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The spectrum of cold dark matter particles on Earth is expected to have peaks in velocity space associated
with particles which are falling onto the Galaxy for the first time and with particles which have fallen in and
out of the Galaxy only a small number of times in the past. We obtain estimates for the velocity magnitudes
and the local densities of the particles in these peaks. To this end we use the secondary infall model of galactic
halo formation which we have generalized to take account of the angular momentum of the dark matter
particles. The new model is still spherically symmetric and it admits self-similar solutions. In the absence of
angular momentum, the model produces flat rotation curves for a large range of values of a parametere which
is related to the spectrum of primordial density perturbations. We find that the presence of angular momentum
produces an effective core radius; i.e., it makes the contribution of the halo to the rotation curve go to zero at
zero radius. The model provides a detailed description of the large scale properties of galactic halos including
their density profiles, their extent, and total mass. We obtain predictions for the kinetic energies of the particles
in the velocity peaks and estimates for their local densities as functions of the amount of angular momentum,
the age of the Universe, ande. @S0556-2821~97!05516-1#

PACS number~s!: 95.30.Cq, 14.80.Ly, 14.80.Mz, 95.35.1d

I. INTRODUCTION

Experiments are presently under way which attempt to
identify the nature of dark matter@1# by direct detection on
Earth. The dark matter candidates which are being searched
for in this manner are weakly interacting massive particles
~WIMP’s! and axions. The best motivated candidate of this
type is the lightest supersymmetric partner in supersymmet-
ric extensions of the standard model of particle physics@2#.
The mass range for which WIMP’s provide the critical en-
ergy density for closing the universe is a few GeV to a few
hundred GeV. The axion is a light pseudoscalar particle
whose existence has been postulated to explain why, in the
context of the standard model of particle physics, the strong
interactions conserveP and CP @3#. The likely mass range
for which axions provide the critical energy density for clos-
ing the universe is 1024 eV,ma,1027 eV @4#.

Axions and WIMP’s are the leading cold dark matter
~CDM! candidates. Other forms of dark matter are neutrinos
and dark baryons. From the point of view of galaxy forma-
tion, the defining properties of CDM are~1! that CDM par-
ticles, unlike baryons, are guaranteed to interact with their
surroundings only through gravity and~2! that CDM par-
ticles, unlike neutrinos, have negligibly small primordial ve-
locity dispersion. Studies of large scale structure formation
support the view that the dominant fraction of dark matter is
CDM. Moreover, if some fraction of the dark matter is
CDM, it necessarily contributes to galactic halos by falling
into the gravitational wells of galaxies and hence is suscep-

tible to direct detection on Earth. WIMP’s are being searched
for by looking for WIMP1nucleus elastic scattering in a
laboratory detector@5#. The nuclear recoil can be put into
evidence by low-temperature calorimetry, by ionization de-
tection, or by the detection of ballistic phonons. Axions are
being searched for by stimulating their conversion to photons
in a laboratory magnetic field@6,7#. The experimental appa-
ratus involves an electromagnetic cavity placed in the bore of
a superconducting solenoid. When the resonant frequency of
the lowest transverse magnetic~TM! mode of the cavity
equals the axion mass (hn5mac2), some galactic halo ax-
ions convert to microwave photons inside the cavity. If a
signal is found in the cavity detector of dark matter axions, it
will be possible to measure the energy spectrum of the ax-
ions with great precision and resolution.~The energy resolu-
tion is limited only by the measurement integration time and
the stability of the local oscillator with which the axion sig-
nal is compared.! Hence the question arises: what can be
learned about our galaxy and the universe by analyzing such
a signal? The main purpose of this paper is to address this
question by predicting properties of the CDM spectrum on
Earth in terms of cosmological input parameters. Inciden-
tally, all CDM candidates have the same phase space distri-
bution, and hence the same spectrum on Earth, in the limit
where their small primordial velocity dispersions are ne-
glected. We are motivated in part by the fact that knowledge
of the spectrum may help in the discovery of a signal.

In many past discussions of dark matter detection on
Earth, it has been assumed that the dark matter particles have
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an isothermal distribution, or an adiabatic deformation of an
isothermal distribution. A strong argument in favor of this
assumption is the fact that it predicts the rotation curve of the
Galaxy to be flat at large radial distances. Indeed, self-
gravitating isothermal spheres always have density distribu-
tions r(r ) which fall off at larger as 1/r 2. Moreover, they
have a ‘‘core radius,’’ i.e., a radiusa within which the den-
sity r(r ) no longer behaves as 1/r 2 but goes to a constant as
r→0. The behavior may, for most practical purposes, be
approximated by the functionr(r )5r(0)@11(r /a)2#21.
Thus, the contribution of an isothermal halo to the galactic
rotation velocity goes to zero asr→0. This feature of iso-
thermal halos is attractive as well because it is known that, in
spiral galaxies such as our own, the rotation velocity at small
radii may be entirely accounted for by the bulge and the disk.
In our Galaxy, the core radius is such that roughly half of the
rotation velocity squared at the solar radiusr s.8.5 kpc is
due to the disk and bulge while the other half is due to the
dark halo. Thermalization of the galactic halo has been ar-
gued to be the outcome of a period of ‘‘violent relaxation’’
@8# following the collapse of the protogalaxy. If it is strictly
true that the velocity distribution of the dark matter particles
is isothermal, then the only information that can be gained
from its observation is the corresponding virial velocity and
our own velocity relative to its standard of rest.

However, one may convince oneself that the velocity dis-
tribution of dark matter particles has a nonthermal compo-
nent. Consider the fact that our closest neighbor on the ga-
lactic scale, the galaxy M31 in Andromeda, at a distance of
order 730 kpc from us, is falling towards our Galaxy with a
line-of-sight velocity of 120 km/sec. This motion can be un-
derstood to be due to the mutual gravitational attraction be-
tween the two galaxies: first they were receding from each
other as part of the general Hubble flow, this relative motion
was halted and now they are falling towards one another. We
may use M31 as an indicator of the motion of any matter in
our neighborhood. Moreover, if cold dark matter exists, then
there is cold dark matter at every physical point in space
~including everywhere we see nothing and which appears
empty!, because by Liouville’s theorem the three-
dimensional sheet in six-dimensional phase-space on which
the CDM particles lie cannot be ruptured. The thickness of
that sheet is the tiny primordial velocity dispersion of the
CDM particles, of order 10212 for WIMP’s and 10217 for
axions (c51). The implication of the above is that, if CDM
exists, there are CDM particles falling onto our Galaxy con-
tinuously and from all directions. The motion of these par-
ticles gets randomized by gravitational scattering off giant
molecular clouds, globular clusters, and other inhomogene-
ities but complete thermalization of their velocity distribu-
tion occurs only after they have fallen in and out of the
Galaxy many times. As a result there are peaks in the veloc-
ity distribution of CDM particles at any physical point in the
galaxy@9#. One peak is due to particles falling onto the gal-
axy for the first time, one peak is due to particles falling out
of the galaxy for the first time, one peak is due to particles
falling in for the second time, and so on. In particular, this is
true on Earth. The width of the first two peaks, which we
label n51, is related to and is of order the velocity disper-
sion of the particles before they fall in for the first time. The
width of the next two peaks (n52) is expected to be some-

what larger as a result of scattering of the particles off inho-
mogeneities in the galaxy. The width of the next two peaks
(n53) is larger still because these particles have been scat-
tered more. And so on.

One of the main purposes of this paper is to obtain esti-
mates of the sizes and velocity magnitudes of the velocity
peaks on Earth. By ‘‘size,’’ we mean the contribution of the
peak to the local mass density of the halo. By ‘‘velocity
magnitude,’’ we mean the magnitude of the velocity vector
of the particles in the peak as measured in the rest frame of
the galaxy, i.e., in a frame which is not corotating with the
disk. The tool we use is the secondary infall model@10# of
galactic halo formation. This model assumes a single over-
density in an expanding universe. A halo forms around the
overdensity because dark matter keeps falling onto it. The
dark matter is assumed to have gravitational interactions
only and to have zero initial velocity dispersion. The model
also assumes spherical symmetry. Finally, in its original
form, it assumes that the dark matter particles have zero
angular momentum with respect to the center and hence that
their motion is purely radial. Much progress@11,12# in the
analysis of the model was made as a result of the realization
that the time evolution is self-similar providedV51 and
provided the initial overdensity has a special scale-free form;
see Eq.~3.11!. The parametere that appears in this ansatz is
related to the slope of the power spectrum of primordial den-
sity perturbations at the galactic scale. Self-similarity means
that the halo is time independent after all distances are res-
caled by an overall time-dependent sizeR(t) and all masses
by a time-dependent massM (t). The self-similar solutions
can be obtained numerically with great precision and some
of their properties may be derived analytically. When the
parametere is in the range 0<e<2/3, the density profile
r(r );1/r 2 and thus the rotation curve is flat.

However, for the purpose of estimating the sizes of veloc-
ity peaks, the secondary infall model without angular mo-
mentum is rather inadequate. In particular, it tends to over-
estimate the size of the peaks due to dark matter particles
falling in and out of the galaxy for the first time. Indeed,
angular momentum has the effect of keeping infalling dark
matter away from the galactic center and this effect is largest
for particles falling into the galaxy last. On the other hand,
the presence of angular momentum destroys spherical sym-
metry and thus makes the actual evolution far more compli-
cated and untractable. However, as will be explained in de-
tail below, it is possible to includethe effectof angular
momentum into the secondary infall model without destroy-
ing its spherical symmetry by averaging over all possible
orientations of an actual physical halo@13#. Moreover, the
time evolution of the model with angular momentum thus
included is still self-similar provided the angular momentum
distribution is of a particular scale-free form. It was also
found @13# that angular momentum has the effect of making
the halo contribution to the galactic rotation curve go to zero
at the galactic center, thus introducing an effective core ra-
dius for the halo mass distribution. We define the effective
core radiusb to be the radius at which the halo contributes
half of the galaxy’s rotation velocity squared. For our Gal-
axy, b is of order our own distance to the galactic center.
This by itself suggests that the effect of angular momentum
on the velocity peaks on Earth is not small. The model with
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angular momentum can be accurately solved on a computer.
Its predictions for the effective core radiusb, the local halo
density, and the expected sizes and velocity magnitudes of
the first few velocity peaks are tabulated below for represen-
tative values of the input parameters, which are the age of the
Universe, the parametere and the average amount of angular
momentum. We also give an analytical treatment of the
model under simplifying but realistic assumptions. It yields
general formulas which may be used to estimate the expected
sizes and the velocity magnitudes of the velocity peaks for a
wide range of the input parameter values.

In Sec. II we review the arguments of Ref.@9# why ve-
locity peaks in the cold dark matter spectrum on Earth are
expected, and add some comments of our own. In Sec. III we
give a detailed description of the self-similar infall model,
without and with angular momentum. In Sec. IV we describe
how some of the model parameters are determined in terms
of observed properties of our Galaxy and we give the results
of the numerical integration of the model. Section V contains
our analytical treatment of the model. Section VI summa-
rizes our results.

II. PHASE SPACE STRUCTURE
OF COLD DARK MATTER HALOS

In cold dark matter scenarios, the initial phase space dis-
tribution is a very thin sheet nearvW 5HrW, whereH is the
Hubble rate andrW is the position relative to an arbitrarily
chosen reference point. The deviations from perfect Hubble
flow which are present are associated with the primordial
density perturbations that will produce galaxies and large
scale structures by gravitational instability. Where a galaxy
~or some other object! forms and grows, the phase space
sheet is folding itself up. The process is illustrated in Fig. 1
for the simplified case where a single spherically symmetric
overdensity is present in an otherwise homogeneous universe
and where all dark matter particles move on radial orbits
through the center of the overdensity. The line in the figure
indicates the location of the dark matter particles in (r , ṙ )
phase space at an instant of time.r is the distance to center
of the overdensity andṙ 5dr/dt. As time goes on the line
‘‘winds up’’ in the clockwise direction, rotating most rapidly
at the center.

Figure 1 shows that the velocity spectrum of cold dark
matter particles on Earth, or anywhere else in the Galaxy, has

a series of peaks. One peak is due to particles falling onto the
Galaxy for the first time, passing by Earth while going to-
wards the galactic center. A second peak is due to particles
which are falling out of the Galaxy for the first time, passing
by Earth while going away from the galactic center. A third
peak is due to particles falling onto the Galaxy for the second
time. A fourth peak is due to particles falling out of the
Galaxy for the second time. And so on. A rough estimate of
the numberN of velocity peaks on Earth in this idealized
case may be obtained as the ratio of the age of the Galaxy
(;1010 yr) to the time (;0.53108 yr) it takes a particle to
fall to the center of the Galaxy starting from rest at the
Earth’s location, with the resultN;200. However, the pres-
ence of angular momentum of the dark matter particles tends
to decreaseN by restricting the range of radii over which
dark matter orbits vary.~In the extreme limit of circular or-
bits, N51.! As will be seen below, this expectation@9# is
confirmed by our calculations. We shall also find that the
number of peaks depends upone.

Of course the description of a galactic halo presented in
Fig. 1 is much simplified. In the remainder of this section,
we discuss the sensitivity of the conclusion, that there are
peaks in the cold dark matter velocity distribution on Earth,
to the simplifying assumptions that were made. In particular,
we inquire into the effect of~1! the gravitational scattering of
the dark matter particles by inhomogeneities in the galaxy,
~2! the angular momentum that the dark matter particles have
with respect to the galactic center, and~3! the velocity dis-
persion that the dark matter particles have before they fall
onto the galaxy.

A. Scattering by inhomogeneities in the galaxy

The effect of the gravitational scattering of the dark mat-
ter particles by the inhomogeneities in the galaxy, such as
stars, globular clusters, and large molecular clouds, is to
‘‘fuzz up’’ the phase space sheets. Consider a phase space
sheet which in the absence of scattering produces on Earth a
stream with unique velocityvW . The collective effect of scat-
tering by a class of objects of massM and densityn is to
diffuse the velocities in the stream over a cone of opening
angleDu given by @9#

~Du!25E dtE
bmin

bmax 4G2M2

b2v4 nv2pbdb

.231027S M

M (
D 2

lnS bmax

bmin
D E dt

n

v3

~300 km/s!3

1010 yr pc23 ,

~2.1!

where the time integral is over the past history of the par-
ticles in the stream,b is the impact parameter of a scattering
and v is the velocity of the sheet relative to the scattering
center. In the galactic disk, the giant molecular clouds are
most likely the main contributors. WithM;106M ( ,
n;3 kpc23, bmax;kpc, and bmin;20 pc, they yield
Du.0.05 for dark matter particles that have spent most of
their past in the galactic disk. The contributions due to
globular clusters~M;53105M ( , n;0.3 kpc23! and stars
(M;M ( , n;0.1 pc23! are less important. At any rate,
peaks due to dark matter particles that have spent much of

FIG. 1. Phase space distribution of the halo dark matter particles
at a fixed moment of time. The solid lines represent occupied phase-
space cells. The dotted line corresponds to the observer position.
Each intersection of the solid and dotted lines produces a velocity
peak.
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their past in the central parts of the galaxy are likely to be
washed out. On the other hand, the peaks due to dark matter
particles which have fallen in and out of the galaxy only a
small number of times in the past are not erased by scatter-
ing.

B. Angular momentum

The presence of the rotating galactic disk clearly indicates
that the baryons in our Galaxy carry angular momentum.
This angular momentum is thought to have been produced by
the gravitational forces of nearby galaxies when ours started
to form. One should expect the dark matter in the galactic
halo to have similar amounts of angular momentum and
hence to move on nonradial orbits. If an infalling particle’s
angular momentum is large enough, its distance of closest
approach to the galactic center is larger than our own dis-
tance (.8.5 kpc) to the galactic center and hence it cannot
possibly reach us. It is nonetheless true that particles falling
onto the Galaxy for the first time reach us at all times, even
if the typical distance of closest approach of such particles to
the galactic center is much larger than 8.5 kpc.

Indeed, consider all particles that reach their turn-around
radius at a given time. ‘‘Turn around’’ refers to the moment
in a particle’s history when it reaches zero radial velocity
with respect to the galactic center for the first time, after its
initial Hubble flow velocity has been halted by the gravita-
tional pull of the galaxy and before it starts to fall onto the
galaxy for the first time; see Fig. 1. All particles that reach
their turnaround radius at a given time are on a surface
which, from a topological viewpoint, is a sphere enclosing
the galactic center. Let us call this surface the ‘‘turnaround
sphere.’’ By consulting a catalog of the galaxies in our
neighborhood and plotting their radial velocities as a func-
tion of distance, one concludes that the radius of the present
turnaround sphere is of order 1–2 Mpc for our Galaxy. Con-
sider the turnaround sphere at an arbitrary timet. At any
point on that surface the angular momentum vector has a
unique value parallel to the surface. Now, it is well known
that a continuous vector field on a two-sphere cannot every-
where differ from zero. It must have at least two zeros.

Hence there are two places on any turn-around sphere
where the angular momentum vanishes. The particles from
these two locations will pass through the galactic center
when they fall onto the galaxy next, producing two velocity
peaks there. By continuity~the phase space sheet cannot
tear!, other particles on the turn-around sphere will produce
two velocity peaks at any point sufficiently close to the cen-
ter. Figure 2 shows the time evolution of a turn-around
sphere which is initially rigidly rotating about an axis and
which subsequently is moving under the influence of the
gravitational potential of an isothermal sphere. The figure
demonstrates that any turn-around sphere passes~at least!
twice by any point inside of it, once on the way in and once
on the way out, assuming only that the point is inside the
sphere both at its first and its second turn around. By defini-
tion, second turn around is when the sphere reaches its maxi-
mum size for the second time in its history, just after its first
oscillation. Thus we find that when angular momentum is
included, there are still two~possibly more but necessarily an
even number! velocity peaks on Earth due to particles falling
through the Galaxy for the first time, two peaks or more due

to particles falling through the Galaxy for the second time,
and so on. As we saw in the preceding subsection, these
peaks are not erased by scattering off stars, globular clusters,
or giant molecular clouds. The sizes and velocity magnitudes
of these peaks constitute the main topic of this paper.

Finally, let us note the effect angular momentum has on
the caustics of a halo. A ‘‘caustic’’ is a place where the dark
matter density is large because the phase space sheet folds
back there. The density actually diverges at the caustic in the
limit where the thickness of the phase space sheet goes to
zero. There is an outer caustic surface near thenth turn-
around radius withn52,3,4,. . . ; seeFig. 1. It can be shown
that near a caustic surface, the dark matter density behaves as
r;Q(x)/Ax1const, wherex is the distance to the caustic
surface andQ(x) is the Heaviside function:Q(x)51 for
x.0 andQ(x)50 otherwise. Now, when angular momen-
tum is absent, the center of the galaxy is a very special point
because all dark matter particles go through the center at
each orbital oscillation. The dark matter density goes as
r;1/r 2 at the center if there is no angular momentum and
the rotation curve is flat. Thus, in the absence of angular
momentum the galactic center is a caustic point. When an-
gular momentum is present, that caustic point spreads into a
set of inner caustic rings. Figure 2 shows the appearance of
such an inner caustic ring for the case of axial symmetry.
The fact that the caustic appears has nothing to do with axial
symmetry, however. Rather, it is a consequence of the fact
that when a sphere is turned ‘‘inside out,’’ as illustrated in
Fig. 2, a ring singularity must appear on the surface at some
point during the process. Generally, the caustic ring appears
near the place where the particles with the most angular mo-
mentum on a given turn-around sphere turn back at their
distance of closest approach to the galactic center. Outer
caustics at the Earth’s location are likely to be very much
degraded by scattering of the dark matter particles off inho-
mogeneities in the Galaxy. However, inner caustics associ-
ated with particles which have gone through the central parts
of the Galaxy only a small number of times in the past are
not much degraded. The dark matter density on Earth could
be much enhanced if we happen to be close to an inner
caustic.

C. On the velocity dispersion of infalling cold dark matter

In this study, when obtaining estimates of the average
sizes and of the velocity magnitudes of the velocity peaks,

FIG. 2. Positions in physical space at successive moments in
time t1,t2, ••• ,t6 of the particles on a turn-around sphere that is
intially rotating rigidly about the vertical axis. The asterisk indicates
the appearance of an inner caustic ring.
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we neglect the velocity dispersiondv in the cold dark matter
has when it falls onto the galaxy for the first time. Presum-
ably, this is a valid approximation provideddv in is much
smaller than the velocity dispersiondvgal;1023 of the gal-
axy as a whole. We argue in this section that this condition is
probably satisfied although we will not attempt to provide a
reliable estimate for the size ofdv in . The widthdvn of the
velocity peaks due to particles falling in and out of the gal-
axy for thenth time, wheren is sufficiently small that the
broadening effect of scattering of the particles by the gal-
axy’s inhomogeneities can be neglected, is related todv in by
Liouville’s theoremdvn5dv in(t* ,n)@rn /r(t* ,n)#1/3, where
rn is the contribution to the local halo density from particles
in the nth peak, anddv in(t* ,n) andr(t* ,n) are the velocity
dispersion and density those particles had at the timet* ,n of
their first turn around.

Let us emphasize that the values of the peak widthsdvn

may some day be measured in a direct CDM detection ex-
periment and that such data would provide information about
our Universe which is not readily accessible by other means.
Also, if the widths of some peaks are small enough the sen-
sitivity of the cavity detector of dark matter axions is im-
proved by looking for narrow peaks. In the case of the
present LLNL experiment@7#, which does look for narrow
peaks in addition to looking for a signal whose width is set
by the galaxy’s overall velocity dispersiondvgal;1023, the
sensitivity of the search is improved if there is a velocity
peak withdvn less than about 1028 and with a fraction of the
local density larger than about 1%.

Turning to the question how largedv in may be, let us start
by describing theprimordial velocity dispersion which is the
contribution that is present even if the universe were com-
pletely homogeneous, i.e., it is the value ofdv in if our Gal-
axy were the only density perturbation in the Universe. For
WIMP’s, the primordial velocity dispersiomdvW is due to
the finite temperatureTD the WIMP’s have when their ki-
netic energies decouple from the primordial heat bath. Thus
dvW;(2TD /m)1/2(RD /R0), where m is the WIMP mass,
and RD and R0 are the scale factors at temperatureTD and
now. Form;50 GeV andTD;1 MeV, one hasvW;10212

which is very small. For axions, the primordial velocity dis-
persion is due to the inhomogeneity of the axion field at
temperatureT1.1 GeV and timet1.231027 sec when the
axion mass becomes equal to the Hubble expansion rate. If
there is no inflation after the Peccei-Quinn phase transition at
which the UPQ~1! symmetry gets spontaneously broken, then
the scale of inhomogeneity of the axion field
is of order the horizon scale at timet1 and the primordial
axion velocity dispersion today is thereforedva
;(mat1)21(R1 /R0);102173(1025 eV/ma). If there is in-
flation after the Peccei-Quinn phase transition, then the axion
field gets homogenized over enormous distances anddva is
exponentially small.

The primordial velocity dispersion,dvW or dva , dis-
cussed in the preceding paragraph is the thickness of the
CDM phase space sheet. It constitutes a lower bound on the
velocity dispersiondv in of infalling CDM. Additional veloc-
ity dispersion is expected because the phase space sheet may
wrap itself up on smaller scales than that of the galaxy as a
whole, as illustrated in Fig. 3. The phase space sheet wraps

itself up wherever an overdensity has grown by gravitational
instability past the linear regime (dr/r,1) into the nonlin-
ear one (dr/r.1). In theories of structure formation based
upon cold dark matter, the spectrum of primordial density
perturbations is flat, i.e., it has approximately equal power on
all length scales. The matter density perturbations do not
grow till the time teq of equality between the matter and
radiation energy densities. Afterteq, all density perturbations
which have wavelength less than the horizon~this includes
all length scales of order a galaxy size! grow together at the
same rate and therefore they all reach the nonlinear regime at
approximately the same time. In the standard CDM cosmol-
ogy, the smaller scale clumps reach the nonlinear regime
somewhat earlier because the processed spectrum of density
perturbations is not exactly flat on galaxy scales but is
slightly tilted with more power on small scales.

What happens in the nonlinear regime is far from obvious.
The rate of growth of an overdensity in the nonlinear regime
is of orderAGr, wherer is its mean density. Indeed 1/AGr
is of order the free infall time, which is also the time neces-
sary to produce a new fold in the phase space sheet. At the
start of the nonlinear regime, as we just argued, all overden-
sities have densities of the same order of magnitude and they
therefore grow at comparable rates by locally wrapping up
the phase space sheet. However, overdensities of large physi-
cal size will tidally disrupt and therfore inhibit the growth of
overdensities of smaller physical size in their neighborhood.
In the immediate vicinity of our Galaxy, there are no visible
overdensities other than nearby dwarf galaxies such as the
Magellanic clouds. Dark matter and accompanying baryons
are nonetheless falling onto the Galaxy now for the first time.
It is the velocity dispersion of this unseen matter that we are
interested in. If this matter is in large clumps, one might
expect it to light up stars and thus become visible. On the
other hand, it could be in clumps which have not lit up for
some reason. However, any known object smaller than a gal-
axy ~e.g., stars, globular clusters, large molecular clouds,
dwarf galaxies! has velocity dispersion smaller than
dvgal.1023, and dark matter objects should be expected to
be less clumped than baryonic objects because they can not
dissipate their energy. On this basis, it seems safe to assume
that dv in is considerably less thandvgal.

There is a particular kind of clumpiness which is expected
to affect axion dark matter if there is no inflation after the
Peccei-Quinn phase transition. This is due to the fact that
cold dark matter axions are inhomogeneous withdr/r;1
over the horizon scale at temperatureT1.1 GeV when they

FIG. 3. A small scale subclump falling into the galaxy for the
first time.

56 1867SECONDARY INFALL MODEL OF GALACTIC HALO . . .



are produced at the start of the QCD phase transition, com-
bined with the fact that their velocities are so small that they
do not erase these inhomogeneities by free-streaming before
the time teq when matter perturbations can start to grow.
These particular inhomogeneities in the axion dark matter
are immediately in the nonlinear regime after timeteq and
thus form clumps, called ‘‘axion miniclusters’’@14–16#.
These have @16# mass Mmc.10213M ( and size l mc

.1012 cm, and therefore their associated velocity dispersion
vmc5AGMmc/ l mc.10210 at time teq. This velocity disper-
sion increases by about a factor 10 fromteq till the onset of
galaxy formation because of the hierarchical clustering of the
axion miniclusters. This yieldsvmc.1029 as the contribu-
tion of mini-clusters to the velocity dispersiondv in of infall-
ing axions if there is no inflation after the Peccei-Quinn tran-
sition.

III. SELF-SIMILAR INFALL MODELS

A. The radial infall model

The tool we use to obtain estimates of the sizes and the
velocity magnitudes of the highest energy peaks is the sec-
ondary infall model of galactic halo formation. In its original
form, this model is based on the following assumptions:~1!
the dark matter is nondissipative;~2! it has negligible initial
velocity dispersion;~3! the gravitational potential of the gal-
axy is spherically symmetric and is dominated by the dark
matter contribution;~4! the dark matter particles move on
radial orbits through the galactic center. Assumption~1!
means that the only force acting upon the dark matter par-
ticles is the gravitational pull of the galaxy. Assumption~2!
states that before the galaxy starts to form, at some initial
time t i , all the dark matter particles at the same positionrW i
relative to the galactic center move with the same velocity
vW i . Providedt i is chosen early enough, this initial velocity is
given by the Hubble expansion

vW i5H~ t i !rW i . ~3.1!

H(t i) is the Hubble rate at timet i . The issue of the validity
of assumption~2! is discussed at length in the previous sec-
tion. Henceforth, we will take its validity for granted. As-
sumption~3! is realistic because the gravitational potential of
a galaxy as a whole~luminous plus dark matter! is nearly
spherically symmetric even if the distribution of its luminous
matter is not spherically symmetric at all. Assumption~4! is
the most doubtful. As was discussed in the previous section,
the rotating disks of spiral galaxies show that their baryons
carry angular momentum and one should expect the dark
matter to have similar amounts of angular momentum and
hence to move on nonradial orbits with distances of closest
approach to the galactic center at least of order the radius
(;10 kpc) of the disk. Assumption~4! is motivated mainly
by simplicity. Below, in the next subsection, we will gener-
alize the model to rid it of this assumption. For clarity, we
refer to the model with the fourth assumption included as the
radial infall model.

Let us callMi the mass insider i at the initial timet i . In
a perfectly homogeneous and flat universe,Mi is equal to

Mi
V515

4p

3
r~ t i !r i

35
r i

3H~ t i !
2

2G
5

2r i
3

9Gti
2 , ~3.2!

if we take t i to be in the matter dominated epoch. Instead,

Mi~r i !5
2r i

3

9Gti
2 1dMi~r i !, ~3.3!

wheredMi(r i) is a spherically symmetric overdensity. The
dark matter shell which is initially at radiusr i has initially
the radial velocity

v i~r i !5H~ t i !r i52r i /3t i , ~3.4!

assuming thatt i is small enough so that the very earliest
deviations from perfect Hubble flow may be neglected. The
position r (r i ,t) of each shell at timet is determined by
solving the equations

d2r

dt2
52

GM~r ,t !

r 2 , ~3.5!

M ~r ,t !5E
0

`

dri

dMi

dri
Q„r 2r ~r i ,t !…, ~3.6!

with the initial conditions given in Eq.~3.4!. Q(x) is the
Heaviside function, defined earlier.

The qualitative evolution of the dark matter distribution in
phase-space (r , ṙ ) may be described as follows. Initially, the
dark matter particles are located on the lineṙ 5H(t i)r . As
time goes on, this line ‘‘winds up’’ in a clockwise fashion
rotating most rapidly nearr 5 ṙ 50. Figure 1 shows the line
on which the dark matter particles are located at a particular
moment in time.

The radiusr (r i ,t) of a given shell initially increases till it
reaches a maximum valuer * (r i) at a timet* (r i). r * (r i) and
t* (r i) are called the turn-around radius and turn-around time
of shell r i . After t* (r i), the radius of shellr i will oscillate
with decreasing amplitude. As long as it does not cross any
other shells, the mass interior to shellr i is constant, with
value Mi , and its motion is the well-known motion of a
particle attracted by a central massMi in the limit of zero
angular momentum. Shellr i does not cross any other shells
till some time aftert* (r i), when it is falling onto the galactic
center for the first time. Thus, one readily finds

t* ~r i !5
p

2
A r * ~r i !

3

2GMi~r i !
~3.7a!

and

r * ~r i !5r i

M i~r i !

dMi~r i !
. ~3.7b!

After a given shell crosses other shells its motion depends on
that of the other shells and becomes more difficult to deter-
mine.

Much progress in the analysis of the model came about as
a result of the realization@11,12# that Eqs.~3.5! and ~3.6!
have self-similar solutions for appropriate initial conditions.
A solution is self-similar if it remains identical to itself after

1868 56P. SIKIVIE, I. I. TKACHEV, AND YUN WANG



all distances have been rescaled by a time-dependent length
R(t) and all masses by a time-dependent massM (t). R(t) is
taken to be the radius at which dark matter particles are
turning around at timet; see Fig. 1.M (t) is taken to be the
mass interior toR(t) at time t. So, R(t)5r * (r i) and
M (t)5Mi(r i) with r i such thatt* (r i)5t. A self-similar so-
lution has the properties

M ~r ,t !5M ~ t !M„r /R~ t !… ~3.8!

and

r ~r i ,t !5r * ~r i !l„t/t* ~r i !…, ~3.9!

whereM and l are functions of a single variable. Let us
verify that indeed the evolution is self-similar for appropriate
initial conditions. Substituting Eqs.~3.8! and ~3.9! into Eq.
~3.5! and using Eq.~3.7a!, one finds

d2l

dt2 52
p2

8l2

M ~ t !

Mi~r i !
MS r * ~r i !l

R~ t ! D , ~3.10!

where t[t/t* (r i). We want the right-hand side~RHS! of
Eq. ~3.10! to depend only upont andl~t!. This happens for
the initial condition

dMi~r i !

Mi~r i !
5S M0

Mi~r i !
D e

, ~3.11!

where M0 and e are parameters.e should be in the range
0<e<1, sincee50 corresponds to the extreme case of a
r i-independent overdensity, wherease51 corresponds to the
extreme case of an excess point mass located atr 50. The
initial density profile~3.11! does not have any feature that
would distinguish an epoch in the evolution of the galactic
halo from other epochs. It is this ‘‘scale free’’ property that
makes the initial density profile~3.11! consistent with self-
similarity, as we are about to show. From now on, for the
sake of convenience and following Fillmore and Goldreich,
we will use Mi instead ofr i to label the shells. Using Eqs.
~3.3! and~3.11!, and neglecting terms of orderdMi /Mi ver-
sus terms of order one, we find that Eqs.~3.7! become

t* ~r i !5
3p

4
t i S Mi

M0
D 3e/2

, ~3.12a!

r * ~Mi !5F 8

p2 t
*
2 ~Mi !GMi G1/3

. ~3.12b!

Hence

M ~ t !5M0S 4t

3pt i
D 2/3e

~3.13a!

and

R~ t !5F8t2G

p2 M ~ t !G1/3

. ~3.13b!

Therefore,

M ~ t !

Mi
5

M ~ t !

M „t* ~Mi !…
5S t

t* ~Mi !
D 2/3e

5t2/3e, ~3.14a!

r * ~Mi !

R~ t !
5

R„t* ~Mi !…

R~ t !
5S t* ~Mi !

t D 2/312/9e

5t22/322/9e.

~3.14b!

Thus, Eq.~3.10! has the desired form

d2l

dt2 52
p2

8

t2/3e

l2 MS l

t2/312/9eD . ~3.15!

Similarly, using Eqs.~3.8! and~3.14!, we rewrite Eq.~3.6! as

M~j!5
M „jR~ t !,t…

M ~ t !

5E
0

` dMi

M ~ t !
QXjR~ t !2r * ~Mi !lS t

r * ~Mi !
D C

5
2

3e E
1

` dt

t112/3e QS j2
l~t!

t2/312/9eD , ~3.16!

which also has the desired form.t varies from 1 to`. The
boundary conditions att51 are

l~1!51,
dl

dt
~1!50. ~3.17!

Fillmore and Goldreich@11# integrated Eqs.~3.15! and~3.16!
numerically for various values ofe. They also derived ana-
lytically the behavior ofM~j! when j→0 using adiabatic
invariants to obtain the motion of the shells. Bertschinger
@12# analyzed the casee51.

Let us mention in passing that the ratio of the density at
the turnaround radius to the critical density is
r* /rc59p2/@16(3e11)#.

B. Secondary infall with angular momentum

As was emphasized earlier, the assumption that the infall-
ing dark matter is devoid of angular momentum with respect
to the galactic center is inadequate for the calculation of the
velocity peaks which are the main topic of this paper. How-
ever, it is possible to include the effect of angular momentum
into the secondary infall model while keeping the model
tractable. We will do this in two steps. First we will assign
the same value of angular momentum magnitude to all par-
ticles in a given shell. Second, we will assign the particles in
a given shell a distribution of angular momentum magni-
tudes. The model which results from the first step is not so
realistic but it is easier to explain.

1. Single magnitude of angular momentum
for all particles on a shell

Let us assume first that the particles belonging to shell
Mi all have the samemagnitudeof angular momentum
l (Mi) and that they all have, at some initial time, the same
radial coordinater (Mi ,t) and the same radial velocity
v r(Mi ,t)5]r (Mi ,t)/]t. We further assume that at any
point rW(Mi ,t)5 r̂ r (Mi ,t) on shell Mi , all particles in the

56 1869SECONDARY INFALL MODEL OF GALACTIC HALO . . .



shell have their transverse velocitiesvW'(Mi , r̂ ,t)
5 l (Mi)ŵ/r (Mi ,t) isotropically distributed aboutr̂ , i.e.,
each directionŵ perpendicular tor̂ is equally much repre-
sented. As a result of these assumptions, each shell remains
spherical as it moves through the spherically symmetric mass
distribution M (r ,t) due to all other shells. Initially, at time
t i , the shellMi has radial velocity

v r~Mi ,t !5H~ t i !r ~Mi ,t i !5
2r ~Mi ,t i !

3t i
. ~3.18!

Equations~3.2! and ~3.3! hold as before. Providedl (Mi) is
not too large, the turn-around radiusr * (Mi) and time
t* (Mi) are still given by Eqs.~3.7! to a very good approxi-
mation. We will use these equations, neglecting the correc-
tions therein due tol (Mi)Þ0 and find that self-similarity is
possible. Note, however, that if the corrections to Eqs.~3.7!
due tol (Mi)Þ0 are included one still finds self-similarity to
be possible. The reason we neglect the corrections is not to
obtain self-similarity but because these corrections are truly
small for realistic values of angular momentum.

To obtain self-similarity we assume as a necesary, but no
longer sufficient, condition that the initial mass distribution
is given by the scale free power law of Eq.~3.11!. Equations
~3.12!, ~3.13!, ~3.14! are then still valid as well. Each dark
matter particle satisfies

d2r

dt2
5

l 2

r 3 2
GM~r ,t !

r 2 . ~3.19!

Substituting therein

r ~Mi ,t !5r * ~Mi !lS t

t* ~Mi !
D , ~3.20a!

M ~r ,t !5M ~ t !MS r

R~ t ! D , ~3.20b!

one obtains, using Eqs.~3.12!–~3.14!,

d2l

dt2 5
l ~Mi !

2t* ~Mi !
2

r * ~Mi !
4l3 2

p2

8

t2/3e

l2 MS l

t2/312/9eD ,

~3.21!

where t5t/t* (Mi) as before. To obtain self-similar solu-
tions, we must make the additional assumption that

l ~Mi !5 j
r * ~Mi !

2

t* ~Mi !
, ~3.22!

where j is a constant. Then

d2l

dt2 5
j 2

l3 2
p2

8

t2/3e

l2 MS l

t2/312/9eD . ~3.23!

Equation~3.16! forM~j! and the boundary conditions~3.17!
remain unchanged.

The question arises how realistic the model is in the above
form. Consider shellMi near its turn-around timet* (Mi).
The actual angular momenta of the particles in the shell are
of course not distributed as in the model. The model assumes
vW' to be isotropically distributed aboutrW. Instead, angular

momentum has a unique valuelW(Mi ,rW) at each point, with
lW(Mi ,rW) changing from point to point on the shell. As was

discussed in Sec. II,lW(Mi ,rW) must have at least two zeros on
the shell. This implies that there are necessarily some par-
ticles in the shell which will pass through the center of the
Galaxy and, by continuity, other particles will reach the
Earth as well. There are two velocity peaks in the spectrum
of cold dark matter particles on Earth due to particles falling
into and out of the Galaxy for the first time, two peaks due
particles falling into and out of the Galaxy for the second
time, etc. In contrast, in the above model, after a certain
galactic age none of the particles falling onto the Galaxy for
the first time reach the Earth because these particles have too
much angular momentum. Their distance of closest approach
to the galactic center exceeds our own distance to the galac-
tic center. If we turn for a moment to the results of the
computer simulations, we see that for the example of Figs. 6
and 7, in whichj 50.2, only particles which are falling in
and out of the Galaxy for thenth time with n.3 can pres-
ently reach us.

2. Distribution of magnitude of angular momenta on a shell

In reality, particles at different locations on a given shell
have different values of vector angular momentum. As a re-
sult, the time evolution of a shell is not spherically symmet-
ric when angular momentum is present. This is illustrated by
Fig. 2 in a special axially symmetric case. However, we can
restore spherical symmetry by averaging over all possible
orientations of a physical halo. This corresponds to adopting
the model of the previous subsection but with a distribution
of magnitudes of angular momentum for the particles in each
shell. Let each shellMi have a fractionnk(Mi) of particles
with magnitude of angular momentuml k(Mi), where
k51,...,K. To obtain self-similar solutions,nk(Mi) must be
independent ofMi and

l k~Mi !5 j k

r * ~Mi !
2

t* ~Mi !
. ~3.24!

The equations for self-similar solutions are then

r k~Mi ,t !5r * ~Mi !lkS t

t* ~Mi !
D , ~3.25a!

d2lk

dt2 5
j k
2

lk
3 2

p2

8

t2/3e

lk
2 MS lk

t2/312/9eD , ~3.25b!

M~j!5
2

3e (
k51

K

nkE
1

` dt

t112/3e QS j2
lk~t!

t2/312/9eD ,

~3.25c!

(
k51

K

nk51. ~3.25d!

In our calculations, we shall takej k to be distributed accord-
ing to the density

dn

d j
5

2 j

j 0
2 exp~2 j 2/ j 0

2!. ~3.26!
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Let us explain this choice, starting with the behavior of
dn/d j near j 50. The angular momentum field on a sphere
must have at least two zeros. Let us choose the origin
(u50) of polar coordinates to be at one of them. Assuming
that the zero is simple, the Taylor expansion of the magni-
tude of angular momentum functionj (u,f) in powers ofu
starts with the term linear inu: j ;u. Then we have
dn/d j;dn/du;u; j . The cutoff at largej in Eq. ~3.26!
was chosen to be Gaussian for the sake of convenience. The
actual distribution likely has a sharp cutoff, with a maximum
value of angular momentum, but that is very similar to a
Gaussian. We express our results below in terms of the av-
erage over the distribution,j̄ 5Ap j 0/2.

A benefit of including angular momentum into the sec-
ondary infall model is to produce galactic halos with an ef-
fective core radius. The radial infall model, i.e., the model
without angular momentum, produces flat rotation curves for
0,e,2/3. Adding angular momentum has the effect of de-
pleting the inner halo and hence of making the halo contri-
bution to the rotation curve go to zero asr→0. This is de-
sirable because, in spiral galaxies like our own, it is the sum
of the contributions from the halo, the disk and the bulge that
produces flat rotation curves, and the central parts of the
galaxy are known to be dominated by the bulge and the disk.
We define the ‘‘effective halo core radius’’b as the radius at
which half of the rotation velocity squared is due to the halo.
In our Galaxyb is estimated to be of order 10 kpc. We will
find below that this impliesj̄ ;0.2 in the model.

The secondary infall model with a distribution of angular
momentum described in this subsection still has shortcom-
ings due to the fact that the model averages over all possible
orientations of a physical halo. In particular, the model is
only able to produce estimates of theaveragesizes of veloc-
ity peaks. The averages are over all locations at the same
distance from the galactic center as we are. At some of these
locations, a particular velocity peak may be much larger than
average because that location happens to be close to an inner
caustic.

C. Inclusion of baryons

One may also wish to include the effect of the gravita-
tional potential of the galactic bulge and disk. As was al-
ready noted, the disk and bulge of our Galaxy are conspiring
with its dark matter halo to produce an everywhere approxi-
mately flat rotation curve. We may reasonably assume that
this was also true in the past because most spiral galaxies are
observed to have approximately flat rotation curves and they
do not all have the same age. This suggests a simple way to
include the effect of baryons in the self-similar secondary
infall model, to wit: first obtain for givene the mass function
M~j! of the model without angular momentum and then use
that mass function and Eq.~3.25b! to obtain the phase space
distribution of the dark matter in the model with angular
momentum. We will find below that including the gravita-
tional field of the disk and bulge in this manner does not
have much effect upon the sizes of the highest energy peaks
but it does shift their kinetic energies upward by deepening
the potential well at our location.

D. e and the spectrum of initial density perturbations

The spectrum of the cosmological density perturbations
which give rise to galaxies contains information about the
likely value of the parametere. It has been shown@17# that,
if the density perturbations have a Gaussian distribution, the
averagedensity profile around a peak in the density distri-
bution is given simply by

^d~r !&5d~0!
z~r !

z~0!
~3.27!

where d(rW)[dr(rW)/r and z(r )[^d(rW)d(0)& is the two-
point correlation function. The latter is related to the power
spectrumP(k) by

z~r !5E exp~ ikW•rW !P~k!d3k. ~3.28!

The power spectrum is the productP(k)5AknT2(k), where
Akn is the primordial spectrum, taken for simplicity to be a
power law, andT(k) is the transfer function. For cold dark
matter, the transfer function is given by@18#

T~k!5
ln~112.34q!

2.34q
@113.89q1~16.1q!21~5.46q!3

1~6.71q!4#21/4, ~3.29!

whereq5k Mpc/h2. The Harrison-Zel’dovich spectrum cor-
responds ton51. Equations~3.27! and ~3.28! imply that if
P(k);ka on some momentum scalek, then z(r );r 2a23

and hencee5(a13)/3 on the corresponding length scale
r 51/k. We computeda5d lnP/d lnk for n51 and plotted
the resultinge(r ) in Fig. 4 for the relevant scales. The figure
suggests thate is of order 0.2–0.3 on the galactic scale.

IV. NUMERICAL INTEGRATION

In this section, we present the results from numerically
integrating Eqs.~3.25b!, ~3.25c! for various values of the
parametere and various angular momentum distributions,
including no angular momentum, a single value of angular
momentum, and the distribution of Eq.~3.26!. The function
l~t! gives us the phase-space distribution of the particles
through the equations

FIG. 4. The expected value of thee parameter as a function of
galaxy size, in models of structure formation based upon cold dark
matter and a flat~Harrison-Zel’dovich! spectrum of primordial den-
sity perturbations. We definedh0.7[h/0.7
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r ~Mi ,t !5r * ~Mi !lS t

t* ~Mi !
D5R~ t !l~t!t22/322/9e,

~4.1a!

v~Mi ,t !5
dr~Mi ,t !

dt
5

R~ t !

t
t1/322/9e

dl

dt
. ~4.1b!

If there is a distribution of angular momentum values, the
functions l(t), r (Mi ,t), and v(Mi ,t) carry an indexk
which we have suppressed here to avoid cluttering the equa-
tions.

To solve Eq.~3.25b! for the particle trajectoryl~t! we
need to know the mass functionM~j!. This function, in turn,
is given in terms of the trajectoryl~t! by Eq. ~3.25c! or,
equivalently, by

M~j!5 (
n51

„t2n21
22/3e~j!2t2n

22/3e~j!…, ~4.2!

where thet j (j) correspond to the moments of time when the
trajectory crosses radiusr 5jR(t), i.e., they are the solutions
of l(t)5jt2/312/9e. Following Fillmore and Goldreich@11#,
we solve Eqs.~3.25b! and~3.25c! simultaneously by a tech-
nique of successive iterations. Starting with some arbitrary
mass profileM~j! @we tookM(j)5j2# we findl~t!, which
is then used to derive a new mass profile, from which a new
trajectory is derived, and so on. The procedure is repeated till
it converges. We find that the mass profile changes very little
after five iterations. Typically we run ten iterations to get the
final results.

Figure 5 shows the phase-space diagram for the case
e50.2 and zero angular momentum. The solid line in that
figure shows the location of all the particles in phase space at
a given time, i.e., it is the set of points„r (Mi ,t),v(Mi ,t)…
for all Mi . The radial distances are normalized to the turn-
around radiusR at timet and the velocities are normalized to
AGM(t)/R(t)5pR(t)/A8t which is the rotation velocity at
the turn-around radius. Figure 6 shows the phase space dia-
gram for the casee50.2 and a single value of angular mo-
mentum j 50.2. The particle trajectoryl~t! for that case is
shown in Fig. 7.

A convenient way to show the mass distribution is by
showing the rotation curve. We definen~e,j! by

v rot
2 ~r !5GM~r ,t !/r[n2S e,

r

R~ t ! D GM~ t !

R~ t !
. ~4.3!

With this definition, we haven(e,j51)51. The functions
n(e,j)2 obtained by numerical integration are plotted in Fig.
8 for various values ofe and j 50.

To fit the model to our galactic halo, we must choose
values of the present turn-around radiusR[R(t) and of
M[M (t). Equivalently, we may choose values of the
present aget and ofR. M is given in terms ofR andt by Eq.
~3.13b!. t is given in terms of the Hubble rate
H05h100 km s21 Mpc21 by the relationt2153H0/2. We
will use h to state the age of the Universe. Then we fixR in
terms ofh by requiring that the model reproduce the mea-
sured value,v rot5220 km s21, of the rotation velocity in our
Galaxy. Let us calln~e! the value ofn~e,j! in the flat part of
the rotation curve, nearr 50.02R for e,0.4; see Fig. 8.n~e!
is related tov rot by Eq. ~4.3!. This implies

Rh51.32n~e!21 Mpc. ~4.4!

FIG. 5. The phase space distribution of halo dark matter par-
ticles at a fixed moment of time for the casee50.2 andj 50. The
solid lines represent occupied phase space cells. The dotted line
corresponds to the Sun’s position ifh50.7.

FIG. 6. The phase space distribution of the dark matter particles
in the casee50.2, h50.7, and a single value of angular momen-
tum j 50.2.

FIG. 7. The functionl~t! for e50.2, j 50.2.

FIG. 8. Rotational velocity squared curves for different values
of e and j 50.
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Table I givesn(e)2, Rh, andMh for various values ofe.
Our distance to the galactic center is taken to be 8.5 kpc

and we definejs[8.5 kpc/R. The contribution of thenth
velocity peak to the local halo density is given by

rn5
M

4pR3js
2

6tn
2/324/9e

u9etnl̇n2~6e12!lnu
, ~4.5!

where l̇[dl/dt, and ln and tn are the solutions of
l(t)5jst

2/312/9e. The kinetic energy~in a frame of refer-
ence which is not rotating along with the galactic disk! per
unit particle mass in thenth peak is given by

En5
1

2
vn

25
R2

2t2 tn
2/324/9eS j 2

ln
2 1l̇n

2D . ~4.6!

We shall expressEn in units of (300 km s21)2/2 when pre-
senting our results.

We now discuss in greater detail the results specific to the
different types of angular momentum distributions used.

A. Radial infall

Without angular momentum all particles pass through the
origin, r 50, at each oscillation. To avoid infinities in the
numerical integration, a regulator at smallr is required. The
one which is most convenient for us and which we use is to

give a small amount of angular momentum to the dark matter
particles. We foundj 251026 to be small enough for our
purposes.

Figure 5 shows a typical phase space distribution. Figure
8 shows the rotation curves for various values ofe. An ana-
lytical treatment of the radial infall model using adiabatic
invariants predicted@11# the behavior of the density near the
origin to be r}r 29e/(3e11) in the range 2/3<e<1 and r
}r 22 in the range 0,e<2/3. These predictions agree very
well with our results. The rotation curves do indeed go to a
constant near the origin when 0,e<2/3 except for small
logarithmic corrections. The analytical treatment given in
Sec. V suggests the behaviorr;1/„r 2Aln(1/r )… for small e.

Figure 9 shows the velocity peaks on Earth predicted by
the radial infall model withe50.2 andh50.7. The rows
labeled j̄ 50.0 in Table II give the density fractions and ki-
netic energies of the five most energetic incoming peaks for
the casese50.2 and 1.0, andh50.7. For each incoming
peak there is an outgoing peak with approximately the same
energy and density fraction. We find that, in the radial infall
model, the sizes of the two peaks due to particles falling in
and out of the galaxy for the first time are large, each con-
taining of order 10% of the local halo density fore in the
standard CDM model inspired range of 0.15–0.4. As was
emphasized already, this spectrum is unrealistic because an-

FIG. 9. The density fractionsf n5rn /r ~in percent! and the
kinetic energies per unit particle massEn of the peaks at the Sun’s
position, fore50.2, j 50 andh50.7. The peaks form pairs. One
member of each pair is due to particles with positive radial velocity
and the other is due to particles with negative radial velocity

TABLE I. n2(e), Rh ~in units of Mpc! and Mh ~in units of
M (! for different values ofe.

e n2(e) Rh Mh

0.1 0.25 2.6 1.131014

0.15 0.6 1.7 3.231013

0.2 0.9 1.4 1.831013

0.25 1.15 1.23 1.231013

0.3 1.35 1.14 9.531012

0.35 1.5 1.08 8.131012

0.4 1.7 1.02 6.831012

0.45 1.8 0.98 6.131012

TABLE II. Density fractionsf n and kinetic energies per unit particle massEn of the first five incoming peaks for various values ofe,
h, and the average dimensionless angular momentumj̄ . Also shown are the current turn-around radiusR in units of Mpc, the effective core
radiusb in kpc, and the local densityr in units of 10225 g cm23. The f n are in percent and theEn are in units of 0.53(300 km s21)2.

e j̄ h R b r f 1 (E1) f 2 (E2) f 3 (E3) f 4 (E4) f 5 (E5)

0.2 0.0 0.7 2.0 0.0 8.1 13~4.0! 5.3 ~3.2! 3.3 ~2.7! 2.4 ~2.4! 1.9 ~2.2!
1.0 0.0 0.7 0.9 0.0 8.4 1.6~3.4! 1.1 ~3.2! 0.9 ~3.0! 0.8 ~2.9! 0.7 ~2.8!

0.15 0.2 0.7 2.4 13 5.0 4.0~3.1! 5.4 ~2.3! 5.3 ~1.8! 4.9 ~1.5! 4.0 ~1.3!
0.2 0.1 0.7 2.0 4.5 7.6 7.4~3.8! 7.2 ~3.0! 4.9 ~2.5! 3.2 ~2.2! 2.4 ~2.0!

0.2 0.7 2.0 12 5.4 3.1~3.4! 4.1 ~2.6! 4.3 ~2.1! 4.1 ~1.8! 3.6 ~1.6!
0.5 2.8 17 4.9 1.9~3.5! 2.5 ~2.7! 2.8 ~2.3! 2.9 ~2.0! 3.0 ~1.7!
0.9 1.6 9.3 6.0 4.4~3.2! 5.3 ~2.5! 5.1 ~2.0! 4.5 ~1.7! 3.6 ~1.5!

0.4 0.7 2.0 40 2.6 0.8~2.5! 1.6 ~1.8! 2.1 ~1.4! 2.4 ~1.1! 2.6 ~0.9!
0.25 0.2 0.7 1.8 8.5 5.5 2.0~3.5! 2.9 ~2.8! 3.3 ~2.4! 3.4 ~2.1! 3.1 ~1.8!
0.4 0.2 0.7 1.5 2.2 7.7 1.1~4.0! 1.5 ~3.4! 1.8 ~3.0! 1.9 ~2.8! 2.1 ~2.5!
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gular momentum has a non-negligible effect upon the peak
sizes.

B. Single nonzero value of angular momentum

Figure 6 shows the phase space diagram for the case
e50.2 andj 50.2. In the model with a single nonzero value
of angular momentum, the halo distribution has a set of inner
caustics in addition to the usual outer caustics. However, the
inner caustics are spheres in the model whereas they are
rings for a physical halo. The density profile for the model is
shown in Fig. 10. There is a break in the logarithmic slope
near the first inner caustic, nearr 50.01R in the figure. For
e,2/3 we find r}r 22 outside the first inner caustic~the
same as with j 50! but r}r 2g inside with
g59e/(3e11). This observation is related to the fact that
we find the functionl~t! to be oscillating with constant am-
plitude and constant period for larget when j Þ0; see Fig. 7.
This can happen only ift2/3eM(l/t2/312/9e) in Eq. ~3.25b! is
independent oft at large t. For M(r )}r a, this implies
a53/(3e11) or g532a59e/(3e11). We find that the
exponenta does not depend uponj , but the radiusr c at
which the break in power-law behavior occurs does depend
upon j : the smallerj , the smallerr c .

These observations may be understood as follows. When
angular momentum is present, the contribution of a single
phase-space sheet to the density profiler(r ) is nonsingular
nearr 50. In that case, as a result of self-similarity the mass
profile M (r ), at r small enough that the influence of the first
one or two phase-space sheets may be neglected, has the
same functional dependence uponr as the dependence of
M upon R after eliminating t from the expressions for
M (t) andR(t) in Eqs.~3.13!. This yieldsM}r 3/(3e11). The

fact thatr(r ) behaves as a negative power ofr nearr 50 is
in agreement with the results ofN-body simulations@19#.
The e-dependence of this power law was already known to
White and Zaritsky@20#.

The spectrum of velocity peaks that the model with a
single value of angular momentum predicts is unrealistic. In
particular, there are in this model no peaks on Earth associ-
ated with particles falling in or out of the Galaxy for the
nth time withn small, because such particles have too much
angular momentum to reach the Earth radius. In the case of
Fig. 6, there are only peaks forn.3. But as we argued at
length in Sec. II, there are in reality peaks on Earth due to
particles falling in and out of the Galaxy for thenth time
with n51,2,3, . . . . Angular momentum reduces the sizes
of the peaks with smalln but does not suppress them com-
pletely.

C. Distribution of angular momenta

This model describes a physical halo averaged over all
possible orientations. The particles are assumed to have the
distribution of angular momenta given in Eq.~3.26!. For the
purpose of numerical integration, the angular momentum
was discretized with a spectrum of four hundred values. The
phase space diagram is like the one of Fig. 6 except that
there are four hundred such diagrams superimposed on one
another, one for each value ofj .

As was mentioned earlier, angular momentum has the ef-
fect of making the contribution of the halo to the rotational
velocity go to zero at the galactic center as shown by Fig. 11.
We define the ‘‘effective core radius’’b to be such that
n2(e,b/R)5n2(e)/2. We find that nearr 50, the density
r(r )}r 2g with g59e/(3e11) as in the case of a single
value of angular momentum. This behavior is expected for
the same reason as we gave for that case. The only change is

FIG. 10. Density profile for the casee50.2, h50.7 and a single
value of angular momentumj 50.2.

FIG. 11. Rotational curves for the casee50.2, with and without
angular momentum.

FIG. 12. The same as Fig. 9 bute50.2, h50.7, andj̄ 50.2.

FIG. 13. The same as Fig. 9 bute50.2, h50.7, andj̄ 50.4.
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that the transition between the region at larger wherer(r )
}r 22 and the region at smallr wherer(r )}r 2g is smoother
now because the critical radiusr c where the transition occurs
depends uponj and there is now a distribution ofj values.

The velocity peaks forj̄ 50.2, e50.2, andh50.7 are
shown in Fig. 12. The velocity peaks for the same choice of
parameters exceptj̄ 50.4 are shown in Fig. 13 to indicate the
sensitivity of the peaks uponj̄ . The spectrum of velocity
peaks is also sensitive to the value ofe. It is shown for the
casese50.15 ande51 on Figs. 14 and 15, respectively.

Table II gives the values of the current turn-around radius
R, the effective core radiusb, the halo density at our loca-
tion r(r s), and the density fractions and kinetic energies of
the five most energetic incoming peaks for various values of
e, j̄ , andh.

D. Self-similar infall with baryons

As was discussed earlier, the dark matter phase space dis-
tribution for the input parameterse, h, and j̄ is obtained in
this case by solving Eq.~3.25c! using the mass distribution
M~j! for the same values ofe andh but j 50. The resulting
velocity peaks are shown in Fig. 16 fore50.2, h50.7 and
different values ofj̄ . Since the particles for different values
of j̄ but the same values ofe and h are all moving in the
same gravitational potential, the kinetic energies per unit par-
ticle massEn of the peaks depend only very weakly uponj̄ .
So, we have combined the spectra for differentj̄ values in
one figure. Note that theEn are larger in this case than in the
case of Figs. 12 and 13 because the gravitational well near
the center of the galaxy is deeper. Figure 17 shows the re-
sults fore50.4, h50.7.

V. AN ANALYTICAL TREATMENT

In this section, we derive analytical expressions for the
sizes and locations of the velocity peaks. The treatment in-
volves the following approximations:~1! the mass distribu-
tion, including the contributions from both baryons and dark
matter, is taken to beM(j)5j for 0<j<1; ~2! the dimen-
sionless angular momentumj values are assumed to be
small; ~3! our distancer s to the galactic center is assumed to
be small compared to the oscillation amplitudes of the par-
ticles in the peaks under consideration. The method of adia-
batic invariants will be used to obtain the motion of the dark
matter particles.

We first treat the case of a single angular momentum
value, i.e., the model described in Sec. III B 1. Since
M(j)5j, the equation of motion in rescaled variables of a
particle with angular momentumj is

d2l

dt2 5
j 2

l3 2
p2

8l
t~2/3!~2/3e21!. ~5.1!

Let lM andlm be, respectively, the amplitude of oscillation
and the distance of closest approach at timet. In the spirit of
the method of adiabatic invariants,lM andlm are assumed
to be slowly varying functions oft. This is a valid assump-
tion for all oscillations except the first one. The first oscilla-
tion is only marginally adiabatic. For givenlM , the velocity
at timet and positionl is

dl

dt
56Ap2

4
t~2/3!~2/3e21! lnS lM

l D2 j 2S 1

l2 2
1

lM
2 D .

~5.2!

FIG. 14. The same as Fig. 9 but fore50.15, h50.7, and
j̄ 50.2.

FIG. 15. The same as Fig. 9 bute51, h50.7, andj̄ 50.2.

FIG. 16. The same as Fig. 9 but including the contribution of
baryons to the galactic gravitational potential.e50.2 andh50.7 in
all cases. The peaks are shown explicitly forj̄ 50.1. The dashed
lines go through the tops of the peaks for the casesj̄ 50.2 and
j̄ 50.4 while the dotted line corresponds toj 50.

FIG. 17. The same as Fig. 16 but fore50.4.
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The adiabatic invariant is

I ~t,lM !5E
lm

lM
dludl/dtu

5E
lm /lM

1

dx

3A2
p2

4
t~2/3!~2/3e21!lM

2 ln x2 j 2S 1

x2 21D .

~5.3!

In the limit of small j , lm /lM may be neglected and we
obtainlM(t)2t (2/3)(2/3e21)5const. SincelM(1)51, we have

lM~t!5t2~1/3!~2/3e21!. ~5.4!

The period of oscillation is

T~t,lM !52E
lm

lM
dludl/dtu2152lM

2 E
lm /lM

1

dx

3F2
p2

4
t~2/3!~2/3e21!lM

2 ln x2 j 2S 1

x221DG21/2

.

~5.5!

Using Eq.~5.4!, we have, in the limit of smallj ,

T~t!5
4lM

pt~1/3!~2/3e21! E
0

1 dx

A2 ln x
5

4

Ap
t2~2/3!~2/3e21!.

~5.6!

Let us introduce the ‘‘phase’’w~t!

dw5p
dt

T~t!
. ~5.7!

Using Eq.~5.6! and settingw(1)50, we have

w~t!59e
pAp

4

t~1/3! ~4/3e11!21

413e
. ~5.8!

The timestn at which the particle passes by the solar radius
r s are given by

w~tn!5
p

2
~2n21!1O~r s /R! ~5.9!

There are two peaks for givenn, one ingoing and the other
outgoing. The differences between the properties of the two
peaks are of orderO(r s /R) and are neglected.

The contribution of each of the twonth velocity peaks to
the local density is given by

rn5
M

4pRrs
2

6tn
~2/3!~122/3e!

u9etn~dl/dt!~tn!2~6e12!l~tn!u
,

~5.10!

where

l~tn!5
r s

R
tn

2/312/9e ~5.11!

anddl/dt(tn) is given by Eqs.~5.2! and ~5.4!. We neglect
the second term in the denominator of Eq.~5.10! since it is
O(r s /R) relative to the first term. Combining everything, we
have the following estimate for the peak sizes due to dark
matter particles with a single value of angular momentumj :

rn5
M

6pRrs
2e Fp2

4
tn

4/3e lnS R

r stn
1/314/9eD

2 j 2
R2

r s
2 tn

4/9e22/3G21/2

, ~5.12!

where

tn5F 2

Ap
~2n21!S 4

9e
1

1

3D11G 9e/~413e!

. ~5.13!

Note thatrn is the local energy density contributed byeach
of the twonth peaks. When the expression under the square
root in Eq.~5.12! is negative, one must set the corresponding
rn50 since this corresponds to the situation where the par-
ticles have too much angular momentum, and hence too
large a distance of closest approach to the galactic center, to
reach the solar radius. The kinetic energy per unit particle
mass of the dark matter particles in thenth peaks is

En5
1

2 F S dl

dt D
n

2

1
j 2

ln
2G S r *

t*
D

n

2

5
p2

8 S R

t D 2

lnS R

r stn
1/314/9eD 1O~r s /R!2. ~5.14!

R and t are determined in terms ofh by t52/3H0 and Eq.
~4.4! as before.

For the casee50.2, j 50.2, h50.7, the quantity under
the square root in Eq.~5.12! is negative and hencern50 for
n51, 2, and 3. This is consistent with the phase space dis-
tribution shown in Fig. 6 which was obtained by numerical
integration. We found Eqs.~5.12!–~5.14! to be consistent
with the results from numerical integration at the 30% level
or so. The agreement is worse for the case of zero angular
momentum, probably because the logarithmic singularity of
the potential at the origin in that case makes the motion
nonadiabatic there. Also, when comparing results for theEn
values, one should allow for an overall shift between the two
calculations due to a change in the depth of the gravitational
potential at the solar radius. Indeed, the analytical calculation
has the mass distributionM(j)5j which implies a perfectly
flat rotation curve, whereas the rotation curves for the nu-
merical calculations are as shown in Fig. 8.

The formalism readily accomodates a distributiondn/d j
of angular momenta. Equation~5.14! for the peak kinetic
energies still applies. The expected peak sizes, in the sense of
an average over all locations at distancer s from the galactic
center, are given by the convolution ofdn/d j with the ex-
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pression, Eq.~5.12!, for the peak sizes when there is a single
value of angular momentum. Thus,

rn5
M

6pRrs
2e

E
0

j n
d j

dn

d j Fp2

4
tn

4/3e lnS R

r stn
1/314/9eD

2 j 2
R2

r s
2 tn

4/9e22/3G21/2

, ~5.15!

wheretn is given by Eq.~5.13! as before andj n is the maxi-
mum value ofj for which the argument of the square root is
positive:

j n5
p

2
tn

4/9e11/3 r s

R
AlnS R

r stn
1/314/9eD . ~5.16!

For the angular momentum distribution of Eq.~3.26!, one
has

rn5
M

6pR2r se

tn
1/322/9e

j n
F„~ j n / j 0!2

…, ~5.17!

where

F~u![uE
0

1

dxe2ux~12x!21/2. ~5.18!

A graph of F(u) is shown in Fig. 18. Table III shows the
peak sizes predicted by Eq.~5.17! for the first eight peaks in
the casee50.2, j̄ 50.2 andh50.7. The peak sizes agree
with the results of the numerical integration, given in the
fifth line of Table III, to within 15%. The peak energies also
agree within 15% after one has subtracted an overall shift

caused by the fact that the gravitational potential at our lo-
cation is considerably deeper in the analytical calculation
than in the numerical one.

VI. CONCLUSIONS

Motivated by the prospect that the spectrum of dark mat-
ter particles on Earth may some day be measured in a direct
detection experiment, we have endeavoured to obtain predic-
tions for the properties of that spectrum. Previously, it had
generally been assumed that the spectrum is isothermal. In
contrast, we find that there will be large deviations from an
isothermal spectrum in the form of peaks in velocity space
associated with particles that are falling in and out of the
Galaxy for the first time and with particles that have fallen in
and out of the Galaxy only a small number of times in the
past.

To obtain estimates for the velocity magnitudes of the
particles in the peaks and for the contributions of the indi-
vidual peaks to the dark matter local density, we have used
the secondary infall model of galactic halo formation. We
have generalized the extant version of that model to include
the effect of angular momentum. We forced spherical sym-
metry onto the model with angular momentum by averaging
over all possible orientations of a physical halo. As a result,
the model can only make predictions for the average proper-
ties of the velocity peaks, the average being over all loca-
tions at the same distance from the galactic center as we are.
We found that the model with angular momentum has self-
similar solutions if the angular momentum distribution, as
well as the initial overdensity profile, has a particular scale-
free form. The self-similar solutions were analyzed in detail
numerically and analytically.

The model produces a good overall fit to what is known
about galaxies such as our own. It produces flat rotation
curves when the parametere is in the range 0 to 2/3. The
expected value of that parameter in models of large scale
structure formation with cold dark matter and a flat
~Harrison-Zel’dovich! spectrum of primordial density pertur-
bations ise;0.25. The model implies a relationship@cf. Eq.
~4.4! and Table I# between the current turn-around radius
R, the present age of the Universe, the galactic rotation ve-
locity and the paramemtere. This relationship is consistent
with observations ande;0.25.

In the model the galactic rotation curve is approximately
flat all the way out to the turn-around radiusR. R is of order
1–2 Mpc for our Galaxy. So far, the rotation curves of indi-
vidual galaxies have been measured, and have been found to
be flat, up to distances of order 100 kpc, implying masses of
order 1012M ( or larger. The discovery of flat rotation curves
@21# caused a well-known revolution in our concept of gal-
axies. Prior to these measurements galaxies were thought to
have size of order 10 kpc and mass of order 1011M ( . The
model implies that galaxies such as our own are of order 20
times bigger even than the minimum size implied by the
rotation curve measurements. The size is 1.8 Mpc and the
mass is 1.731013M ( for the casee50.25, h50.7. See
Table I for other cases.

We found that the effect of angular momentum is to de-
plete the inner parts of the halo with the result that the halo
contribution to the rotation curve goes to zero atr 50. The

FIG. 18. The functionF(u) defined in Eq. 5.18.

TABLE III. Values of j n , En , and rn given by Eqs.~5.14!,
~5.17! for the casee50.2, j̄ 50.2, h50.7

n jn rn (10226 g cm23) En @
1
2 (300 km s21)2#

1 0.05 1.7 4.9
2 0.11 2.5 3.8
3 0.17 2.7 3.3
4 0.22 2.5 2.9
5 0.26 2.2 2.6
6 0.30 1.9 2.4
7 0.34 1.6 2.2
8 0.38 1.4 2.0
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model establishes a direct relation between the amount of
angular momentum and the effective core radiusb, defined
as the radius at which the halo contributes half of the rotation
velocity squared. Table II gives the turn-around radiusR, the
effective core radiusb, and the local halo densityr as a
function of the input parameters:e, the average amount of
dimensionless angular momentumj̄ and the Hubble param-
eterh. The observed value~220 km/s! of our Galaxy’s rota-
tion velocity and our distance to the galactic center~8.5 kpc!
were used as fixed input parameters.

Table II also gives the average values of the peak sizes as
fractions of the local halo densityr and the kinetic energies
per unit particle mass of the particles for the first five incom-
ing peaks as a function of the variable input parameterse, j̄ ,
and h. For each incoming peak there is an outgoing peak

with approximately the same kinetic energy and average lo-
cal density. Let us emphasize again that the peak sizes given
are averages over all locations at the same distance~8.5 kpc!
from the galactic center as we are. It is not possible to make
more precise predictions for the peak sizes on Earth without
assuming a particular angular momentum field for the infall-
ing dark matter.
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