, that is to have
(X(¢,t))=const=m, R
lim >T X(&,t+ 7)X(€,0)dt=B(7), 4.3
and its correlation function depends only on the time differ- Toee T
ence:

for every&. Here, for simplicity, we will restrict ourselves to
(X(&€,t+ 7)x(&,1))=B(7). normal zero-meanni=0) stationary processes. The equality
(4.3 allows one to find the variance of the process from its
To find the ensemble averagexdf¢,t) at a fixed moment  single realization. This equality takes place if and only if the
of time, one takes a large numbirof different realizations process is such that
and calculates the arithmetic mean of the observed values:
N lim ! +T|B( )|2d7=0 (4.9
- T 7=0. .
=<3 x(& 0. T 2T o
N =1
For normal zero-mean stationary processes, and when the
condition (4.4) is met, all the higher-order correlation func-
tions can also be replaced by the time averages. Note that the
o 1¢‘ntegrand in Eq(4.4) is a strictly positive function. The limit
to only one realizatiox(¢o.,t) of the random process. What ¢ yhe expressioii4.4) is zero because the denominator goes
can we say aboun and_B(T) on the grounds of th|s_§|ngle to infinity in the limit T—soc.
realization? The ergodic theorem defines the conditions un- We will now try to apply the notions formulated above to

der which the ensemble averages can be replaced by the & jom process on a sphere. The problem of our interest is
averages, so that thre andB() can be found from the time o c\vB temperature distributed over the sky. Strictly

In the limit of N going to infinity, the quantityf tends to the

integrations ofx(&g,t). s : . .
, ! peaking, the quantum-mechanically generated cosmological
_ Introduce a random variable(¢) defined by the equa- pertyrbations form a nonstationary process: the squeezing
tion makes the temporal correlation function a function of indi-
1 (T vidual moments of time, and not only of the time difference.
X7(&)= > f X(&,t)dt. (4.0  This property may turn out to b_e very important for 'ghg fu-
-T ture observations of short gravitational waves, but is irrel-

) . ) ) ) evant for our discussion of very long-wavelength cosmologi-
This variable is an unbiased estimator af because ca| perturbations responsible for the microwave background
(x7(£))=m. However, we can say much more when we takegpisotropies, since the time scale of variations is much much

the limit T—co. If the process is such that longer than the interval of time between possible missions
for the CMB observations. Most importantly, the stationar-
N ity, a necessarybut not sufficient condition for a time-
lim — | B(7ndr=0, 42 s :
Tow 2T Jo1 dependent process to be ergodic, is replaced in our case by

the analogous properties of isotropy and homogeneity of the
then process on a sphere, see E@10 and(3.11). So, at least
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the necessary conditions for our process to be mean ergodic

and correlation ergodic are satisfied. 16,2 E 21+ 1)0'|4=
To check the analogue of the conditiéh?2), we will use ToI=1

K(9) instead ofB(7) and will replace the time integral di-

vided by T by the integral over a sphere divided byr4the

surface area of éunit radius sphere. The result is can only be true if all ther; are zero. In contrast with pro

cesses on an infinite line or in infinite space, we do not have
1 1 here an infinite volume factor in the denominator of the left-
yp f 2dQK(5)= yp og. hand side of Eq(4.5) to enable it to vanish. We are bound to
S do the best what we can do with a single map, try and find

The right-hand side of this equation is zero whehis zero, ~ Out the best unbiased estimates for the parametgrand

that is when the monopole coefficieb§, in the expansion K(9).
(2.3) is identically zero, see Eq3.4). In this case, our pro-

cess is indeed mean ergodic since the integral over a given
9 9 9 V. THE BEST UNBIASED ESTIMATOR FOR THE 0-,2

map
Let us denote an estimator for th;e;2 by f,. Thisis a
i J' Q ﬂ (&)= 1 . random variable constructed from the original random pro-
A7 )2 T Janr ® cess. One realization of this process is the observed map. The

most general quadratic expression fplis given by
vanishes, and the average over the map coincides with the
ensemble averag&.10.

What we really would like to have is the correlation er- 3 L L .
godicity of our process. In this case, we would be able to fi= fszjszdﬂld02w|(el,e2) T (€1) T (&2),
replace the ensemble averaging by the integration over the (5.2
sphere, and to find th&(5) and hence all thezr,2 from a
single map. Unfortunately, this is exactly what we cannot

have on a sphere. The necessary and sufficient conditiofhered{)=sin édéde. The functionw,(€,,€;) is a weight
(4.4) translates into the requirement function to be determined from the requirements that the

estimator f; is unbiased and the minimum varian¢the

1 ) bes}. In this formulation, the problem was essentially solved
47 Sde|K(5)| =0. (4.9 in Ref. [17]. We refine and expand the arguments of Ref.
[27].

The left-hand side of this equation can be calculated using An arbitrary weight functiorw,(€,,€,), being a function
Eq. (3.11) and the orthogonality properties of the Legendreof two sets of angular coordinates, can be expanded over two
polynomials. The resulting equation sets of orthonormal spherical harmonics:

S Yio(€) Jo(ez) ] ico(él) Yio(€1) R
:; Z |IJ00 2 Y + < n§=:1 |IJOI‘] Y ( 2)+ |IJOI’1 T Yjsn(ez)

( )
2 E I|]m0 (€1) ]O - ﬁjcmo € 1 2 E[ fijmn Y (el)Y n(€2)

ihj m=1

+d||]mn m(él)Yj (62)+ I|Jmn (el)Y (ez)+ ||]mn m(él)Y]pn(éZ)]- (5-2)

In this expression, all the coefﬂmenﬂﬁmn (A,B=c,s) are A !

real. The weight function may be asymmetric with respectto  w,(&;,6,)= E 2 2 > iijmn Yim(€1) Y1 (€2).
the interchange of; andé&,, but the antisymmetric part of 1=0J=0m==in=-]

this function will not contribute to Eq(5.1) anyway. To 53
simplify calculations, we require this function to be explic-
itly symmetric, w,(€,,&,) =w,(€,,€;). This means that the
d coefficients must obey the relationship

In this case, the coefficientl;;,, are complex, and since the
functionw,(€;,6,) is real, they have the property

K =dy
ijmn ij,—m—n>
dlljmn dljlnm

or, if we introduce the real and imaginary parts dyfmn ,
We will mostly use another representation fordefined by i.e., d“jmnzd{ijmnﬂd]”mn,
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d{ijmn:d{ij,—m,—n' d:ijmn:_d:ij,—m,—n- (5-4) dlijmn:dlji,—n,—m-

In addition, the weight function is symmetric in this repre- The link between the two representations is expressed by the

sentation if equations
|
diijoo=diij 00»
E( I|JOn+IdI|JOn) n=1,
diii o=
lijOn 1
E( |IjO n Id|lj0 n)1 ns<-1,
‘E ( Icij:mo Ilij) m=1,
diijmo=
(d|lj —m0+idﬁ}:,—m,0)' mg_l’
E 1 1
(dlljmn+dlljmn Id||]mn+|d|ljmn) m=1, n=1,
! ss <-1,n=<-1
5 (d|lj 7mfn+ Iij,fm,fn_*'I I|] -n_ I|] 7mfn) ms » N '
dlijmn:<
lijm,—n" Isijsm,fn lijm,—n lijm,—n/» = !
(d idSe  —idfS ) m=1, n<-1
L 2 ( |IJ —mn d|lj -mn +i |Ij —mn |IJ —mn) m<-1, n=1

The angular integrals in E@5.1) can be performed explicitly. This integration returns us from the random prédé3sto
the random variables, coefficients in the decomposition obhE, and allows us to express the estimatpin terms of the
general quadratic combination of these coefficients. As a consequence, we arrive at the following expressidnifotetires
of the b coefficients:

:ZO ZO dﬁjOO +E (dllij blcm dI|Jm0 blsm)+2 (dIUOn |Obj:n dllen |Objsn)

i
z: 2 Iljmn |m ]n—’_dh]mnb::mblsn—'—dl|]mnb;5mb;:n+dlumnbS bfn (55)
|
In the representation defined by E¢5.3) and(2.4), the last S i
equation takes the form (f|)=20 20 2 2 dijmn{CinCin)
1=0 j=0 m=—i n=—

0 i

o i 0 i
=> > > :E iijmnCimCin - (5.6 :240 Uizmz_ iiimm -

=0 ]=0 m=—i n=—]

Since the second set of equatidds4) guarantees
We have introduced the general expression for the estima-

tor and can now subject it to the desired requirements. Let us
start from the mean value of the estimator. Using Ef</) 2 di 2 d
and (3.5), we obtain ¢ Sliimm ™ liimm =
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the mean value of, reduces to the manifestly real expres- . 1 ,
sion dlijmn 2i+1 31i 6ij Omn» Iijmn:O' (5.19
[
In the representatiofb.2), this amounts to
<f|>:Z Ui2 Z dliimm P ®.2

We want our estimator to be unbiased, that is, we impose d"IOO 2i+1 i Gij » (5.12
the condition (f,)=0?. This requirement can only be
achieved if ce ss 1

lijmn = Qiijmn =571 31i 6ij Omn>» (5.13
2 dI||mm i (57)

with all other coefficients being zero.

Having found all thed coefficients, we can write the
Equation(5.8) form the first set of constraints on the weight weight functionw;(&,,6,) explicitly. Using the definition
functionw, and define the family of unbiased estimators. (5.3 and the found expressioits.11), we obtain

The next step is to find, among the unbiased estimators,
the one whose variance is minimal. The variamfleof the  Wi(€1,6)

random variabld |, © o i 1
= 577 91i6ijOmnYim(€ Y é
0'%|:<f|2>_<f|>2, IZO jZO m=27i ;] 2i+1 li |m( l) ( 2)
I
. N 1
can be calculate_d using the def_|n|t|CB16) and Eq.(3.6). The ST Y m(61)YE (&) (5.14
general expression for the variance reduces to the form +1 m==i
o ) J 1
0-%:22 E E 2 d|ljmnd|ljmna-20-J2 (5.9 :4_ P,(c0sd;5), (5.15
i=0 j=0 m=—i n=—]j m

We have to minimize this expression taking into account thevhere, in the last step, the summation theorem for spherical
constraintg(5.7). The expression5.8) is the sum of strictly harmonics has been used. Therefore, the best unbiased esti-
positive terms. To minimize this sum, we should set to zeranator fora? can be written as

as many terms as possible. First, we need to set to zero all ST

the d coefficients which do not participate in the constraint - -

(5.7) and whose presence in thepsum gnly increases the vari- f':E Lz deﬂldﬂzﬁ(cosalz) T (€1) T (62).

ance. Thus, we require to vanish all the coefficiedifg,, (5.1

and those ofl};;,, which have indice$# j and/orm#n. To

minimize the remaining variance under the constrént), This _formula answers the question what to do with a_given
we introduce the Lagrange multiplieks and write map in order to get a concrete number, the best substitute for

the true parametes?. The answer is to perform with the
map the integrations prescribed by this formula. In fact, the
=0. integrations can be further simplified.
The estimator(5.16 contains a double integral of the
Since thedj;,m are treated as independent variables, theDrOdUCt.Of two functionsT/T and,rt]r_]erefo.re, can be called a
variation of the previous expression provides us with quadratic_estimator. However, this estimator can be pre-
sented as a product of two linear estimators, i.e., a product of
two appropriate single integrals of the functiéf/T. In-
4d| 4+ N=0. 5.9 . )
liimm i .9 deed, using the summation theorem, E@s14 and(5.15),

The sum ovem of these equations together with B§.7)  formula(5.16 can be written as
determines the quantities :

g 220 2_4 (dlriimm)ZUiA—’—Zo M( Z_ d{iimm_gli)

1
4078+ (2i+1)\=0. (5.10 f=or1 +1m: f dQ;Ym(€1)=— (81)
Using the expressiofb.10 for the Lagrange multipliera;
in Eq. (5.9 allows us to write X 82d92Y| (ez) (ez)

This formula shows that it is sufficient to perform one ap-
propriately weighted integration over the sphere with further
multiplications and summations. Moreover, the remaining
Thus, taking into account all relationships, we obtain theintegrals define the,,, coefficients. So, we obtain the fol-
complete set of constraints on the weight functit®3) lowing expression for the best unbiased estimator in terms of
which makes the estimatdy unbiased and best: the original random coefficients:

dlriimm:—2i+l Jji -
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1 ' C|2 not surprising that the best unbiased estimatoKfo$) turns
(‘mc,mzm. (5.17  out to be the same combination of the best unbiased estima-

fy
tors for ¢2. It is interesting and instructive to follow this

“ot1 .~ ©

Of course, this is the same expression which could be og€lationship in detail. .
tained by inserting Eq(5.11) into Eq. (5.6) or by inserting Let us denote an estimator of thg ) by (). This is a

Egs.(5.12 and(5.13 into Eq.(5.5). random variable constructed from the random process

We have found the estimator with the smallest possible’T/T- The most generahuadrati¢ expression for thé ()
variance among all unbiased estimators. It is useful to writ&@n be written as

this minimal variance explicitly. This can be found either ST ST
from Egs.(5.8 and(5.11) or from Eqgs.(5.17 and(3.8). The f(5)=f f dQ,dQ,w(€1,6,,8) — (&) — (&),

result is §*Js? T T

(6.

ol = 2 ok where theé§ is a fixed angle, whereas the angle between
ro21+1 variable directions; andé, will be denotedsd;,. The arbi-
trary weight functionw(é; ,€,,5) can be expanded, without
VI. THE BEST UNBIASED ESTIMATOR FOR THE K( &) loss of generality, over the Legendre polynomiB|¢cos):

The best unbiased estimator fof is also the best unbi-
ased estimator for the multipole mome#@s of the correla-
tion function K(65), see Egs(3.11) and (3.12. Since the
parameteK () is a combination of the parametar§, itis  The estimatorf(5) takes the form

1 oo
W(E1,6;,6)= 5 — go (21+1)P(cosd)w|(€,,6,).

_1% ae&T»&Ta_li
f(&)—ﬂ 2 (2I+1)P|(cosé)szszdﬂldﬂzwmel,ez) T (&) T (ez)—E 2 (21+1)f,P/(cosd).

Now, we want thef () to be unbiased and best estimator The derived formulas answer the question what to do with
of K(6). The estimatoif () is unbiased if f,)=¢?, and it ~ a given map in order to derive the best unbiased estimate for
is the best if the variance of thig is the smallest one. In the correlation functiorK(5). The outlined prescription es-
other words, we return to the solved problégec. V) for the  sentially goes through the derivation of the best unbiased
estimatorf,. Using the results of the previous section, we estimate foro?. However, the weight functiof.3) allows
can write for the best unbiased estimator of Kig5): also a different procedure for the derivation of the estimator

and the estimate; the direct integration of the map, but with
1 o ) the help of thes function.
f(o)=7- 20 Pi(cosd)cy. (6.2 Let us denote ca%=x and co$;,=X,. Let us presentde-
fine) the & function 8(x—x,) as an expansion over the Leg-

The weight functionw(&,,€,,48) is given, taking into ac- €ndre polynomials:
count Eq.(5.19, by

1 °°
w(é;,6,,8)= @’ 20 (21+1)P,(coss) P,(cossy,). 5(X_XO):|:20 aP(x). (6.9
(6.3
This last equation can also be written as To find the coefficients,, multiply both sides of Eq(6.4)

by P(X) and integrate by from —1 to 1. The result is

o |

1
W(E1,62,0)= 7= 2 3 Pi(COD)Yin(E1)Yirn(Ep),
21+1

showing that the double integral in E@.1) decays into the =5 Pixo)
products and summations of the appropriately weighted

single integrals. This form of the weight function permits an

immediate recovery of the already known red@t2). The and

variance of the best estimat{®.2) is

1 < oo21+1
af(ﬁ)zﬁlgo (21+1) o Pf(cosd). 5(x—xo)=|=20 —— PIPI(X0).
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Thus, the weight functiori6.3 can be written as describing the rotation which transforms the directi@yy)
L into the direction ¢',¢'). Since the rotation specified by the
= = _ _ anglese, B=— 604, y=— ¢, brings the vector pointing out
W(€1,82,0)= g 7 5(COSO—CODyp). ©9 15 the north pole to the direction defined b§;(¢;), we can
write

Let us show that the integration in E¢6.1) with the
weight function(6.5) does indeed provide us with the same
result(6.2). The product of twoST/T is the random process . |
v=(6TIT) (€)(8TIT) (€,). We have access to one realiza- Ylm(el)=r=§;| Yir(0,=)Dip(a, = 01,—¢1). (6.6
tion of this process. To integrate the over all directions
€1,€; on the sky separated by a fixed angleone can pro- |n the same manner, thé,(6,) can be expressed as
ceed as follows. At the first step, rotate the ve@gparound
the fixed direction defined b§, and integrate the over the
circle traced by the vectog, on the sphere. The result will L b
depend only ond, ,¢;), the coordinates of the vectéy. At qu(eZ)_S:E_p Yps(8,x)Dsg(@, = 01, —¢1). (6.7)
the second step, integrate the result overdaland ¢4, let-
ting the vectoré; to run over the whole sphere. The final |ndeed, when the vect@; points out to the north pole, the
result, taking into account also the factor 4/in Eq. (6.5), coordinate ofg, is simply &.
should be the random variable we are interested in. Let us do Using the definitior(2.4) and the formula$6.6) and(6.7),
this computation in practice. we can present the random procesas

Every function on a sphere can be expanded in the basis
of spherical harmonics. In particular, the functigp, (8, ¢)
can be expanded in the badi¥, (0',¢');|1=0,—I<r=<| _ _
according to the formula W } v—% %:1 % CimCpq¥ie(0:7)Yps( 0,X)

p

XDy, — 01, — 1) D@, — 01, — ¢1).

|
’ r — |
Yim(6, )_r=2| Yir(0,0)Dim(@.8,7). Let us now perform the two step integration procedure de-
scribed above. The first step amounts to the integration of
The coefficients of this expansion are called the WigDer v over the angley from 0 to 27. Using the explicit form of
functions [18]. They depend on the Euler angles B, v  the spherical harmonics given in the Appendix, we get

1/2

(p—9)!
(p+9)!

PpS(COS 5)D|rm(a'v_ 01,—¢1)

2p+1\*9
ro

4

Jozwvdx=2 > > CimCpq

Im pq rs

(2I+1
4

2w
Xng(av_ali_(pl)f eISXdX'
0
In the last expression, the integﬁ”e‘sxdx is simply 27 d4,. Using the relationship

21+1 |
N 2. Pom(@.B:7)=Yin(B,7),

we obtain

2m
fo vd)(=27r% % CImequ(Cog)Ylm(‘91:@1)qu(011@1)-

As expected, the result depends only @h ;). In order to complete the procedure, we have to integrate this result over
Q,. We find

27
f dQlfo UdXZZT"% % C|mequ(COS5)j dQlYlm(alr‘Pl)qu(elu(Pl)

[’

=2m >, Pj(cosd)c?.
1=0
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Restoring the factor 1#8° from Eq. (6.5), we arrive at the

best unbiased estimat(8.2). The same procedure performed
over a given map provides us with the best unbiased estimate

of the correlation functioriK ().

VIl. BEST ESTIMATES AND THE ERROR BARS

L. P. GRISHCHUK AND JRROME MARTIN

Imposing the conditior{7.2), we arrive at the same result

2

[
(UIZ)ML:m :((T|2)Bu :

Finally, we can give the maximum-likelihood estimation
based on the PDEB.9) for the quantitied?. Repeating the

We will denote the best unbiased estimate for the paramsame steps, we come again to the result

eter 0'| by ((T| )su- Along with this one, there exist other

estimates of the same parameter, for example, the maximum-

likelihood estimate (rf)ML. Not surprisingly, for the postu-
lated distributiong3.1)—(3.3), these estimates coincide.
Apparently, the most “naive” evaluation of the?, giv-

ing nevertheless the correct result, would be the followingvalue of ot

2
(O'IZ)ML:FI- (7.3

Thus, in the first approximation, we can write for the true
0|2=(0'|2)BU. In the next approximation, we

one. From a given map one derives the set of the observatiant to make this statement more accurate by assigning the

coefficients b{T®) (that is to say, the sefb,bf, b,
m=1). We know(postulate that each of them is drawn from
the normal zero-mean distribution

2 2
b} /20 ]

f(bim)= e (7.1

1
V2o

Each of the observed,,, coefficients can be used for the
maximum-likelihood evaluation of the correspondiog
[We omit the labelmap when it is clear that we deal with
the observed quantitigsOne finds this estimate, denoted
cr|(m), by assuming that the PDF.1) reaches its maximum
at the observedb,,. The result is knownal(m)—bIm In-
deed,

2

Inf=-2 In((r,) 2+C

whereC is a constant. Then, one gets
2

bIm

20'| '

d Inf

o7

1
g 2_0'|2

and the condition
(7.2

leads to the stated result. Since for evérwe have 2+1
independenb,,,, coefficients and, hence| 2 1 independent
evaluations, the estimate of the trtré is given by

1 b?

S N LG Y
2041 4 MM o141 & KImT o4 q

This number coincides with theof)BU determined by Eqg.
(5.17).

A similar maximum-likelihood evaluation af? is based
on the joint PDF for all coefficients,,, (with the same index
I) which is simply the product of the individual PDRE.1):

2., 2
f(blo’ Im> m): 7b|/20"

(27T0'|2)(2|+1)/2 €

error bars. This is the matter of definitions, and there are
many ways of doing this. We will use the distribution func-
tion (3.9). This function attains its maximum at the measured
b? and the estimateds®) vy, , Eq.(7.3). The value of the at

the maximum is

(bf)flef n/2

fma™ (2= 1)1 (2in) "2

When thes?, treated as a variable parameter, deviates from
(a,z)ML, the value of thef decreases as compared with the
f max- We establish the error bars foq2 by requiring that the
value off does not drop below some confidence level

f=kfmax (7.4

wherek, k<1, is a fixed number. Within the error box are
included aIIa,2 surrounding 6'|2)ML and up to the boundaries
(0?)¢ determined by two solutions to E(7.4).

Let us denotex=(o?) . /(07)x. Equation(7.4) takes the
form

Ink—1. (7.5

2
INX—x= —

n
Obviously,x=1 if k=1. Let us now consider small devia-
tions from this solution fok<<1. We writex=1-y, where
ly|<1. By expanding the hkin terms ofy and considering
the first nonvanishing approximation to E.5), we find
y2=—(4/n)Ink. That is, the two wanted solutions are

2\/=1Ink
"

The condition of their applicability is- (4/n)Ink<1. Thus, in
this approximation, we can write the trlm% as

2+/—1Ink
J2l+1)°

The choice ofk is in our hands. If the distributiofi(z)
were a normal zero-mean distribution, then a reasonable
choice of k would be k=e Y2 because f(z=0)

e Y2t ... The x? distribution (3.9) is not a normal one,

y==*

(7.6)

o?=(o$>su( 1+
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but approaches a normal distribution for large valuels @éfs . 21+1 (1—-m)t\¥?
a guidance, we will use=e "2 in Eq. (7.6). Then we get Y|m(9,¢):(?m) Pim(cos)cosme,

2
U|2=(0|2)Bu< 1=+ Va1

This formula becomes progressively inaccurate for smalivherel =0 but 0<m=I. The indicesc, s indicate the pres-
| Specifically, forl =2 this formula would imply the error at - ence of cosne or sinme, respectively. The link between the
the level=0.6. However, a direct derivation of the error bars complex and real spherical harmonics is given by
from Eq. (7.5 (and assuming= e~ ?) gives

1/2

2[+1 (I—m)! )
Pim(cosf)sinme,

27 (I+m)!

’ ism( 0,¢)=

1
o3=(0)eu(1+0), in="s (Yin®Yfn), m=0,
where o lies betweent 1.0 and—0.4. Note the asymmetry
of the error interval: the larger thamrﬁ)BU values are more 1
tolerable than the smaller ones. Yi=— (Yim— Y} m=0.
m iva m Im/»
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Then, we have the properties

APPENDIX
The complex spherical harmoni®§,,(6,¢) are defined Yy Yim ) =00 Ommy s —l<m=I,
by the expression
c YC
10 1’0
1 (2141 (1—|m])1\*2 o — | =%,
=— | ® v2 V2
Yim(0,¢) s\ 27 (D! Pim(cos)e
In this expression,|=0 and —lI<m=I. The functions (y{\m,yﬁm,)zgn,gmm,(sAB, m=1, A,B=c,s.

Ym(6,¢) satisfy the relationshipY};,=Y, _. On the other
hand, the real spherical harmonics are defined by the equZhe functions Yj,/v2 (1=0), Y, (=1, I=m=1),

tions Y5, (I=1,1=m=1) form a complete orthonormal basis.
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