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It is likely that the observed distribution of the microwave background temperature over the sky is only one
realization of the underlying random process associated with cosmological perturbations of quantum-
mechanical origin. If so, one needs to derive the parameters of the random process, as accurately as possible,
from the data of a single map. These parameters are of the utmost importance, since our knowledge of them
would help us to reconstruct the dynamical evolution of the very early Universe. It appears that the lack of
ergodicity of a random process on a two-sphere does not allow us to do this with arbitrarily high accuracy. We
are left with the problem of finding the best unbiased estimators of the participating parameters. A detailed
solution to this problem is presented in this article. The theoretical error bars for the best unbiased estimates are
derived and discussed.@S0556-2821~97!04616-X#

PACS number~s!: 98.70.Vc, 04.30.Nk, 42.50.Dv, 98.80.Cq

I. INTRODUCTION

The existing and planned measurements of the cosmic
microwave background~CMB! anisotropies belong to the
category of astronomical observations which promise a di-
rect link to fundamental physics and, therefore, they attract
additional attention.

The mere detection of the quadrupole anisotropy at the
level dT/T5531026 @1# allows us to conclude that the Uni-
verse remains to be homogeneous and isotropic~all dimen-
sionless deviations are smaller than 1! at scales much larger
than the present-day Hubble radiusl H and up to distances
about 500 times longer thanl H @2#. The significance of this
result lies in the fact that such large scales are not directly
observable now and will be accessible only to astronomers of
a very remote future. At still longer scales, the homogeneity
and isotropy of the Universe cannot be guaranteed, in the
sense that some deviations can be larger than 1 without con-
flicting the CMB observations@2#. The transition from spa-
tially flat cosmological models to open models does not af-
fect these conclusions considerably@3#.

The mere existence of the long-wavelength cosmological
perturbations, responsible for the observed large-angular-
scale anisotropy, requires them to have special phases and to
exist at the previous radiation-dominated stage in the form of
standing, rather than traveling, waves@4#. This conclusion
follows from the Einstein equations, if we trust them to
propagate the observed perturbations back in time up to, at
least, the era of primordial nucleosynthesis without destroy-
ing the homogeneity and isotropy of that era. The distribu-
tion of phases can be only very narrow~highly squeezed!
with two peaks separated byp ~see @4# and references

therein!, a sort of the ‘‘phase bifurcation’’@5#.
The already identified properties of the presently existing

long-wavelength cosmological perturbations raise sharply
the issue of their origin. Although several schemes are logi-
cally possible, it was argued@4# that the quantum-mechanical
generation of cosmological perturbations was likely to be the
one to do the job. If so, not only the existing requirements
are satisfied but also some new specific consequences follow.

In a broad sense, the quantum-mechanical generation of
cosmological perturbations means the Schro¨dinger evolution
of the initial vacuum state~no ‘‘particles’’ perturbations!
into the present-day multi-particle state~many ‘‘particles’’
perturbations!. Even the simplest, linear and quadratic, inter-
action Hamiltonians are capable of producing a variety of
multi-particle states: coherent states~result of the action of a
force, linear Hamiltonians!, squeezed vacuum states~result
of the parametric influence, quadratic Hamiltonians!,
squeezed coherent states~combination of the two above!. All
these states have Gaussian wave functions and are in this
sense Gaussian. A single word ‘‘Gaussian’’ is too general to
distinguish between these states. The difference between
them lies in the statements regarding the mean values~zero
for squeezed vacuum states, nonzero for the rest of the
states! and the variances~equal for coherent states, nonequal
for other states! of the conjugate variables characterizing the
state, such as generalized coordinates and momenta, or
quadrature components of the field, or, loosely, amplitude
and phase, etc. In case of cosmological perturbations, there is
no natural and unavoidable mechanism for generation of co-
herent states, but there is one such for generation of squeezed
vacuum states: parametric~superadiabatic! interaction of the
quantized perturbations with strong variable gravitational
field of the very early Universe~see @4# and references
therein!. The fact that the cosmological perturbations are be-
ing generated specifically in the squeezed vacuum quantum
states~and not, say, in the ‘‘most classical’’ coherent states!
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dictates a number of properties of the perturbations them-
selves and the CMB anisotropies caused by them@6#.
Squeezing is a physical phenomenon, not a formalism or a
language.

Let us imagine that the accurately measured distribution
of the CMB temperature over the sky is decomposed over
spherical harmonics~for precise definitions see Sec. II!:
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A priori, there may be nothing inherently random or quan-
tum mechanical behind this observed distribution of the cos-
mic temperature, in the same sense in which there is nothing
inherently random or quantum mechanical behind, say, the
observed distribution of the stars of our galaxy over the sky.
If the measured CMB temperature map is a reflection of a
given classical distribution of matter and gravitational fields,
the derived fixed numbersclm is about all what we can ex-
tract from the map. The notion of the random temperature
arises if the cosmological perturbations responsible for the
anisotropies were randomly generated. We should then inter-
pret a particular perturbation field and the observed numbers
clm caused by this field as one specific realization of the
random process. The objective then is to find out and char-
acterize the underlying random process, as accurately as pos-
sible, using the data of a single observed map.

We maintain the view that the cosmological perturbations
responsible for the observed anisotropies were generated
quantum mechanically. If they could be generated in coher-
ent states, the mean quantum-mechanical values of the per-
turbation field would be nonzero, and they would be sur-
rounded by small~at the level of the zero-point quantum
oscillations! Gaussian fluctuations. Correspondingly, the the-
oretical distributions for theclm coefficients would have had
nonzero means with small Gaussian fluctuations around
them. Roughly speaking, in this case, the mean numerical
values ofdT/T would be determined by the mean values of
the perturbation field. In contrast, in case of the squeezed
vacuum states, the mean values of the perturbation field and
the mean values of theclm coefficients are zero, but the
Gaussian fluctuations around them are large. Roughly speak-
ing, in this case, the numerical values ofdT/T are deter-
mined by the dispersion~square root of variance! of the per-
turbation field. In both cases, the words about Gaussian
distributions should be taken with a great care. Whatever we
are able to calculate presently, relies on the assumption that
cosmological perturbations are weak and that the absolute
value ofdT/T is a small, less than 1, number. On the other
hand, if the variabledT/T obeys a Gaussian~normal! distri-
bution law, this quantity may take, even though with a small
probability density, arbitrarily large values, which is in con-
flict with our initial assumption. In addition, the short-
wavelength perturbations became nonlinear in the course of
evolution, and many extra physical processes were involved
in the producing of the small-angular-scale anisotropies.
However, in this paper, we will ignore these difficulties and
will work with exact normal zero-mean distributions~Secs.
II and III!.

In case of squeezed vacuum quantum states, and the cor-
responding normal zero-mean distributions for theclm coef-

ficients, the underlying random process is completely char-
acterized by the set of variancess l

2 ( l 50,1,2,3,. . . ) of the
clm distributions. These quantities are calculable if the cos-
mological model is postulated and, vice versa, the cosmo-
logical model can be determined if these quantities are
known from observations. Specifically, the quantitiess l

2 are
calculable if the time dependence of the cosmological scale
factor describing the very early Universe is chosen, and as-
suming that the rest of the evolution is known. Moreover, for
simple cosmological models, the quantitiess l

2 are related to
each other and are all expressible through a small number of
parameters. This happens, for example, if one assumes that
the scale factor of the very early Universe had obeyed one of
the power-law time dependences. In these cases, the problem
of extracting cosmological information from a given map
simplifies and reduces to the problem of determining those
few parameters and testing those models. However, the real
situation with the data can be more complicated@7#. The
observer may not be willing to believe any of theoretical
cosmological models, even if he/she accepts the view that
the underlying distributions should be normal zero-mean dis-
tributions. A more ambitious task than testing each of many
possible models is the derivation of the true behavior of the
very early Universe from the observations, that is, from the
observed set of numberss l

2 . This is the position that we
adopt in this paper. We begin from observations rather than
from theory. Concretely, we want to answer the following
question: What can be stated about the set of independent
s l

2 on the grounds of a single observed map?
We assume that the sky coverage is complete, the fore-

ground sources and contaminating signals are under full con-
trol, the instrumental errors are negligibly small, the angular
resolution is arbitrarily high, and the map is constructed from
the raw data in the most intelligent and effective way@8,9#.
At the first sight, under these conditions, an arbitrarily accu-
rate determination of all thes l

2 should not present a big
problem. Indeed, the angular correlation functionK(d), con-
structed as a result of averaging over many maps~‘‘many
universes’’!, has the form

K dT
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If the function K(d) is known, each of thes l
2 can be

easily obtained from it. One simply needs to integrate overd
the product ofK(d) with the respective Legendre polyno-
mial Pl(cosd). It is true that we have access to only one
realization of the random process, not to infinitely many im-
plied in the construction of theK(d), but this is not an ob-
stacle by itself. If the process is ergodic@10,11# ~see Sec.
IV !, the correlation functions can be built from a single re-
alization, and the parameters of the random process, such as
s l

2 , can be determined with arbitrarily high accuracy. What
is required for the ergodicity of a random process in time or
in three-space is the decay of correlations in the limit of very
large temporal or spatial separations. Then, the ensemble av-
erages can be replaced by integrals over time or three-space,
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and the parameters derived from one realization are true pa-
rameters with probability 1. In theoretical cosmology, the
long-distance behavior of the perturbation field is partially in
our hands. It can be assumed to be appropriate, so that the
field in three-space can be made ergodic: the access to one
realization would be sufficient for the determination of all
parameters of the perturbation field. The difficulty apparently
comes about when the three-dimensional ergodic process is
being reduced to a two-dimensional random process on a
sphere, what effectively takes place when cosmological per-
turbations produce anisotropies in the temperature distribu-
tion over the sky. It appears that a random process on a
two-sphere can never be ergodic~in the sense of replacement
of the ensemble averages by the integrations over the sphere!
and thes l

2 can never be determined with arbitrarily high
accuracy from a single map~Sec. IV!. Possibly, this is a
statement well known to mathematicians but we could not
find an adequate reference.

Without being able to find the true values ofs l
2 we are

left with the problem of estimating these parameters as ac-
curately as possible. One can imagine that one is given a
very precise map of the CMB sky, but the question is what to
do with this map. This is a problem from the quite well-
developed theory of estimation and statistical inference~see,
for example@12,13#!. To evaluate a parameter we need to
build an estimator, a random variable constructed from the
original random process. The estimator is ‘‘unbiased’’ if its
expectation value is equal to the true value of the parameter.
And the estimator is the ‘‘best’’ if its variance is minimal
among all possible estimators. In Sec. V, we find the best
unbiased estimator fors l

2 , and in Sec. VI we find the best
unbiased estimator forK(d).

A concrete numerical value of the best unbiased estimator
acquired at the observed map is the best unbiased estimate of
the corresponding parameter. Usually, one is not satisfied
with the best estimate alone, but wants to surround the esti-
mate by appropriate error bars. This requires new definitions
and criteria~see Sec. VII!. Approximately, but not exactly,
the size of the error box is characterized by the variance of
the best unbiased estimator. Not surprisingly, since we have
limited our discussion to normal zero-mean distributions, the
most ‘‘natural’’ estimators turn out to be also the best unbi-
ased estimators, and the maximum likelihood estimators, etc.
In this way, this paper makes contact with previous work on
the subject@14#.

Before concluding the Introduction we need to make two
comments.

First, our analysis is built on the assumptions that the
observed map is only one realization of a random process,
and that the underlying distributions are normal zero-mean
distributions. These assumptions are in fact consequences of
the parametric quantum-mechanical generating mechanism
of the perturbations, but they are also testable hypotheses on
their own. Logically, one needs first to show that one is
dealing with a random process before trying to find out its
characteristics. If we were experimenting with a noisy volt-
age generator, we could compare several sufficiently long
records in order to argue that we were dealing with the dif-
ferent realizations of one and the same random process. In

cosmology, we have control over only one record, only one
CMB map. The assumptions made above can hardly be
proven rigorously, but one can possibly find evidence in their
support. Alternatively, they can be disproved at some level
of confidence. One possibility to test these assumptions was
indicated in Ref.@6#. The product of two random variables
dT/T(eW1) and dT/T(eW2) is a new random variablev. The
probability density function~PDF! for v was derived, and its
functional form was shown to be quite special@6#. The mean
value ofv is K(d) but the variablev is not supposed to be a
good estimator ofK(d) since the variance ofv is very big.
However, this big variance should be present in the original
observational data~before any angular integrations over the
map are performed! if our statistical assumptions are correct.
It looks unlikely that the quite special functional form of the
PDF for v can be mimicked by the anisotropies caused by
perturbations of any other origin. In view of the forthcoming
massive ‘‘pixelization’’ of the CMB sky, it will probably be
possible to test directly whether the map values of thev
satisfy, at least approximately, the theoretically derived PDF
for v. In this paper, we effectively assume that this is the
case.

Second, in our analysis we do not need to specify the
nature of the cosmological perturbations responsible for the
observed large-angular-scale anisotropy. They can be density
perturbations, or rotational perturbations, or gravitational
waves. However, in order to build a correct general picture,
it is very important to know what kind of perturbations we
are actually dealing with. Hopefully, this question can be
answered in future observations, with the help, for example,
of polarization measurements~for a recent paper on the sub-
ject, see@15#!. So far, one can only rely on the theory. The
quantum-mechanical generating mechanism, originally de-
veloped for gravitational waves, can also be applied, under
certain conditions, to density perturbations and rotational
perturbations. The contribution of each type of perturbations
to thedT/T can be calculated. According to the calculations
of Ref. @16#, if the observed large-angular-scale anisotropies
are indeed caused by cosmological perturbations of
quantum-mechanical origin, gravitational waves are at least
as important as density perturbations and provide a some-
what larger contribution than that of density perturbations.

II. VARIOUS REPRESENTATIONS FOR dT/T

The quantity which appears naturally in the theory of the
CMB anisotropies is a relative variation of the temperature
seen in a given directioneW on the sky:dT/T(eW ). This quan-
tity is a function of the angular coordinates on the celestial
sphere:

dT

T
~eW ![

dT

T
~u,w!. ~2.1!

It is convenient to define three different representations
for this function:

dT
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~u,w!5(
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where the orthonormal spherical harmonics, either complex
Ylm , or real Yl0

c /&, Ylm
c , and Ylm

s , are described in the
Appendix. In what follows, the indexl runs from 0 tò , and
the indexm runs either between2 l and 1 l or between 1
and l , as will be explicitly specified.

Although the transitions between Eqs.~2.2!, ~2.3!, and
~2.4! are quite straightforward, each of the representations
has its own advantages and we will use them below. Since
every factor& can eventually prove to be very important,
we need a rigorous, even if somewhat pedantic, description
of these representations. The coefficientsalm are complex
and can be expressed in terms of their real and imaginary
parts,alm5alm

r 1 ialm
i . In this a representation, the function

dT/T(eW ) is manifestly real, but the number of thea coeffi-
cients is larger than necessary. Theb representation is a little
cumbersome, but it has to be regarded as canonical in the
sense that it contains only real and independent coefficients
blm

A (A5c,s) and does not require any extra constraints. The
properties of other representations will be derived from the
properties of this one. Finally, the coefficientsclm of the c
representation are complex, and in order to have real
dT/T(eW ), they must satisfy the relationshipclm* 5cl ,2m .
They can be also written asclm5clm

r 1 ic lm
i . Then, the last

relationship impliesclm
r 5cl ,2m

r andclm
i 52cl ,2m

i .
Let us now describe how these representations are related

to one another.
The relationship between theb representation and thea

representation is expressed through the equations

bl0
c 52al0

r , ~2.5!

blm
c 5&~alm

r 1al ,2m
r !, m>1, ~2.6!

blm
s 52&~alm

i 2al ,2m
i !, m>1. ~2.7!

The link between thec representation and thea representa-
tion is given by

clm5alm1al ,2m* .

The link between thec representation and theb representa-
tion can be written as

cl05bl0
c , ~2.8!

clm5
1

&
~blm

c 2 iblm
s ! m>1, ~2.9!

clm5
1

&
~bl ,2m

c 1 ibl ,2m
s ! m<21. ~2.10!

Using the previous equations it is easy to check that
cl ,2m51/&(blm

c 1 iblm
s )5clm* . We can also express the real

and imaginary parts of the coefficientsclm in terms of the
coefficientsblm

A . Explicitly we have

cl0
r 5bl0

c , cl0
i 50,

clm
r 5

blm
c

&
, m>1,

clm
i 52

blm
s

&
, m>1.

If m<21, thenblm
c and blm

s have to be replaced bybl ,2m
c

and bl ,2m
s , respectively. Finally, Eqs.~2.8!–~2.10! can be

inverted, and one can express the coefficientsblm
A in terms of

the coefficientsclm . One obtains

bl0
c 5cl0 , ~2.11!

blm
c 5

1

&
~clm1clm* !, m>1, ~2.12!

blm
s 5

i

&
~clm2clm* !, m>1. ~2.13!

III. THE PROBABILITY DENSITY FUNCTIONS,
MEAN VALUES, AND VARIANCES

We need to formulate our statistical assumptions about
the CMB temperature. We will start from theb representa-
tion. Our assumptions are as follows:~1! all the coefficients
bl0

c , blm
c , andblm

s are statistically independent random vari-
ables, ~2! each individual variable is normally distributed
with a zero mean,~3! all variables with the same indexl
have the same standard deviations l . In other words, the
probability density functions for theb coefficients are given
by the expressions

f ~bl0
c !5

1

A2ps l

e2 ~bl0
c

!2/2s l
2
, ~3.1!

f ~blm
c !5

1

A2ps l

e2 ~blm
c

!2/2s l
2
, m>1, ~3.2!

f ~blm
s !5

1

A2ps l

e2 ~blm
s

!2/2s l
2
, m>1. ~3.3!

The dT/T taken in a given direction is a random variable,
while the dT/T treated as a function ofu,w is a random
~stochastic! process.

Having the PDF’s one can calculate various useful expec-
tation values. For the mean values of theb coefficients, one
obtains

^bl0
c &5^blm

c &5^blm
s &50, m>1.

For the quadratic combinations, the result is

56 1927BEST UNBIASED ESTIMATES FOR THE MICROWAVE . . .



^bl 10
c bl 20

c &5s l 1
2 d l 1l 2

,

^bl 1m1

c bl 2m2

c &5^bl 1m1

s bl 2m2

s &5s l 1
2 d l 1l 2

dm1m2
, m1 ,m2>1,

^bl 1m1

c bl 2m2

s &5^bl 1m1

s bl 2m2

c &50, m1 ,m2>1. ~3.4!

In a similar manner, one can also determine the quartic com-
binations.

We can now deduce the statistical properties of the two
other representations. For thea representation, all the coef-
ficientsalm

r andalm
i can be taken as statistically independent,

and their PDF’s can be written as

f ~alm
r !5

2

A2ps l

e2 2~alm
r

!2/s l
2
,

f ~alm
i !5

2

A2ps l

e2 2~alm
i

!2/s l
2
.

To find the expectation values one can use these PDF’s, and
can also make a consistency check with the help of Eqs.
~2.5!–~2.7! and ~3.1!–~3.3!. The mean values ofalm

r and
alm

i are obviously zero~and, therefore, this is also the case
for alm andalm* !:

^alm
r &5^alm

i &50.

The quadratic combinations ofalm
r andalm

i have the values
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from which one derives
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s l 1
2

2
d l 1l 2

dm1m2
.

Some of nonvanishing quartic combinations are given by the
expressions
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!,

and other nonvanishing combinations can be obtained by
permutting the indicesr ,i .

Finally, starting from the postulated distributions in the
b representation, one can also establish the corresponding
equations for thec representation. All the coefficientscl0

r ,
clm

r , andclm
i (m.0) should be statistically independent, and

their PDF’s should be written as

f ~cl0
r !5

1

A2ps l

e2 ~cl0
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2

and
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Aps l

e2 ~clm
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!2/s l
2
,

f ~clm
i !5

1

Aps l

e2 ~clm
i

!2/s l
2
, m>1.

Note that the standard deviation forcl0
r is different from

those forclm
r and clm

i . Obviously, the mean values of the
coefficientscl0

r , clm
r , andclm

i vanish

^cl0
r &5^clm

r &5^clm
i &50.

The mean value of the quadratic combination ofcl0
r is given

by

^cl 10
r cl 20

r &5s l 1
2 d l 1l 2

.

For other coefficients~wherem1 andm2 are not both equal
to zero!, one obtains

^cl 1m1

r cl 2m2

r &5
s l 1

2

2
d l 1l 2

dm1m2
1

s l 1
2

2
d l 1l 2

dm1 ,2m2
,
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i cl 2m2
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2

2
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dm1m2
2
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2

2
d l 1l 2

dm1 ,2m2
,

^cl 1m1

r cl 2m2

i &5^cl 1m1

i cl 2m2
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This leads to

^cl 1m1
cl 2m2

&5s l 1
2 d l 1l 2

dm1 ,2m2
,

^cl 1m1
cl 2m2
* &5s l 1

2 d l 1l 2
dm1m2

. ~3.5!

The last equations are also valid form15m250.
One nonvanishing quartic combination is given by the

expression~others can be obtained by the complex conjuga-
tion!
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^cl 1m1
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cl 3m3
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Let us now introduce new random variables which will
play an important role in what follows. Let us define random
variablesal

2 , bl
2 , andcl

2 by the equations

al
2[ (

m52 l

l

almalm* ,

bl
2[~bl0

c !21 (
m51

l

@~blm
c !21~blm

s !2#,

cl
2[ (

m52 l

l

clmclm* .

Using Eqs.~2.11!–~2.13! it is easy to show thatbl
25cl

2 .
One can compute the mean values of these new random

variables

2^al
2&5^bl

2&5^cl
2&5~2l 11!s l

2

and their variances

^al
4&2^al

2&25
1

2l 11
^al

2&2, ~3.7!

^bl
4&2^bl

2&25^cl
4&2^cl

2&25
2

2l 11
^cl

2&2. ~3.8!

It is important to note that the above relationships are trivial
consequences of the postulated distributions~3.1!–~3.3!.
These relationships are always true, regardless of what and
how measured, and regardless of whether we have access to
only one realization of the random process~only one sky or
portion of sky! or to infinitely many.@But if one wants to use
a ‘‘cosmic’’ word, one is free to call the relationships~3.7!
and ~3.8! the ‘‘cosmic variance.’’#

The original probability distributions dictate also the
PDF’s for these quadratic variables. They are the so-called
x2 distributions. Denotingx25bl

2/s l
2 andn52l 11, one can

write @12#

f ~x2,n!5
~x2!~n22!/2e2x2/2

~n/221!!2n/2
,

and for the random variablebl
2 we have

f ~bl
2!5

~bl
2!~n22!/2~s l

2!2n/2e2bl
2/2s l

2

~n/221!!2n/2
. ~3.9!

So far, we have been concerned with the statistical prop-
erties of the coefficients in the expansion of the random pro-
cessdT/T over the orthonormal spherical harmonics. We
can now discuss some properties of the random process it-

self. No doubt, these properties follow from the properties of
the coefficients. Obviously, the process is isotropic in the
sense that the mean value of thedT/T is one and the same
number~zero! in every direction on the sky

K dT

T
~eW !L 50. ~3.10!

The process is also homogeneous in the sense that the angu-
lar correlation function depends only on the angled between
two directions, but not on directions themselves. For each
pair of vectorseW1 andeW2 separated by the angled, the angu-
lar correlation function takes the form

K dT

T
~eW1!

dT

T
~eW2!L 5K~d!

5
1

4p (
l 50

`

s l
2~2l 11!Pl~cosd!,

~3.11!

wherePl(cosd) are the Legendre polynomials.
The three-point correlation function@as well as all corre-

lation functions containing an odd number of term
dT/T(eW i)# vanishes:

K dT

T
~eW1!

dT

T
~eW2!

dT

T
~eW3!L 50.

The four-point correlation function is given by the expres-
sion

K dT

T
~eW1!

dT

T
~eW2!

dT

T
~eW3!

dT

T
~eW4!L

5
1

~4p!2 (
l 50

`

(
m50

`

s l
2sm

2 ~2l 11!~2m11!

3@Pl~cosd13!Pm~cosd24!1Pl~cosd14!Pm~cosd23!

1Pl~cosd12!Pm~cosd34!#,

where the symbold i j denotes the angle between vectorseW i
andeW j . In a similar manner one can derive the higher-order
correlation functions and express them through the lower-
order ones.

All the derived expressions are consequences of the pos-
tulated distribution functions~3.1!–~3.3!. We do not possess
a rigorous mathematical proof of the statement that there
exists a one-to-one correspondence between Eqs.~3.1!–~3.3!
and the fact that the relevant cosmological perturbations are
placed in the squeezed vacuum quantum states. However, we
believe this statement is indeed true. At any rate, the
quantum-mechanical expectation values coincide with the
corresponding ensemble averages if the appropriate identifi-
cations are made@6#. In particular, the quantum-mechanical
expression for the angular correlation function

K 0U dT

T
~eW1!

dT

T
~eW2!U0L 5 (

l 5 l min

`

Cl Pl~cosd!

coincides with Eq.~3.11! if we identify
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1

4p
~2l 11!s l

25Cl . ~3.12!

The quantityCl explicitly contains the square of the Planck
length. This quantity is calculable when the law of cosmo-
logical evolution and the sort of cosmological perturbations
are specified. The value of the lowest multipolel min is also
determined by the sort of perturbations. In this sense, the
abstract quantitiess l

2 , which completely characterize the
random process~2.1!, ~3.1!–~3.3!, are also calculable and are
given by the expressions

s l
25

4p

2l 11
Cl .

IV. ERGODICITY OF RANDOM PROCESSES
ON A LINE AND ON A SPHERE

Let us first recall the ergodic theorem@10,11# for a time-
dependent random processx(j,t) defined on an infinitet
line. The symbolj indicates different possible realizations.
Let us assume that the process is stationary, that is, its mean
value does not depend on time,

^x~j,t !&5const5m,

and its correlation function depends only on the time differ-
ence:

^x~j,t1t!x~j,t !&5B~t!.

To find the ensemble average ofx(j,t) at a fixed moment
of time, one takes a large numberN of different realizations
and calculates the arithmetic mean of the observed values:

f 5
1

N (
i 51

N

x~j i ,t !.

In the limit of N going to infinity, the quantityf tends to the
theoretical ensemble mean^x(j,t)& of the random process.

Let us now consider a situation in which we have access
to only one realizationx(j0 ,t) of the random process. What
can we say aboutm andB(t) on the grounds of this single
realization? The ergodic theorem defines the conditions un-
der which the ensemble averages can be replaced by the time
averages, so that them andB(t) can be found from the time
integrations ofx(j0 ,t).

Introduce a random variablexT(j) defined by the equa-
tion

xT~j!5
1

2T E
2T

1T

x~j,t !dt. ~4.1!

This variable is an unbiased estimator ofm because
^xT(j)&5m. However, we can say much more when we take
the limit T→`. If the process is such that

lim
T→`

1

2T E
2T

1T

B~t!dt50, ~4.2!

then

lim
T→`

1

2T E
2T

1T

x~j,t !dt5m,

for every realizationj. When condition~4.2! is satisfied, the
process is called mean ergodic. The condition~4.2! can also
be expressed as the requirementsxT

2 →0 in the limit T→`,

wheresxT

2 is the variance of the random variable defined by

Eq. ~4.1!. This explains why one is capable of deriving from
a single realization a true parameter of the ergodic random
process~in this case, the mean valuem! with probability 1.
Indeed, for every arbitrarily smalle, one has the Tchebysheff
inequality

P~ uxT2mu,e!>12
sxT

2

e2 ,

and the probability goes to 1 whensxT

2 goes to 0. A sufficient

condition for the validity of Eq.~4.2! is the vanishing of the
correlations at large temporal separations: limt→`B(t)50.

More stringent conditions should be satisfied for the pro-
cess to be correlation ergodic, that is to have

lim
T→`

1

2T E
2T

1T

x~j,t1t!x~j,t !dt5B~t!, ~4.3!

for everyj. Here, for simplicity, we will restrict ourselves to
normal zero-mean (m50) stationary processes. The equality
~4.3! allows one to find the variance of the process from its
single realization. This equality takes place if and only if the
process is such that

lim
T→`

1

2T E
2T

1T

uB~t!u2dt50. ~4.4!

For normal zero-mean stationary processes, and when the
condition ~4.4! is met, all the higher-order correlation func-
tions can also be replaced by the time averages. Note that the
integrand in Eq.~4.4! is a strictly positive function. The limit
of the expression~4.4! is zero because the denominator goes
to infinity in the limit T→`.

We will now try to apply the notions formulated above to
a random process on a sphere. The problem of our interest is
the CMB temperature distributed over the sky. Strictly
speaking, the quantum-mechanically generated cosmological
perturbations form a nonstationary process: the squeezing
makes the temporal correlation function a function of indi-
vidual moments of time, and not only of the time difference.
This property may turn out to be very important for the fu-
ture observations of short gravitational waves, but is irrel-
evant for our discussion of very long-wavelength cosmologi-
cal perturbations responsible for the microwave background
anisotropies, since the time scale of variations is much much
longer than the interval of time between possible missions
for the CMB observations. Most importantly, the stationar-
ity, a necessary~but not sufficient! condition for a time-
dependent process to be ergodic, is replaced in our case by
the analogous properties of isotropy and homogeneity of the
process on a sphere, see Eqs.~3.10! and ~3.11!. So, at least

1930 56L. P. GRISHCHUK AND JÉRÔME MARTIN



the necessary conditions for our process to be mean ergodic
and correlation ergodic are satisfied.

To check the analogue of the condition~4.2!, we will use
K(d) instead ofB(t) and will replace the time integral di-
vided byT by the integral over a sphere divided by 4p, the
surface area of a~unit radius! sphere. The result is

1

4p E
S2

dVK~d!5
1

4p
s0

2 .

The right-hand side of this equation is zero whens0
2 is zero,

that is when the monopole coefficientb00
c in the expansion

~2.3! is identically zero, see Eq.~3.4!. In this case, our pro-
cess is indeed mean ergodic since the integral over a given
map

1

4p E
S2

dV
dT

T
~eW !5

1

A4p
b00

c

vanishes, and the average over the map coincides with the
ensemble average~3.10!.

What we really would like to have is the correlation er-
godicity of our process. In this case, we would be able to
replace the ensemble averaging by the integration over the
sphere, and to find theK(d) and hence all thes l

2 from a
single map. Unfortunately, this is exactly what we cannot
have on a sphere. The necessary and sufficient condition
~4.4! translates into the requirement

1

4p E
S2

dVuK~d!u250. ~4.5!

The left-hand side of this equation can be calculated using
Eq. ~3.11! and the orthogonality properties of the Legendre
polynomials. The resulting equation

1

16p2 (
l 51

`

~2l 11!s l
450

can only be true if all thes l
2 are zero. In contrast with pro-

cesses on an infinite line or in infinite space, we do not have
here an infinite volume factor in the denominator of the left-
hand side of Eq.~4.5! to enable it to vanish. We are bound to
do the best what we can do with a single map, try and find
out the best unbiased estimates for the parameterss l

2 and
K(d).

V. THE BEST UNBIASED ESTIMATOR FOR THE s l
2

Let us denote an estimator for thes l
2 by f l . This is a

random variable constructed from the original random pro-
cess. One realization of this process is the observed map. The
most general quadratic expression forf l is given by

f l5E
S2
E

S2
dV1dV2wl~eW1 ,eW2!

dT

T
~eW1!

dT

T
~eW2!,

~5.1!

wheredV5sinududw. The functionwl(eW1 ,eW2) is a weight
function to be determined from the requirements that the
estimator f l is unbiased and the minimum variance~the
best!. In this formulation, the problem was essentially solved
in Ref. @17#. We refine and expand the arguments of Ref.
@17#.

An arbitrary weight functionwl(eW1 ,eW2), being a function
of two sets of angular coordinates, can be expanded over two
sets of orthonormal spherical harmonics:

wl~eW1 ,eW2!5(
i 50

`

(
j 50

`

dli j 00
cc

Yi0
c ~eW1!

&

Yj 0
c ~eW2!

&
1(

i , j
(
n51

j Fdli jon
cc

Yi0
c ~eW1!

&
Yjn

c ~eW2!1dli jon
cs

Yi0
c ~eW1!

&
Yjn

s ~eW2!G
1(

i , j
(

m51

i Fdli jmo
cc Yim

c ~eW1!
Yj 0

c ~eW2!

&
1dli jmo

sc Yim
s ~eW1!

Yj 0
c ~eW2!

&
G1(

i , j
(
m,n

@dli jmn
cc Yim

c ~eW1!Yjn
c ~eW2!

1dli jmn
ss Yim

s ~eW1!Yjn
s ~eW2!1dli jmn

cs Yim
c ~eW1!Yjn

s ~eW2!1dli jmn
sc Yim

s ~eW1!Yjn
c ~eW2!#. ~5.2!

In this expression, all the coefficientsdli jmn
AB (A,B5c,s) are

real. The weight function may be asymmetric with respect to
the interchange ofeW1 andeW2 , but the antisymmetric part of
this function will not contribute to Eq.~5.1! anyway. To
simplify calculations, we require this function to be explic-
itly symmetric,wl(eW1 ,eW2)5wl(eW2 ,eW1). This means that the
d coefficients must obey the relationship

dli jmn
AB 5dl j inm

BA .

We will mostly use another representation forwl defined by

wl~eW1 ,eW2!5(
i 50

`

(
j 50

`

(
m52 i

i

(
n52 j

j

dli jmnYim~eW1!Yjn* ~eW2!.

~5.3!

In this case, the coefficientsdli jmn are complex, and since the
function wl(eW1 ,eW2) is real, they have the property

dli jmn* 5dli j ,2m,2n ,

or, if we introduce the real and imaginary parts ofdli jmn ,
i.e., dli jmn5dli jmn

r 1 idli jmn
i ,
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dli jmn
r 5dli j ,2m,2n

r , dli jmn
i 52dli j ,2m,2n

i . ~5.4!

In addition, the weight function is symmetric in this repre-
sentation if

dli jmn5dl j i ,2n,2m .

The link between the two representations is expressed by the
equations

dli j 005dli j 00
cc ,

dli j 0n55
1

&
~dli j 0n

cc 1 idli j 0n
cs !, n>1,

1

&
~dli j 0,2n

cc 2 idli j 0,2n
cs !, n<21,

dli jm055
1

&
~dli jm0

cc 2 idli jm0
sc !, m>1,

1

&
~dli j ,2m,0

cc 1 idli j ,2m,0
sc !, m<21,

dli jmn55
1

2
~dli jmn

cc 1dli jmn
ss 2 idli jmn

sc 1 idli jmn
cs !, m>1, n>1,

1

2
~dli j ,2m,2n

cc 1dli j ,2m,2n
ss 1 idli j ,2m,2n

sc 2 idli j ,2m,2n
cs !, m<21, n<21,

1

2
~dli jm ,2n

cc 2dli jm ,2n
ss 2 idli jm ,2n

sc 2 idli jm ,2n
cs !, m>1, n<21,

1

2
~dli j ,2mn

cc 2dli j ,2mn
ss 1 idli j ,2mn

sc 1 idli j ,2mn
cs !, m<21, n>1.

The angular integrals in Eq.~5.1! can be performed explicitly. This integration returns us from the random processdT/T to
the random variables, coefficients in the decomposition of thedT/T, and allows us to express the estimatorf l in terms of the
general quadratic combination of these coefficients. As a consequence, we arrive at the following expression for thef l in terms
of the b coefficients:

f l5(
i 50

`

(
j 50

` S dli j 00
cc bi0

c bj 0
c 1 (

m51

i

~dli jm0
cc bj 0

c bim
c 1dli jm0

sc bj 0
c bim

s !1 (
n51

j

~dli j 0n
cc bi0

c bjn
c 1dli j 0n

cs bi0
c bjn

s !

1 (
m51

i

(
n51

j

~dli jmn
cc bim

c bjn
c 1dli jmn

cs bim
c bjn

s 1dli jmn
sc bim

s bjn
c 1dli jmn

ss bim
s bjn

s !D . ~5.5!

In the representation defined by Eqs.~5.3! and~2.4!, the last
equation takes the form

f l5(
i 50

`

(
j 50

`

(
m52 i

i

(
n52 j

j

dli jmncim* cjn . ~5.6!

We have introduced the general expression for the estima-
tor and can now subject it to the desired requirements. Let us
start from the mean value of the estimator. Using Eqs.~5.7!
and ~3.5!, we obtain

^ f l&5(
i 50

`

(
j 50

`

(
m52 i

i

(
n52 j

j

dli jmn^cim* cjn&

5(
i 50

`

s i
2 (

m52 i

i

dli imm .

Since the second set of equations~5.4! guarantees

(
m52 i

i

dli imm
i 52 (

m52 i

i

dli imm
i 50,
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the mean value off l reduces to the manifestly real expres-
sion

^ f l&5(
i 50

`

s i
2 (

m52 i

i

dli imm
r .

We want our estimator to be unbiased, that is, we impose
the condition ^ f l&5s l

2 . This requirement can only be
achieved if

(
m52 i

i

dli imm
r 5d l i . ~5.7!

Equation~5.8! form the first set of constraints on the weight
function wl and define the family of unbiased estimators.

The next step is to find, among the unbiased estimators,
the one whose variance is minimal. The variances f l

2 of the

random variablef l ,

s f l

2 5^ f l
2&2^ f l&

2,

can be calculated using the definition~5.6! and Eq.~3.6!. The
general expression for the variance reduces to the form

s f l

2 52(
i 50

`

(
j 50

`

(
m52 i

i

(
n52 j

j

dli jmndli jmn* s i
2s j

2 . ~5.8!

We have to minimize this expression taking into account the
constraints~5.7!. The expression~5.8! is the sum of strictly
positive terms. To minimize this sum, we should set to zero
as many terms as possible. First, we need to set to zero all
the d coefficients which do not participate in the constraint
~5.7! and whose presence in the sum only increases the vari-
ance. Thus, we require to vanish all the coefficientsdli jmn

i

and those ofdli jmn
r which have indicesiÞ j and/ormÞn. To

minimize the remaining variance under the constraint~5.7!,
we introduce the Lagrange multipliersl i and write

dF2(
i 50

`

(
m52 i

i

~dliimm
r !2s i

41(
i 50

`

l iS (
m52 i

i

dli imm
r 2d l i D G50.

Since thedliimm
r are treated as independent variables, the

variation of the previous expression provides us with

4dliimm
r s i

41l i50. ~5.9!

The sum overm of these equations together with Eq.~5.7!
determines the quantitiesl i :

4s i
4d l i 1~2i 11!l i50. ~5.10!

Using the expression~5.10! for the Lagrange multipliersl i
in Eq. ~5.9! allows us to write

dliimm
r 5

1

2i 11
d l i .

Thus, taking into account all relationships, we obtain the
complete set of constraints on the weight function~5.3!
which makes the estimatorf l unbiased and best:

dli jmn
r 5

1

2i 11
d l i d i j dmn , dli jmn

i 50. ~5.11!

In the representation~5.2!, this amounts to

dli j 00
cc 5

1

2i 11
d l i d i j , ~5.12!

dli jmn
cc 5dli jmn

ss 5
1

2i 11
d l i d i j dmn , ~5.13!

with all other coefficients being zero.
Having found all thed coefficients, we can write the

weight function wl(eW1 ,eW2) explicitly. Using the definition
~5.3! and the found expressions~5.11!, we obtain

wl~eW1 ,eW2!

5(
i 50

`

(
j 50

`

(
m52 i

i

(
n52 j

j
1

2i 11
d l i d i j dmnYim~eW1!Yjn* ~eW2!

5
1

2l 11 (
m52 l

l

Ylm~eW1!Ylm* ~eW2! ~5.14!

5
1

4p
Pl~cosd12!, ~5.15!

where, in the last step, the summation theorem for spherical
harmonics has been used. Therefore, the best unbiased esti-
mator fors l

2 can be written as

f l5
1

4p E
S2
E

S2
dV1dV2Pl~cosd12!

dT

T
~eW1!

dT

T
~eW2!.

~5.16!

This formula answers the question what to do with a given
map in order to get a concrete number, the best substitute for
the true parameters l

2 . The answer is to perform with the
map the integrations prescribed by this formula. In fact, the
integrations can be further simplified.

The estimator~5.16! contains a double integral of the
product of two functionsdT/T and, therefore, can be called a
quadratic estimator. However, this estimator can be pre-
sented as a product of two linear estimators, i.e., a product of
two appropriate single integrals of the functiondT/T. In-
deed, using the summation theorem, Eqs.~5.14! and ~5.15!,
formula ~5.16! can be written as

f l5
1

2l 11 (
m52 l

l E
S2

dV1Ylm~eW1!
dT

T
~eW1!

3E
S2

dV2Ylm* ~eW2!
dT

T
~eW2!.

This formula shows that it is sufficient to perform one ap-
propriately weighted integration over the sphere with further
multiplications and summations. Moreover, the remaining
integrals define theclm coefficients. So, we obtain the fol-
lowing expression for the best unbiased estimator in terms of
the original random coefficients:
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f l5
1

2l 11 (
m52 l

l

clm* clm5
cl

2

2l 11
. ~5.17!

Of course, this is the same expression which could be ob-
tained by inserting Eq.~5.11! into Eq. ~5.6! or by inserting
Eqs.~5.12! and ~5.13! into Eq. ~5.5!.

We have found the estimator with the smallest possible
variance among all unbiased estimators. It is useful to write
this minimal variance explicitly. This can be found either
from Eqs.~5.8! and~5.11! or from Eqs.~5.17! and~3.8!. The
result is

s f l

2 5
2

2l 11
s l

4 .

VI. THE BEST UNBIASED ESTIMATOR FOR THE K„d…

The best unbiased estimator fors l
2 is also the best unbi-

ased estimator for the multipole momentsCl of the correla-
tion function K(d), see Eqs.~3.11! and ~3.12!. Since the
parameterK(d) is a combination of the parameterss l

2 , it is

not surprising that the best unbiased estimator forK(d) turns
out to be the same combination of the best unbiased estima-
tors for s l

2 . It is interesting and instructive to follow this
relationship in detail.

Let us denote an estimator of theK(d) by f (d). This is a
random variable constructed from the random process
dT/T. The most general~quadratic! expression for thef (d)
can be written as

f ~d!5E
S2
E

S2
dV1dV2w~eW1 ,eW2 ,d!

dT

T
~eW1!

dT

T
~eW2!,

~6.1!

where thed is a fixed angle, whereas the angle between
variable directionseW1 andeW2 will be denotedd12. The arbi-
trary weight functionw(eW1 ,eW2 ,d) can be expanded, without
loss of generality, over the Legendre polynomialsPl(cosd):

w~eW1 ,eW2 ,d!5
1

4p (
l 50

`

~2l 11!Pl~cosd!wl~eW1 ,eW2!.

The estimatorf (d) takes the form

f ~d!5
1

4p (
l 50

`

~2l 11!Pl~cosd!E
S2
E

S2
dV1dV2wl~eW1 ,eW2!

dT

T
~eW1!

dT

T
~eW2!5

1

4p (
l 50

`

~2l 11! f l Pl~cosd!.

Now, we want thef (d) to be unbiased and best estimator
of K(d). The estimatorf (d) is unbiased if̂ f l&5s l

2 , and it
is the best if the variance of thef l is the smallest one. In
other words, we return to the solved problem~Sec. V! for the
estimatorf l . Using the results of the previous section, we
can write for the best unbiased estimator of theK(d):

f ~d!5
1

4p (
l 50

`

Pl~cosd!cl
2 . ~6.2!

The weight functionw(eW1 ,eW2 ,d) is given, taking into ac-
count Eq.~5.15!, by

w~eW1 ,eW2 ,d!5
1

~4p!2 (
l 50

`

~2l 11!Pl~cosd!Pl~cosd12!.

~6.3!

This last equation can also be written as

w~eW1 ,eW2 ,d!5
1

4p (
l 50

`

(
m52 l

l

Pl~cosd!Ylm~eW1!Ylm* ~eW2!,

showing that the double integral in Eq.~6.1! decays into the
products and summations of the appropriately weighted
single integrals. This form of the weight function permits an
immediate recovery of the already known result~6.2!. The
variance of the best estimator~6.2! is

s f ~d!
2 5

1

8p2 (
l 50

`

~2l 11!s l
4Pl

2~cosd!.

The derived formulas answer the question what to do with
a given map in order to derive the best unbiased estimate for
the correlation functionK(d). The outlined prescription es-
sentially goes through the derivation of the best unbiased
estimate fors l

2 . However, the weight function~6.3! allows
also a different procedure for the derivation of the estimator
and the estimate; the direct integration of the map, but with
the help of thed function.

Let us denote cosd5x and cosd125x0 . Let us present~de-
fine! the d function d(x2x0) as an expansion over the Leg-
endre polynomials:

d~x2x0!5(
l 50

`

al Pl~x!. ~6.4!

To find the coefficientsal , multiply both sides of Eq.~6.4!
by Pm(x) and integrate byx from 21 to 1. The result is

al5
2l 11

2
Pl~x0!

and

d~x2x0!5(
l 50

`
2l 11

2
Pl~x!Pl~x0!.
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Thus, the weight function~6.3! can be written as

w~eW1 ,eW2 ,d!5
1

8p2 d~cosd2cosd12!. ~6.5!

Let us show that the integration in Eq.~6.1! with the
weight function~6.5! does indeed provide us with the same
result~6.2!. The product of twodT/T is the random process
v[ (dT/T) (eW1)(dT/T) (eW2). We have access to one realiza-
tion of this process. To integrate thev over all directions
eW1 ,eW2 on the sky separated by a fixed angled, one can pro-
ceed as follows. At the first step, rotate the vectoreW2 around
the fixed direction defined byeW1 and integrate thev over the
circle traced by the vectoreW2 on the sphere. The result will
depend only on (u1 ,w1), the coordinates of the vectoreW1 . At
the second step, integrate the result over allu1 andw1 , let-
ting the vectoreW1 to run over the whole sphere. The final
result, taking into account also the factor 1/8p2 in Eq. ~6.5!,
should be the random variable we are interested in. Let us do
this computation in practice.

Every function on a sphere can be expanded in the basis
of spherical harmonics. In particular, the functionYlm(u,w)
can be expanded in the basis$Ylr (u8,w8); l>0,2 l<r< l %
according to the formula

Ylm~u8,w8!5 (
r 52 l

l

Ylr ~u,w!Drm
l ~a,b,g!.

The coefficients of this expansion are called the WignerD
functions @18#. They depend on the Euler anglesa, b, g

describing the rotation which transforms the direction~u,w!
into the direction (u8,w8). Since the rotation specified by the
anglesa, b52u1 , g52w1 brings the vector pointing out
to the north pole to the direction defined by (u1 ,w1), we can
write

Ylm~eW1!5 (
r 52 l

l

Ylr ~0,2 !Drm
l ~a,2u1 ,2w1!. ~6.6!

In the same manner, theYpq(eW2) can be expressed as

Ypq~eW2!5 (
s52p

p

Yps~d,x!Dsq
p ~a,2u1 ,2w1!. ~6.7!

Indeed, when the vectoreW1 points out to the north pole, theu
coordinate ofeW2 is simply d.

Using the definition~2.4! and the formulas~6.6! and~6.7!,
we can present the random processv as

v5(
lm

(
pq

(
rs

clmcpqYlr ~0,2 !Yps~d,x!

3Drm
l ~a,2u1 ,2w1!Dsq

p ~a,2u1 ,2w1!.

Let us now perform the two step integration procedure de-
scribed above. The first step amounts to the integration of
v over the anglex from 0 to 2p. Using the explicit form of
the spherical harmonics given in the Appendix, we get

E
0

2p

vdx5(
lm

(
pq

(
rs

clmcpqS 2l 11

4p D 1/2

d r0S 2p11

4p D 1/2F ~p2s!!

~p1s!! GPps~cosd!Drm
l ~a,2u1 ,2w1!

3Dsq
p ~a,2u1 ,2w1!E

0

2p

eisxdx.

In the last expression, the integral*0
2peisxdx is simply 2pds0 . Using the relationship

A2l 11

4p
Dom

l ~a,b,g!5Ylm~b,g!,

we obtain

E
0

2p

vdx52p(
lm

(
pq

clmcpqPp~cosd!Ylm~u1 ,w1!Ypq~u1 ,w1!.

As expected, the result depends only on (u1 ,w1). In order to complete the procedure, we have to integrate this result over
V1 . We find

E dV1E
0

2p

vdx52p(
lm

(
pq

clmcpqPp~cosd!E dV1Ylm~u1 ,w1!Ypq~u1 ,w1!

52p(
l 50

`

Pl~cosd!cl
2 .
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Restoring the factor 1/8p2 from Eq. ~6.5!, we arrive at the
best unbiased estimator~6.2!. The same procedure performed
over a given map provides us with the best unbiased estimate
of the correlation functionK(d).

VII. BEST ESTIMATES AND THE ERROR BARS

We will denote the best unbiased estimate for the param-
eter s l

2 by (s l
2)BU . Along with this one, there exist other

estimates of the same parameter, for example, the maximum-
likelihood estimate (s l

2)ML . Not surprisingly, for the postu-
lated distributions~3.1!–~3.3!, these estimates coincide.

Apparently, the most ‘‘naive’’ evaluation of thes l
2 , giv-

ing nevertheless the correct result, would be the following
one. From a given map one derives the set of the observed
coefficients blm

(map) ~that is to say, the set$bl0
c ,blm

c ,blm
s %,

m>1!. We know~postulate! that each of them is drawn from
the normal zero-mean distribution

f ~blm!5
1

A2ps l

e2 blm
2 /2s l

2
. ~7.1!

Each of the observedblm coefficients can be used for the
maximum-likelihood evaluation of the correspondings l

2 .
@We omit the label~map! when it is clear that we deal with
the observed quantities.# One finds this estimate, denoted
s l (m)

2 , by assuming that the PDF~7.1! reaches its maximum
at the observedblm . The result is known:s l (m)

2 5blm
2 . In-

deed,

ln f 52
1

2
ln~s l

2!2
blm

2

2s l
2 1C,

whereC is a constant. Then, one gets

d lnf

ds l
2 52

1

2s l
2 1

blm
2

2s l
4 ,

and the condition

d lnf

ds l
2 50 ~7.2!

leads to the stated result. Since for everyl we have 2l 11
independentblm coefficients and, hence, 2l 11 independent
evaluations, the estimate of the trues l

2 is given by

1

2l 11 (
m

s l ~m!
2 5

1

2l 11 (
m

blm
2 5

bl
2

2l 11
.

This number coincides with the (s l
2)BU determined by Eq.

~5.17!.
A similar maximum-likelihood evaluation ofs l

2 is based
on the joint PDF for all coefficientsblm ~with the same index
l ! which is simply the product of the individual PDF’s~7.1!:

f ~bl0
c ,blm

c ,blm
s !5

1

~2ps l
2!~2l 11!/2 e2 bl

2/2s l
2
.

Imposing the condition~7.2!, we arrive at the same result

~s l
2!ML5

bl
2

2l 11
5~s l

2!BU .

Finally, we can give the maximum-likelihood estimation
based on the PDF~3.9! for the quantitiesbl

2 . Repeating the
same steps, we come again to the result

~s l
2!ML5

bl
2

n
. ~7.3!

Thus, in the first approximation, we can write for the true
value of s l

2 : s l
25(s l

2)BU . In the next approximation, we
want to make this statement more accurate by assigning the
error bars. This is the matter of definitions, and there are
many ways of doing this. We will use the distribution func-
tion ~3.9!. This function attains its maximum at the measured
bl

2 and the estimated (s l
2)ML , Eq.~7.3!. The value of thef at

the maximum is

f max5
~bl

2!21e2n/2

~n/221!! ~2/n!n/2 .

When thes l
2 , treated as a variable parameter, deviates from

(s l
2)ML , the value of thef decreases as compared with the

f max. We establish the error bars fors l
2 by requiring that the

value of f does not drop below some confidence level

f 5k fmax, ~7.4!

wherek, k,1, is a fixed number. Within the error box are
included alls l

2 surrounding (s l
2)ML and up to the boundaries

(s l
2)k determined by two solutions to Eq.~7.4!.
Let us denotex[(s l

2)ML /(s l
2)k . Equation~7.4! takes the

form

lnx2x5
2

n
lnk21. ~7.5!

Obviously,x51 if k51. Let us now consider small devia-
tions from this solution fork,1. We writex512y, where
uyu!1. By expanding the lnx in terms ofy and considering
the first nonvanishing approximation to Eq.~7.5!, we find
y252(4/n)lnk. That is, the two wanted solutions are

y56
2A2 lnk

An
.

The condition of their applicability is2(4/n)lnk!1. Thus, in
this approximation, we can write the trues l

2 as

s l
25~s l

2!BUS 16
2A2 lnk

A2l 11
D . ~7.6!

The choice ofk is in our hands. If the distributionf (z)
were a normal zero-mean distribution, then a reasonable
choice of k would be k5e21/2, because f (z5s)
5e21/2f max. The x2 distribution ~3.9! is not a normal one,
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but approaches a normal distribution for large values ofl . As
a guidance, we will usek5e21/2 in Eq. ~7.6!. Then we get

s l
25~s l

2!BUS 16A 2

2l 11D .

This formula becomes progressively inaccurate for small
l . Specifically, forl 52 this formula would imply the error at
the level60.6. However, a direct derivation of the error bars
from Eq. ~7.5! ~and assumingk5e21/2! gives

s2
25~s2

2!BU~11s!,

wheres lies between11.0 and20.4. Note the asymmetry
of the error interval: the larger than (s2

2)BU values are more
tolerable than the smaller ones.
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APPENDIX

The complex spherical harmonicsYlm(u,w) are defined
by the expression

Ylm~u,w!5
1

&
S 2l 11

2p

~ l 2umu!!
~ l 1umu!! D

1/2

Pl umu~cosu!eimw.

In this expression,l>0 and 2 l<m< l . The functions
Ylm(u,w) satisfy the relationshipYlm* 5Yl ,2m . On the other
hand, the real spherical harmonics are defined by the equa-
tions

Ylm
c ~u,w!5S 2l 11

2p

~ l 2m!!

~ l 1m!! D
1/2

Plm~cosu!cosmw,

Ylm
s ~u,w!5S 2l 11

2p

~ l 2m!!

~ l 1m!! D
1/2

Plm~cosu!sinmw,

wherel>0 but 0<m< l . The indicesc, s indicate the pres-
ence of cosmw or sinmw, respectively. The link between the
complex and real spherical harmonics is given by

Ylm
c 5

1

&
~Ylm1Ylm* !, m>0,

Ylm
s 5

1

i&
~Ylm2Ylm* !, m>0.

The scalar product of two functionsf (u,w) andg(u,w) on
the sphere is defined by

~ f ,g!5E
0

2p

dwE
0

p

du sinu f * ~u,w!g~u,w!.

Then, we have the properties

~Ylm ,Yl 8m8!5d l l 8dmm8 , 2 l<m< l ,

S Yl0
c

&
,

Yl 80
c

&
D 5d l l 8 ,

~Ylm
A ,Yl 8m8

B
!5d l l 8dmm8d

AB, m>1, A,B5c,s.

The functions Yl0
c /& ( l>0), Ylm

c ~l>1, l>m>1!,
Ylm

s ~l>1, l>m>1! form a complete orthonormal basis.
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