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If the gravitational field of a massive, compact body is stationary, axially symmetric, and reflection sym-
metric across the equatorial plane, and if a much less massive compact(sbgtas a neutron star or a small
black holg were to orbit in a circle on the equatorial plane of the central, compact body, then the produced
gravitational waves would carry the values of the central body’s multipole moments. By detecting those waves
and extracting from them the central body’s lowest few moments, gravitational-wave detectors have the
potential to test the black-hole no-hair theorem and search for exotic objects such as naked singularities and
boson or soliton stars. This paper estimates how accurately we can expect to measure the central body’s
moments. The measurement errors are estimated using a combination of, first, the leadifgfadenst-
Newtonian serigscontribution of each moment to the gravitational-wave phase, secordp@ori probability
distribution that constrains each moment’s magnitude to a range appropriate for a compact body, and third, any
relations that the multipole moments satisfy among themselves, which reduce the number of degrees of
freedom for the waveghis is useful in cases when one is searching for a specific type of compadt bdely
find that the Earth-based LIGO detector cannot provide sufficiently precise measurements of enough multipole
moments to search for exotic objects, but the space-based LISA detector car]f 805&6-282(197)01016-3

PACS numbgs): 04.25.Nx, 04.30.Db, 04.80.Nn, 95.55.Ym

[. INTRODUCTION such as a naked singularity or a boson or soliton[st@y11].
In this paper, we will take the viewpoint of general relativity

Construction has begun on several “high-frequency” being correct, and that we are searching for non-black-hole,
Earth-based laser-interferometer gravitational-wave deteanassive, compact bodies.
tors, including the Laser Interferometer Gravitational-Wave Of course, a discrepancy can either be actually physical or
Observatory(LIGO) [1]; and hopefully the European Space be merely a statistical error from the data analysis of the
Agency'’s “low-frequency” Laser Interferometer Space An- detected gravitational waves. The latter effect would be due
tenna(LISA) [2] will be flying by the year 2014. Among the to the matched filtering analysis measuring best-fit param-
promising observable events for Earth-based detectors aegers for the waves’ source which differ from the actual pa-
neutron stars or small black holes spiraling into massiveameters by detector-noise-induced stochastic errors. In this
black holesM <M =300Mg, ; and similarly promising for paper, we will attempt teestimatethe errors[we use the
space-based detectors are white dwarfs, neutron stars, word “error” to mean the standard erréthe rms difference
small black holes spiraling inte-10°M to ~3x10'M between the actual and measured values of a pararitar
black holes[3,4]. For LISA, binary inspirals where the we can expect for measurements of the first few multipole
smaller mass is a-10M black hole would be of especial moments of the central body.
interest: at~10M 4, the orbiting object is less likely to be Finn [12], Finn and Chernoff13], Cutler and Flanagan
perturbed by other orbiting objects than would be a solar{14], and Poisson and Wil[15] have established the data
mass compact object, and it would generate stronger gravianalysis formalisn{that we shall use and extend to measur-
tational waves than its solar-mass counterpars—7. Al- ing multipole momentsand have analyzed measurement ac-
though the calculation of event rates depends on manguracies for the mass and spin parameters of compact bina-
assumptions, we might expd@] to detect such events with ries for Earth-based detectors such as LIGO. Poigd6h
a signal-to-noise ratio of-40 for one year searches with has used the same type of data analysis formalism for space-
LISA, for binaries at cosmological redshift=1. based detectors. His analysis shows how one can use mea-

The waves from such types of inspiral carry information surements of binary inspirals to look for violations of general
of the central black hole’s spacetime geometry, encoded irelativity or indications that the central body is not a black
two sets of multipole moment8]. If the central body is hole. In that analysis, the gravitational-wave phase is ex-
indeed a black hole, then the moments should satisfy a relgpanded in a power series around the frequency of gravita-
tion as dictated by the black-hole no-hair theorgh Any  tional waves at the last stable circular orlfibe orbit at
discrepancies would signal either a violation of the no-hainwhich a test particle can no longer move on a circular geo-
theorem and general relativity, or that the central body is notlesic and must plunge into the central bpdyhe measured
a black hole but actually another type of compact objectparameters in that power series become the parameters that
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describe the central bodor the theory of gravity, if one mation of dropping quadratic terms becomes poor. Even in
chooses the viewpoint that general relativity may not be corsuch cases, the errors should still be good as order of mag-
recd. This type of parametrization would be suitable whennitude approximations. This is because terms quadratic in the
assuming that the central body is a black hole or some typeultipole moments occur at a higher order in a post-
of similar object; however, it would be less useful whenNewtonian series and typically affect the waveform by a
searching for objects vastly different from a black hole. Forsmaller amount.
example, a spinning boson sfdrl] may have a radius larger (3) Besides its mass and multipole moments, the central
than the last stable circular orbit for a black hole of the saméyody has other parameters that can affect the waveforms. In
mass. Such a case would not be well suited for the powethis paper, we will not consider how such effects enter into
series expansion around the frequency of gravitational wavethe analysis. For example, the waveforms will depend on
at the last stable circular orbit. whether or not the central body has a horizon, but we will
Our analysis differs from Ref16] in that our classifica- assume that the waves generated if the central body does not
tion of the central body is in terms of the multipole momenthave a horizon are the same as those if the body does have
expansion of its external gravitational field around radial in-one. Similarly, the waveforms will depend on whether or not
finity. Correspondingly, our analytical expansion of the pro-the central body absorbs energy through tidal heating; we
duced gravitational-wave phase is performed around thevill assume it does not absorb energy.
gravitational-wave frequency of zero. The multipole moment (4) We will assume that the inspiraling compact object
parametrization covers a much broader range of possiblras a sufficiently small mags (w<<M) that its orbital path
central bodies. is close to being a geodesic of the central body’s unperturbed
We have mentioned that we only provide estimates of th&pacetime geometry, and that this is true throughout the in-
measurement errors in this paper. An exact calculation wouldpiral, up to a point just before the last stable circular orbit
be very difficult. By confining our analysis to a simple casewhen the object plunges into the central body.
and using a simplified model gravitational waveform, we can (5) In general, the orbit will be both elliptical and out of
calculate errors which should give some indication of whatthe equatorial plane. The eccentricéys probably small for
the errors would be in the exact calculation. the smaller mass binaries that Earth-based interferometers
Here is a summary of our idealizing assumptions. can detect, because gravitational radiation reaction tends to
(1) For simplicity, we will deal only with central bodies circularize orbit19]. However, for~10°M, central bodies
whose external gravitational field is stationary, axisymmet-studied by space-based detectors, the orbit may be highly
ric, reflection symmetric across the equatorial plane, and asccentric due to recent perturbations by other orbiting ob-
ymptotically flat. With this assumption, the multipole mo- jects[5,7]. Unlike the case with eccentricity, the inclination
ments can be described by two sets of scal&47,18:  angle. between the orbital axis and the central body’s sym-
There are the mass multipole moments consisting of thenetry axis is not driven to be small by radiation reaction
massM and higher-order multipole momenks, (the mass [20]. Therefore, in general, the orbital motion will be very
guadrupole momenil,, My, Mg, ...). In ourunits which  complicated, consisting of the orbiting object travelifap-
we use here and throughout, we &t c=1, so thatM, has  proximately in an ellipse, while that ellipse precesses in its
units of (masg'**. Since it will be more useful to deal with plane, and while that plane itself precesses around the central
dimensionless quantities, we define the dimensionless mdsody’'s symmetry axis. For this paper, to avoid these compli-
mentsm,=M,/M'*1, There are also the mass-current mul-cations, we will only solve the problem in the ideal situation
tipole momentsS, (the spin angular momentu®, the cur-  of the compact object traveling in the equatorial plane in a
rent octopole momen§;, S5, Sy, .. .), for which we can  slowly shrinking, circular orbit.
define dimensionless counterpasis S, /M' 1. (6) We will assume that the inspiraling object travels
(2) The sizes of the errors that we will compute for the through vacuum. This may not be a good assumption if an
momentsm, ands;, as well as for the other binary param- accretion disk surrounds the central body. We will also as-
eters such as the masses, will be functions of the values sfume that any other orbiting objects do not significantly per-
those moments. However, for simplicity and for the sake ofturb the orbit of the object whose waves we are measuring.
being able to present the results in a concise form, we wilWWe will only consider the case when the equatorial size of
only compute the errors for the case in which the momentghe central body is smaller than the radius of the last stable
m, ands, are either zero or small enough that terms appeareircular orbit, although it is easy to modify our analysis be-
ing in the gravitational-wave phase which are quadratic inow to account for the waves cutting off at a larger radius
these moments can be ignored in our analysis. Making thithan where such a last stable circular orbit would be.
approximation miscalculates the errors for the moments by (7) The predicted templates for the gravitational wave-
amounts which scale linearly with the moments, while itforms are not yet known. This is because the computation of
miscalculates the errors for all other parameters by amounthie waves from the inspiral of a compact object around a
which scale quadratically with the momeiitee Eq.(3.26 body with arbitrary multipole moments is complicated by
of Ref.[14] and surrounding discussiprThe errors as com- two-dimensional differential equations which are not sepa-
puted for this spherical or almost spherical case should beable and have not yet been solved. However, we do know
reasonable estimates for the errors in the general case. As \hew each multipole moment affects the phase of the gravi-
will see below in Sec. 1V, there will be some cases when thdational waves to leading order in a post-Newtonian expan-
errors on the moments becorgel, so that even if the best- sion[8]. With this information we should be able to get at
fit measurement for a moment has it equal to zero, the actu#ast a good order of magnitude estimate for the errors.
value of the moment may not be small at all and our approxi- (8) We will assume a large signal-to-noise raBtN (as
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defined below The limit of largeS/N is necessary to sim- for several different situations, and will deduce their impli-

plify the analysis and so that we can be certain of detectioations for LIGO and for LISA.

in the first place.

(9) We will use the noise curves for LIGO and LISA to Il. DATA ANALYSIS

compute the measurement accuracies. We will assume the The data analvsis formalism used in this section is de-

noise is stationary and Gaussian. The noise curves for theseribed in much g]/reater detail in Refd2—15. In this sec-

detectors are only the expected ones; the actual curves mig ign we will summarize that formalism as .needed for our

turn out to be different when the detectors are fully opera-_" ' : X

tional. Furthermore, space-based detectors will revolvd U'POse: _and ShO\.N. ho"_V th_e m_ulnpole moments can be given
. . . ana priori probability distribution.

around the sufi21], thereby having changing angular sensi- In the fa time-d dent itational-

tivity patterns. We will not incorporate this revolution effect : presence of a ime-dependent gravitational-wave

in our analysis. However, it is partially taken into accountStra'Eh(t)’ the grawtaﬂonal-vx_/ave pletectqrs measure a signal

through the fact that the signal-to-noise ratio will be reduce (t)=h(t) + (1), wheren(t) is noise which we assume to

: : e Gaussian. We assume that the wavefolt) is one of
glg?u[gz? tﬁ‘% ag%uI2:13vaesrgglcri1§tgéaéitgceurses\{glnutlon cre@es many possible waveformis(t, ') for which we have theo-

(10) The errors depend on how we model the possibleretically predicted templates, vyith‘ being the parameters
values that the multipole moments can take. Below, we WiIIthat c:escn\s)ve tge W"’;Vlfs' mcfludmt% the ml.Jtlt'tpOIG Imoment pa-
give a model for thea priori probability distribution that js 2M€ters. YWe do notknow, from the gravitational-wave mea-

i

appropriate for a compact body of characteristic $iaeliug surel(rnentg, eﬁaCﬂ.}/ whart1 are the true vglluheﬁ o_Rather,haII

r. Although this value ofr is arbitrary, we will select a we know is that if we have measiure the sigag), the

particular value (=3M) in our calculations probability distribution function fo' to be the correct val-
This is certainly a long list of approximations and restric- ues can be written in terms of the prior probablllty distribu-

tions; however, it is reasonable to expect that they will not'o" and the inner product dsee Appendix A of Refl14])

seriously compromise the primary intent of this paper: to find p(6)ocp@(g)e (MM2=p(O)(giyg=(s=hls=hr2 (1)

out the prospects for measuring multipole moments so as to

determine whether or not it is worthwhile for theorists to Here,p(o)(gi) is oura priori probabmty distribution of the

pursue this calculation in greater depth. We will see that folparameters', and |n) is the inner productdefined below
LISA it is worthwhile. of n(t) with itself. Althoughp(®(#') can be modeled rather

Hopefully, many of the above restrictions will be re- grpjtrarily, we choose a particular fairly unrestrictive model.
moved in future, more sophisticated analyses, so that expeiye assume that the prior probability satisfies

menters will have a complete set of numerically generated
templates with which to work. These numerically generated .
templates will be accurate not only where the gravitational- p<°)(6')=e£[m p(o)(m|)0];£| p©(s); @)
wave frequency is near zefwhere our analysis is validr
near the frequency at the last stable circular ofvitere the  that is, we assume that there is a uniform prior probability
analysis of Ref[16] is valid), but also at all frequencies in distribution function for all parameters except the multipole
between. moments, and that each momentaigriori independent of
We will use the convention that the orbital angular mo-the other moments. Our assumption that the central body is
mentum vector of the orbiting object points in the direction compact(at least it has a small equatorial plane circumfer-
relative to which the mass-current moments are defined. FQénce since the inspiraling object is able to make tightly
example, if the central body were a Kerr black hole andhound orbits suggests that the magnitude of each moment
Spinning in the same direction as the ObjeCt revolves, ﬁien m, or s; cannot be much greater than/M)l, wherer is
would be positive; if spinning in the opposite direction, thensome parameter that can be thought of as the characteristic
s; would be negative. size or radius of the compact body. This parameter is not
The binary will generally be at distances where the cosnecessarily associated with some physical radius of the cen-
mological redshifz cannot be neglected. Therefore, the fre-tral body:; rather, it is just some parameter that we have to
quencies of the gravitational waves as measured are a factghoose which restricts the multipole moments. More specifi-
of (1+2)~" of those that would be measured at the sourcecally, we assume prior probability distributions of the form
Similarly, itis (1+2z)ux and (1+2z)M that are measured, as
opposed tqu andM. The dimensionless multipole moments
m, ands; are not affected by the redshift factor. To make our p(o)(m|)ocexp{ )
equations easier to read, we will not write down these factors
of (1+2), although the conversion should be remembered
that where below we writge or M, we imply (1+2z)u or p(°>(s|)ocex;{ _ =
(1+2)M, respectively. 2
In Sec. Il, we will briefly review the method for comput-
ing the errors. In Sec. I, we will construct a model of the ~ We should not choose=6M, since then the central body
gravitational waves in the time and frequency domains. Wevould not be compact and in such case we would not be able
will also try to quantitatively understand the validity of using to measure the moments accurately anyway. On the other
only the leading-order contribution of each momgas- hand, we should not choosesM, because we wish to con-
sumption(7) abovd. In Sec. IV, we will compute the errors sider a class of possible compact bodies broader than just

2
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black holes, and black holes themselves have moments sat- The overall prefactors in these two noise curves do not
isfying |[m;|<1 and|s;|<1, as a result of the no-hair theo- affect our analysis. Rather, those prefactors affect the signal-
rem[8,9,18, to-noise ratio, as computed BRef. [14], Eq. (2.5)]

m +is;=(is;)', (4) SIN=(h|h)Y2 (8)

and the restrictions;|<1. Below, when we calculate values We assume th&/N to be a given number, and the overall

for the errors, we will mainly use the choice-3M, but also  @mplitude of the signa is normalized to give that number.

we we will show how the errors change when we change _Th|s normallzatlo_n can be done_ because the arn_plltudhas)f
Equations(3) state that thea priori probability distribu- inversely proportional to the distance to the bingag we

tion for each moment is centered around zero and has Wil see below in Eq.(15)]. Therefore, we assume that the

width of (r/M)". One might raise the objection that centering Pinary is at the distance required to get the assusiéd

the distribution around zero is not the best choice. For ex- Denoting by #' the best-fit values for the parametet's

ample, most spinning objects have a negative mass quadrthe probability that the true set of parameter®is-A¢' is

pole momentm, due to the equator's centrifugal bulge. [Ref.[15], Egs.(2.8) and(2.9)]

However, our assumption is easy to work with, and involves

a minimum of theoretical prejudices. One might also decide — _ o/ =T DT Ag A

to model the central body as a spinning object which cannot p(6'+A6)xp®(6'+Ag)e” HATATAL, €)

rotate faster than the point at which it would centrifugally h

breakup and therefore might restrigtto be constrained as where

(r/M)! =) instead of ¢/M)'. We will not use this alterna-

tive model. ( Jh
The inner product {| -) between two signaléor a signal i=|

and a templateis defined by{Ref.[14], Eq. (2.3)] 96

oh )
—. (10)
90

The partial derivatives are evaluated@t 6'.

m’ﬁf(f)’ﬁz(f)ﬁ[ﬁl(f)'ﬁ;(f) With our assumption that_the best—fit_ paramete_'fshave
(h1|h2)=2f ) df, (5) m,=0 ands;=0, then our prior probabilities are
0
pO(T+Ag) e MR AdA0, (12)

where a tilde represents the Fourier transform, 8gd) is

the detector’s noise spectral density: For Earth-based dete#here

tors, we follow Cutler and FlanagdmRef. [14], Eq. (2.1)]

and use the following approximate analytic fit to the ex- r'® —(M/r)? forevenl>2, (129

pected LIGO noise curve for advanced interferomefiis ™
35 10-48 [ |4 5 I{=(M/r)?  foroddl>1, (12b)
S,(f>10 Hz)=—{(—) +2+2 —) }
Hz fo fo and all other components of tH&% matrix are zero.

The error matrix can be computed by taking the inverse of
the Fisher information matrix' +T'(®) (see Appendix 6 of

Si(f<10 Hz=c, ©®  Ref.[14])

wheref,= 70 Hz. For space-based detectors, we use the fol- S=(T+r®)-1 (13
lowing fit to the LISA noise curve

f 2

i

f —14/3

— +2+2

i
wheref ,=0.0015 Hz and, =0.03 Hz. This fit is only valid We have to know the template forrhét, #'); that is, how
for 10 * Hz<f<10"! Hz, to which we restrict our analy- the waveform depends on all the parameters for which we
sis. We choose this fit as it agrees with the noise curve imre fitting. As we will see in the next section, these param-
Fig. 1.3 of Ref.[2]. The term scaling a$ **®is due to  eters consist of the overall signal amplitude, two integration
acceleration noisésee Table 3.3 of Ref2]), the term con-  constantgthe time and phase of signal arriyathe masseg
stant inf is due to optical-path noisesuch as shot noise; see andM, and the multipole moments, ands; . Since we only
Table 3.2 of Ref[2]), and the term scaling &€ is due to the  needdh/dm, and dh/Js, (both evaluated around the spheri-
gravitational waves having shorter wavelengths than LISA'scal cas¢ for Eq. (10), then we only need to know the
round-trip arm lengths. waveform accurate to linear order in each of the moments

The errordé' (that is, the standard error, or the root-mean-
square errgrfor each parametef' is [Ref. [14], Eq. (2.8)]

8x10 %2
Sn(f):H—

z

, (@)

86'=(x"2 (14)
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with m; ands;. That is, we need to know the waveform dimensionless quantitkN(F), the number of cycles that the
assuming the central body is spherical, and how the wavedominant gravitational-wave frequency spends in a logarith-

form varies when each moment is varied.

Ill. THE GRAVITATIONAL WAVEFORMS

In this section, we will first construct a model waveform
as a function of the just mentioned parameters. We will then
compute its Fourier transform. Finally, we will examine the
validity of our assumption of only including the leading-
order (in a post-Newtonian seriggontribution of each mo-
ment.

The gravitational-wave straih(t) that a detector mea-
sures is very complicateti(t) is a linear combination of the
waveformsh . (t) andhy(t) that come from the source, with
the coefficients in that combination being functions of the
orientations of the detector’'s axes and the direction to thedE

binary. Although these orientations change during the dura-dt

tion of the signal for space-based detectors which revolve
around the sun, we ignore this slow modulati@i]. The
waveformsh(t) and hy(t) themselves are complicated
functions of the angles between the binary’s axes and the
line from the binary to the detector. All of the angular factors
which go into determining the amplitude for the waves are
combined into some functio® of the angles. For the pur-
pose of trying to estimate the errors, the fact tQais really

a slowly changing function of time is not important. Nor are
we too concerned with the form @ as a function of the
angles for the same reason that we were not too concerned
with the prefactors in the noise curvé®) and (7): the dis-
tance to the binary is adjusted as appropriate to give us the
assumeds/N.

Not only is the overall amplitude of the signal not too
important for our analysis, but also the exact form of the
amplitude as a function of time is not nearly as important as
the phase of the oscillating waveform. This is because there
is a large number of cycles in the signal, so that the effect of
a slight change in the parameters on the phase is on the or
of that large number times greater than the effect of tha
slight change in parameters on the amplitude. Because of
this, we can approximaféd 3—15 the waveform as having an

amplitude as computed in the Newtonian limit for a spherical dE

mic interval of frequency:

F? _ dE/F

AN=G5at - F aEar

(16)

whereE is the orbital energy of the binary.

For dE/dt, we add the exact pasfNewtonian series ex-
pansion for a spherical black hol&Ref. [23], Eq. (43)],
rounded off to six digit accuracy, and the leading-ordera
post-Newtonian serigscontribution of each momerjRef.
[8], Eq. (55)], resulting in

32/ u
5\M

2
) (M F)lo’]{ 1-3.711317MF)?3
+12.5664 TMF)—4.92846 M F)*3
—38.2928 M F )3+ [115.732-5.43492If 7MF)]
X(7MF)?—101.5107MF)""3
+[—117.504+ 17.5810li wM F)](7MF )3

A(—1)"2(0+ 1)1 m(7MF)2R
3l

even|=2

- >

odd1=3

8( — 1)(|7l)/2l 1 S|(7TM F)(2|+1)/3
3(1=1)!!

11
— 7 siu(7MF)|. (17)

FordE/dF, we add the exact expression for the spherical
se[Ref.[22], Eq. (4)] to the leading-order and linear con-
%nbution of each momeriRef.[8], Eq. (56)], resulting in

Mu | 1-6(7MF)??

body. In addition, it is a sufficiently good approximation to g~ 3(77MF)1’3{[1—3(77M F)23)32

examine only the dominant frequenEyof the gravitational
waves, which is twice the orbital frequency.

As the orbit shrinksF is a slowly varying function of
time t. The model waveformh(t) can then be written as a
function of F as[see Ref[14], Eq.(2.12)]

1/2
h(t):(?) W4/3Q%(MF)2’3COS(f27Tth), (15

(—1)"2(41-2)(1+ )1 my(7MF)?73
3l

evenl=2

(— 1)(|71)/2(8| + 12)"'S|(7TM F)(2I+l)/3

- 31—

oddI=1

(18

where D is distance to the source, chosen to give the as- Combining Egs.(16)—(18), we calculateAN as a post-

sumedS/N.

Newtonian series, which, as wif(t), has to be calculated
TheF(t) appearing in Eq(15) should be computed care- accurately. However,

we do not expand out the

fully, for if F(t) were off by a small fraction, then after a [1—6(7MF)??] factor that came fromdE/dF for the
number of cycles equal to half the reciprocal of that fraction,spherical case. This nonexpansion was shown to greatly im-
the template would go from in-phase to out-of-phase with theprove the accuracy of the templdiee Ref[22], Eq. (18)].

gravitational wave. Instead of dealing wik(t), we use the

The result igsee Ref[8], Eqs.(57)]
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5 (M FTfy— A£-7/6 ;
AN:%(;)(WMF)—SB R(F)=Af~ "oexyfi ()], (20)
where A= (Q/D) u*>M*”? and
X an(TMF)"[1-6(7MF)??] 7,
n=023456.7.8 p(f)=2mft(H) = d(H)— 7, (21)
+ > by (7ME)™3In(7=MF)[1—6(7MF)??] with
n=6,8
112 2113 dt AN
(=) (4l +2)(1+ ) my(7MF) t(f)= | szdF=| —dF (22)
- > 3 dF F
evenl=2 L
(= 1)0-D2(81 + 20) 111 5 (wMF)@ -0 3N
T odfs 30— dt AN
¢(f)=f 2de—FdF=f 2m—dF. (23)
113
+ fsl(WMF) ) (19) Equation(20) has to be modified to account for the waves’

shutting off at the last stable circular orbit. We have to set
Above, thea andb coefficients are those that describe theh(f) to zero for f>6"3%7M) !, the gravitational-wave
post-Newtonian expansion around a spherical black holefrequency when the orbiting object plunges into the central
ap=1, @a,=8.21131, az=-12.5664, a,=52.2782, pody [14]. [Technically, this frequency changes with the
as=—111.531,a¢=335.734,a;,= —716.863,83=1790.54, massM and with the multipole moments, and such varia-
be=5.43492, andbg=47.2175. Even though Eq19) is tions enter into theth/96' terms in Eq.(10), but these varia-
really just part of a post-Newtonian series, we treat it asjons can be ignored because they affect the amplitude of the
exact for our model of the waveform. signal, which is measured to far less accuracy than the

We need, for Eq(5), the Fourier transform dfi(t). Fol-  phase] Substituting our expressiofl9) for AN in Egs.

lowing Refs[13—15, we computeh(f) from Eq.(15) using  (21)—(23) and keeping the expression only to linear order in

the stationary phase approximation m, ands; yields
m 3 (M 40a
— _ [T I —5/3 . n n/3
p(f)=2mft, = b, — 2+ 128( ﬂ)(wa) [n_O’ZZMGJ(n_S)(n_S)(wa)

240a,

_n=o§2578—(n—6)(n—3) (wMf)( 2R L (a5~ 6ag) (7M ) An(7Mf)+ P (ag—6as)(mMf)®In(7Mf)

— 2005(7M )2 [IN(TMF) — 3]+ %2(bg— 6bg) (M )L L IN2(M ) — In(M )] — 24bg( M )20 In(7M ) — 23

(—D"240021+ 1)1+ D1t my(wM )23 (=1 V28o21 +5) 1N 5 (M f)#+ DR
" eillea 3(21—5)(1-H)! ¥ olfies 30-2)2-D(- D!
113
+T31(77Mf)—50m4(7-er)8’3In(Ter) , (24)

wheret, and¢, are integration constants from the integrals For the remainder of this section, we will try to under-
in Egs. (22) and (23). These two parameters must be in- stand how good or poor is our approximation of using only
cluded in the list of paramete for which errors are com- the leading-order contributiofof a post-Newtonian serigs
puted. They can bealled the time and phase of the signal, of each multipole moment. The relevance of this discussion
although such names are rather arbitrary since we only dedepends mainly on the frequency range through which we
finedt, and ¢, up to the addition of constants. One could measure the inspiral. For example, if the frequency at the
easily redefine, by adding constantg, and ¢, to be the beginning of the measured inspiral were a factor of 10 less
time and phase when reaches some fiducial frequeniy . than at the end of the inspiral at the last stable circular orbit,
Since we are interested more in the multipole moment pathen most of the cycles would be at frequencies where the
rameters than in, and ¢, , we do not bother to do such post-Newtonian expansion would be good even to leading
redefinitions. order. Consequently, our estimates of the errors on the low-
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TABLE I. The values ofg, andh;, used in the formulas for the poor convergence of some series. It is not so much our con-
last stable circular orbit as calculated to leading order and to highegern that higher-order post-Newtonian terms which are com-

order, respectively. parable to the leading-order terms might make a difference.
In fact, we have experimented by “making up” higher-order
' 9 h, post-Newtonian termgéwith coefficients on the order of the
1 3.08<10° ! 7.48¢ 101 leading-order termnfor each moment, and found little differ-
2 6.69< 102 234x 10" ences in the errors as computed in the next section.
3 200x10°2 _7.44%10°2 If there were some strong effect &N and consequently
4 _4.18<10°2 213x10°2 (f) [note thaty(f) is derived exactly fronAN; if the latter
., 4 were exactly correct, then so would be the forinérwould
5 9.48x 10 5.32x 10 . . . . .
6 1.96¢ 10~ 1475 10-3 likely show up in the Iocatlon_ of the last stable circular orbit
- 380X 10-5 326¢10-4 where, by virtue ofd _E/_dF going to z_ero,AN goes to zero.
: 6 ' e We can test the validity of the leading-order approximation
8 -9 1075 ~8.81x 1075 by assuming small values of all momentg and s, and
9 1.47<10 1.83x10 computing the gravitational-wave frequency at the last stable
10 3.02¢10°’ 4.89<10°° circular orbit as computed by two ways, listed in the next
11 —5.28¢10 ° ~9.73<10°’ two paragraphs. This test should be a sensitive indicator as to
12 —1.08x10°° —2.58<10 "’ the accuracy of our approximation, because of the strong
13 1.82¢10°° 4.97x10°° dependence of the gravitational-wave phase on the last stable
14 3.73x 10710 1.31x10°° circular orbit[22]; if we have calculated the last stable cir-
15 —6.13x10° ™ —2.47x107° cular orbit's dependence on the moments to some accuracy
16 —1.25x10° 1 —6.45<107 %0 then we are likely to have calculated the high-frequency
17 2.02x10 12 1.20x10°1° gravitational-wave phase’s dependence on the moments to a
18 4121013 3.12x10° 1 similar accuracy.
19 —6.52x10° 14 —5.70x 10 *? The first way of computing the last stable circular orbit is
20 —1.33x10 4 —1.48x10° 12 by looking at where th\N in Eq. (19) “thinks” it is; that
21 2.08<10° 15 2.68x10° 13 is, where thatAN goes to zero. SolvingN=0 gives the last
22 4.24x 10716 6.94x 10”12 stable circular orbit at frequency
23 —6.55<10" % —1.24x10" ¥
24 ~1.34x10°Y7 ~321x10°%8 S P S gme+ asl. @5
63/27TM evenl=2 oddl=1

est few moments would be good. Another case in which ouwhere the values of thg, coefficients are listed in Table I.
approximation would be valid is if the gravitational-wave The second way is by computing whekéN of the actual
frequency at the last stable circular orbit were high and in gyravitational wavegas opposed to our model gravitational
region of poor detector sensitivity, so that most of our infor-waves and th& N in Eq. (19)] would go to zero. This can be
mation would come from the lower frequency portion of thecomputed because we can compute where the actual
waves. If, however, a significant portion of our information dE/dF goes to zero. We did this by writing a computer
were to come from near the last stable circular orbit, then wgrogram to calculate out the metric with all thg ands, up
would have to examine how well our approximation servesto | =32 set to zero except one slightly nonzero moment.
Our main concern is that our form for including the mul- This program uses a method that we will not discuss in this
tipole moments iPAN might for some reason be extremely paper because, first, the discussion would be lengthy, second,
poor near the last stable circular orbit, for example, due ta future papef24] will give details of the method, and third,

TABLE Il. The error 56 for each paramete#’, when fitting up to thel ,th moment, using LIGO. We use the abbreviation
L(---)=logio(---). We assumg=0.2M5, M=30My, r=3M, andS/N=10.

Imax L(6t, /sec) L(8¢,) L(Su/u) L(SM/M) L(Ss;) L(6my) L(8s5) L(dmy) L(Jss) L(6me) L(Js7) L(6mg) L(8Se) L(6myg)

—1.96 057 —3.22 —-3.14
—-1.07 1.04 -235 —212 —-1.94
—0.45 216 -1.63 —-147 —-1.30 —-0.25
—0.14 319 -1.00 —0.80 —0.45 0.24 0.83
0.34 325 -0.92 —-0.72 -0.44 0.38 1.18 1.83
0.70 3.28 -0.64 —-045 -0.44 0.56 1.19 1.83 2.36
0.75 3.28 —0.57 —-039 -0.44 0.60 1.19 1.83 2.36 2.85
0.77 3.28 —0.53 —-0.34 -043 0.61 1.19 1.83 2.36 2.85 3.33
0.78 329 -051 —0.33 -042 0.61 1.19 1.83 2.36 2.85 3.33 3.81
0.78 329 -051 —0.33 -042 0.61 1.19 1.83 2.36 2.85 3.33 3.81 4.29
0.78 329 -0.51 —-032 -0.42 0.61 1.19 1.83 2.36 2.85 3.33 3.81 4.29 4.77
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TABLE lIl. The error 8¢ for each paramete#’, when fitting up to thel ,,th moment, using LISA. We use the abbreviation
L(---)=logyo---). We assumgx=10M 5, M=10°My, r=3M, andS/N=10.

Imax L(6t, /sec) L(8¢,) L(Su/u) L(SM/M) L(Ss;) L(6my) L(8s5) L(dmy) L(Jss) L(6me) L(JS7) L(6mg) L(8Se) L(6myg)

0 1.74 0.75 —4.90 —4.80

1 271 133 —-3.92 —-3.70 —3.58

2 3.37 241 -3.17 -3.01 —2.89 —-182

3 3.73 352 —-249 —-228 —194 —-1.27 —0.66

4 5.43 469 -—151 -134 -—-1.07 0.09 096 1.61

5 6.01 486 —0.72 —-054 -0.95 0.50 0.99 1.62 2.35

6 6.08 494 -0.64 —0.46 —0.90 0.58 1.08 171 2.36 2.75

7 6.08 495 -0.64 —0.46 —0.89 0.58 1.14 1.80 2.36 2.84 2.98

8 6.08 495 -0.64 —0.46 —0.89 0.58 114 181 2.36 2.84 3.18 3.72

9 6.08 495 —-0.64 —0.46 —0.89 0.58 114 181 2.36 2.84 3.22 3.75 4.23
10 6.08 495 —0.64 —0.46 —0.89 0.58 114 181 2.36 2.84 3.23 3.76 4.24 4.75

the method is simply the inverse process of Fodor, Hoensderm should be sufficient. Second, even at higher frequencies
laers, and Perg@ method of computing the multipole mo- close to the frequency at the last stable circular orbit, the
ments given the metrii25]: we guess a metric, compute its approximation should be at the correct order of magnitude.
moments using Ref25], and then modify the metric order- On the other hand, for higher valuesloheither of these two
by-order in a power series iM/(radius). After we computed reasons is applicable. As it will turn out, however, the errors
the metric, we calculated the frequency where a circular orfor the higher-order moments will be primarily determined
bit's energy is minimal. The result is that this method pre-by thea priori informationT'(%), so that the severe disagree-

dicts a last stable circular orbit of ment between thg, and theh, for largel is unimportant.
IV. RESULTS
F=3/2— 1+ 2 h|m|+ h|S| , (26) )
6% M evenl=>2 oddl=>1 In this section, we will discuss the errof®' for a variety

of situations. All numbers were computed using
where the values of thedg are also given in Table I. It is MATHEMATICA to numerically evaluate théé' in Eq. (14)
easy to verify the first coefficient analytically (= 11/6%9), from Eq.(13), which uses the priori information matrix in
since the last stable circular orbit of a slowly rotating Kerr Egs. (12) and the inspiral information matrix in Eq10),
black hole can be computddee Sec. 61 of Ref27]). which in turn relies upon Eq5), either noise curvé6) or

Examining Table I, we see that for low valueslofthe  (7), and Eqs(20) and(24).

g, andh, are of the same order of magnitude, but at higher While the diagonal terms in the error matrix give the er-
values they begin to differ greatly. For low valueslpthen,  rors, the off-diagonal terms contain information of the corre-
our approximation of using only the leading order contribu-lation coefficient§see Ref[15], Eq.(2.12]. We will not list
tion of each momentn, or s, in AN should be adequate, for these terms for lack of space. Usually, there is a strong cor-
two reasons. First, with a low value bfthe moment has a relation(correlation coefficient close t& 1 or —1) between
large fraction of its effect oAN at frequencies much less the time and phase parameters, the two mass parameters, and
than the frequency at the last stable circular orbit where théhe first few (lowest order multipole moment parameters.
post-Newtonian expansion is good and the leading orde®n the other hand, there is usually a weaker correlation be-

TABLE IV. The error 8¢' for each parametes’, when fitting up to thel,th moment, using LISA. We use the abbreviation
L(---)=logyo---). We assumegs=10M, M=10°My, r=3M, andS/N=100.

Imax L(6t, /sec) L(8¢y) L(Su/u) L(SM/M) L(Ss;) L(6my) L(8s5) L(dmy) L(Jss) L(6me) L(Js7) L(6mg) L(8Se) L(6myg)

0 0.74 —-0.25 -5.90 —5.80

1 171 0.33 —4.92 —4.70 —4.53

2 2.37 141 -4.17 —-401 —3.89 —282

3 2.73 252 —-3.49 —-3.28 —294 -—-227 —-1.66

4 4.54 3.80 —2.40 —-223 —-197 -0.81 0.07 0.72

5 5.99 474 -0.73 —-055 -—-1.12 0.47 0.59 0.95 2.35

6 6.05 4.87 —0.68 —0.50 —1.00 0.54 094 1.53 2.35 2.58

7 6.07 488 —0.66 —0.48 —-0.99 0.56 094 153 2.35 2.81 2.68

8 6.07 488 —0.65 —0.47 —-0.98 0.57 0.96 1.56 2.35 2.81 3.16 3.68

9 6.08 491 -0.65 —0.47 —0.96 0.58 1.04 1.67 2.35 2.82 3.20 3.74 4.10
10 6.08 492 -0.64 —046 —0.95 0.58 1.05 1.69 2.35 2.82 3.20 3.75 4.17 4.70
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TABLE V. The error 66 for each paramete#', when fitting up to thel,,th moment, using LISA. We use the abbreviation
L(---)=logy(---). We assumgx=10M 5, M=10°M¢, r=2M, andS/N=10.

Imax L(6t, /sec) L(8¢,) L(Su/u) L(SM/M) L(Ss;) L(6my) L(8s5) L(dmy) L(Jss) L(6me) L(JS7) L(6mg) L(8Se) L(6myg)

0 1.74 0.75 —4.90 —4.80

1 2.71 1.33 —3.92 —-3.70 —3.53

2 3.37 241 —-3.17 —-3.01 -289 —-1.82

3 3.73 352 —-249 —228 —194 —-1.27 —0.66

4 4.96 423 -195 —1.78 —-151 —-038 049 1.15

5 5.23 428 —1.54 —1.36 —1.48 -0.22 0.50 1.15 1.50

6 5.26 428 —1.49 —1.31 —-1.48 -0.20 0.50 1.15 1.50 1.80

7 5.26 428 —1.48 —-1.30 -—148 -0.20 0.50 1.15 1.50 1.80 2.10

8 5.26 428 —1.48 —-1.30 —148 -0.20 050 1.15 1.50 1.80 2.10 241

9 5.26 428 —1.48 —1.30 —148 -0.20 0.50 1.15 1.50 1.80 2.10 241 2.71

10 5.26 428 —1.48 —1.30 —1.48 -0.20 0.50 1.15 1.50 1.80 2.10 241 271 3.01
tween higher-order moments, because the errors for highem,, . ..) aregiven by Eq.(4), and then the test of whether

order moments are primarily dependent upon tinecorre-  m, satisfies Eq(4) or not serves to check whether the object
lated a priori probability distribution, as we will soon see. is a black hole or not. As another example, searching for a
We will now focus only on the diagonal terms. spinning boson star would require fitting upltg,,=3 [11].

In computing the errors, the amplitude parametecan When one knows any such relation that gives the higher-
be computed easily and separately from the others, becaus@aler moments(with 1>1 .0 as functions of the lower-
glance at Eqs(5), (10), and(20) shows thal” 4;=0, wherej order moments(with 1<I<I,J), all occurrences of the
is any other parameter besidgs Thus .4 is uncorrelated higher-order moments in Eq19) should be replaced with
with any other parameter. Its error is given by the functions of the lower-order moments. For the present
though, we want to perform an analysis without specifying
the relation. We can do this by replacing all the higher-order
moments with zero, instead of with thpresently unspeci-
fied) functions of the lower-order moments. This is a good
We now consider the errors for the other parameters only. approximation, because a lower-order moment has a much

The errors depend on how many multipole moment pastronger effect om\N (and consequently on the waveform
rameterd o are included in the fit. For example, the error and on the errojshrough where it normally occurs at a low
on s; would be greater if fitting for moments up tm, order in the post-Newtonian expansion than where it occurs
(I max=4) than if fitting up tos3 (I max=3)- Aslmaxincreases, in the replacement of a higher-order moment.
the dependence is at first very strong, but eventually the er- In Tables II-VII (described in more detail in the follow-
rors begin to approach certain values. If we are measuringhg paragraphs each column shows the error of the param-
the moments of an unknown object, thign, has to be cho- eter listed at the top of the column. We actually give the
sen to be infinite or, in practice, large enough such that th&ase-10 logarithm, so that large negative numbers corre-
errors stop growing. If, on the other hand, we are trying tospond to precise measurements. Each row corresponds to a
determine whether an object is a black hole or not then welifferent value ofl ,,,,, the number of moments being mea-
only have to fit up td ,o=2. This is because we can per- sured. Ad ., increases, the error on ttg,th moment(10
form the fit assuming all the moments with>1 ., (s3, to the power of the rightmost number in that nowp-

SA= A 2
“IN (27)

TABLE VI. The error §¢' for each parametes’, when fitting up to thel,,,th moment, using LISA. We use the abbreviation
L(---)=logyo(---). We assumg=10Mq, M=10°My, r=3M, andS/N=10.

Imax L(6t, /sec) L(8¢y) L(Su/u) L(SM/M) L(Ss;) L(6my) L(8s5) L(dmy) L(Jss) L(6me) L(Js7) L(6mg) L(8Se) L(6myg)

0 3.92 192 —-435 —4.74

1 4.92 284 —4.24 —3.28 —2.83

2 6.05 493 —2.00 —-253 —-1.01 -0.31

3 7.07 6.32 —-1.79 -1.19 0.08 0.84 0.89

4 7.60 6.32 -—-1.51 -1.02 0.09 0.84 1.19 1.82

5 8.04 6.32 —-0.70 —-0.47 0.11 0.84 1.20 1.83 2.38

6 8.12 6.34 -—-0.57 —0.35 0.12 0.84 1.20 1.83 2.38 2.85

7 8.14 6.39 —-0.50 —0.29 0.15 086 1.21 1.85 2.38 2.86 3.16

8 8.14 6.40 —0.50 —0.29 0.15 086 1.21 1.85 2.38 2.86 3.23 3.73

9 8.14 6.40 —0.50 —0.29 0.16 087 1.21 1.85 2.38 2.86 3.28 3.77 4.20
10 8.15 6.40 —0.50 —0.28 0.16 0.87 121 1.85 2.38 2.86 3.29 3.78 4.22 4.73
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TABLE VII. The error §¢' for each parameted’, when fitting up to thel ,,&dh moment, using LISA. We use the abbreviation
L(---)=logy(---). We assumegx=100M, M=10°M, r=3M, andS/N=10.

Imax L(6t, /sec) L(8¢,) L(Su/u) L(SM/M) L(Ss;) L(6my) L(8s5) L(dmy) L(Jss) L(6me) L(JS7) L(6mg) L(8Se) L(6myg)

0 1.46 0.48 —4.30 —4.15

1 2.39 116 —-3.24 —3.05 —2.98

2 3.28 199 -2.29 -211 —-2.60 —112

3 3.58 256 —-1.87 —-168 —-198 —-1.03 —-0.41

4 4.63 3.77 —-119 -101 -111 0.21 1.09 1.78

5 5.02 392 -0.72 —-055 -0.93 0.53 112 1.78 2.33

6 5.06 395 -0.68 —0.50 -0.90 0.57 113 1.78 2.34 2.81

7 5.06 395 -0.67 —0.49 -0.90 0.57 1.14 1.80 2.35 2.83 3.23

8 5.06 395 -0.67 —0.49 -0.90 0.57 114 181 2.35 2.83 3.25 3.78

9 5.06 395 -0.67 —0.49 -0.90 0.57 114 181 2.35 2.83 3.26 3.78 4.28
10 5.06 3.95 -0.67 —-049 -0.90 0.57 114 181 2.35 2.83 3.26 3.78 4.28 4.76

proaches tha priori error for thel ,,,th moment ¢(/M)'max  measure the inspiral from two years before the last stable
We should expect this, since the gravitational-wave measureircular orbit until the last stable circular orbit.

ment does not have enough information to make the error In Table Ill, we see the results of a binary with
significantly smaller. When we get to such a valuel gf, ~=1Mo, M=10Mg, andS/N=10. In the two years of
that the error is close tar(M)'ma then adding another row observation, the gravitational-wave frequengy sweeps

73 72 - .
to the table(fitting for an extra momentceases to increase from 4.3<10"° Hz to 4.4x 1.0 . Hz. In that time period,
there are about 4:210° gravitational-wave cycles. For the
the errors for all the parameters.

. : : same situatior(except with different values of. and M)
For LIGO, we find discouraging results. In Table Il, we joscrined above where with LIGO we could not determine

show the results of a best-case, alpeit unrealistic, scenarigynether the body was a black hole or not, we can with LISA
We assume that the small mass is oply=0.2Mo, the  measures; to within 0.0013 instead of 0.05, and we can
smallest mass a neutron star can theoretically have, so thateasurem, to within 0.015 instead of 0.56, and hence en-
by being small there are many cycles falling in the LIGO able a determination of whether the object is a black hole or
band. We assume that the large masMis 30M so that  not.

the final plunge occurs at 147 Hz and the final inspiral waves In Table IV, we see the results for the same situation as in
are near the frequency of greatest detector Sensitﬂ“}ere Table ”I, but now W|thS/N: 100. Note that for small values
are over 11000 gravitational-wave cycles from when the?f Imax Where all errors in Table Il are much less than the

gravitational-wave frequency enters the LIGO band at 10 HZP[IOf €Tors, then increasing the signal-to-noise by a factor
until the plunge. With a signal-to-noise rati&/N=10, we of 10 as in Table IV simply decreases the size of each error

Il find onl inal bility of hina for black by a factor of 10. In Table V, we see the same situation as in
st ind only & marginal capability Of Séarching 1or bIack rapie 111 put now withr set to M instead of its value in all

holes, as can be seen by examining the result$ foF=2.  the other tables, 8. Note that this makes little difference in
Say we made measurements of an inspiral giving best-fifows in which |, is small enough that all the errors are
measurements & = 0.8 andm,= —0.64. Keeping with our much less than tha priori errors anyway. In Table VI, we
assumptionmade above in the Introductipthat the errors  see the same situation as in Table Ill, except now with the
on the moments are approximately independent of the beslarge massvl =10°M, . In this case, the gravitational-wave
fit values of the moments, then from thg,=2 row in  frequencyF sweeps from 2.2 10" 3 Hz to 4.4x 10" 2 Hz, in
Table I, we see that the error aq is 0.05, and the error on about 1.8<10° cycles. In Table VII, we see the same situa-
m, is 0.56. Hence, we would not be able to confidently saytion as in Table IIl, except now with the small mass
that the compact body is a black hole, despite the best-fit=100M . In this case, the gravitational-wave frequency
parameters satisfying E@4). Other choices of masses be- F sweeps from 1.810 % Hz to 4.4x10 2 Hz, in about
sides 0., and 3M, usually give slightly worse results. 1.8X10° cycles. Although these two larger mass cases have
Our “best-case” choice of masses was made assuming thafreater errors as shown in Tables VI and VIl than those in
the S/N for all cases is 10. Of course, one can always gefTable lll, the larger mass cases will have a lar§&ax than
better results by assuming a larg#N; that is, assuming the the smaller mass case, assuming the distance and angles be-
binary is closer. However, unless we observe a binary at dween the binary and the detector are the same in all cases.
much largerS/N, it appears that LIGO will not allow us to We should remember that the above results are only valid
search for exotic objects or test the black-hole no-hair theoi the case when all our assumptions made in the Introduc-
rem. tion hold. In removing these assumptions, perhaps the most
On the other hand, we find encouraging results for thelifficult step will be generalizing the results to eccentric and
space-based detector LISA. The LISA mission is designed taonequatorial orbits. An orbit with high eccentricigyradi-
last for two years, although the spacecraft may be functionadtes very strongly and is very strongly affected by the spin of
for over a decadg2]. We therefore chose two year observa- the central body7], and by all of the multipole momen(8].
tion times in computing results—that is, we assume that weSimilarly, a nonequatorialwith a large inclination angle)
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orbit around a spinning central body preced, and the Despite the great number of assumptions we have made,
precession depends on the multipole momd®is If we  we believe our results will still be accurate enough to convey
knew the values of and ¢, and we knew thae’<1 and the main message: that the prospect of using space-based
1?<1, then our analysis would still be valid, because thedetectors to search for non-black-hole, massive, stellar ob-
gravitational-wave phase evolution depends on small eccefjects is promising and deserving of future efforts to remove

tricity or small inclination angle likee? or .2, respectively. our simplifying assumptions and enable a more careful
(The gravitational-wave amplitudtoeshave modulations of  gnalysis.

ordere or ¢ at the precession frequencies associated with an
elliptical orbit or a nonequatorial orki8]. However, because
this precession frequency is different than the gravitational-
wave frequency, then a cross-correlation of two signals with
precession using Eq&) and(10) has the terms linear ie or

¢ mostly canceling out due to the integration of a highly  The author would like to thank Kip Thorne for valuable
oscillatory term) In reality, we do not knowa priori the  giscussions. This work was supported by NSF Grant Nos.

values ofe and ¢ or whether or not they are small, thus AgT.9417371 and PHY-9424337. and by NASA Grant No.
necessitating an analysis with general orbits rather than oygag\w-426s.

circular orbits.
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