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The propagation of neutrinos in a gravitational field is studied. A method of calculating a covariant
quantum-mechanical phase in a curved space-time is presented. The result is used to calculate gravitational
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considered. A possible application to gravitational lensing of neutrinos is also suggested.
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I. INTRODUCTION

Neutrino oscillations in a flat space-time have been exten-
sively studied in the past by using both plane waves@1# and
wave packets@2# to represent the emitted neutrinos. In par-
ticular, it has been shown@2# that the standard treatment of
neutrino oscillations in the plane wave approximation is
valid only for extremely relativistic neutrinos, whereas for a
general case, the wave packet treatment is essential. In this
paper, we discuss how the results in a flat space-time are
modified in a curved space-time. That is, we calculate the
quantum-mechanical phase of neutrinos that are produced
and propagate in a gravitational field. Our derivation of the
neutrino oscillation formula in a gravitational field will be
based on the covariant form of the quantum phase that arises
due to the assumed mixing of massive neutrinos@3#. First we
consider the case of neutrinos that are emitted and propagate
in a radial trajectory in the Schwarzschild metric. Such a
gravitational effect can, in principle, modify the standard
vacuum oscillation formula for the solar and supernova neu-
trinos. Although the size of the effect is far beyond the cur-
rent experimental detectability, in particular for the solar
neutrinos, it may certainly be of interest for the neutrinos
from very massive sources.~It is well known that the gravi-
tational influence on the MSW effect for the solar neutrinos
is significant if the equivalence principle is violated@4#.! In
our derivation we have not assumed a weak field approxima-
tion. We then compare our results with the previous results
in the case of the radial trajectory obtained by@5–7# with
clarifying remarks on the differences in the results and inter-
pretations. As a further application, we also consider the case
of nonradial propagation in a gravitational field. Finally, we
discuss possible gravitational lensing effects on the neutrino
oscillations, for which it is necessary to resort to the weak
field approximation. It is to be noted that in the last two
cases, due to the angular spread of neutrinos with different

masses in the presence of the gravitational field, a proper
way to treat the neutrinos is to resort to the wave packet
formalism. ~However, a complete, covariant description of
neutrino propagation in a gravitational field in terms of wave
packets is beyond the scope of this paper. This issue will be
addressed elsewhere@8#.! In order to discuss the problem in
a transparent way, and in order to compare with the previous
analyses, we restrict ourselves to the discussion of relativistic
neutrinos, where a plane wave analysis can be employed.

The plan of the paper is as follows. In Sec. II, we briefly
review the standard treatment of neutrino oscillations in a flat
space-time using the plane wave formalism. In Sec. III we
extend the plane wave analysis to the case in the presence of
a gravitational field. For definiteness, we discuss the neutrino
oscillations in a field described by the Schwarzschild metric.
Specifically the cases of radial and nonradial propagation of
neutrinos are discussed. In the last part of Sec. III, we sug-
gest the possibility of gravitational lensing of neutrinos and
evaluate the resulting flavor-changing oscillation probability.

II. NEUTRINO PROPAGATION IN A FLAT SPACE-TIME

Let us consider a neutrino produced at a space-time point
A(tA ,xWA). Since it is produced by a weak interaction process,
it emerges as a flavor eigenstateuna&, which is a superposi-
tion of the mass eigenstatesunk&, i.e.,

una&5(
k

Uak* unk&, ~1!

whereU is the unitary mixing matrix of the neutrino fields.
What actually propagates are the mass eigenstates, whose
energy and momentum areEk andpW k , respectively, and they
are related by the mass-shell condition as

Ek
25pW k

21mk
2 . ~2!

Both Ek andpW k are determined by the energy and momentum
conservation at the production pointA and, in general, they

*Electronic address: fornengo@jhup.pha.jhu.edu
†Electronic address: giunti@to.infn.it
‡Electronic address: kim@eta.pha.jhu.edu
§Electronic address: jhsong@eta.pha.jhu.edu

PHYSICAL REVIEW D 15 AUGUST 1997VOLUME 56, NUMBER 4

560556-2821/97/56~4!/1895~8!/$10.00 1895 © 1997 The American Physical Society



are different for different mass eigenstates. In a flat space-
time, the propagation of the stateunk& is described by a plane
wave

unk~ t,xW !&5exp~2 iFk!unk&, ~3!

where

Fk5Ekt2pW k•xW . ~4!

Neutrino oscillations take place due to the fact that differ-
ent statesunk& propagate differently because they have dif-
ferent energies, momenta, and masses. When they arrive at a
detector located at a space-time pointB(tB ,xWB) which de-
tects flavor eigenstates via a weak interaction process, they
have developed a relative shift in their phases. In order for
the oscillation to occur and to be observed, some require-
ments must be met. First, in addition to the standard assump-
tion of mixing of massive neutrinos, the mass eigenstates
must be produced coherently. This implies that interference
is possible only among mass eigenstates produced in the
same process, because neutrinos produced by different pro-
cesses have, in general, random relative phases in their wave
functions, which destroy the coherence. Second, the states
have to be detected at the same timetB and at the same place
xWB .

Under these circumstances, the interference can take place
and the oscillation phenomenon arises. The probability that
the neutrino produced asune& is detected asunm& is, therefore
~in the case of two generations, whereU is parametrized as a
function of the mixing angleu in the usual way! @9#

P~ne→nm!5u^nmune~ tB ,xWB!&u25sin2~2u!sin2S F12

2 D ,

~5!

whereF125F12F2 andFk (k51,2) are the phases,

Fk5Ek~ tB2tA!2pW k•~xWB2xWA!5EkE
tA

tB
dt2pW k•E

xWA

xWB
dxW ,

~6!

acquired by the mass eigenstates.
The expression for the phaseFk in Eq. ~6! can be written

in a covariant form, which is suitable for the subsequent
application in a curved space-time, as@10#

Fk5E
A

B

pm
~k!dxm, ~7!

where

pm
~k!5mkgmn

dxn

ds
~8!

is the canonical conjugate momentum to the coordinatesxm

and gmn and ds are the metric tensor and the line element,
respectively. This covariant phase in Eq.~7! was first dis-
cussed by Stodolsky@10#, and has been used in@5–7# to
calculate the neutrino oscillation phase difference.

Equation ~5! represents the oscillation probability for a
neutrino produced at the space-time pointA(tA ,xWA) and de-

tected at a given space-time positionB(tB ,xWB). In actual
experiments, however, the time difference (tB2tA) is not
measured, whereas the relative positionuxWB2xWAu of the
source and the detector is known. In the plane wave formal-
ism, this can be taken care of consistently only for relativistic
neutrinos by replacing (tB2tA) with @11#

~ tB2tA!.uxWB2xWAu, ~9!

and thus the time difference does not appear in the formula
for the oscillation probability. In this approximation, the
phase of Eq.~6! becomes

Fk5~Ek2upW ku!uxWB2xWAu. ~10!

Applying the relativistic expansionmk!Ek , we can approxi-
mate, to the first order,

Ek.E01OS mk
2

2E0
D , ~11!

whereE0 is the energy for a massless neutrino. Therefore,
we have

Ek2upW ku5Ek2AEk
22mk

2.
mk

2

2E0
, ~12!

which leads to the standard result for the phase:

Fk.
mk

2

2E0
uxWB2xWAu. ~13!

The phase difference responsible for the oscillation can be
given by Eq.~13! as

Fk j.
Dmk j

2

2E0
uxWB2xWAu, ~14!

whereDmk j
2 5mk

22mj
2 .

For more general situations, where some or all of the
statesnk are nonrelativistic, the above discussion cannot be
applied, and a wave packet analysis is required@2#. In this
case, the relation in Eq.~9! is no longer valid, and moreover
the problem of the coherence of the different states at the
detection position has to be taken into account. However, for
relativistic neutrinos, the wave packet formalism shows that
the approximation of Eq.~9! is indeed appropriate, and the
oscillation probabilityP(ne→nm) has the form of Eq.~5!,
where the phase shiftFk j is given by Eq.~14!.

III. NEUTRINO PROPAGATION
IN THE SCHWARZSCHILD METRIC

Let us now turn to the discussion of the propagation of
neutrinos in a gravitational field. For the sake of definiteness,
and also because it may represent a situation of possible
physical interest, we will discuss the propagation in a gravi-
tational field of a nonrotating spherically symmetric object,
which is described by the Schwarzschild metric. The situa-
tion under consideration can be described by the line element
in the coordinate frame$t,r ,q,f% as
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ds25B~r !dt22B~r !21dr22r 2dq22r 2sin2qdf2,
~15!

where

B~r !5S 12
2GM

r D . ~16!

G is the Newtonian constant andM denotes the mass of the
source of the gravitational field. Since the gravitational field
is isotropic, the classical orbit may be confined to a plane.
Hence, we can choose it to be on the equatorial plane
q5p/2, and we havedq50.

The relevant components of the canonical momentum
pm

(k) of Eq. ~8! are

pt
~k!5mkB~r !

dt

ds
, ~17!

pr
~k!52mkB~r !21

dr

ds
, ~18!

pf
~k!52mkr

2
df

ds
, ~19!

and they are related to each other and to the massmk by the
mass-shell relation

mk
25gmnpm

~k!pn
~k!5

1

B~r !
~pt

~k!!22B~r !~pr
~k!!22

~pf
~k!!2

r 2 .

~20!

The fact that the metric tensor components do not depend
on the coordinatest andf ensures that their canonical mo-
menta pt

(k) and pf
(k) are constant along the trajectory. We

define the constant of motion to beEk[pt
(k) and

Jk[2pf
(k) . They represent the energy and the angular mo-

mentum which an observer, located atr 5`, sees for the
mass eigenstatenk . They differ from the energy and the
angular momentum measured by an observer at a position
r B or those at production pointr A . The correct way to define
the energies which are actually involved in a realistic situa-
tion is not, in general, unique. For example, for a neutrino
produced in the almost stationary shock wave of a super-
nova, a local static reference frame for the production point
r A seems appropriate. On the contrary, for neutrinos pro-
duced in the accretion disk around a black hole, a free-falling
orbiting system seems proper. Similar arguments apply to the
detection of neutrinos. For example, in the case of solar neu-
trinos, the detectors are in the free-falling frame. The general
situation can be rather complicated and every case must be
carefully dealt with. In our discussion we will choose the
local reference frame. The local energy, defined as the en-
ergy measured by an observer at rest at a positionr , is re-
lated to Ek from the transformation law which relates the
local reference frame$xâ%5$ t̂ , r̂ ,ŵ,û% to the frame
$xm%5$t,r ,w,u% @12#,

xâ5L â
mxm, gmn5L â

mL b̂
nhâb̂ , ~21!

whereL â
m are the coefficients of the transformation between

the two bases:

L t̂
t5Augttu, Lr̂

r5Augrr u, L q̂
q5Augqqu, L ŵ

w5Augwwu,

others50. ~22!

Therefore, the local energy is

Ek
~ loc!~r !5ugttu21/2Ek5B~r !21/2Ek . ~23!

In order to obtain the neutrino oscillation probability in a
gravitational field, we will calculate the interference of the
wave functions of different mass eigenstates created at a
space-time pointA and detected at a space-time pointB. In
the plane wave approximation, the phase of each mass eigen-
statenk is defined by the covariant expression in Eq.~7! and
the interference of thekth and j th mass eigenstates is given
by the phase difference

Fk j5E
A

B

~pm
~k!2pm

~ j !!dxm5Fk2F j . ~24!

Here the integration must be made on a definite space-time
trajectory fromA to B. Following the standard treatment of
the oscillations of therelativistic neutrinos in a flat space-
time, as discussed in Sec. II, we will calculate the interfer-
ence phase in Eq.~24! along the light-ray trajectory fromA
to B. This corresponds to the approximation in Eq.~9! for the
flat space-time case. We emphasize that the phases in Eq.
~24! arenot the phases on the classical trajectory of the mass
eigenstates@10# but the phases calculated on the light-ray
trajectory. We will see that for relativistic neutrinos the result
for the phase difference in Eq.~24! is proportional to
Dmk j

2 /2E0, as in the standard treatment of neutrino oscilla-
tions in a flat space-time.

We will now define the phase acquired by the mass eigen-
statenk when it travels from pointA(tA ,r A ,fA) to point
B(tB ,r B ,fB) as

Fk5E
A

B

@Ekdt2pk~r !dr2Jkdf#, ~25!

where we have definedpk(r )[2pr
(k) . The integration in Eq.

~25! is performed along the light-ray trajectory which links
the space-time pointsA and B. At this stage, we note that
Ek and Jk , which are constants of motion for the geodesic
trajectory of thekth eigenstate, are no longer constant along
the light-ray trajectory. Instead, the energy at infinityE0 and
the angular momentumJ0 at infinity for a massless particle
are constant along the light-ray path. Therefore,Ek and Jk
cannot be taken out of the integration in Eq.~25! and some
caution is required for the calculation. We will show explic-
itly in the following subsections, however, that in the rela-
tivistic limit, this problem can be circumvented.

We now discuss two different situations: radial propaga-
tion and nonradial propagation. In the last subsection we will
address the possibility of gravitational lensing.
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A. Radial propagation

For neutrinos propagating in a radial direction, we have
df50 and no angular momentum. Equation~25! is reduced
to

Fk5E
r A

r BFEkS dt

dr D
0

2pk~r !Gdr, ~26!

where pk(r ) is obtained, from the mass-shell relation, Eq.
~20!, with Jk50, as

pk~r !56
1

B~r !
AEk

22B~r !mk
2, ~27!

and the light-ray differential (dt/dr)0 is

S dt

dr D
0

56
1

B~r !
. ~28!

In Eqs. ~27! and ~28!, the sign (6) applies to neutrinos
propagating outward (1) or inward (2) of the gravitational
well, respectively. Therefore, the quantum-mechanical phase
Fk is

Fk56E
r A

r B
@Ek2AEk

22B~r !mk
2#

dr

B~r !
. ~29!

At this point, we apply the relativistic expansion using the
energy at infinityEk as a reference value, i.e.,mk!Ek . As in
the flat space-time case, the following relation holds:

Ek.E01OS mk
2

2E0
D , ~30!

where E0 is the energy at infinity for a massless particle.
Taking into account that 0,B(r )<1, we have

AEk
22B~r !mk

2.Ek2B~r !
mk

2

2E0
. ~31!

Then, the phase in Eq.~29! is approximated by

Fk.6E
r A

r B mk
2

2E0
dr. ~32!

Since the integration is performed along the light-ray trajec-
tory, E0 is constant and the integration is easily performed to
give

Fk.
mk

2

2E0
ur B2r Au. ~33!

The phase shift which determines the oscillation is, there-
fore,

Fk j.
Dmk j

2

2E0
ur B2r Au. ~34!

We note that the derivation of this result does not depend on
the weak field approximation.

The result for the phase shift in Eq.~34! is in agreement
with that in Ref.@7#, but it has been obtained with a different
approach. The authors of Ref.@7# calculated the phase of
each massive neutrino along its classical trajectory. The clas-
sical trajectories of different massive neutrinos reaching the
detection point at the same time must start from the produc-
tion point at different times. Hence, there is an initial phase
difference among the wave functions of different massive
neutrinos which must be added ‘‘by hand.’’ Instead, our ap-
proach has been to calculate the interference between mass
eigenstates produced at the same space-time position and de-
tected at the same space-time point, related by the light-ray
relation of Eq.~28!. We think that our approach is natural for
the calculation of interference effects of particles with
slightly different masses and can be considered as a natural
extension of the usual approach for the calculation of neu-
trino and kaon oscillations in flat space-time. On the other
hand, any comparison of our result with that in Ref.@5# is
problematic since the energyE used in Ref.@5# is not clearly
defined.

Some comments on the definition of ‘‘relativistic’’ neutri-
nos are in order here. Let us consider the following cases:

~1! mk
2!Ek

2 ~relativistic at infinity!,

~2! mk
2!@Ek

~ loc!~r A!#2 ~relativistic at the source!,

~3! mk
2!@Ek

~ loc!~r B!#2 ~relativistic at the detector!.

In case~1!, the ratio ofmk
2 to any local energyEk

(loc)(r ) is,
from Eq. ~23! andB(r )<1,

mk
2

@Ek
~ loc!~r !#2 5

mk
2

Ek
2 B~r !<

mk
2

Ek
2 !1, ~35!

so that the neutrinos are even more relativistic atr ,`, and
the approximation in Eq.~31! is certainly justified.

Case~2! needs a caution when the observer happens to be
at infinity, because the ratio ofmk

2 to the energy atr 5`
becomes

mk
2

Ek
2 5

mk
2

@Ek
~ loc!~r A!#2

1

B~r A!
. ~36!

That is, even if neutrinos are produced highly relativistically,
they are not guaranteed to be relativistic atr 5`, unless
r A@2GM@12(mk /Ek

(loc)(r A))2#21. For the obvious reason
that nonrelativistic neutrinos cannot be detected, at least with
known techniques~assuming that neutrino masses are much
smaller than 1 MeV!, however, the lack of validity of the
relativistic condition at infinity not only means that the ap-
proximate formula~31! is not valid, but also that in practice
such neutrinos are not detectable at infinity.

Case~3! deals with an observer under the influence of a
sizable gravitational field. In this case, neutrinos stay always
relativistic along their path (r A,r ,r B), which validates ap-
proximation in Eq.~31!, for we have

B~r !
mk

2

Ek
2 5

B~r !

B~r B!

mk
2

@Ek
~ loc!~r B!#2 <

mk
2

@Ek
~ loc!~r B!#2 !1.

~37!
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In short, neutrinos are assumed to be ‘‘relativistic’’ when
they are relativistic at infinity, relativistic at the detector, or
relativistic at the production point with
r A@2GM$12@mk /Ek

(loc)(r A)#2%21 and then Eq.~33! pro-
vides the correct quantum phase.

As a final comment, we wish to compare Eq.~33! with
that of the flat space-time case. As they stand, the expres-
sions of the phase in Eq.~33! and the phase shift in Eq.~34!
appear identical to those of the flat space-time case. How-
ever, the gravitational effects are present implicitly in Eqs.
~33! and~34!. In the absence of a gravitational field,E0 is the
energy of the neutrino as seen by any observer along its
trajectory, and (r B2r A) is the distance over which a neutrino
propagates. Therefore, Eq.~33! gives the standard result
shown in Eq.~13!. However, in the presence of gravity, the
propagation of a neutrino is over its proper distance

Lp[E
r A

r BAgrr dr

5r BA12
2GM

r B
2r AA12

2GM

r A

12GM@ ln~Ar B22GM1Ar B!

2 ln~Ar A22GM1Ar A!#. ~38!

To simplify the following discussion, we consider the
case of a weak field, whereLp is approximated to

Lp.r B2r A1GMln
r B

r A
. ~39!

This shows that, in a gravitational field, the effective length
in the phase@i.e., (r B2r A)# is shorter thanLp . Moreover,
the energy measured by a detector atr B is notE0, but rather
the local valueE0

(loc)(r B). When expressed in terms of the
local energy and the proper distance, the phase shiftFk j of
Eq. ~34! in the weak field approximation is

Fk j.S Dmk j
2 Lp

2E0
~ loc!~r B!

D F12GMS 1

Lp
ln

r B

r A
2

1

r B
D G . ~40!

The first parenthesis on the right-hand side in Eq.~40! is
analogous to the flat space-time oscillation phase. The sec-
ond square parenthesis represents the correction due to the
gravitational effects.

The proper oscillation lengthLk j
osc, in the weak field ap-

proximation, is

Lk j
osc~r B!5

4 p E0
loc~r B!

Dmk j
2 2GMF lnS 12

4pE0
loc~r B!

Dm2 r B
D

1
4 p E0

loc~r B!

Dm2 r B
G , ~41!

where the quantity in square brackets is negative. We con-
clude, therefore, that the proper oscillation length is in-
creased in the gravitational field, as expected.

B. Nonradial propagation

In this subsection, we discuss the case of the propagation
along a general trajectory. In contrast to the radial case, the
motion has an additional angular dependence. The phase
Fk is

Fk5E
r A

r BFEkS dt

dr D
0

2pk~r !2JkS df

dr D
0
Gdr, ~42!

where the integral is taken along the light-ray trajectory that
links the production pointA to the detection pointB. In Eq.
~42!, the quantities (dt/dr)0 and (df/dr)0 along the light-
ray trajectory are

S dt

dr D
0

5
E0

B2~r !p0~r !
,

S df

dr D
0

5
J0

r 2

1

B~r !p0~r !
. ~43!

It is convenient to express the angular momentumJk as a
function of the energyEk , the impact parameterb, and the
velocity at infinity vk

(`) @13#:

Jk5Ekbvk
~`! . ~44!

Since atr 5` the metric is Minkowskian~no gravity!, we
can write

vk
~`!5

AEk
22mk

2

Ek
.12

mk
2

2Ek
2 , ~45!

where in the last equality we used the relativistic approxima-
tion up to the orderO(mk

2/Ek
2). The angular momentum of a

massless particle,J0, is obviously

J05E0b. ~46!

With Eqs.~43!–~46!, the expression ofFk in Eq. ~42! can be
conveniently arranged as

Fk5E
r A

r B
dr

E0

B~r !p0~r !F Ek

B~r !
2

B~r !p0~r !

E0
pk~r !

2
Ekb

2

r 2 S 12
mk

2

2Ek
2D G . ~47!

The mass-shell condition, Eq.~20!, gives

B~r !p0~r !56E0A12B~r !
b2

r 2, ~48!

B~r !pk~r !56EkA12B~r !
b2

r 2 2B~r !
mk

2

Ek
2S 12

b2

r 2 D
.6EkA12B~r !

b2

r 2 F12
B~r !~12b2/r 2!

12B~r !b2/r 2

mk
2

2Ek
2G .

~49!
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The last approximate equality in Eq.~49! is due to the rela-
tivistic expansion. In Eqs.~48! and ~49!, the sign (6) is
determined by whetherdr is positive (1) or negative (2).
Substitution of Eqs.~48! and~49! into Eq.~47! simplifies the
expression for the phaseFk to

Fk.E
r A

r B
dr

E0

B~r !p0~r !
Ek

mk
2

2Ek
2 . ~50!

Since the following relation holds, in the relativistic approxi-
mation of Eq.~30!,

Ek

mk
2

2Ek
2 .E0

mk
2

2E0
2 , ~51!

Fk can be expressed as

Fk.6
mk

2

2E0
E

r A

r B dr

A12B~r !~b2/r 2!
. ~52!

Equation~52! is the phase acquired by the mass eigenstate
unk& for a nonradial propagation from the sourceA to the
detectorB. In the limit b→0, which reduces the motion to
be radial, Eq.~33! is recovered. We also notice that the in-
tegrand in Eq.~52! is divergent at the point of the closest
approachr 0, defined by the condition that the rate of change
of the coordinater with respect to the anglef vanishes:

dr

df
50⇒E0

25
J0

2

r 0
2 B~r 0!⇒12

b2

r 0
2 B~r 0!50. ~53!

However, the integral which gives the phaseFk is finite. We
will show this explicitly in the weak field approximation.

The expression ofFk obtained in Eq.~52! is valid for any
spherically symmetric~and time-independent! field. It has
been derived without any assumption on the strength of the
gravitational field. In order to gain more physical insight,
however, we perform a weak field approximation, which al-
lows us to perform the integration analytically. The approxi-
mation is valid if the field is weak enough to satisfy the
condition GM!r for all the r ’s along the trajectory under
consideration. For example, the gravitational field of the sun
at its surface is aboutGM( /R(;231026 and that of a
galaxy is aboutG(1011M ()/30 kpc;1.631027, both of
which justify the weak field approximation. Whenever the
weak field approximation is applied, we keep the expansion
up to the orderO(GM/r ).

First, let us consider the case where a neutrino is pro-
duced in a gravitational field and then propagates outward
from the potential well nonradially. The weak field approxi-
mation allows us to expand

A12B~r !
b2

r 2.A12
b2

r 2F11
GM

r

b2

r 22b2G . ~54!

The phaseFk is then easily integrated and becomes

Fk.
mk

2

2E0
FAr B

22b22Ar A
22b2

1GMS r B

Ar B
22b2

2
r A

Ar A
22b2D G . ~55!

We notice again, as a consistency check, that the radial limit
b→0 gives the same expression as given in Eq.~33!.

The second situation is when a neutrino moves around the
massive object, crossing the closest approach point at
r 5r 0. Taking into account the sign of the momentum, the
phase is

Fk~r A→r 0→r B!5
mk

2

2E0
E

r 0

r A dr

A12B~r !~b2/r 2!

1
mk

2

2E0
E

r 0

r B dr

A12B~r !~b2/r 2!
. ~56!

The position of the closest approach can be solved from Eq.
~53! in the weak field approximation, as

r 05bS 12
GM

b D . ~57!

Substituting Eq.~57! into Eq. ~56!, we have

Fk.
mk

2

2E0
FAr A

22r 0
21Ar B

22r 0
21GMSAr A2r 0

r A1r 0

1Ar B2r 0

r B1r 0
D G

.
mk

2

2E0
FAr A

22b21Ar B
22b2

1GMS b

Ar A
22b2

1
b

Ar B
22b2

1Ar A2b

r A1b

1Ar B2b

r B1bD G . ~58!

We observe that, in this case, the radial limitb→0 is mean-
ingless, because it would correspond to a radial motion
which crosses the gravitational source, where our description
becomes inadequate.

For b!r A,B , Eq. ~58! is reduced to@up to the order of
(b2/r A,B

2 )#

Fk5
mk

2

2E0
~r A1r B!F12

b2

2r Ar B
1

2GM

r A1r B
G , ~59!

which will be used to discuss the gravitational lensing in the
following subsection. It is interesting to note that Eq.~59!
has a gravitational effect which does not depend on the dis-
tance between the source and the detector~assuming that this
distance is much larger than the impact parameterb). That
is, this gravitational effect integrated along a trajectory
which passes close to a gravitational center induces a con-
stant phase shift 2GM(mk

2/2E0). Furthermore, this constant
phase shift does not depend on how close the trajectory
passes to the gravitational center. Therefore, if, for example,
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a neutrino travels relatively close to several well-separated
gravitational centers, the net phase shift becomes the sum of
the phase shifts induced by each gravitational center.

C. Gravitational lensing of neutrinos

Let us consider a gravitational lens which is located be-
tween a source and an observer but off the line connecting
the two. A neutrino emitted from the source can travel along
two different paths, the proper distances of which are differ-
ent and give the quantum interference at the detector.

Oscillations arise due to the interference not only between
the mass eigenstatesnk andn j traveling along each path, but
also between the mass eigenstates propagating along differ-
ent paths@for definiteness, we denote them as long path
(L) and short path (S)#. A neutrino produced as a flavor
eigenstate une&5cosuun1&1sinuun2& at the source
A(tA ,r A ,fA), evolves into~we consider only two genera-
tions!

une ,B&5N (
path5L,S

@cosuexp~2 iF1
path!un1&

1sinuexp~2 iF2
path!un2&], ~60!

whereN is the normalization constant. The flavor-changing
oscillation probability at the detector is then given by

P~ne→nm!5u^nmune ,B&u2

5 1
2 cos2usin2u@11cos~F1

L2F1
S!

111cos~F2
L2F2

S!2$cos~F2
L2F1

L!

1cos~F2
S2F1

S!%2$cos~F2
L2F1

S!

1cos~F2
S2F1

L!%#. ~61!

The phasesFk
path in Eq. ~61! can be evaluated along the

light-ray trajectories as shown in the previous subsection.
Substituting Eq.~59! into Eq. ~61!, we have

P~ne→nm!5sin2~2u!Fsin2H Dm2X

4E0
S 11

2GM

X
2

Sb2

4r Ar B
D J

3cosS m1
2X

4E0

Db2

2r Ar B
D cosS m2

2X

4E0

Db2

2r Ar B
D

1sin2S Sm2X

4E0

Db2

4r Ar B
D sin2S Dm2X

4E0

Db2

4r Ar B
D G ,
~62!

where we have definedX[r A1r B , Dm2[m2
22m1

2,
Sm2[m2

21m1
2, Db2[bL

22bS
2 , and Sb2[bL

21bS
2 . In the

symmetric case where the lens is aligned with the source and
the detector,Db250 andSb252b2 and the above flavor-
changing probability is reduced to that of the nonradially
propagating neutrinos,

P~ne→nm!u~Db250!5sin2~2u!sin2FDm2X

4E0
S 11

2GM

X

2
b2

2r Ar B
D G , ~63!

which can be obtained directly from Eq.~59!. This is ex-
pected, since the symmetric case is equivalent to the case of
the nonradial propagation.

Obviously, the proper way to discuss the gravitational
lensing effects on the neutrino oscillations would require a
wave packet formalism. Such a study is beyond the scope of
the present paper and will be given elsewhere.

IV. CONCLUSION

We have studied the propagation of neutrinos in a curved
space-time and the modification to the neutrino oscillation by
calculating a covariant quantum-mechanical phaseFk . The
gravitational field considered in this work is that of a nonro-
tating spherically symmetric object, described by the
Schwarzschild metric. Furthermore, we have assumed that
neutrinos are relativistic so that a plane wave analysis can be
applied.

Radial and nonradial propagation have been discussed in
the light-ray approximation. Although our phase for the ra-
dial motion is in agreement with the result of the previous
work @7#, the interpretations are different. Any comparison of
our result with that in@5# is problematic since the energy
used in@5# is not clearly defined.

The calculated phase appears identical to that of the flat
space-time case. This is because the phase is expressed in
terms of the asymptotic energyE0 and the coordinate dis-
tance. However, the gravitational effects do appear in the
leading order if we express the phase with the locally mea-
sured energy and proper distance. As in the radial case, the
phase of relativistic neutrinos for the nonradial motion has
been obtained without resort to the weak field approxima-
tion. Assuming that the gravitational field is weak enough
and the source and the detector are at a sufficiently large
distance from the massive object, the phase is reduced to a
simpler form as given in Eq.~59!. Finally, we have consid-
ered the gravitational lensing of neutrinos, i.e., the quantum
interference when neutrinos propagate through different
paths, and have derived the flavor-changing probability
P(ne→nm) as given in Eq.~62!.

Even though the measurement of the gravitational effects
on the propagation and oscillations of neutrinos is not fea-
sible at present, we think that the understanding of these
behaviors themselves is of interest.

Note added.After the completion of this paper, we be-
came aware of the paper by Cardall and Fuller@14#, which
discussed a similar subject and obtained the results for the
radial motion similar to ours.
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