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If the gravitational field of a massive, compact body is stationary, axially symmetric, and reflection sym-
metric across the equatorial plane, and if a much less massive compact object~such as a neutron star or a small
black hole! were to orbit in a circle on the equatorial plane of the central, compact body, then the produced
gravitational waves would carry the values of the central body’s multipole moments. By detecting those waves
and extracting from them the central body’s lowest few moments, gravitational-wave detectors have the
potential to test the black-hole no-hair theorem and search for exotic objects such as naked singularities and
boson or soliton stars. This paper estimates how accurately we can expect to measure the central body’s
moments. The measurement errors are estimated using a combination of, first, the leading-order~of a post-
Newtonian series! contribution of each moment to the gravitational-wave phase, second, ana priori probability
distribution that constrains each moment’s magnitude to a range appropriate for a compact body, and third, any
relations that the multipole moments satisfy among themselves, which reduce the number of degrees of
freedom for the waves~this is useful in cases when one is searching for a specific type of compact body!. We
find that the Earth-based LIGO detector cannot provide sufficiently precise measurements of enough multipole
moments to search for exotic objects, but the space-based LISA detector can do so.@S0556-2821~97!01016-3#

PACS number~s!: 04.25.Nx, 04.30.Db, 04.80.Nn, 95.55.Ym

I. INTRODUCTION

Construction has begun on several ‘‘high-frequency’’
Earth-based laser-interferometer gravitational-wave detec-
tors, including the Laser Interferometer Gravitational-Wave
Observatory~LIGO! @1#; and hopefully the European Space
Agency’s ‘‘low-frequency’’ Laser Interferometer Space An-
tenna~LISA! @2# will be flying by the year 2014. Among the
promising observable events for Earth-based detectors are
neutron stars or small black holes spiraling into massive
black holes,M(!M&300M ( ; and similarly promising for
space-based detectors are white dwarfs, neutron stars, or
small black holes spiraling into;105M ( to ;33107M (

black holes @3,4#. For LISA, binary inspirals where the
smaller mass is a;10M ( black hole would be of especial
interest: at;10M ( , the orbiting object is less likely to be
perturbed by other orbiting objects than would be a solar-
mass compact object, and it would generate stronger gravi-
tational waves than its solar-mass counterpart@2,5–7#. Al-
though the calculation of event rates depends on many
assumptions, we might expect@2# to detect such events with
a signal-to-noise ratio of;40 for one year searches with
LISA, for binaries at cosmological redshiftz51.

The waves from such types of inspiral carry information
of the central black hole’s spacetime geometry, encoded in
two sets of multipole moments@8#. If the central body is
indeed a black hole, then the moments should satisfy a rela-
tion as dictated by the black-hole no-hair theorem@9#. Any
discrepancies would signal either a violation of the no-hair
theorem and general relativity, or that the central body is not
a black hole but actually another type of compact object,

such as a naked singularity or a boson or soliton star@10,11#.
In this paper, we will take the viewpoint of general relativity
being correct, and that we are searching for non-black-hole,
massive, compact bodies.

Of course, a discrepancy can either be actually physical or
be merely a statistical error from the data analysis of the
detected gravitational waves. The latter effect would be due
to the matched filtering analysis measuring best-fit param-
eters for the waves’ source which differ from the actual pa-
rameters by detector-noise-induced stochastic errors. In this
paper, we will attempt toestimatethe errors@we use the
word ‘‘error’’ to mean the standard error~the rms difference
between the actual and measured values of a parameter!# that
we can expect for measurements of the first few multipole
moments of the central body.

Finn @12#, Finn and Chernoff@13#, Cutler and Flanagan
@14#, and Poisson and Will@15# have established the data
analysis formalism~that we shall use and extend to measur-
ing multipole moments! and have analyzed measurement ac-
curacies for the mass and spin parameters of compact bina-
ries for Earth-based detectors such as LIGO. Poisson@16#
has used the same type of data analysis formalism for space-
based detectors. His analysis shows how one can use mea-
surements of binary inspirals to look for violations of general
relativity or indications that the central body is not a black
hole. In that analysis, the gravitational-wave phase is ex-
panded in a power series around the frequency of gravita-
tional waves at the last stable circular orbit~the orbit at
which a test particle can no longer move on a circular geo-
desic and must plunge into the central body!. The measured
parameters in that power series become the parameters that
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describe the central body~or the theory of gravity, if one
chooses the viewpoint that general relativity may not be cor-
rect!. This type of parametrization would be suitable when
assuming that the central body is a black hole or some type
of similar object; however, it would be less useful when
searching for objects vastly different from a black hole. For
example, a spinning boson star@11# may have a radius larger
than the last stable circular orbit for a black hole of the same
mass. Such a case would not be well suited for the power
series expansion around the frequency of gravitational waves
at the last stable circular orbit.

Our analysis differs from Ref.@16# in that our classifica-
tion of the central body is in terms of the multipole moment
expansion of its external gravitational field around radial in-
finity. Correspondingly, our analytical expansion of the pro-
duced gravitational-wave phase is performed around the
gravitational-wave frequency of zero. The multipole moment
parametrization covers a much broader range of possible
central bodies.

We have mentioned that we only provide estimates of the
measurement errors in this paper. An exact calculation would
be very difficult. By confining our analysis to a simple case
and using a simplified model gravitational waveform, we can
calculate errors which should give some indication of what
the errors would be in the exact calculation.

Here is a summary of our idealizing assumptions.
~1! For simplicity, we will deal only with central bodies

whose external gravitational field is stationary, axisymmet-
ric, reflection symmetric across the equatorial plane, and as-
ymptotically flat. With this assumption, the multipole mo-
ments can be described by two sets of scalars@8,17,18#:
There are the mass multipole moments consisting of the
massM and higher-order multipole momentsMl ~the mass
quadrupole momentM2, M4, M6 , . . . ). In ourunits which
we use here and throughout, we setG5c51, so thatMl has
units of ~mass! l 11. Since it will be more useful to deal with
dimensionless quantities, we define the dimensionless mo-
mentsml[Ml /Ml 11. There are also the mass-current mul-
tipole momentsSl ~the spin angular momentumS1, the cur-
rent octopole momentS3, S5, S7 , . . . ), for which we can
define dimensionless counterpartssl[Sl /Ml 11.

~2! The sizes of the errors that we will compute for the
momentsml and sl , as well as for the other binary param-
eters such as the masses, will be functions of the values of
those moments. However, for simplicity and for the sake of
being able to present the results in a concise form, we will
only compute the errors for the case in which the moments
ml andsl are either zero or small enough that terms appear-
ing in the gravitational-wave phase which are quadratic in
these moments can be ignored in our analysis. Making this
approximation miscalculates the errors for the moments by
amounts which scale linearly with the moments, while it
miscalculates the errors for all other parameters by amounts
which scale quadratically with the moments@see Eq.~3.26!
of Ref. @14# and surrounding discussion#. The errors as com-
puted for this spherical or almost spherical case should be
reasonable estimates for the errors in the general case. As we
will see below in Sec. IV, there will be some cases when the
errors on the moments become*1, so that even if the best-
fit measurement for a moment has it equal to zero, the actual
value of the moment may not be small at all and our approxi-

mation of dropping quadratic terms becomes poor. Even in
such cases, the errors should still be good as order of mag-
nitude approximations. This is because terms quadratic in the
multipole moments occur at a higher order in a post-
Newtonian series and typically affect the waveform by a
smaller amount.

~3! Besides its mass and multipole moments, the central
body has other parameters that can affect the waveforms. In
this paper, we will not consider how such effects enter into
the analysis. For example, the waveforms will depend on
whether or not the central body has a horizon, but we will
assume that the waves generated if the central body does not
have a horizon are the same as those if the body does have
one. Similarly, the waveforms will depend on whether or not
the central body absorbs energy through tidal heating; we
will assume it does not absorb energy.

~4! We will assume that the inspiraling compact object
has a sufficiently small massm (m!M ) that its orbital path
is close to being a geodesic of the central body’s unperturbed
spacetime geometry, and that this is true throughout the in-
spiral, up to a point just before the last stable circular orbit
when the object plunges into the central body.

~5! In general, the orbit will be both elliptical and out of
the equatorial plane. The eccentricitye is probably small for
the smaller mass binaries that Earth-based interferometers
can detect, because gravitational radiation reaction tends to
circularize orbits@19#. However, for;106M ( central bodies
studied by space-based detectors, the orbit may be highly
eccentric due to recent perturbations by other orbiting ob-
jects @5,7#. Unlike the case with eccentricity, the inclination
anglei between the orbital axis and the central body’s sym-
metry axis is not driven to be small by radiation reaction
@20#. Therefore, in general, the orbital motion will be very
complicated, consisting of the orbiting object traveling~ap-
proximately! in an ellipse, while that ellipse precesses in its
plane, and while that plane itself precesses around the central
body’s symmetry axis. For this paper, to avoid these compli-
cations, we will only solve the problem in the ideal situation
of the compact object traveling in the equatorial plane in a
slowly shrinking, circular orbit.

~6! We will assume that the inspiraling object travels
through vacuum. This may not be a good assumption if an
accretion disk surrounds the central body. We will also as-
sume that any other orbiting objects do not significantly per-
turb the orbit of the object whose waves we are measuring.
We will only consider the case when the equatorial size of
the central body is smaller than the radius of the last stable
circular orbit, although it is easy to modify our analysis be-
low to account for the waves cutting off at a larger radius
than where such a last stable circular orbit would be.

~7! The predicted templates for the gravitational wave-
forms are not yet known. This is because the computation of
the waves from the inspiral of a compact object around a
body with arbitrary multipole moments is complicated by
two-dimensional differential equations which are not sepa-
rable and have not yet been solved. However, we do know
how each multipole moment affects the phase of the gravi-
tational waves to leading order in a post-Newtonian expan-
sion @8#. With this information we should be able to get at
least a good order of magnitude estimate for the errors.

~8! We will assume a large signal-to-noise ratioS/N ~as
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defined below!. The limit of largeS/N is necessary to sim-
plify the analysis and so that we can be certain of detection
in the first place.

~9! We will use the noise curves for LIGO and LISA to
compute the measurement accuracies. We will assume the
noise is stationary and Gaussian. The noise curves for these
detectors are only the expected ones; the actual curves might
turn out to be different when the detectors are fully opera-
tional. Furthermore, space-based detectors will revolve
around the sun@21#, thereby having changing angular sensi-
tivity patterns. We will not incorporate this revolution effect
in our analysis. However, it is partially taken into account
through the fact that the signal-to-noise ratio will be reduced
through the angular averaging that the revolution creates~see
Ref. @2#, Fig. 1.3, and associated discussion!.

~10! The errors depend on how we model the possible
values that the multipole moments can take. Below, we will
give a model for thea priori probability distribution that is
appropriate for a compact body of characteristic size~radius!
r . Although this value ofr is arbitrary, we will select a
particular value (r 53M ) in our calculations.

This is certainly a long list of approximations and restric-
tions; however, it is reasonable to expect that they will not
seriously compromise the primary intent of this paper: to find
out the prospects for measuring multipole moments so as to
determine whether or not it is worthwhile for theorists to
pursue this calculation in greater depth. We will see that for
LISA it is worthwhile.

Hopefully, many of the above restrictions will be re-
moved in future, more sophisticated analyses, so that experi-
menters will have a complete set of numerically generated
templates with which to work. These numerically generated
templates will be accurate not only where the gravitational-
wave frequency is near zero~where our analysis is valid! or
near the frequency at the last stable circular orbit~where the
analysis of Ref.@16# is valid!, but also at all frequencies in
between.

We will use the convention that the orbital angular mo-
mentum vector of the orbiting object points in the direction
relative to which the mass-current moments are defined. For
example, if the central body were a Kerr black hole and
spinning in the same direction as the object revolves, thens1
would be positive; if spinning in the opposite direction, then
s1 would be negative.

The binary will generally be at distances where the cos-
mological redshiftz cannot be neglected. Therefore, the fre-
quencies of the gravitational waves as measured are a factor
of (11z)21 of those that would be measured at the source.
Similarly, it is (11z)m and (11z)M that are measured, as
opposed tom andM . The dimensionless multipole moments
ml andsl are not affected by the redshift factor. To make our
equations easier to read, we will not write down these factors
of (11z), although the conversion should be remembered
that where below we writem or M , we imply (11z)m or
(11z)M , respectively.

In Sec. II, we will briefly review the method for comput-
ing the errors. In Sec. III, we will construct a model of the
gravitational waves in the time and frequency domains. We
will also try to quantitatively understand the validity of using
only the leading-order contribution of each moment@as-
sumption~7! above#. In Sec. IV, we will compute the errors

for several different situations, and will deduce their impli-
cations for LIGO and for LISA.

II. DATA ANALYSIS

The data analysis formalism used in this section is de-
scribed in much greater detail in Refs.@12–15#. In this sec-
tion, we will summarize that formalism as needed for our
purpose, and show how the multipole moments can be given
an a priori probability distribution.

In the presence of a time-dependent gravitational-wave
strainh(t), the gravitational-wave detectors measure a signal
s(t)5h(t)1n(t), wheren(t) is noise which we assume to
be Gaussian. We assume that the waveformh(t) is one of
many possible waveformsh(t,u i) for which we have theo-
retically predicted templates, withu i being the parameters
that describe the waves, including the multipole moment pa-
rameters. We do not know, from the gravitational-wave mea-
surements, exactly what are the true values ofu i . Rather, all
we know is that if we have measured the signals(t), the
probability distribution function foru i to be the correct val-
ues can be written in terms of the prior probability distribu-
tion and the inner product as~see Appendix A of Ref.@14#!

p~u i !}p~0!~u i !e2~nun!/25p~0!~u i !e2~s2hus2h!/2. ~1!

Here,p(0)(u i) is our a priori probability distribution of the
parametersu i , and (nun) is the inner product~defined below!
of n(t) with itself. Althoughp(0)(u i) can be modeled rather
arbitrarily, we choose a particular fairly unrestrictive model.
We assume that the prior probability satisfies

p~0!~u i !5 )
evenl

p~0!~ml ! )
odd l

p~0!~sl !; ~2!

that is, we assume that there is a uniform prior probability
distribution function for all parameters except the multipole
moments, and that each moment isa priori independent of
the other moments. Our assumption that the central body is
compact~at least it has a small equatorial plane circumfer-
ence since the inspiraling object is able to make tightly
bound orbits! suggests that the magnitude of each moment
ml or sl cannot be much greater than (r /M ) l , where r is
some parameter that can be thought of as the characteristic
size or radius of the compact body. This parameter is not
necessarily associated with some physical radius of the cen-
tral body; rather, it is just some parameter that we have to
choose which restricts the multipole moments. More specifi-
cally, we assume prior probability distributions of the form

p~0!~ml !}expF2
1

2S ml

Ml

r l D 2G , ~3a!

p~0!~sl !}expF2
1

2S sl

M l

r l D 2G . ~3b!

We should not chooser *6M , since then the central body
would not be compact and in such case we would not be able
to measure the moments accurately anyway. On the other
hand, we should not chooser &M , because we wish to con-
sider a class of possible compact bodies broader than just
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black holes, and black holes themselves have moments sat-
isfying uml u<1 and usl u<1, as a result of the no-hair theo-
rem @8,9,18#,

ml1 isl5~ is1! l , ~4!

and the restrictionus1u<1. Below, when we calculate values
for the errors, we will mainly use the choicer 53M , but also
we we will show how the errors change when we changer .

Equations~3! state that thea priori probability distribu-
tion for each moment is centered around zero and has a
width of (r /M ) l . One might raise the objection that centering
the distribution around zero is not the best choice. For ex-
ample, most spinning objects have a negative mass quadru-
pole momentm2 due to the equator’s centrifugal bulge.
However, our assumption is easy to work with, and involves
a minimum of theoretical prejudices. One might also decide
to model the central body as a spinning object which cannot
rotate faster than the point at which it would centrifugally
breakup and therefore might restrictsl to be constrained as
(r /M ) l 2(1/2) instead of (r /M ) l . We will not use this alterna-
tive model.

The inner product (•u•) between two signals~or a signal
and a template! is defined by@Ref. @14#, Eq. ~2.3!#

~h1uh2!52E
0

` h̃1* ~ f ! h̃2~ f !1 h̃1~ f ! h̃2* ~ f !

Sn~ f !
d f , ~5!

where a tilde represents the Fourier transform, andSn( f ) is
the detector’s noise spectral density: For Earth-based detec-
tors, we follow Cutler and Flanagan@Ref. @14#, Eq. ~2.1!#
and use the following approximate analytic fit to the ex-
pected LIGO noise curve for advanced interferometers@1#:

Sn~ f .10 Hz!5
3310248

Hz F S f

f 0
D 24

1212S f

f 0
D 2G ,

Sn~ f ,10 Hz!5`, ~6!

wheref 0570 Hz. For space-based detectors, we use the fol-
lowing fit to the LISA noise curve

Sn~ f !5
8310242

Hz F S f

f a
D 214/3

1212S f

f l
D 2G , ~7!

wheref a50.0015 Hz andf l50.03 Hz. This fit is only valid
for 1024 Hz, f ,1021 Hz, to which we restrict our analy-
sis. We choose this fit as it agrees with the noise curve in
Fig. 1.3 of Ref.@2#. The term scaling asf 214/3 is due to
acceleration noise~see Table 3.3 of Ref.@2#!, the term con-
stant inf is due to optical-path noise~such as shot noise; see
Table 3.2 of Ref.@2#!, and the term scaling asf 2 is due to the
gravitational waves having shorter wavelengths than LISA’s
round-trip arm lengths.

The overall prefactors in these two noise curves do not
affect our analysis. Rather, those prefactors affect the signal-
to-noise ratio, as computed by@Ref. @14#, Eq. ~2.5!#

S/N5~huh!1/2. ~8!

We assume theS/N to be a given number, and the overall
amplitude of the signalh is normalized to give that number.
This normalization can be done because the amplitude ofh is
inversely proportional to the distance to the binary@as we
will see below in Eq.~15!#. Therefore, we assume that the
binary is at the distance required to get the assumedS/N.

Denoting by ū i the best-fit values for the parametersu i ,
the probability that the true set of parameters isū i1Du i is
@Ref. @15#, Eqs.~2.8! and ~2.9!#

p~ ū i1Du i !}p~0!~ ū i1Du i !e2~1/2!G i j Du iDu j
, ~9!

where

G i j 5S ]h

]u i U ]h

]u j D . ~10!

The partial derivatives are evaluated atu i5 ū i .
With our assumption that the best-fit parametersū i have

ml50 andsl50, then our prior probabilities are

p~0!~ ū i1Du i !}e2~1/2!G i j
~0!Du iDu j

, ~11!

where

Gmlml

~0! 5~M /r !2l for evenl .2, ~12a!

Gslsl

~0! 5~M /r !2l for odd l .1, ~12b!

and all other components of theG (0) matrix are zero.
The error matrix can be computed by taking the inverse of

the Fisher information matrixG1G (0) ~see Appendix 6 of
Ref. @14#!:

S5~G1G~0!!21. ~13!

The errordu i ~that is, the standard error, or the root-mean-
square error! for each parameteru i is @Ref. @14#, Eq. ~2.8!#

du i5~S i i !1/2. ~14!

We have to know the template formsh(t,u i); that is, how
the waveform depends on all the parameters for which we
are fitting. As we will see in the next section, these param-
eters consist of the overall signal amplitude, two integration
constants~the time and phase of signal arrival!, the massesm
andM , and the multipole momentsml andsl . Since we only
need]h/]ml and]h/]sl ~both evaluated around the spheri-
cal case! for Eq. ~10!, then we only need to know the
waveform accurate to linear order in each of the moments
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with ml and sl . That is, we need to know the waveform
assuming the central body is spherical, and how the wave-
form varies when each moment is varied.

III. THE GRAVITATIONAL WAVEFORMS

In this section, we will first construct a model waveform
as a function of the just mentioned parameters. We will then
compute its Fourier transform. Finally, we will examine the
validity of our assumption of only including the leading-
order ~in a post-Newtonian series! contribution of each mo-
ment.

The gravitational-wave strainh(t) that a detector mea-
sures is very complicated:h(t) is a linear combination of the
waveformsh1(t) andh3(t) that come from the source, with
the coefficients in that combination being functions of the
orientations of the detector’s axes and the direction to the
binary. Although these orientations change during the dura-
tion of the signal for space-based detectors which revolve
around the sun, we ignore this slow modulation@21#. The
waveforms h1(t) and h3(t) themselves are complicated
functions of the angles between the binary’s axes and the
line from the binary to the detector. All of the angular factors
which go into determining the amplitude for the waves are
combined into some functionQ of the angles. For the pur-
pose of trying to estimate the errors, the fact thatQ is really
a slowly changing function of time is not important. Nor are
we too concerned with the form ofQ as a function of the
angles for the same reason that we were not too concerned
with the prefactors in the noise curves~6! and ~7!: the dis-
tance to the binary is adjusted as appropriate to give us the
assumedS/N.

Not only is the overall amplitude of the signal not too
important for our analysis, but also the exact form of the
amplitude as a function of time is not nearly as important as
the phase of the oscillating waveform. This is because there
is a large number of cycles in the signal, so that the effect of
a slight change in the parameters on the phase is on the order
of that large number times greater than the effect of that
slight change in parameters on the amplitude. Because of
this, we can approximate@13–15# the waveform as having an
amplitude as computed in the Newtonian limit for a spherical
body. In addition, it is a sufficiently good approximation to
examine only the dominant frequencyF of the gravitational
waves, which is twice the orbital frequency.

As the orbit shrinks,F is a slowly varying function of
time t. The model waveformh(t) can then be written as a
function of F as @see Ref.@14#, Eq. ~2.12!#

h~ t !5S 384

5 D 1/2

p4/3Q
m

D
~MF !2/3cosS E 2pF dtD , ~15!

where D is distance to the source, chosen to give the as-
sumedS/N.

TheF(t) appearing in Eq.~15! should be computed care-
fully, for if F(t) were off by a small fraction, then after a
number of cycles equal to half the reciprocal of that fraction,
the template would go from in-phase to out-of-phase with the
gravitational wave. Instead of dealing withF(t), we use the

dimensionless quantityDN(F), the number of cycles that the
dominant gravitational-wave frequency spends in a logarith-
mic interval of frequency:

DN[
F2

dF/dt
5F2

dE/dF

dE/dt
, ~16!

whereE is the orbital energy of the binary.
For dE/dt, we add the exact post4-Newtonian series ex-

pansion for a spherical black hole@Ref. @23#, Eq. ~43!#,
rounded off to six digit accuracy, and the leading-order~in a
post-Newtonian series! contribution of each moment@Ref.
@8#, Eq. ~55!#, resulting in

dE

dt
52

32

5 S m

M D 2

~pMF !10/3F123.71131~pMF !2/3

112.5664~pMF !24.92846~pMF !4/3

238.2928~pMF !5/31@115.73225.43492ln~pMF !#

3~pMF !22101.510~pMF !7/3

1@2117.504117.5810ln~pMF !#~pMF !8/3

1 (
evenl>2

4~21! l /2~ l 11!!! ml~pMF !2l /3

3l !!

2 (
odd l>3

8~21!~ l 21!/2l !! sl~pMF !~2l 11!/3

3~ l 21!!!

2
11

4
s1~pMF !G . ~17!

For dE/dF, we add the exact expression for the spherical
case@Ref. @22#, Eq. ~4!# to the leading-order and linear con-
tribution of each moment@Ref. @8#, Eq. ~56!#, resulting in

dE

dF
52

pMm

3~pMF !1/3F 126~pMF !2/3

@123~pMF !2/3#3/2

2 (
evenl>2

~21! l /2~4l 22!~ l 11!!! ml~pMF !2l /3

3l !!

1 (
odd l>1

~21!~ l 21!/2~8l 112!l !! sl~pMF !~2l 11!/3

3~ l 21!!! G .

~18!

Combining Eqs.~16!–~18!, we calculateDN as a post-
Newtonian series, which, as withF(t), has to be calculated
accurately. However, we do not expand out the
@126(pMF)2/3# factor that came fromdE/dF for the
spherical case. This nonexpansion was shown to greatly im-
prove the accuracy of the template@see Ref.@22#, Eq. ~18!#.
The result is@see Ref.@8#, Eqs.~57!#
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DN5
5

96pS M

m D ~pMF !25/3

3F (
n50,2,3,4,5,6,7,8

an~pMF !n/3@126~pMF !2/3#

1 (
n56,8

bn~pMF !n/3ln~pMF !@126~pMF !2/3#

2 (
evenl>2

~21! l /2~4l 12!~ l 11!!! ml~pMF !2l /3

3l !!

1 (
odd l>3

~21!~ l 21!/2~8l 120!l !! sl~pMF !~2l 11!/3

3~ l 21!!!

1
113

12
s1~pMF !G . ~19!

Above, thea and b coefficients are those that describe the
post-Newtonian expansion around a spherical black hole:
a051, a258.21131, a35212.5664, a4552.2782,
a552111.531,a65335.734,a752716.863,a851790.54,
b655.43492, andb8547.2175. Even though Eq.~19! is
really just part of a post-Newtonian series, we treat it as
exact for our model of the waveform.

We need, for Eq.~5!, the Fourier transform ofh(t). Fol-
lowing Refs.@13–15#, we computeh̃( f ) from Eq.~15! using
the stationary phase approximation

h̃~ f !5Af 27/6exp@ ic~ f !#, ~20!

whereA5(Q/D)m1/2M1/3 and

c~ f !52p f t~ f !2f~ f !2
p

4
, ~21!

with

t~ f !5E dt

dF
dF5E DN

F2
dF ~22!

and

f~ f !5E 2pF
dt

dF
dF5E 2p

DN

F
dF. ~23!

Equation~20! has to be modified to account for the waves’
shutting off at the last stable circular orbit. We have to set
h̃( f ) to zero for f .623/2(pM )21, the gravitational-wave
frequency when the orbiting object plunges into the central
body @14#. @Technically, this frequency changes with the
massM and with the multipole moments, and such varia-
tions enter into the]h/]u i terms in Eq.~10!, but these varia-
tions can be ignored because they affect the amplitude of the
signal, which is measured to far less accuracy than the
phase.# Substituting our expression~19! for DN in Eqs.
~21!–~23! and keeping the expression only to linear order in
ml andsl yields

c~ f !52p f t* 2f* 2
p

4
1

3

128S M

m D ~pM f !25/3H (
n50,2,3,4,6,7

40an

~n28!~n25!
~pM f !n/3

2 (
n50,2,4,5,7,8

240an

~n26!~n23!
~pM f !~n12!/32 40

9 ~a526a3!~pM f !5/3ln~pM f !1 40
9 ~a826a6!~pM f !8/3ln~pM f !

220b6~pM f !2@ ln~pM f !2 1
3 #1 40

9 ~b826b6!~pM f !8/3@ 1
2 ln2~pM f !2 ln~pM f !#224b8~pM f !10/3@ ln~pM f !2 21

10 #

2 (
evenlÞ4

~21! l /240~2l 11!~ l 11!!! ml~pM f !2l /3

3~2l 25!~ l 24!l !!
1 (

odd l>3

~21!~ l 21!/280~2l 15!l !! sl~pM f !~2l 11!/3

3~ l 22!~2l 27!~ l 21!!!

1
113

3
s1~pM f !250m4~pM f !8/3ln~pM f !J , ~24!

wheret* andf* are integration constants from the integrals
in Eqs. ~22! and ~23!. These two parameters must be in-
cluded in the list of parametersu i for which errors are com-
puted. They can becalled the time and phase of the signal,
although such names are rather arbitrary since we only de-
fined t* andf* up to the addition of constants. One could
easily redefine, by adding constants,t* and f* to be the
time and phase whenF reaches some fiducial frequencyF* .
Since we are interested more in the multipole moment pa-
rameters than int* and f* , we do not bother to do such
redefinitions.

For the remainder of this section, we will try to under-
stand how good or poor is our approximation of using only
the leading-order contribution~of a post-Newtonian series!
of each multipole moment. The relevance of this discussion
depends mainly on the frequency range through which we
measure the inspiral. For example, if the frequency at the
beginning of the measured inspiral were a factor of 10 less
than at the end of the inspiral at the last stable circular orbit,
then most of the cycles would be at frequencies where the
post-Newtonian expansion would be good even to leading
order. Consequently, our estimates of the errors on the low-
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est few moments would be good. Another case in which our
approximation would be valid is if the gravitational-wave
frequency at the last stable circular orbit were high and in a
region of poor detector sensitivity, so that most of our infor-
mation would come from the lower frequency portion of the
waves. If, however, a significant portion of our information
were to come from near the last stable circular orbit, then we
would have to examine how well our approximation serves.

Our main concern is that our form for including the mul-
tipole moments inDN might for some reason be extremely
poor near the last stable circular orbit, for example, due to

poor convergence of some series. It is not so much our con-
cern that higher-order post-Newtonian terms which are com-
parable to the leading-order terms might make a difference.
In fact, we have experimented by ‘‘making up’’ higher-order
post-Newtonian terms~with coefficients on the order of the
leading-order term! for each moment, and found little differ-
ences in the errors as computed in the next section.

If there were some strong effect onDN and consequently
c( f ) @note thatc( f ) is derived exactly fromDN; if the latter
were exactly correct, then so would be the former#, it would
likely show up in the location of the last stable circular orbit
where, by virtue ofdE/dF going to zero,DN goes to zero.
We can test the validity of the leading-order approximation
by assuming small values of all momentsml and sl and
computing the gravitational-wave frequency at the last stable
circular orbit as computed by two ways, listed in the next
two paragraphs. This test should be a sensitive indicator as to
the accuracy of our approximation, because of the strong
dependence of the gravitational-wave phase on the last stable
circular orbit @22#; if we have calculated the last stable cir-
cular orbit’s dependence on the moments to some accuracy
then we are likely to have calculated the high-frequency
gravitational-wave phase’s dependence on the moments to a
similar accuracy.

The first way of computing the last stable circular orbit is
by looking at where theDN in Eq. ~19! ‘‘thinks’’ it is; that
is, where thatDN goes to zero. SolvingDN50 gives the last
stable circular orbit at frequency

F5
1

63/2pM
S 11 (

evenl>2
glml1 (

odd l>1
glsl D , ~25!

where the values of thegl coefficients are listed in Table I.
The second way is by computing whereDN of the actual

gravitational waves@as opposed to our model gravitational
waves and theDN in Eq. ~19!# would go to zero. This can be
computed because we can compute where the actual
dE/dF goes to zero. We did this by writing a computer
program to calculate out the metric with all theml andsl up
to l 532 set to zero except one slightly nonzero moment.
This program uses a method that we will not discuss in this
paper because, first, the discussion would be lengthy, second,
a future paper@24# will give details of the method, and third,

TABLE I. The values ofgl andhl , used in the formulas for the
last stable circular orbit as calculated to leading order and to higher
order, respectively.

l gl hl

1 3.0831021 7.4831021

2 6.6931022 2.3431021

3 22.0031022 27.4431022

4 24.1831023 22.1331022

5 9.4831024 5.3231023

6 1.9631024 1.4731023

7 23.8931025 23.2631024

8 27.9931026 28.8131025

9 1.4731026 1.8331025

10 3.0231027 4.8931026

11 25.2831028 29.7331027

12 21.0831028 22.5831027

13 1.8231029 4.9731028

14 3.73310210 1.3131028

15 26.13310211 22.4731029

16 21.25310211 26.45310210

17 2.02310212 1.20310210

18 4.12310213 3.12310211

19 26.52310214 25.70310212

20 21.33310214 21.48310212

21 2.08310215 2.68310213

22 4.24310216 6.94310212

23 26.55310217 21.24310214

24 21.34310217 23.21310215

TABLE II. The error du i for each parameteru i , when fitting up to thel maxth moment, using LIGO. We use the abbreviation
L(•••)[ log10(•••). We assumem50.2M ( , M530M ( , r 53M , andS/N510.

l max L(dt* /sec) L(df* ) L(dm/m) L(dM /M ) L(ds1) L(dm2) L(ds3) L(dm4) L(ds5) L(dm6) L(ds7) L(dm8) L(ds9) L(dm10)

0 21.96 0.57 23.22 23.14
1 21.07 1.04 22.35 22.12 21.94
2 20.45 2.16 21.63 21.47 21.30 20.25
3 20.14 3.19 21.00 20.80 20.45 0.24 0.83
4 0.34 3.25 20.92 20.72 20.44 0.38 1.18 1.83
5 0.70 3.28 20.64 20.45 20.44 0.56 1.19 1.83 2.36
6 0.75 3.28 20.57 20.39 20.44 0.60 1.19 1.83 2.36 2.85
7 0.77 3.28 20.53 20.34 20.43 0.61 1.19 1.83 2.36 2.85 3.33
8 0.78 3.29 20.51 20.33 20.42 0.61 1.19 1.83 2.36 2.85 3.33 3.81
9 0.78 3.29 20.51 20.33 20.42 0.61 1.19 1.83 2.36 2.85 3.33 3.81 4.29
10 0.78 3.29 20.51 20.32 20.42 0.61 1.19 1.83 2.36 2.85 3.33 3.81 4.29 4.77
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the method is simply the inverse process of Fodor, Hoense-
laers, and Perje´s’ method of computing the multipole mo-
ments given the metric@25#: we guess a metric, compute its
moments using Ref.@25#, and then modify the metric order-
by-order in a power series inM /(radius). After we computed
the metric, we calculated the frequency where a circular or-
bit’s energy is minimal. The result is that this method pre-
dicts a last stable circular orbit of

F5
1

63/2pM
S 11 (

evenl>2
hlml1 (

odd l>1
hlsl D , ~26!

where the values of thesehl are also given in Table I. It is
easy to verify the first coefficient analytically (h1511/63/2),
since the last stable circular orbit of a slowly rotating Kerr
black hole can be computed~see Sec. 61 of Ref.@27#!.

Examining Table I, we see that for low values ofl , the
gl andhl are of the same order of magnitude, but at higher
values they begin to differ greatly. For low values ofl , then,
our approximation of using only the leading order contribu-
tion of each momentml or sl in DN should be adequate, for
two reasons. First, with a low value ofl , the moment has a
large fraction of its effect onDN at frequencies much less
than the frequency at the last stable circular orbit where the
post-Newtonian expansion is good and the leading order

term should be sufficient. Second, even at higher frequencies
close to the frequency at the last stable circular orbit, the
approximation should be at the correct order of magnitude.
On the other hand, for higher values ofl , neither of these two
reasons is applicable. As it will turn out, however, the errors
for the higher-order moments will be primarily determined
by thea priori informationG (0), so that the severe disagree-
ment between thegl and thehl for large l is unimportant.

IV. RESULTS

In this section, we will discuss the errorsdu i for a variety
of situations. All numbers were computed using
MATHEMATICA to numerically evaluate thedu i in Eq. ~14!
from Eq. ~13!, which uses thea priori information matrix in
Eqs. ~12! and the inspiral information matrix in Eq.~10!,
which in turn relies upon Eq.~5!, either noise curve~6! or
~7!, and Eqs.~20! and ~24!.

While the diagonal terms in the error matrix give the er-
rors, the off-diagonal terms contain information of the corre-
lation coefficients@see Ref.@15#, Eq. ~2.12!#. We will not list
these terms for lack of space. Usually, there is a strong cor-
relation~correlation coefficient close to11 or 21) between
the time and phase parameters, the two mass parameters, and
the first few ~lowest order! multipole moment parameters.
On the other hand, there is usually a weaker correlation be-

TABLE III. The error du i for each parameteru i , when fitting up to thel maxth moment, using LISA. We use the abbreviation
L(•••)[ log10(•••). We assumem510M ( , M5105M ( , r 53M , andS/N510.

l max L(dt* /sec) L(df* ) L(dm/m) L(dM /M ) L(ds1) L(dm2) L(ds3) L(dm4) L(ds5) L(dm6) L(ds7) L(dm8) L(ds9) L(dm10)

0 1.74 0.75 24.90 24.80
1 2.71 1.33 23.92 23.70 23.53
2 3.37 2.41 23.17 23.01 22.89 21.82
3 3.73 3.52 22.49 22.28 21.94 21.27 20.66
4 5.43 4.69 21.51 21.34 21.07 0.09 0.96 1.61
5 6.01 4.86 20.72 20.54 20.95 0.50 0.99 1.62 2.35
6 6.08 4.94 20.64 20.46 20.90 0.58 1.08 1.71 2.36 2.75
7 6.08 4.95 20.64 20.46 20.89 0.58 1.14 1.80 2.36 2.84 2.98
8 6.08 4.95 20.64 20.46 20.89 0.58 1.14 1.81 2.36 2.84 3.18 3.72
9 6.08 4.95 20.64 20.46 20.89 0.58 1.14 1.81 2.36 2.84 3.22 3.75 4.23
10 6.08 4.95 20.64 20.46 20.89 0.58 1.14 1.81 2.36 2.84 3.23 3.76 4.24 4.75

TABLE IV. The error du i for each parameteru i , when fitting up to thel maxth moment, using LISA. We use the abbreviation
L(•••)[ log10(•••). We assumem510M ( , M5105M ( , r 53M , andS/N5100.

l max L(dt* /sec) L(df* ) L(dm/m) L(dM /M ) L(ds1) L(dm2) L(ds3) L(dm4) L(ds5) L(dm6) L(ds7) L(dm8) L(ds9) L(dm10)

0 0.74 20.25 25.90 25.80
1 1.71 0.33 24.92 24.70 24.53
2 2.37 1.41 24.17 24.01 23.89 22.82
3 2.73 2.52 23.49 23.28 22.94 22.27 21.66
4 4.54 3.80 22.40 22.23 21.97 20.81 0.07 0.72
5 5.99 4.74 20.73 20.55 21.12 0.47 0.59 0.95 2.35
6 6.05 4.87 20.68 20.50 21.00 0.54 0.94 1.53 2.35 2.58
7 6.07 4.88 20.66 20.48 20.99 0.56 0.94 1.53 2.35 2.81 2.68
8 6.07 4.88 20.65 20.47 20.98 0.57 0.96 1.56 2.35 2.81 3.16 3.68
9 6.08 4.91 20.65 20.47 20.96 0.58 1.04 1.67 2.35 2.82 3.20 3.74 4.10
10 6.08 4.92 20.64 20.46 20.95 0.58 1.05 1.69 2.35 2.82 3.20 3.75 4.17 4.70
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tween higher-order moments, because the errors for higher-
order moments are primarily dependent upon the~uncorre-
lated! a priori probability distribution, as we will soon see.
We will now focus only on the diagonal terms.

In computing the errors, the amplitude parameterA can
be computed easily and separately from the others, because a
glance at Eqs.~5!, ~10!, and~20! shows thatGAj50, wherej
is any other parameter besidesA. ThusA is uncorrelated
with any other parameter. Its error is given by

dA5
A

S/N
. ~27!

We now consider the errors for the other parameters only.
The errors depend on how many multipole moment pa-

rametersl max are included in the fit. For example, the error
on s1 would be greater if fitting for moments up tom4
( l max54) than if fitting up tos3 ( l max53). As l max increases,
the dependence is at first very strong, but eventually the er-
rors begin to approach certain values. If we are measuring
the moments of an unknown object, thenl max has to be cho-
sen to be infinite or, in practice, large enough such that the
errors stop growing. If, on the other hand, we are trying to
determine whether an object is a black hole or not then we
only have to fit up tol max52. This is because we can per-
form the fit assuming all the moments withl . l max (s3,

m4 , . . . ) aregiven by Eq.~4!, and then the test of whether
m2 satisfies Eq.~4! or not serves to check whether the object
is a black hole or not. As another example, searching for a
spinning boson star would require fitting up tol max53 @11#.

When one knows any such relation that gives the higher-
order moments~with l . l max) as functions of the lower-
order moments~with 1< l< l max), all occurrences of the
higher-order moments in Eq.~19! should be replaced with
the functions of the lower-order moments. For the present
though, we want to perform an analysis without specifying
the relation. We can do this by replacing all the higher-order
moments with zero, instead of with the~presently unspeci-
fied! functions of the lower-order moments. This is a good
approximation, because a lower-order moment has a much
stronger effect onDN ~and consequently on the waveform
and on the errors! through where it normally occurs at a low
order in the post-Newtonian expansion than where it occurs
in the replacement of a higher-order moment.

In Tables II–VII ~described in more detail in the follow-
ing paragraphs!, each column shows the error of the param-
eter listed at the top of the column. We actually give the
base-10 logarithm, so that large negative numbers corre-
spond to precise measurements. Each row corresponds to a
different value ofl max, the number of moments being mea-
sured. Asl max increases, the error on thel maxth moment~10
to the power of the rightmost number in that row! ap-

TABLE V. The error du i for each parameteru i , when fitting up to thel maxth moment, using LISA. We use the abbreviation
L(•••)[ log10(•••). We assumem510M ( , M5105M ( , r 52M , andS/N510.

l max L(dt* /sec) L(df* ) L(dm/m) L(dM /M ) L(ds1) L(dm2) L(ds3) L(dm4) L(ds5) L(dm6) L(ds7) L(dm8) L(ds9) L(dm10)

0 1.74 0.75 24.90 24.80
1 2.71 1.33 23.92 23.70 23.53
2 3.37 2.41 23.17 23.01 22.89 21.82
3 3.73 3.52 22.49 22.28 21.94 21.27 20.66
4 4.96 4.23 21.95 21.78 21.51 20.38 0.49 1.15
5 5.23 4.28 21.54 21.36 21.48 20.22 0.50 1.15 1.50
6 5.26 4.28 21.49 21.31 21.48 20.20 0.50 1.15 1.50 1.80
7 5.26 4.28 21.48 21.30 21.48 20.20 0.50 1.15 1.50 1.80 2.10
8 5.26 4.28 21.48 21.30 21.48 20.20 0.50 1.15 1.50 1.80 2.10 2.41
9 5.26 4.28 21.48 21.30 21.48 20.20 0.50 1.15 1.50 1.80 2.10 2.41 2.71
10 5.26 4.28 21.48 21.30 21.48 20.20 0.50 1.15 1.50 1.80 2.10 2.41 2.71 3.01

TABLE VI. The error du i for each parameteru i , when fitting up to thel maxth moment, using LISA. We use the abbreviation
L(•••)[ log10(•••). We assumem510M ( , M5106M ( , r 53M , andS/N510.

l max L(dt* /sec) L(df* ) L(dm/m) L(dM /M ) L(ds1) L(dm2) L(ds3) L(dm4) L(ds5) L(dm6) L(ds7) L(dm8) L(ds9) L(dm10)

0 3.92 1.92 24.35 24.74
1 4.92 2.84 24.24 23.28 22.83
2 6.05 4.93 22.00 22.53 21.01 20.31
3 7.07 6.32 21.79 21.19 0.08 0.84 0.89
4 7.60 6.32 21.51 21.02 0.09 0.84 1.19 1.82
5 8.04 6.32 20.70 20.47 0.11 0.84 1.20 1.83 2.38
6 8.12 6.34 20.57 20.35 0.12 0.84 1.20 1.83 2.38 2.85
7 8.14 6.39 20.50 20.29 0.15 0.86 1.21 1.85 2.38 2.86 3.16
8 8.14 6.40 20.50 20.29 0.15 0.86 1.21 1.85 2.38 2.86 3.23 3.73
9 8.14 6.40 20.50 20.29 0.16 0.87 1.21 1.85 2.38 2.86 3.28 3.77 4.20
10 8.15 6.40 20.50 20.28 0.16 0.87 1.21 1.85 2.38 2.86 3.29 3.78 4.22 4.73
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proaches thea priori error for thel maxth moment (r /M ) l max.
We should expect this, since the gravitational-wave measure-
ment does not have enough information to make the error
significantly smaller. When we get to such a value ofl max

that the error is close to (r /M ) l max, then adding another row
to the table~fitting for an extra moment! ceases to increase
the errors for all the parameters.

For LIGO, we find discouraging results. In Table II, we
show the results of a best-case, albeit unrealistic, scenario:
We assume that the small mass is onlym50.2M ( , the
smallest mass a neutron star can theoretically have, so that
by being small there are many cycles falling in the LIGO
band. We assume that the large mass isM530M ( so that
the final plunge occurs at 147 Hz and the final inspiral waves
are near the frequency of greatest detector sensitivity.~There
are over 11 000 gravitational-wave cycles from when the
gravitational-wave frequency enters the LIGO band at 10 Hz
until the plunge.! With a signal-to-noise ratioS/N510, we
still find only a marginal capability of searching for black
holes, as can be seen by examining the results forl max52.
Say we made measurements of an inspiral giving best-fit
measurements ofs150.8 andm2520.64. Keeping with our
assumption~made above in the Introduction! that the errors
on the moments are approximately independent of the best-
fit values of the moments, then from thel max52 row in
Table II, we see that the error ons1 is 0.05, and the error on
m2 is 0.56. Hence, we would not be able to confidently say
that the compact body is a black hole, despite the best-fit
parameters satisfying Eq.~4!. Other choices of masses be-
sides 0.2M ( and 30M ( usually give slightly worse results.
Our ‘‘best-case’’ choice of masses was made assuming that
the S/N for all cases is 10. Of course, one can always get
better results by assuming a largerS/N; that is, assuming the
binary is closer. However, unless we observe a binary at a
much largerS/N, it appears that LIGO will not allow us to
search for exotic objects or test the black-hole no-hair theo-
rem.

On the other hand, we find encouraging results for the
space-based detector LISA. The LISA mission is designed to
last for two years, although the spacecraft may be functional
for over a decade@2#. We therefore chose two year observa-
tion times in computing results—that is, we assume that we

measure the inspiral from two years before the last stable
circular orbit until the last stable circular orbit.

In Table III, we see the results of a binary with
m510M ( , M5105M ( , andS/N510. In the two years of
observation, the gravitational-wave frequencyF sweeps
from 4.331023 Hz to 4.431022 Hz. In that time period,
there are about 4.23105 gravitational-wave cycles. For the
same situation~except with different values ofm and M )
described above where with LIGO we could not determine
whether the body was a black hole or not, we can with LISA
measures1 to within 0.0013 instead of 0.05, and we can
measurem2 to within 0.015 instead of 0.56, and hence en-
able a determination of whether the object is a black hole or
not.

In Table IV, we see the results for the same situation as in
Table III, but now withS/N5100. Note that for small values
of l max where all errors in Table III are much less than thea
priori errors, then increasing the signal-to-noise by a factor
of 10 as in Table IV simply decreases the size of each error
by a factor of 10. In Table V, we see the same situation as in
Table III, but now withr set to 2M instead of its value in all
the other tables, 3M . Note that this makes little difference in
rows in which l max is small enough that all the errors are
much less than thea priori errors anyway. In Table VI, we
see the same situation as in Table III, except now with the
large massM5106M ( . In this case, the gravitational-wave
frequencyF sweeps from 2.231023 Hz to 4.431023 Hz, in
about 1.83105 cycles. In Table VII, we see the same situa-
tion as in Table III, except now with the small mass
m5100M ( . In this case, the gravitational-wave frequency
F sweeps from 1.831023 Hz to 4.431022 Hz, in about
1.83105 cycles. Although these two larger mass cases have
greater errors as shown in Tables VI and VII than those in
Table III, the larger mass cases will have a largerS/N than
the smaller mass case, assuming the distance and angles be-
tween the binary and the detector are the same in all cases.

We should remember that the above results are only valid
in the case when all our assumptions made in the Introduc-
tion hold. In removing these assumptions, perhaps the most
difficult step will be generalizing the results to eccentric and
nonequatorial orbits. An orbit with high eccentricitye radi-
ates very strongly and is very strongly affected by the spin of
the central body@7#, and by all of the multipole moments@8#.
Similarly, a nonequatorial~with a large inclination anglei)

TABLE VII. The error du i for each parameteru i , when fitting up to thel maxth moment, using LISA. We use the abbreviation
L(•••)[ log10(•••). We assumem5100M ( , M5105M ( , r 53M , andS/N510.

l max L(dt* /sec) L(df* ) L(dm/m) L(dM /M ) L(ds1) L(dm2) L(ds3) L(dm4) L(ds5) L(dm6) L(ds7) L(dm8) L(ds9) L(dm10)

0 1.46 0.48 24.30 24.15
1 2.39 1.16 23.24 23.05 22.98
2 3.28 1.99 22.29 22.11 22.60 21.12
3 3.58 2.56 21.87 21.68 21.98 21.03 20.41
4 4.63 3.77 21.19 21.01 21.11 0.21 1.09 1.78
5 5.02 3.92 20.72 20.55 20.93 0.53 1.12 1.78 2.33
6 5.06 3.95 20.68 20.50 20.90 0.57 1.13 1.78 2.34 2.81
7 5.06 3.95 20.67 20.49 20.90 0.57 1.14 1.80 2.35 2.83 3.23
8 5.06 3.95 20.67 20.49 20.90 0.57 1.14 1.81 2.35 2.83 3.25 3.78
9 5.06 3.95 20.67 20.49 20.90 0.57 1.14 1.81 2.35 2.83 3.26 3.78 4.28
10 5.06 3.95 20.67 20.49 20.90 0.57 1.14 1.81 2.35 2.83 3.26 3.78 4.28 4.76
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orbit around a spinning central body precesses@26#, and the
precession depends on the multipole moments@8#. If we
knew the values ofe and i, and we knew thate2!1 and
i2!1, then our analysis would still be valid, because the
gravitational-wave phase evolution depends on small eccen-
tricity or small inclination angle likee2 or i2, respectively.
„The gravitational-wave amplitudedoeshave modulations of
ordere or i at the precession frequencies associated with an
elliptical orbit or a nonequatorial orbit@8#. However, because
this precession frequency is different than the gravitational-
wave frequency, then a cross-correlation of two signals with
precession using Eqs.~5! and~10! has the terms linear ine or
i mostly canceling out due to the integration of a highly
oscillatory term.… In reality, we do not knowa priori the
values ofe and i or whether or not they are small, thus
necessitating an analysis with general orbits rather than our
circular orbits.

Despite the great number of assumptions we have made,
we believe our results will still be accurate enough to convey
the main message: that the prospect of using space-based
detectors to search for non-black-hole, massive, stellar ob-
jects is promising and deserving of future efforts to remove
our simplifying assumptions and enable a more careful
analysis.
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