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We evaluate the relic density of the lightest neutralino, the lightest supersymmetric particle, in the minimal
supersymmetric extension of the standard model. For the first time, we include all coannihilation processes
between neutralinos and charginos for any neutralino mass and composition. We use the most sophisticated
routines for integrating the cross sections and the Boltzmann equation. We properly treat~sub!threshold and
resonant annihilations. We also include one-loop corrections to neutralino masses. We find that coannihilation
processes are important not only for light Higgsino-like neutralinos, as pointed out before, but also for heavy
Higgsinos and for mixed and gauginolike neutralinos. Indeed, coannihilations should be included whenever
umu&2uM1u, independently of the neutralino composition. Whenumu;uM1u, coannihilations can increase or
decrease the relic density in and out of the cosmologically interesting region. We find that there is still a
window of light Higgsino-like neutralinos that are viable dark matter candidates and that coannihilations shift
the cosmological upper bound on the neutralino mass from 3 to 7 TeV.@S0556-2821~97!06816-1#

PACS number~s!: 95.35.1d, 14.80.Ly

I. INTRODUCTION

In the near future, it may become possible to constrain
supersymmetry from high precision measurements of the
cosmological parameters@1,2#, among which is the dark mat-
ter density. It is, therefore, of great importance to calculate
the relic density of the lightest neutralino as accurately as
possible.

The lightest neutralino is one of the most promising can-
didates for the dark matter in the Universe. It is believed to
be the lightest stable supersymmetric particle in the minimal
supersymmetric extension of the standard model~MSSM!. It
is a linear combination of the superpartners of the neutral
gauge and Higgs bosons.

The relic density of neutralinos in the MSSM has been
calculated by several authors during the years@3–9# with
various degrees of precision. A complete and precise calcu-
lation including relativistic Boltzmann averaging, subthresh-
old and resonant annihilations, and coannihilation processes
is the purpose of this paper.

As pointed out by Griest and Seckel@5#, one has to in-
clude coannihilations between the lightest neutralino and
other supersymmetric particles heavier than the neutralino if
they are close in mass. They considered coannihilations be-
tween the lightest neutralino and the squarks, which occur
only accidentally when the squarks are only slightly heavier
than the lightest neutralino. In contrast, Mizuta and Yamagu-
chi @7# pointed out an unavoidable mass degeneracy that
greatly affects the neutralino relic density: the degeneracy
between the lightest and next-to-lightest neutralinos and the
lightest chargino when the neutralino is Higgsino-like. They

considered coannihilations between the lightest neutralino
and the lightest chargino, but only for neutralinos lighter
than theW boson and only with an approximate relic density
calculation. Moreover, they did not consider Higgs bosons in
the final states.

Drees and Nojiri@8# included coannihilations in their relic
density calculation, but only between the lightest and next-
to-lightest neutralinos. These coannihilations are not as im-
portant as those studied by Mizuta and Yamaguchi. Re-
cently, Dreeset al. @9# reinvestigated the relic density of
light Higgsino-like neutralinos. They included coannihila-
tions between the lightest and next-to-lightest neutralinos as
well as those between the lightest neutralino and the lightest
chargino. They do, however, only considerf f̄ , f f 8̄, and
gW1 final states throughZ and W exchange respectively,
and do not considert- and u-channel annihilation or Higgs
bosons in the final states.

In this paper we perform a full calculation of the neu-
tralino relic density for any neutralino mass and composition,
including all coannihilations between neutralinos and chargi-
nos. We properly compute the thermal average, particularly
in presence of thresholds and resonances in the annihilation
cross sections. We include all two-body final states of
neutralino-neutralino, neutralino-chargino, and chargino-
chargino annihilations. We leave coannihilations with
squarks@5# for future work, since they only occur acciden-
tally when the squarks happen to be close in mass to the
lightest neutralino as opposed to the unavoidable mass de-
generacy of the lightest two neutralinos and the lightest
chargino for Higgsino-like neutralinos.

In Sec. II, we define the MSSM model we use and in Sec.
III we describe how we generalize the Gondolo and Gelmini
@10# formulas to solve the Boltzmann equation and perform
the thermal averages when coannihilations are included. This
is done in a very convenient way by introducing an effective
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invariant annihilation rateWeff . In Sec. IV we describe how
we calculate all annihilation cross sections, and in Sec. V we
outline the numerical methods we use. We then discuss our
survey of supersymmetric models in Sec. VI, together with
the experimental constraints we apply. We finally present our
results on the neutralino relic density in Sec. VII and give
some concluding remarks in Sec. VIII.

II. DEFINITION OF THE SUPERSYMMETRIC MODEL

We work in the framework of the minimal supersymmet-
ric extension of the standard model defined by, in addition to

the particle content and gauge couplings required by super-
symmetry, the superpotential~the notation used is similar to
that in Ref.@11#!

W5e i j ~2êR* YE l̂L
i Ĥ1

j 2d̂R* YDq̂L
i Ĥ1

j 1ûR* YUq̂L
i Ĥ2

j 2mĤ1
i Ĥ2

j !
~1!

and the soft supersymmetry-breaking potential

Vsoft5e i j ~ ẽR* AEYE l̃ L
i H1

j 1 d̃R* ADYDq̃L
i H1

j 2 ũR* AUYUq̃L
i H2

j 2BmH1
i H2

j 1H.c.!1H1
i* m1

2H1
i 1H2

i* m2
2H2

i 1 q̃L
i* MQ

2 q̃L
i

1 l̃ L
i* ML

2 l̃ L
i 1 ũR* MU

2 ũR1 d̃R* MD
2 d̃R1 ẽR* ME

2 ẽR1 1
2 M1B̃B̃1 1

2 M2~W̃3W̃312W̃1W̃2!1 1
2 M3g̃ g̃ . ~2!

Here, i and j are SU~2! indices (e12511). The Yukawa
couplingsY, the soft trilinear couplingsA, and the soft sfer-
mion massesM are 333 matrices in generation space.ê, l̂ ,
û, d̂, andq̂ are the superfields of the leptons and sleptons and
of the quarks and squarks. A tilde indicates their respective
scalar components. TheL andR subscripts on the sfermion
fields refer to the chirality of their fermionic superpartners.
B̃, W̃3, andW̃6 are the fermionic superpartners of the SU~2!

gauge fields andg̃ is the gluino field.m is the Higgsino mass
parameter,M1, M2 andM3 are the gaugino mass parameters,
B is a soft bilinear coupling, andm1,2

2 are Higgs boson mass
parameters.

For M1 and M2 we make the usual grand unified theory
~GUT! assumptions

M15 5
3 M2tan2uW.0.5M2 , ~3!

M25
aew

sin2uWas

M3.0.3M3 , ~4!

whereaew is the fine-structure constant andas is the strong
coupling constant.

Electroweak symmetry breaking is caused by bothH1
1 and

H2
2 acquiring vacuum expectation values

^H1
1&5v1 , ^H2

2&5v2 , ~5!

with g2(v1
21v2

2)52mW
2 , with the further assumption that

vacuum expectation values of all other scalar fields~in par-
ticular, squarks and sleptons! vanish. This avoids color
and/or charge-breaking vacua. It is convenient to use expres-
sions for theZ boson mass,mZ

25 1
2 (g21g82)(v1

21v2
2) and

the ratio of vacuum expectation values tanb5v2 /v1. g and
g8 are the usual SU~2! and U~1! gauge coupling constants.

When diagonalizing the mass matrix for the scalar Higgs
fields, in addition to a charged and a neutral would-be Gold-
stone bosons which become the longitudinal polarizations of
the W6 and Z gauge bosons, one finds a neutralCP-odd
Higgs bosonA, two neutralCP-even Higgs bosonsH1,2,
and a charged Higgs bosonH6. Choosing as an independent
parameter the massmA of the CP-odd Higgs boson, the
masses of the other Higgs bosons are given by

MH
2 5S mA

2cos2b1mZ
2sin2b1DM11

2 2sinbcosb~mA
21mZ

2!1DM12
2

2sinbcosb~mA
21mZ

2!1DM21
2 mA

2sin2b1mZ
2cos2b1DM22

2 D , ~6!

mH6
2

5mA
21mW

2 1D6 . ~7!

The quantitiesDMi j
2 and D6 are the leading log two-loop

radiative corrections coming from virtual~s!top and~s!bot-
tom loops, calculated within the effective potential approach
given in @12# ~other references on radiative corrections

are @13#!. Diagonalization ofMH
2 gives the twoCP-even

Higgs boson massesmH1,2
and their mixing angle

a (2p/2,a,0).

The neutralinosx̃ i
0 are linear combinations of the super-

partners of the neutral gauge bosonsB̃, W̃3 and of the neutral
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HiggsinosH̃1
0, H̃2

0. In this basis, their mass matrix is given by

Mx̃
1,2,3,4
0 51

M1 0 2
g8v1

A2
1

g8v2

A2

0 M2 1
gv1

A2
2

gv2

A2

2
g8v1

A2
1

gv1

A2
d33 2m

1
g8v2

A2
2

gv2

A2
2m d44

2 ,

~8!

whered33 and d44 are the most important one-loop correc-
tions. These can change the neutralino masses by a few GeV
up or down and are only important when there is a severe
mass degeneracy of the lightest neutralinos and/or charginos.
The expressions ford33 andd44 are @9,14#

d3352
3

16p2
Yb

2mbsin~2u b̃!Re@B0~Q,b, b̃1!

2B0~Q,b, b̃2!#, ~9!

d4452
3

16p2
Yt

2mtsin~2u t̃ !Re@B0~Q,t, t̃ 1!2B0~Q,t, t̃ 2!#,

~10!

where mb and mt are the masses of theb and t quarks,
Yb5gmb /A2mWcosb and Yt5gmt /A2mWsinb are the
Yukawa couplings of theb and t quark,u b̃ and u t̃ are the
mixing angles of the squark mass eigenstates
( q̃15 q̃Lcosuq̃1q̃Rsinuq̃), and B0 is the two-point function
for which we use the convention in Refs.@9,14#. Expressions
for B0 can be found in, e.g., Ref.@15#. For the momentum
scaleQ we useumu as suggested in Ref.@9#. Note that the
loop corrections depend on the mixing angles of the squarks
which in turn depend on the soft supersymmetry-breaking
parametersAU andAD in Eq. ~2! ~or the parametersAb and
At given below!.

The neutralino mass matrix, Eq.~8!, can be diagonalized
analytically to give four neutral Majorana states:

x̃ i
05Ni1B̃1Ni2W̃31Ni3H̃1

01Ni4H̃2
0 , ~11!

the lightest of which, to be calledx, is then the candidate for
the particle making up the dark matter in the Universe. The
gaugino fractionZg

i of neutralinoi is then defined as

Zg
i 5uNi1u21uNi2u2. ~12!

We will call the neutralino Higgsino-like ifZg,0.01, mixed
if 0.01<Zg<0.99, and gauginolike ifZg.0.99, where
Zg[Zg

1 is the gaugino fraction of the lightest neutralino.
Note that the boundaries for what we call gauginolike and
Higgsino-like are somewhat arbitrary and may differ from
those of other authors.

The charginos are linear combinations of the charged
gauge bosonsW̃6 and of the charged HiggsinosH̃1

2 , H̃2
1 .

Their mass terms are given by

~W̃2 H̃1
2!Mx̃6S W̃1

H̃2
1 D 1 H.c. ~13!

Their mass matrix

Mx̃65S M2 gv2

gv1 m D ~14!

is diagonalized by the linear combinations

x̃ i
25Ui1W̃21Ui2H̃1

2 , ~15!

x̃ i
15Vi1W̃11Vi2H̃2

1 . ~16!

We choose det(U)51 and U*Mx̃6V†5diag(mx̃
1
6,mx̃

2
6)

with non-negative chargino massesmx̃
i
6>0. We do not in-

clude any one-loop corrections to the chargino masses since
they are negligible compared to the correctionsd33 andd44
introduced above for the neutralino masses@9#.

When discussing the squark mass matrix including mix-
ing, it is convenient to choose a basis where the squarks are
rotated in the same way as the corresponding quarks in the
standard model. We follow the conventions of the Particle
Data Group @16# and put the mixing in the left-handed
d-quark fields, so that the definition of the Cabibbo-
Kobayashi-Maskawa~CKM! matrix is K5V1V2

† , whereV1

(V2) rotates the interaction left-handedu-quark (d-quark!
fields to mass eigenstates. For sleptons we choose an analo-
gous basis, but due to the masslessness of neutrinos no ana-
logue of the Cabibbo-Kobayashi-Maskawa CKM matrix ap-
pears.

We then obtain the general 636 ũ- and d̃-squark mass
matrices

Mũ
2
5S MQ

2 1mu
†mu1DLL

u 1 mu
†~AU

† 2m* cotb!

~AU2mcotb!mu MU
2 1mumu

†1DRR
u 1D ,

~17!

Md̃
2
5S K†MQ

2 K1mdmd
†1DLL

d 1 md
†~AD

† 2m* tanb!

~AD2mtanb!md MD
2 1md

†md1DRR
d 1D ,

~18!

and the general sneutrino and charged slepton masses

Mñ
2
5ML

21DLL
n 1, ~19!

M ẽ
2
5S ML

21meme
†1DLL

e 1 me
†~AE

†2m* tanb!

~AE2mtanb!me ME
21me

†me1DRR
e 1D .

~20!

Here,

DLL
f 5mZ

2cos2b~T3 f2efsin2uW!, ~21!
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DRR
f 5mZ

2cos2befsin2uW , ~22!

whereT3 f is the third component of the weak isospin andef
is the charge in units of the absolute value of the electron
charge e. In the chosen basis, we havemu 5
diag(mu ,mc ,mt), md 5 diag(md ,ms,mb), and me 5
diag(me ,mm ,mt).

The slepton and squark mass eigenstatesf̃ k ( ñ k with
k51,2,3 andẽk , ũk , and d̃k with k51, . . . ,6) diagonalize
the previous mass matrices and are related to the current
sfermion eigenstatesf̃ La and f̃ Ra (a51,2,3) via

f̃ La5 (
k51

6

f̃ kGFL* ka , ~23!

f̃ Ra5 (
k51

6

f̃ kGFR* ka . ~24!

The squark and charged slepton mixing matricesGUL,R ,
GDL,R , andGEL,R have dimension 633, while the sneutrino
mixing matrix GnL has dimension 333.

For simplicity, we make a simple ansatz for the up-to-now
arbitrary soft supersymmetry-breaking parameters:

AU5 diag~0,0,At!, ~25!

AD5 diag~0,0,Ab!, ~26!

AE50, ~27!

MQ5MU5MD5ME5ML5m01. ~28!

This allows the squark mass matrices to be diagonalized ana-
lytically. For example, for the top squark one has, in terms of
the top squark mixing angleu t̃ :

GUL
t̃ 1 t̃

5GUR
t̃ 2 t̃

5cosu t̃ , GUL
t̃ 2 t̃

52GUR
t̃ 1 t̃

5sinu t̃ . ~29!

Notice that the ansatz~25!–~28! implies the absence of
the tree-level flavor changing neutral currents in all sectors
of the model.

III. THE BOLTZMANN EQUATION
AND THERMAL AVERAGING

Griest and Seckel@5# have worked out the Boltzmann
equation when coannihilations are included. We start by re-
viewing their expressions and then continue by rewriting
them into a more convenient form that resembles the familiar
case without coannihilations. This allows us to use similar
expressions for calculating thermal averages and solving the
Boltzmann equation whether coannihilations are included or
not.

A. Review of the Boltzmann equation with coannihilations

Consider annihilation ofN supersymmetric particlesx i
( i 51, . . . ,N) with massesmi and internal degrees of free-
dom ~statistical weights! gi . Also, assume that
m1<m2<•••<mN21<mN and thatR parity is conserved.
Note that for the mass of the lightest neutralino we will use
the notationmx andm1 interchangeably.

The evolution of the number densityni of particle i is

dni

dt
523Hni2(

j 51

N

^s i j v i j &~ninj2ni
eqnj

eq!2(
j Þ i

@^sXi j8 v i j &~ninX2ni
eqnX

eq!2^sX ji8 v i j &~njnX2nj
eqnX

eq!#

2(
j Þ i

@G i j ~ni2ni
eq!2G j i ~nj2nj

eq!#. ~30!

The first term on the right-hand side is the dilution due to the
expansion of the Universe.H is the Hubble parameter. The
second term describesx ix j annihilations, whose total anni-
hilation cross section is

s i j 5(
X

s~x ix j→X!. ~31!

The third term describesx i→x j conversions by scattering
off the cosmic thermal background,

sXi j8 5(
Y

s~x iX→x jY! ~32!

being the inclusive scattering cross section. The last term
accounts forx i decays, with inclusive decay rates

G i j 5(
X

G~x i→x jX!. ~33!

In the previous expressions,X and Y are ~sets of! standard
model particles involved in the interactions,v i j is the ‘‘rela-
tive velocity’’ defined by

v i j 5
A~pi•pj !

22mi
2mj

2

EiEj
, ~34!

with pi andEi being the four-momentum and energy of par-
ticle i , and finallyni

eq is the equilibrium number density of
particlex i ,

ni
eq5

gi

~2p!3E d3pi f i , ~35!
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wherepi is the three-momentum of particlei , and f i is its
equilibrium distribution function. In the Maxwell-Boltzmann
approximation, it is given by

f i5e2Ei /T. ~36!

The thermal averagês i j v i j & is defined with equilibrium dis-
tributions and is given by

^s i j v i j &5

E d3pid
3pj f i f js i j v i j

E d3pid
3pj f i f j

. ~37!

Normally, the decay rate of supersymmetric particlesx i ,
other than the lightest which is stable, is much faster than the
age of the Universe. Since we have assumedR-parity con-
servation, all of these particles decay into the lightest one. So
its final abundance is simply described by the sum of the
density of all supersymmetric particles:

n5(
i 51

N

ni . ~38!

For n we get the evolution equation

dn

dt
523Hn2 (

i , j 51

N

^s i j v i j &~ninj2ni
eqnj

eq!, ~39!

where the last two sums in Eq.~30! cancel in the sum.
The scattering rate of supersymmetric particles off par-

ticles in the thermal background is much faster than their
annihilation rate, because the scattering cross sectionssXi j8
are of the same order of magnitude as the annihilation cross
sectionss i j but the background particle densitynX is much
larger than each of the supersymmetric particle densitiesni
when the former are relativistic and the latter are nonrelativ-
istic, and so suppressed by a Boltzmann factor. In this case,
the x i distributions remain in thermal equilibrium, and, in
particular, their ratios are equal to the equilibrium values:

ni

n
.

ni
eq

neq
. ~40!

We then get

dn

dt
523Hn2^seffv&~n22neq

2 !, ~41!

where

^seffv&5(
i j

^s i j v i j &
ni

eq

neq

nj
eq

neq
. ~42!

B. Thermal averaging

Now we have reviewed, let us continue by reformulating
the thermal averages into more convenient expressions.

We rewrite Eq.~42! as

^seffv&5

(
i j

^s i j v i j &ni
eqnj

eq

neq
2

5
A

neq
2

. ~43!

For the denominator we obtain, using Boltzmann statistics
for f i ,

neq5(
i

ni
eq5(

i

gi

~2p!3E d3pie
2Ei /T

5
T

2p2(i
gimi

2K2S mi

T D , ~44!

whereK2 is the modified Bessel function of the second kind
of order 2.

The numerator is the total annihilation rate per unit vol-
ume at temperatureT:

A5(
i j

^s i j v i j &ni
eqnj

eq5(
i j

gigj

~2p!6E d3pid
3pj f i f js i j v i j .

~45!

It is convenient to cast it in a covariant form:

A5(
i j

E Wi j

gi f id
3pi

~2p!32Ei

gj f jd
3pj

~2p!32Ej

. ~46!

Wi j is the ~unpolarized! annihilation rate per unit volume
corresponding to the covariant normalization of 2E colliding
particles per unit volume.Wi j is a dimensionless Lorentz
invariant, related to the~unpolarized! cross section through1

Wi j 54pi jAss i j 54s i jA~pi•pj !
22mi

2mj
254EiEjs i j v i j .

~47!

Here,

pi j 5
@s2~mi1mj !

2#1/2@s2~mi2mj !
2#1/2

2As
~48!

is the momentum of particlex i ~or x j ) in the center-of-mass
frame of the pairx ix j .

Averaging over initial and summing over final internal
states, the contribution toWi j of a generaln-body final state
is

Wi j
n body5

1

gigjSf
(

internal DF
E uMu2~2p!4

3d4S pi1pj2(
f

pf D)
f

d3pf

~2p!32Ef

, ~49!

whereSf is a symmetry factor accounting for identical final
state particles~if there areK sets ofNk identical particles,
k51, . . . ,K, thenSf5)k51

K Nk!). In particular, the contribu-
tion of a two-body final state can be written as

1The quantitywi j in Ref. @4# is Wi j /4.
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Wi j→kl
two body5

pkl

16p2gigjSklAs
(

internal DF
E uM~ i j→kl !u2dV,

~50!

where pkl is the final center-of-mass momentum,Skl is a
symmetry factor equal to 2 for identical final particles and to
1 otherwise, and the integration is over the outgoing direc-
tions of one of the final particles. As usual, an average over
initial internal degrees of freedom~DF! is performed.

We now reduce the integral in the covariant expression
for A, Eq. ~46!, from 6 dimensions to 1. Using Boltzmann
statistics forf i ~a good approximation forT&m),

A5(
i j

E gigjWi j e
2Ei /Te2Ej /T

d3pi

~2p!32Ei

d3pj

~2p!32Ej

,

~51!

wherepi andpj are the three-momenta andEi andEj are the
energies of the colliding particles. Following the procedure
in Ref. @10#, we then rewrite the momentum volume element
as

d3pid
3pj54pupi uEidEi 4pupj uEjdEj

1
2 dcosu, ~52!

whereu is the angle betweenpi and pj . Then, we change
integration variables fromEi , Ej , u to E1 , E2 , and s,
given by

E15Ei1Ej , ~53!

E25Ei2Ej , ~54!

s5mi
21mj

212EiEj22upi uupj ucosu, ~55!

whence the volume element becomes

d3pi

~2p!32Ei

d3pj

~2p!32Ej

5
1

~2p!4

dE1dE2ds

8
, ~56!

and the integration region$Ei>mi ,Ej>mj ,ucosuu<1% trans-
forms into

s>~mi1mj !
2, ~57!

E1>As, ~58!

UE22E1

mj
22mi

2

s
U<2pi jAE1

2 2s

s
. ~59!

Notice now that the product of the equilibrium distribu-
tion functions depends only onE1 and notE2 due to the
Maxwell-Boltzmann approximation, and that the invariant
rateWi j depends only ons due to the neglect of final state
statistical factors. Hence, we can immediately integrate over
E2 :

E dE254pi jAE1
2 2s

s
. ~60!

The volume element is now

d3pi

~2p!32Ei

d3pj

~2p!32Ej

5
1

~2p!4

pi j

2
AE1

2 2s

s
dE1ds.

~61!

We now perform theE1 integration. We obtain

A5
T

32p4(i j E
~mi1mj !

2

`

dsgigj pi j Wi j K1SAs

T D , ~62!

whereK1 is the modified Bessel function of the second kind
of order 1.

We can take the sum inside the integral and define an
effective annihilation rateWeff through

(
i j

gigj pi j Wi j 5g1
2peffWeff , ~63!

with

peff5p115
1

2
As24m1

2. ~64!

In other words,

Weff5(
i j

pi j

p11

gigj

g1
2

Wi j

5(
i j
A@s2~mi2mj !

2#@s2~mi1mj !
2#

s~s24m1
2!

gigj

g1
2

Wi j .

~65!

BecauseWi j (s)50 for s<(mi1mj )
2, the radicand is never

negative.
In terms of cross sections, this is equivalent to the defini-

tion

seff5(
i j

pi j
2

p11
2

gigj

g1
2

s i j . ~66!

Equation~62! then reads

A5
g1

2T

32p4E4m1
2

`

dspeffWeffK1SAs

T D . ~67!

This can be written in a form more suitable for numerical
integration by usingpeff instead ofs as integration variable.
From Eq.~64!, we haveds58peffdpeff , and

A5
g1

2T

4p4E0

`

dpeffpeff
2 WeffK1SAs

T D , ~68!

with

s54peff
2 14m1

2 . ~69!

So we have succeeded in rewritingA as a one-dimensional
integral.

From Eqs.~68!, ~43!, and~44!, the thermal average of the
effective cross section is

1884 56JOAKIM EDSJÖAND PAOLO GONDOLO



^seffv&5

E
0

`

dpeffpeff
2 WeffK1SAs

T D
m1

4TF(
i

gi

g1

mi
2

m1
2

K2S mi

T D G 2 . ~70!

This expression is very similar to the case without coannihi-
lations, the differences being the denominator and the re-
placement of the annihilation rate with the effective annihi-
lation rate. In the absence of coannihilations, this expression
correctly reduces to the formula in Gondolo and Gelmini
@10#.

The definition of an effective annihilation rate indepen-
dent of temperature is a remarkable calculational advantage.
As in the case without coannihilations, the effective annihi-
lation rate can in fact be tabulated in advance, before taking
the thermal average and solving the Boltzmann equation.

In the effective annihilation rate, coannihilations appear
as thresholds atAs equal to the sum of the masses of the
coannihilating particles. We show an example in Fig. 1
where it is clearly seen that the coannihilation thresholds
appear in the effective invariant rate just as final state thresh-
olds do. For the same example, Fig. 2 shows the differential
annihilation rate per unit volumedA/dpeff , the integrand in
Eq. ~68!, as a function ofpeff . We have chosen a temperature
T5mx/20, a typical freeze-out temperature. The Boltzmann
suppression contained in the exponential decay ofK1 at high
peff is clearly visible. At higher temperatures the peak shifts
to the right and at lower temperatures to the left. For the
particular model shown in Figs. 1 and 2, the relic density
resultsVxh250.030 when coannihilations are included and
Vxh250.18 when they are not. Coannihilations have low-
eredVxh2 by a factor of 6.

We end this section with a comment on the internal de-
grees of freedomgi . A neutralino is a Majorana fermion and
has two internal degrees of freedomgx

i
052. A chargino can

be treated either as two separate speciesx i
1 and x i

2 , each
with internal degrees of freedomgx15gx252, or, more

simply, as a single speciesx i
6 with gx

i
654 internal degrees

of freedom. The effective annihilation rates involving chargi-
nos read

Wx
i
0x

j
65Wx

i
0x

j
15Wx

i
0x

j
2, ; i 51, . . . ,4, j 51,2,

~71!

Wx
i
6x

j
65

1

2
@Wx

i
1x

j
11Wx

i
1x

j
2#

5
1

2
@Wx

i
2x

j
21Wx

i
2x

j
1#,

; i , j 51,2. ~72!

C. Reformulation of the Boltzmann equation

We now follow Gondolo and Gelmini@10# to put Eq.~41!
in a more convenient form by considering the ratio of the
number density to the entropy density:

Y5
n

s
. ~73!

Consider

dY

dt
5

d

dtS n

sD5
ṅ

s
2

n

s2
ṡ, ~74!

where overdot means time derivative. In absence of entropy
production,S5R3s is constant (R is the scale factor!. Dif-
ferentiating with respect to time we see that

ṡ523
Ṙ

R
s523Hs, ~75!

which yields

FIG. 1. The effective invariant annihiliation rateWeff as a func-
tion of peff for model 1 in Table III. The final state threshold for
annihilation intoW1W2 and the coannihilation thresholds, as given
by Eq.~65!, are indicated. Thex2

0x2
0 coannihilation threshold is too

small to be seen.

FIG. 2. Total differential annihilation rate per unit volume
dA/dpeff for the same model as in Fig. 1, evaluated at a temperature
T5mx/20, typical of freeze-out. Notice the Boltzmann suppression
at highpeff .

56 1885NEUTRALINO RELIC DENSITY INCLUDING . . .



Ẏ5
ṅ

s
13H

n

s
. ~76!

Hence, we can rewrite Eq.~41! as

Ẏ52s^seffv&~Y22Yeq
2 !. ~77!

The right-hand side depends only on temperature, and it
is, therefore, convenient to use temperatureT instead of time
t as independent variable. Definingx5m1 /T, we have

dY

dx
52

m1

x2

1

3H

ds

dT
^seffv&~Y22Yeq

2 !, ~78!

where we have used

1

Ṫ
5

1

ṡ

ds

dT
52

1

3Hs

ds

dT
, ~79!

which follows from Eq.~75!. With the Friedmann equation
in a radiation-dominated universe

H25
8pGr

3
, ~80!

whereG is the gravitational constant, and the usual param-
etrization of the energy and entropy densities in terms of the
effective degrees of freedomgeff andheff ,

r5geff~T!
p2

30
T4, s5heff~T!

2p2

45
T3, ~81!

we can cast Eq.~78! into the form@10#

dY

dx
52A p

45G

g
*
1/2m1

x2
^seffv&~Y22Yeq

2 !, ~82!

whereYeq can be written as

Yeq5
neq

s
5

45x2

4p4heff~T!
(

i
gi S mi

m1
D 2

K2S x
mi

m1
D , ~83!

using Eqs.~44!, ~73!, and~81!.
The parameterg

*
1/2 is defined as

g
*
1/25

heff

Ageff
S 11

T

3heff

dheff

dT D . ~84!

For geff , heff , andg
*
1/2 we use the values in Ref.@10# with

a QCD phase-transition temperatureTQCD5150 MeV. Our
results are insensitive to the value ofTQCD, because due to a
lower limit on the neutralino mass the neutralino freeze-out
temperature is always much larger thanTQCD.

To obtain the relic density we integrate Eq.~82! from
x50 to x05mx /T0 whereT0 is the photon temperature of
the Universe today. The relic density today in units of the
critical density is then given by

Vx5rx
0/r crit5mxs0Y0 /rcrit , ~85!

wherercrit53H2/8pG is the critical density,s0 is the en-
tropy density today, andY0 is the result of the integration of
Eq. ~82!. With a background radiation temperature of
T052.726 K we finally obtain

Vxh252.7553108
mx

GeV
Y0 . ~86!

IV. ANNIHILATION CROSS SECTIONS

We have calculated all two-body final state cross sections
at the tree level for neutralino-neutralino, neutralino-
chargino, and chargino-chargino annihilation. A complete
list is given in Table I.

Since we have so many different diagrams contributing,
we have to use some method where the diagrams can be
calculated efficiently. To achieve this, we classify diagrams
according to their topology (s, t, or u channel! and to the
spin of the particles involved. We then compute the helicity
amplitudes for each type of diagrams analytically with
REDUCE @17# using general expressions for the vertex cou-
plings. Further details will be found in Ref.@18#.

The strength of the helicity amplitude method is that the
analytical calculation of a given type of diagram has to be
performed only once and the sum of the contributing dia-
grams for each set of initial and final states can be done
numerically afterwards.

V. NUMERICAL METHODS

In this section we describe the numerical methods we use
to evaluate the effective invariant rate and its thermal aver-
age, and to integrate the density evolution equation.

We obtain the effective invariant rate numerically as fol-
lows. We generateFORTRAN routines for the helicity ampli-
tudes of all types of diagrams automatically withREDUCE, as
explained in the previous section. We sum the Feynman dia-
grams numerically for each annihilation channeli j→kl. We
then sum the squares of the helicity amplitudes so obtained,
and sum the contributions of all annihilation channels. Ex-
plicitly, we compute

dWeff

dcosu
5(

i jkl

pi j pkl

32ppeffSklAs
(

helicities
U (

diagrams
M~ i j→kl !U2

,

~87!

where u is the angle between particlesk and i . ~We set
g152 as appropriate for a neutralino.!

We integrate over cosu numerically by means of adaptive
Gaussian integration. In rare cases, we find resonances in the
t or u channels. For the processi j→kl, this can occur when
mi,mk andmj.ml or mi,ml andmj.mk : at certain val-
ues of cosu, the momentum transfer is timelike and matches
the mass of the exchanged particle. We have regulated the
divergence by assigning a small width of a few GeV to the
neutralinos and charginos. Our results are not sensitive to the
choice of this width.

The calculation of the effective invariant rateWeff is the
most time-consuming part. Fortunately, thanks to the re-
markable feature of Eq.~70!, Weff(peff) does not depend on
the temperatureT, and it can be tabulated once for each
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model. We have to make sure that the maximumpeff in the
table is large enough to include all important resonances,
thresholds, and coannihilation thresholds. In the thermal av-
erage, the effective invariant rate is weighted byK1peff

2 @see
Eq. ~70!#. The fast exponential decay ofK1 at highpeff Bolt-
zmann suppresses resonances and thresholds, as we have al-
ready seen in the example in Fig. 2. With a typical freeze-out
temperatureT5mx/20, contributions to the thermal average

from values ofpeff beyond;1.5mx are negligible, even in
the most extreme case we met in which the effective invari-
ant rate at highpeff was 1010 times higher than that at
peff50. For coannihilations, this value ofpeff corresponds to
a mass of the coannihilating particle of;1.8mx . To be on
the safe side all over parameter space, we include coannihi-
lations whenever the mass of the coannihilating particle is
less than 2.1mx , even if typically coannihilations are impor-

TABLE I. All Feynman diagrams for which we calculate the annihilation cross section.s(x), t(x), and
u(x) denote a tree-level Feynman diagram in which particlex is exchanged in thes, t, and u channel,

respectively. Indicesi , j ,k run from 1 to 4, and indicesc,d,e from 1 to 2.u, ũ, d, d̃ , n, ñ , l , l̃ , f , and f̃
is generic notation for up-type quarks, up-type squarks, down-type quarks, down-type squarks, neutrinos,
sneutrinos, leptons, sleptons, fermions, and sfermions. A sum of diagrams over~s!fermion generation indices
and over the neutralino and chargino indicesk ande is understood~no sum over indicesi , j ,c,d).

Initial state Final state Feynman diagrams

H1H1, H1H2, H2H2, H3H3 t(xk
0), u(xk

0), s(H1,2)
H1H3, H2H3 t(xk

0), u(xk
0), s(H3), s(Z0)

H2H1 t(xe
1), u(xe

1), s(H1,2), s(Z0)
Z0H1, Z0H2 t(xk

0), u(xk
0), s(H3), s(Z0)

x i
0x j

0 Z0H3 t(xk
0), u(xk

0), s(H1,2)
W2H1, W1H2 t(xe

1), u(xe
1), s(H1,2,3)

Z0Z0 t(xk
0), u(xk

0), s(H1,2)
W2W1 t(xe

1), u(xe
1), s(H1,2), s(Z0)

f f̄ t( f̃ L,R), u( f̃ L,R), s(H1,2,3), s(Z0)

H1H1, H1H2 t(xk
0), u(xe

1), s(H1), s(W1)
H1H3 t(xk

0), u(xe
1), s(W1)

W1H1, W1H2 t(xk
0), u(xe

1), s(H1), s(W1)
W1H3 t(xk

0), u(xe
1), s(H1)

xc
1x i

0 H1Z0 t(xk
0), u(xe

1), s(H1)
gH1 t(xc

1), s(H1)
W1Z0 t(xk

0), u(xe
1), s(W1)

gW1 t(xc
1), s(W1)

u d̄ t( d̃L,R), u( ũL,R), s(H1), s(W1)

n l̄ t( l̃ L,R), u( ñ L), s(H1), s(W1)

H1H1, H1H2, H2H2, H3H3 t(xe
1), u(xe

1), s(H1,2)
H1H3, H2H3 t(xe

1), u(xe
1), s(H3), s(Z0)

H1H2 t(xk
0), s(H1,2), s(Z0,g)

Z0H1, Z0H2 t(xe
1), u(xe

1), s(H3), s(Z0)
Z0H3 t(xe

1), u(xe
1), s(H1,2)

H1W2, W1H2 t(xe
1), s(H1,2,3)

xc
1xd

2 Z0Z0 t(xe
1), u(xe

1), s(H1,2)
W1W2 t(xk

0), s(H1,2), s(Z0,g)
gg ~only for c5d) t(xc

1), u(xc
1)

Z0g t(xd
1), u(xc

1)

u ū t( d̃L,R), s(H1,2,3), s(Z0,g)

n n̄ t( l̃ L,R), s(Z0)

d̄d t( ũL,R), s(H1,2,3), s(Z0,g)

l̄ l t( ñ L), s(H1,2,3), s(Z0,g)

H1H1 t(xk
0), u(xk

0)
xc

1xd
1 H1W1 t(xk

0), u(xk
0)

W1W1 t(xk
0), u(xk

0)
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tant only for masses less than 1.4mx . For extra safety, we
tabulateWeff from peff50 up topeff520mx , more densely in
the important lowp eff region than elsewhere. We further add
several points around resonances and thresholds, both explic-
itly and in an adaptive manner.

To perform the thermal average in Eq.~70!, we integrate
over peff by means of adaptive Gaussian integration, using a
spline to interpolate in the (peff ,W eff) table. To avoid nu-
merical problems in the integration routine or in the spline
routine, we split the integration interval at each sharp thresh-
old. We also explicitly check for each MSSM model that the
spline routine behaves well at thresholds and resonances.

We finally integrate the density evolution equation~82!
numerically from x52, where the density still tracks the
equilibrium density, tox05mx /T0. We use an implicit trap-
ezoidal method with adaptive step size. The method is im-
plicit because of the stiffness of the evolution equation. The
relic density at present is then evaluated with Eq.~86!.

A more detailed description of the numerical methods will
be found in a future publication@19#.

VI. SELECTION OF MODELS

In Sec. II we made some simplifying assumptions to re-
duce the number of parameters in the MSSM to the seven
parametersm, M2, tanb, mA , m0, Ab , andAt . It is, how-
ever, a nontrivial task to scan even this reduced parameter
space to a high degree of completeness. With the goal to
explore a significant fraction of parameter space, we perform
many different scans, some general and some specialized, to
interesting parts of parameter space. The ranges of parameter
values in our scans are given in Table II.

We perform a ‘‘normal’’ scan where we let the above
seven free parameters vary at random within wide ranges, a
‘‘generous’’ scan with even more generous bounds on the

parameters, a ‘‘light Higgs boson’’ scan where we restrict to
low pseudoscalar Higgs boson masses, and two ‘‘high mass’’
scans where we explore heavy neutralinos. In addition, we
perform two other special scans: one to finely sample the
cosmologically interesting light Higgsino region, the other to
study heavy mixed and gauginolike neutralinos for which we
found that coannihilations are important.

Remember, though, that the look of our figures might
change if different scans were used. One should especially
pay no attention to the density of points in different regions:
it is just an artifact of our scanning.

We keep only models that satisfy the experimental con-
straints on squark, slepton, gluino, chargino, neutralino, and
Higgs boson masses, on theZ0 width and on theb→sg
branching ratio@16,20,21#. The last row in Table II gives the
number of models which pass all experimental constraints.
We include the most recent constraints from the CERN
e1e2 collider LEP 2@20# of which the most important one is

mx1.85 GeV. ~88!

This bound effectively excludes most of the Higgsinos
lighter than theW studied in Refs.@7,9#. LEP 2 also puts a
new constraint on the lightest Higgs boson mass,

mH
2
0.62.5 GeV, ~89!

valid for all a and b. This constraint could be made more
stringent if allowed to depend on sin2(b2a), but we do not
include this more refined version because in this study we
are not very sensitive to this constraint.

VII. RESULTS

We now present the results of our relic density calcula-
tions for all the models in Table II. This is the first detailed

TABLE II. The ranges of parameter values in our scans of supersymmetric models. Form and M2 the
scans are uniform in the logarithms of the parameters and for the rest they are uniform in the parameters
themselves. The number of models refers to the number of generated models satisfying experimental con-
straints.

Light High High Light Heavy
Scan Normal Generous Higgs boson mass 1 mass 2 Higgsinos gauginos

mmin @GeV# 25000 210000 25000 1000 230000 2100 1000
mmax @GeV# 5000 10000 5000 30000 21000 100 30000
M2

min @GeV# 25000 210000 25000 1000 1000 21000 1.9m/21.9m
M2

max @GeV# 5000 10000 5000 30000 30000 1000 2.1m/22.1m
tanbmin 1.2 1.2 1.2 1.2 1.2 1.2 1.2
tanbmax 50 50 50 50 50 2.1 50
mA

min @GeV# 0 0 0 0 0 0 0
mA

max @GeV# 1000 3000 150 10000 10000 1000 10000
m0

min @GeV# 100 100 100 1000 1000 100 1000
m0

max @GeV# 3000 5000 3000 30000 30000 3000 30000
Ab

min 23m0 23m0 23m0 23m0 23m0 23m0 23m0

Ab
max 3m0 3m0 3m0 3m0 3m0 3m0 3m0

At
min 23m0 23m0 23m0 23m0 23m0 23m0 23m0

At
max 3m0 3m0 3m0 3m0 3m0 3m0 3m0

No. of models 4655 3938 3342 1000 999 177 250
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evaluation of the neutralino relic density including neutralino
and chargino coannihilations for general neutralino masses
and compositions. So we focus on the effect of coannihila-
tions.

Fundamentally, we are interested in how the inclusion of
coannihilations modifies the cosmologically interesting re-
gion and the cosmological bounds on the neutralino mass.
We define the cosmologically interesting region as
0.025,Vxh2,1. In this range ofVxh2 the neutralino can
constitute most of the dark matter in galaxies and the age of
the Universe is long enough to be compatible with observa-
tions. The lower bound of 0.025 is somewhat arbitrary, and
even ifVxh2 would be less than 0.025 the neutralinos would
still be relic particles, but only a minor fraction of the dark
matter in the Universe.

We start with a short general discussion and then present
more details in the following subsections.

Figure 3 shows the neutralino relic densityVxh2 with
coannihilations included versus the neutralino massmx and
the neutralino compositionZg /(12Zg). The lower edge on
neutralino masses comes essentially from the LEP 2 bound
on the chargino mass, Eq.~88!. The few scattered points at
the smallest masses have low tanb. The bands and holes in
the point distributions, and the lower edge inZg /(12Zg),
are mere artifacts of our sampling in parameter space.

The neutralino is a good dark matter candidate in the re-
gion limited by the two horizontal lines~the cosmologically
interesting region!. There are clearly models with cosmologi-
cally interesting relic densities for a wide range of neutralino

masses~up to 7 TeV! and compositions~up to 1024 in
Higgsino fractionZh512Zg). A plot of the cosmologically
interesting region in the neutralino mass-composition plane
is in Sec. VII E below.

The effect of neutralino and chargino coannihilations on
the value of the relic density is summarized in Fig. 4, where
we plot the ratio of the neutralino relic densities with and
without coannihilations versus the neutralino massmx and
the neutralino compositionZg /(12Zg). In many models,
coannihilations reduce the relic density by more than a factor
of 10, and in some others they increase it by a small factor.
Coannihilations increase the relic density if the effective an-
nihilation cross section̂ seffv&,^s11v11&. Recalling that
^seffv& is the average of the coannihilation cross sections
@see Eq.~43!#, this occurs when most of the coannihilation
cross sections are smaller than^s11v11& and the mass differ-
ences are small.

Table III lists some representative models where coanni-
hilations are important, one~or two! for each case described
in the following subsections, plus one model where coanni-
hilations are negligible. Example 1 contains a light Higgsino-
like neutralino, example 2 a heavy Higgsino-like neutralino.
Examples 3 and 4 haveumu;uM1u, and example 5 has a very
pure gauginolike neutralino. Example 6 is a model with a
gauginolike neutralino for which coannihilations are not im-
portant.

We have looked for a simple general criterion for when
coannihilations should be included, one that goes beyond the
trivial statement of an almost degeneracy in mass between

FIG. 3. Neutralino relic den-
sity including neutralino and
chargino coannihilations versus
~a! neutralino mass mx and
~b! neutralino compositionZg /
(12Zg). The horizontal lines
bound the cosmologically interest-
ing region 0.025,Vxh2,1.

FIG. 4. Ratio of the neutralino
relic densities with and without
neutralino and chargino coannihi-
lations versus~a! neutralino mass
mx and~b! neutralino composition
Zg /(12Zg).
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the lightest neutralino and other supersymmetric particles.
We have only found few rules of thumb, each with important
exceptions. We give here the best two.

The first rule of thumb is that when coannihilations are
important,um/M1u&2. But exceptions are found, as can be
seen in Fig. 5, where we show the reduction in relic density
due to the inclusion of coannihilations as a function of
um/M1u. Notice that whenum/M1u!1, the neutralino is
Higgsino-like; whenum/M1u@1, the neutralino is gaugino-
like; and whenum/M1u;1, the neutralino can be Higgsino-
like, gauginolike, or mixed.

The second rule of thumb is that coannihilations are im-
portant when Zg,0.23 for mx,200 GeV and when
Zg /(12Zg),(mx/300 GeV)3 for mx.200 GeV. There are
exceptions to this rule, as can be seen in Fig. 6 where the
ratio of relic densities with and without coannihilations is
plotted versus the neutralino mass, the left panel for points
satisfying the present criterion, the right panel for those not
satisfying it.

In the following subsections, we present the cases where

FIG. 5. Ratio of the relic densities with and without coannihila-
tions versus um/M1u. Coannihilations are important when
um/M1u&2.

FIG. 6. Ratio of the relic densities with and without coannihila-
tions versus neutralino massmx . Coannihilations are generally not
important whenZg. f (mx), where f (mx) is the ‘‘second rule of
thumb’’ given in the text.

TABLE III. Some representative models for which coannihilations are important~examples 1–5! and one
model ~example 6! for which they are not. We give the seven model parameters, the masses of the lightest
neutralinos and of the lightest chargino, the gaugino fraction of the lightest neutralino, and the relic densities
with and without coannihilations.

Light Heavy umu;uM1u umu@uM1u Gaugino
Higgsino Higgsino B-ino

Example No. 1 2 3 4 5 6

m @GeV# 77.7 1024.3 358.7 414.7 27776.7 21711.1
M2 @GeV# 2441.4 3894.1 2691.1 21154.6 133.5 396.6
tanb 1.31 40.0 2.00 7.30 37.0 22.8
mA @GeV# 656.8 737.2 577.7 828.9 2039.5 435.1
m0 @GeV# 610.8 1348.3 1080.9 2237.9 4698.0 2771.6
Ab /m0 21.77 21.53 21.03 21.26 0.46 1.97
At /m0 2.75 22.01 22.77 20.80 0.11 0.52

mx
1
0 @GeV# 76.3 1020.8 340.2 407.8 67.2 199.5

Zg 0.00160 0.00155 0.651 0.0262 0.999968 0.99933
mx

2
0 @GeV# 96.3 1026.4 364.5 418.2 133.5 396.0

mx
1
1 @GeV# 89.2 1023.7 362.2 414.1 133.5 396.0

Vxh2 ~no coann.! 0.178 0.130 0.158 0.00522 1.333104 0.418
Vxh2 0.0299 0.0388 0.0528 0.00905 1.153104 0.418
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we found that coannihilations are important and explain why.
We first discuss the already known case of light Higgsino-
like neutralinos, continue with heavier Higgsino-like neu-
tralinos, the caseumu;uM1u, and finally very pure gaugino-
like neutralinos. We then end this section by a discussion of
the cosmologically interesting region.

A. Light Higgsino-like neutralinos

We first discuss light Higgsino-like neutralinos,
mx,mW , Zg,0.01, since coannihilation processes for these
have been investigated earlier by other authors@7–9#.

Mizuta and Yamaguchi@7# stressed the great importance
of including coannihilations for Higgsinos lighter than theW
boson. For these light Higgsinos, neutralino-neutralino anni-
hilation into fermions is strongly suppressed whereas
chargino-neutralino and chargino-chargino annihilations into
fermions are not. Since the masses of the lightest neutralino
and the lightest chargino are of the same order, the relic
density is greatly reduced when coannihilations are included.
Mizuta and Yamaguchi claim that because of this reduction
light Higgsinos are cosmologically of no interest.

Drees and Nojiri@8# included coannihilations between the
lightest and next-to-lightest neutralino, but overlooked those
between the lightest neutralino and chargino, which are al-
ways more important. In spite of this, they concluded that the
relic density of a Higgsino-like neutralino will always be
uninterestingly small unlessmx.500 GeV or so.

Drees et al. @9# then reinvestigated the relic density of
light Higgsino-like neutralinos. They found that light Higgsi-
nos could have relic densities as high as 0.2, and so be cos-
mologically interesting, provided one-loop corrections to the
neutralino masses are included.

We agree with these papers qualitatively, but we reach
different conclusions. We show our results in Fig. 7, where
we plot the relic density of Higgsino-like neutralinos versus
their mass with coannihilations included, as well as the ratio
between the relic densities with and without coannihilations.
The Mizuta and Yamaguchi reduction can be seen in Fig.
7~b! below 100 GeV, but due to the recent LEP 2 bound on
the chargino mass the effect is not as dramatic as it was for
them. If for the sake of comparison we relax the LEP 2
bound, the reduction continues down to 1025 at lower

Higgsino masses and we confirm qualitatively the Mizuta
and Yamaguchi conclusion, coannihilations are very impor-
tant for light Higgsinos, but we differ from them quantita-
tively since we find models in which light Higgsinos have a
cosmologically interesting relic density. For the specific light
Higgsino models in Dreeset al. @9# we agree on the relic
density to within 20–30 %. We find, however, other light
Higgsino-like models with higherVxh2;0.3, even without
including the loop corrections to the neutralino masses.

So there is a window of light Higgsino models,mx;75
GeV, that are cosmologically interesting. All these models
have tanb&1.6 and those with the highest relic densities
have tanb;1.2. These models escape the LEP 2 bound on
the chargino mass,mx1;85 GeV, because for tanb&2 the
mass of the lightest neutralino can be lower than the mass of
the lightest chargino by tens of GeV. By the same token,
coannihilation processes are not so important and the relic
density in these models remains cosmologically interesting.
Most of these models will be probed in the near future when
LEP 2 runs at higher energies, but some have too large a
chargino mass (mx

1.95 GeV! and too large anH2
0 boson

mass (mH
2
0.90 GeV! to be tested at LEP2. Thus;75 GeV

Higgsinos with tanb&2 may remain good dark matter can-
didates even after LEP 2.

B. Heavy Higgsino-like neutralinos

Coannihilations for Higgsino-like neutralinos heavier than
the W boson have been mentioned by Drees and Nojiri@8#,
who argued that they should not change the relic density by
much, and by McDonald, Olive, and Srednicki@6#, who warn
that they might change it by an estimated factor of 2. We
typically find a decrease by factors of 2–5, and in some
models even by a factor of 10@see the right-hand part of Fig.
7~b!#.

For mx.mW , the lightest and next-to-lightest neutralinos
and the lightest chargino are close in mass, and they annihi-
late into W bosons in addition to fermion pairs. While the
annihilation and coannihilation cross sections intoW pairs
are comparable, the coannihilation ofx1

0x2
0, x1

0x1
1 andx2

0x1
1

into fermion pairs is stronger than thex1
0x1

0→ f f̄ annihila-

FIG. 7. For Higgsino-like neu-
tralinos (Zg,0.01), we show~a!
the relic density with coannihila-
tions included and~b! the ratio of
the relic densities with and with-
out coannihilations versus the
neutralino mass. The horizontal
lines in ~a! limit the cosmologi-
cally interesting region
0.025,Vxh2,1.
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tion. This gives the increase in the effective annihilation rate
that we observe.

As a result, the smallest and highest masses for which
Higgsino-like neutralinos heavier than theW boson are good
dark matter candidates shift up from 300 to 450 GeV and
from 3 to 7 TeV, respectively.

Together with the result in the previous subsection, we
conclude that Higgsino-like neutralinos (Zg,0.01) can be
good dark matter candidates for masses in the ranges 60–85
GeV and 450–7000 GeV.

C. Models with zµz;zM 1z

Coannihilations for mixed or gauginolike neutralinos have
not been included in earlier calculations. It has been believed
that they are not very important in these cases. On the con-
trary, whenumu;uM1u and mx*mW , there is a very pro-
nounced mass degeneracy among the three lightest neutrali-
nos and the lightest chargino. The ensuing coannihilations
can decrease the relic density by up to two orders of magni-
tude or evenincreaseit by up to a factor of 3. This is easily
seen in Fig. 5 as the vertical strip atum/M1u;1. In Fig. 8 the
relic density including coannihilations and the ratio of the
relic density with coannihilations to that without coannihila-
tions are shown versus the neutralino mass for models with
0.8,um/M1u,1.2.

We recall that in models withumu;uM1 the lightest neu-
tralino can be Higgsino-like, mixed, or gauginolike. If the
lightest neutralino is mixed (Zg;0.5), coannihilations can
increase the relic density, whereas if it is more Higgsino-like
or gauginolike they will decrease it. This is because the an-
nihilation cross section for mixed neutralinos is generally
higher than those for Higgsino-like or gauginolike neutrali-
nos.

The largest decrease we see for this kind of models is
when uM1u is slightly less thanumu and both are in the TeV
region. In this case, the lightest neutralino is a very pure
B-ino, and its annihilation cross section is very suppressed
since it couples neither to theZ nor to theW boson. The
chargino and other neutralinos close in mass have much
higher annihilation cross sections, and thus coannihilations
between them greatly reduce the relic density. This big re-
duction suffices to lowerVxh2 to cosmologically acceptable

levels if Zg,0.96. This reduction does not occur for masses
much lower than a TeV, because the terms in the neutralino
mass matrix proportional to theW mass prevent such pure
B-ino states and such severe mass degeneracy.

To conclude, whenumu;uM1u, coannihilations are very
important no matter if the neutralino is Higgsino-like, mixed,
or gauginolike. The relic density can be cosmologically in-
teresting for these models as long as the gaugino fraction
Zg,0.96: these neutralinos are good dark matter candidates.

D. Gauginolike neutralinos with zµz@zM 1z

When umu@uM1u, the lightest neutralino is a very pure
gaugino. According to the GUT relation equation~3!, the
supersymmetric particles next in mass, the next-to-lightest
neutralino, and the lightest chargino, are twice as heavy. So
we expect that coannihilations between them are of no
importance.2 In fact, as discussed in Sec. V, coannihilations
would need to increase the effective cross section by several
orders of magnitude for these large mass differences.

This actually happens in some cases, such as the small
spread atum/M1u.130 in Fig. 5. In these models, the light-
est neutralino is a very pureB-ino (Zg.0.999) and the
squarks are heavy. Its annihilation to fermions is suppressed
by the heavy squark mass, and its annihilation toZ and W
bosons is either kinematically forbidden or extremely sup-
pressed because a pureB-ino does not couple toZ and W
bosons. On the other hand, the lightest chargino is a very
pureW-ino, which annihilates to gauge bosons and fermions
very efficiently. The huge increase in the effective cross sec-
tion, compensated by the large mass difference, reduces the
relic density by 10–20 %. However, the relic density before
introducing coannihilations was of the order of 103–104, and
this small reduction is not enough to render these special
cases cosmologically interesting.

2In models with nonuniversal gaugino masses, the lightest gaugi-
nolike neutralino can be almost degenerate with the lightest
chargino, and coannihilations can be important, as examined, e.g.,
in Ref. @22#.

FIG. 8. For neutralinos with
0.8,um/M1u,1.2 we show ~a!
the relic density with coannihila-
tions included and~b! the ratio of
the relic densities with and with-
out coannihilations versus the
neutralino mass. The horizontal
lines in ~a! limit the cosmologi-
cally interesting region
0.025,Vxh2,1.
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E. Cosmologically interesting region

We now summarize when the neutralino is a good dark
matter candidate. Figure 9 shows the cosmologically inter-
esting region 0.025,Vxh2,1 in the neutralino mass-
composition planeZg /(12Zg) versusmx .

The light Higgsino-like region does not extend to the left
and down because of the LEP 2 bound on the chargino mass.
The lower edge in gaugino fraction atZg;1025 is the border
of our survey~how high uM2u is allowed to be!. The upper
limit on Zg and the upper limit on the neutralino mass come
from the requirementVxh2,1. The hole for Higgsino-like
neutralinos with masses 85–450 GeV comes from the re-
quirementVxh2.0.025.

We see that coannihilations change the cosmologically
interesting region in the following aspects: the region of light
Higgsino-like neutralinos is slightly reduced and the big re-
gion of heavier Higgsinos is shifted to higher masses, the
lower boundary shifting from 300 GeV to 450 GeV and the
upper boundary from 3 TeV to 7 TeV.

The fuzzy edge at the highest masses is due to models in
which the squarks are close in mass to the lightest neutralino,
in which caset- and u-channel squark exchange enhances
the annihilation cross section. In these rather accidental
cases, coannihilations with squarks are expected to be impor-
tant and enhance the effective cross section even further.
Thus, the upper bound of 7 TeV on the neutralino mass may
be an underestimate.

VIII. CONCLUSIONS

We have performed a detailed evaluation of the relic den-
sity of the lightest neutralino, including all two-body coan-
nihilation processes between neutralinos and charginos for
general neutralino masses and compositions.

We have generalized the relativistic formalism of Gon-
dolo and Gelmini@10# to properly treat~sub!threshold and
resonant annihilations also in presence of coannihilations.
We have found that coannihilations can formally be consid-
ered as thresholds in a suitably defined Lorentz-invariant ef-
fective annihilation rate.

Our results confirm qualitatively the conclusion of Mizuta

and Yamaguchi@7#: the inclusion of coannihilations when
mx,mW is very important when the neutralino is Higgsino-
like. In contrast with their calculation, we do, however, find
a window of cosmologically interesting Higgsino-like neu-
tralinos where the masses aremx;75 GeV and tanb&1.6.
This is due primarily to a milder mass degeneracy at low
tanb, and secondarily to the one-loop corrections to the neu-
tralino masses pointed out in Ref.@9#.

We also find that coannihilations are important for heavy
Higgsino-like neutralinos,mx.mW , for which the relic den-
sity can decrease by typically a factor of 2–5, but sometimes
even by a factor of 10. Higgsino-like neutralinos with
mx.450 GeV can haveVxh2.0.025 and hence make up at
least a major part of the dark matter in galaxies.

When umu;uM1u, coannihilations will always be impor-
tant: they can decrease the relic density by up to a factor of
100 or even increase it by up to a factor of 3. In these mod-
els, the neutralino is either Higgsino-like, mixed, or gaugi-
nolike, and when the gaugino fractionZg,0.96, the relic
density can be cosmologically interesting.

Coannihilations between neutralinos and charginos in-
crease the cosmological upper limit on the neutralino mass
from 3 to 7 TeV. Coannihilations with squarks might in-
crease it further.

Coannihilation processes must be included for a correct
evaluation of the neutralino relic density whenumu@uM1u
and whenumu&2uM1u. In the first case, the neutralino is a
very pure gaugino and its relic density overcloses the Uni-
verse. In the second case, the neutralino is either Higgsino-
like, mixed, or gauginolike, and for each of these types there
are many models where it is a good dark matter candidate.
To establish this, the inclusion of coannihilations has been
essential.
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FIG. 9. Neutralino massesmx

and compositionsZg /(12Zg) for
cosmologically interesting models
~a! with and ~b! without inclusion
of coannihilations.
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