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Like a fairy-tale princess, trajectories around black holes can be sensitive to small disturbances. We describe
how a small disturbance can lead to erratic orbits and an increased production of gravitational waves.
@S0556-2821~97!03016-6#
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The high degree of symmetry found in the space-time of
an isolated black hole leads to regular geodesic motion for
orbiting bodies. Working on the assumption that small dis-
turbances generally have small effects, it is often tacitly as-
sumed that this idealized, textbook picture carries over to
real astrophysical situations. Here we want to emphasize that
the idealized picture is not stable against small perturbations,
as the nonlinearity of Einstein’s equations tends to amplify
small disturbances.

The observation that small perturbations of an idealized
black-hole space-time can lead to qualitative changes in the
dynamics is not new. It has been noted previously that a
range of perturbations lead to chaotic dynamics. The pertur-
bations considered include additional mass concentrations
@1–5#, magnetic fields@6#, gravitational waves@7#, and spin-
orbit coupling@8#. Unlike the Kepler problem of Newtonian
mechanics, essentially any perturbation of an isolated black-
hole space-time will lead to chaotic orbits. This is because
even the most pristine black-hole space-time harbors the
seeds of chaos in the form of isolated unstable orbits. A
small perturbation causes these unstable orbits to break out
and infest large regions of phase space. Note that the expe-
rience with Newtonian systems is very misleading. For ex-
ample, the Kepler problem has more integrals of motion than
are needed for integrability. Keplerian systems are thus im-
pervious to small perturbations. In contrast, black hole
space-times are at the edge of chaos, just waiting for the
proverbial butterfly to flap its wings.

Once it is realized that typical black-hole–satellite sys-
tems are chaotic in the strong-field regime, we are forced to
consider the consequences. One of the most immediate con-
sequences is that there will be no such thing as the ‘‘last
stable orbit’’ @9#. The boundary between stable and unstable
orbits will be fractal and there may be large fractal tendrils of
unstable orbits invading what would have been stable terri-
tory in an ideal black-hole space-time. This feature will be
important in determining when a binary system switches
from inspiral to cataclysmic collapse@9#. Another important
consequence will be the increased production of gravitational
waves due to the erratic motion of chaotic orbits.

In what follows we will illustrate both of these effects in
a simple model system. While our model does not describe a
real astrophysical situation, it does capture many of the sa-
lient features we expect to find in a relativistic binary system.

For the purpose of illustration we will study the orbits of
nonrotating satellites around an extreme Reissner-Nordstro¨m
black hole. Almost identical results hold for motion around a
Schwarzschild black hole perturbed by an orbiting third body
@3#. Extreme black holes have the added advantage of allow-
ing an exact generalization to space-times withN extremal
masses@10#. Rotating black holes bring with them a host of
new instabilities, which only amplify the points we wish to
make. Similarly, rotating satellites introduce additional insta-
bilities through spin-orbit@8# and spin-spin couplings. So
while our model is chosen on the grounds of simplicity, it is
likely that more realistic models will be even more sensitive
to small perturbations. Moreover, a central feature of nonlin-
ear dynamics is universality: the details of the dynamics are
less important than the general structure of the phase-space
trajectories. For example, a stochastic layer will lead to an
increase in the gravitational wave luminosity regardless of
what lead to the formation of the stochastic layer. Because of
this, the effects we describe for our particular model will
enjoy wider applicability.

Our unperturbed spacetime is described by the metric
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and electromagnetic potential
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Here dV25du21sin2udf2 is the metric of a two-sphere.
Into this space-time we introduce a spinless satellite of mass
m and consider its orbits. To keep our model simple we will
neglect the space-time curvature caused by the satellite. The
rotational symmetry allows us to restrict our attention to or-
bits in the planeu5p/2. Moreover, invariance under time
translations and spatial rotations leads to conservation of the
satellite’s energymE and angular momentummL. This al-
lows the motion to be reduced to the radial equation
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wheret is the proper time along the trajectory and
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We will be concerning ourselves with bound orbits (E,1),
but similar conclusions hold for unbound orbits. In Fig. 1 the
effective potentialV(r ) is displayed for three values ofL.
The energyE50.94 is also displayed. We see that some
orbits can reach the event horizon atr 50 while others are
protected by an angular momentum barrier. ForE50.94 this
occurs at the critical angular momentumLc52.982M . A tra-
jectory with these parameter values can follow an unstable
circular orbit atr c5(Lc

222M22LcALc
228M2)/2M . As em-

phasized by many authors, it is the existence of such unstable
periodic orbits that make black-hole space-times sensitive to
small perturbations.

Previous studies have used local methods to assess the
onset of instability. Here we apply a more revealing global
approach based on stability basins. Such global techniques
are increasingly being used in engineering applications in
order to survey the full range of stable and unstable configu-
rations of circuits, bridges, and boats@11#. When systems are
chaotic, stable regions of phase space can be invaded by
chaotic tendrils. These tendrils exhibit a complicated fractal
structure.

To illustrate how small perturbations can lead to impor-
tant changes in the dynamics we introduce a small ‘‘pea’’
with massm and chargeq5m at a distancer 5R from the
black hole. The new metric is obtained by replacing
11M /r by
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leading to

ds25U2~E2dt21dr21r 2du21sin2udf2!. ~6!

The new metric is an exact solution to the Einstein-Maxwell
field equations belonging to the Majumdar-Papapetrou@10#

family of space-times. The leading corrections to the extreme
Reissner-Nordstro¨m metric are given by
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The dipole term cosf can be removed by a coordinate trans-
formation, while the quadrupole term 3 cos2f21 is analo-
gous to a perturbation of the Schwarzschild metric studied by
Moeckel @3#. He described how a small body orbiting a
Schwarzschild black hole causes the inner orbits to become
chaotic.

Since our perturbed metric is static, the satellite’s energy
remains a conserved quantity. In addition, the modified po-
tential is independent ofu, so pu is conserved. This means
we can continue to study trajectories in the planeu5p/2
without loss of generality. However, thef dependence of the
potential breaks rotational invariance so the satellite’s angu-
lar momentum is no longer conserved. A trajectory with
L(0).Lc can now evolve to one withL(t),Lc , thus allow-
ing the possibility of capture by the black hole. Conversely,
a trajectory that was destined for capture might now gain
enough angular momentum to avoid capture. For chaotic tra-
jectories this gain or loss of angular momentum can depend
sensitively on initial conditions, leading to complicated frac-
tal boundaries separating the stable and unstable outcomes.

Here we are working under the usual assumption that we
can use the dynamics of the dissipationless system to predict
which orbits will be unstable when gravitational radiation is
included as a form of dissipation. This amounts to a kind of
adiabatic approximation that is valid when the energy loss
per orbit is much less than the energy of the satellite.

In Fig. 2 we display the stability basin in the (L,r ) plane
for a particle with energyE50.94. A small pea with mass
m5M /100 has been introduced atr 5R510M . Particles are
started from an initial positionf50,r , with ‘‘angular mo-
mentum’’ L5r 2U2df/dt. The trajectory is then evolved
numerically. If the particle is captured by the black hole we
color the initial position white. If the particle achieves a

FIG. 1. Effective potentialV(r ) for different values of the an-
gular momentum. In order of decreasing height, the potentials cor-
respond toL53.1M , 3M , and 2.9M , respectively. The solid line is
the fixed energyE50.94.

FIG. 2. Basin boundaries in the (L,r ) plane.
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stable orbit~defined here to be 1001 orbits without being
captured!, then we color the initial position black. There are
two major features of note in Fig. 2. The first is the irregular
boundaries between stable and unstable outcomes. The sec-
ond is the broad swath of unstable trajectories between
L53M and L53.15M . Before the pea was introduced, all
trajectories withL.Lc52.982M were stable.

The stability basins for the unperturbed space-time are
separated by a smooth line atL5Lc . In Fig. 3 we display a
detail of Fig. 2 that clearly shows that the smooth boundary
nearLc has been replaced by a complicated fractal structure.
Note that most orbits withL,2.995M have been rendered
unstable and thrown into the black hole. In Fig. 4 we see that
the central basin of instability also has a fractal boundary.
Fractal structures provide a gauge-invariant signal of chaos
in general relativity@4,12,13#.

But aside from producing nice pictures, what does chaos
add to the physics of satellites orbiting black holes? One
interesting possibility is an enhancement of the gravitational
wave output. Chaotic trajectories will tend to produce gravi-
tational waves with increased luminosity and amplitude, and
erratic variations in amplitude. The power radiated will ex-
ceed that of stable orbits since, in loose terms, the luminosity
is proportional to the rate of change of acceleration. Chaotic
orbits often exhibit highly variable accelerations, while
nearly circular orbits have gently varying acceleration pro-
files. In fact, even elliptical orbits produce considerably more
gravitational radiation than circular orbits due to the sharp
turn at their point of closest approach. Unfortunately, most
orbits are expected to be nearly circular by the time they
reach their swan song in the Laser-Interferometric Gravita-
tional Wave Observatory~LIGO! detection band@14#. This is
because tidal friction and gravitational radiation act to circu-
larize the orbit. To get more powerful gravitational wave
signals we need something to destabilize this picture: enter
chaotic resonances.

As a realistic binary system spirals inward, various rela-
tivistic instabilities start to become important. The instabili-
ties might be caused by spin-orbit or spin-spin coupling, or
by external mass distributions such as the third body studied
here. While these resonances are typically restricted to iso-
lated bands in phase space, the inspiraling satellite is likely
to run across an unstable band as its energy and angular
momentum are reduced by the emission of gravitational
waves. The resulting chaotic orbit would then provide a
boost to the gravitational wave output.

To get a feel for this chaotic enhancement we can calcu-
late the wave amplitude and power radiated using the quad-
rupole approximation. Since the orbits we are studying are
fairly relativistic, the quadrupole approximation can only
provide a qualitative picture. The power radiated by the sat-
ellite is given by@15#

P5
1

5
^~dt

3I i j !
2&, ~8!

where^ & denotes the average over several orbits andI i j is
the reduced quadrupole moment of the satellite’s orbit
( i , j 51,2,3),

I i j 5~xixj2
1
3 r 2!m. ~9!

The notationdt
3 is shorthand ford3/dt3. The direction-

averaged wave amplitude is given by
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Switching to Cartesian coordinates and considering orbits in
the planez50 (u5p/2), we find

A}$@3dt
2~xy!#21@dt

2x22dt
2y2#21~dt

2x2!~dt
2y2!%1/2.

In Fig. 5 we display the amplitude of three representative
trajectories withE50.94, normalized against the stable cir-
cular orbit of the unperturbed system withL53.1518M . The
dotted line shows the variation in amplitude of a precessing
elliptical orbit of the unperturbed system withL53.117M .
The solid line is for an orbit with the same initial conditions

FIG. 3. Detail of Fig. 2 nearL5Lc .

FIG. 4. Detail of Fig. 2 showing the boundary of the band of
instability.
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as the regular elliptic orbit, but this time for the perturbed
system. The variation in amplitude is increased by up to a
factor of 2 over the unperturbed system. The elliptic and
chaotic orbits have power outputs 1.48 and 2.01 times larger
than the stable circular orbit. This implies that the small per-
turbation caused by the pea increased the power output by
36%.

To better assess the significance of this result, we need to
understand the types of trajectories that give rise to increased
power output, how generic these might be in physically rea-
sonable space-times and how large the effect can be. To this
end, we display in Fig. 6 a Poincare´ section for trajectories
with E50.94. The Poincare´ section reveals a combination of
unbroken Kolmogorov-Arnold-Moser~KAM ! tori, island
chains, cantori, and thin stochastic layers. These features are
typical for mildly chaotic systems. The chaotic orbit shown
in Fig. 5 forms the thin stochastic layer that makes up the
outermost ring of the Poincare´ section. While this orbit is
among the most chaotic we found, it only ergodically wan-
ders over a very small band in phase space. The unbroken
KAM tori prevent orbits from becoming highly erratic. This
in turn limits the gravitational wave output. Moreover, orbits
of the perturbed system that lie on the unbroken KAM tori
experience much smaller increases in power output. For ex-
ample, the outermost unbroken KAM tori in Fig. 6 produces
just 5% more power than the analogous orbit of the unper-
turbed spacetime.

These observations suggest that the power output is great-
est for orbits that fill the largest regions of phase space. In

the model space-time we have been studying the dynamics is
dominated by unbroken KAM tori, and this limits the size of
any stochastic layers. In addition, we studied a four-
dimensional Hamiltonian system so the unbroken KAM tori
partition phase space. Systems with fewer KAM tori, higher-
dimensional dynamics, and/or dissipation typically have tra-
jectories that wander over large regions of phase space. In
such systems the effects we have been describing will be
larger and more widespread.

The literature already contains several realistic black-hole
models where highly erratic orbits have been found. For ex-
ample, some of the trajectories shown in Fig. 1 of Ref.@5#
and Fig. 4~f! of Ref. @8# form wide stochastic layers. We are
currently modeling these space-times to see how large the
gravitational wave enhancement can be.

Using a simple model we have shown that chaotic insta-
bilities could affect a satellite’s transition from inspiral to
plunge and cause an increase in gravitational wave produc-
tion. While the type of model we discussed is only accessible
to space-based gravity wave detectors such as the Laser In-
terferometer Space Antenna~LISA!, similar mechanisms are
likely to affect near-equal-mass binaries also, so our sugges-
tion could be important for a ground-based detector such as
LIGO. Consequently, chaotic effects may need to be consid-
ered when producing gravitational wave templates for the
LIGO and LISA detectors.
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