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Muon capture by a proton in heavy baryon chiral perturbation theory
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The matrix element for muon capture by a proton is calculate@¢p®) within heavy baryon chiral
perturbation theory using the ne@(p®) Lagrangian of Ecker and Maig External nucleon fields are renor-
malized using the appropriate definition of the wave function renormalization fagtoOur expression for
Zy, differs somewhat from that found in the existing literature, but is the one which is consistent with the
Lagrangian we use and the one which ensures, within our approach, the nonrenormalization of the vector
coupling as required by the conserved vector current. Expressions for the standard muon capture form factors
are derived and compared to experimental data and we determine three of the coefficients of the Eéker-Mojz
Lagrangian, namelyh;, big, andb,s. [S0556-282(197)00715-1

PACS numbds): 23.40-s, 11.30.Rd, 12.39.Fe

I. INTRODUCTION Zy , which is the residue of the full nucleon propagator at the
pole. The derivation oZy will be discussed in some detail,

Chiral perturbation theoryCHPT) is an effective theory since our result differs from that of other groups because of
for QCD that allows systematic calculations to be performedhe different Lagrangian. We will show, however, that within
whenever external momenta are small with respect to theur formalism our form ofZy is the one that is necessary to
chiral symmetry-breaking scale\,~1 GeV. The theory €nsure that the vector coupling is not renormalized, a result
was originally formulated for light mesons onfi], but  required by CvQconserved vector currertheory, which of
heavy baryons can also be included without sacrificing th€ourse ultimately follows from QCD. o
small-momentum expansid@]. As for any effective theory, In Sec. II, the amplitude for muon capture is written in
the Lagrangian of CHPT contains parameters which are ndivo ways: a standard relativistic expression containing form

determined by CHPT itself, but which can be inferred fromactors. and the heavy baryon CHPT expression containing

experimental data. Recent reviews of the vast amount 0rrenormallzable Green’s functions. Section Il presents the

work that has been done with CHPT can be found in Refs?alcu.lat'on of these_ G(een s functions, with particular em-
[3-6]. phasis on renormalization. In Sec. IV, the heavy baryon re-

. . . sults are translated into expressions for the standard relativ-
The complete Lagrangian for a single nucleon coupling t

. X ) ! Ostic form factors, and experimental data are used to
pions and external fields up to third order in small momenta,otarmine some of the parameters in the Ecker:Mojz

(denoted.ES™) has only recently been constructed by Eckero(p3) heavy baryon chiral Lagrangian.

and Mojas [7], although calculations for specific processes

had been performed earlier. In the present work, we study

muon capture by a proton with the new LagrangighS™. IIl. THE MUON CAPTURE AMPLITUDE

The form factors that appear in the muon capture amplitude The muon capture reaction refers to a muon and proton

have been considered previously W?thigcbﬁavy baryon CHPTyith negligible relative momentum, interacting to produce a
[4,8], but not with the new Lagrangiad, ™ . neutron and neutrino:

Our calculation gives explicit expressions for each of the
muon capture form factors, in terms of parameters that ap- m+p—v+n. (1)
pear in LE$M We use experimental data to determine the
numerical values of the parameters, which are directly transThe four-momentum transfer in this processs p,—pp,
ferable to future calculations of other processes wher&atisfies
L£EM s used. In particular, the parameters of the present
work are a subset of the ones that appeanaiiative muon
capture by a proton, for which interesting results have been
obtained in a recent TRIUMF experime[@]. A study of
radiative muon capture in heavy baryon CHPT is in progres&or nonradiative muon capturg2 = —O.88ni and so is a
[10]. small parameter in the context of the CHPT expansion.

The external nucleon fields in our calculation are renor- The general amplitude for muon capture can be param-
malized by defining a wave function renormalization factor,etrized as

_ 22
m#(mp mp+m,mp)
my+m,

9?=qi= )
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M= 000, yu(1= yo u(p,) U (pw)| Gu(a? , _Gueos| O W, 0 %)
= u —vys)U u @ e , =0.
\/E (pl/ 7&( Vs (p,u) (pn V(q )y N \/E W; 0 r/.L
iGw(q?) 2 . .
+ —UanB—GA(q ) Y% ys Throughout our calculation, we write the proton and neutron
2my four-momenta as
_Ge(g?) , 3
m, a“ys|u(Pp), Pr=monv+ky,  Pr=mogv*+k;+qe, (8

whereGy(q?), Gu(g?), Ga(g?), andGp(g?) are the form  wheremgy is the bare nucleon mass, i.e., the nucleon mass in

factors to be studied, and the chiral limit, anda is the Lorentz index. Any choices for
v andky which satisfy the on-shell conditions for the nucle-
Gz Ggcow 9st039 ons are valid, and the verification of this reparametrization
T: 2 = a2 =(0.8030+0.0009 invariance[14] offers a check on our results.
2 2 w In heavy baryon CHPT, the muon capture amplitude takes
x10°° GeV'2 (Ref. [11]). (4 theform

Heremy denotes the physical nucleon maGg, is the Fermi —  —igw I — o

constant,d is the Cabibbo angle, anth,, ,gy, are the mass M= U(pv)—z\/i Yoll— Ys)u(p,)ﬁnv(pn)x (@n,(pp)-

and weak coupling constant of the W bosdmhhe proton- (9

neutron mass difference is small and will be neglegtétie
so-called “second class currents” have not been shown, an
do not arise in our CHPT calculation.

With the sign conventions of Eq(3), GA(q:‘;) and
Gp(qi) are positive, matching the conventional positive

a/e choose to denote the general field operator appearing in
the relativistic Lagrangian bys(x) and for the matrix ele-
ment use the Dirac four-spinougp), with p being the three-

’ ) momentum, which arise in the expansion of the free field.
sign for the parameterng In hea\Z/y baryon CHPT. The  gimjjarly, N, (x) is the heavy baryon field ar,(p) are the
opposite signs foGA(q7) and Gp(q°”) have almost always heayy baryon four-spinor$\, (x) is obtained by making the

been used in non-CHPT studies of radiativg and nonradiativgg g heavy baryon transformation on the Dirac field opera-
muon capture(e.g., Ref[12]) and are used in Ref11]. tor: i.e.

Following closely the notation of Refl7], the heavy
baryon chiral Lagrangian is written in the form 1
N, (X)=exdimoyv - X]5 (1+d) #(X). (10
- - - 2
LEM=ER+ PR+ LR, ®

where the superscripts on the right-hand side denote powef0me care must be exercised with the normalization. In ma-
in the momentum expansion. The explicit forms of thesellix €lements we always use normalized spinors,
three terms are given in Eq4.3), (20), and(23) of Ref.[7]. uu=n,n,=1.

LY contains two parameter§, andg,, which correspond ~ The function X“(q) in Eg. (9) has a one-particle-

to the chiral limits of the pion decay and axial-vector cou-irreducible term and a pion pole term:

pling constants, respectively3) introduces seven new pa-

rameters, labeled, ,a,, . .. ,a;, two of which will appear in af oy (r) @ ) i ) a

our calculation, plus the nucleon mass in the chiral limit. X4 (q)=Tpwn(q)+Tpzq(q) p—_ Tz (q), (11

Another 24 parameterdy;,b,, ... b,,, arise from£3),

and four of these will be present in our study. _ wherem,, represents the physical pion mass, and the super-
The pion field of Ref[7] will be expressed here in an script “(r)” on each of the components means it has been

exponential representation, renormalized individually and is finite. To the order consid-

ered the renormalized pion propagator has the form of the
free propagator, but with the physical mass.

5 io?m? b b
U=u“=ex , T o?c”]=26%. (6)

Fo

. . IIl. CALCULATION AND RENORMALIZATION
To match ourO(p3) calculation with the heavy baryon La-

grangian, we will require terms througB(p®) from the We will now calculate the renormalized components of
pure-meson chiral Lagrangian, and for these we use the cox*(q), beginning with those from the pure-meson Lagrang-
ventions of Gasser, Sainio, and&8c[13], in particular the ian. Working to O(p*), the charged-pion, one-particle-
terms involvingl,l, given in their Eq.(5.9). In both the irreducible, unrenormalized, amputated, two-point, Green’s
meson and baryon sectors of the Lagrangian, the chargddnction is the sum of tree-level and one-loop contributions,
weak gauge bosons are included as external fields in thehich we compute using dimensional regularizatiorn idi-
following manner: mensions.
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2

img,, 1 i
(67 =1 (67— M) + 5™ 221 4= 2m3 (13 1) S —
Fo Frnl@) (137 (m2) Ho?—m - 3M1-3" (m2)]}
(méﬁ—4q2)[ (méw)” -
+ ————|R+In| —] ;. (12 _ 12,
6(4m)? 2 =——=. 17
(4m) H QP?-mi-27.3
Herem, . is the bare pion mass afiticontains the divergent The value of the multiplicative wave function renormaliza-
piece of the loop graphs: tion constan _ is thus the residue of the propagator at the
pole (i.e., at the on-shell pointand is given by
2 1
R=———1+y—In(47)+0(4—d). (13 - =
d—4 ZﬂT 1_2/(mi)
H 2 2
I'..(9%) is related to the pion self-energ¥(q?) via :['(q B mw)}
I',..(g®)=i[g?—m35_—3(g?)]. Now to obtain the mass and T,.(d% 2
wave function renormalization and the renormalized propa- T
gator we follow standard field theory techniques as described 2m,2T ] 2 1 | mf,
for example in Cheng and lLIlS].. Thus we Wr|te,.f0r the full =1- = la(p)+ 3(4m)?2 R— 3(477)2-” W2
propagator, to the order to which we are working, 9
18
1 The parametel, has been renormalized using
- F’JT’IT(qZ) r —_ — R
la(m)=14 @n)? (19

i which we will justify below. Note that with this choic2 , is
= m itself not finite, which is acceptable since, in contrast to
om m2., Z,. is not an observable.
i If we define a renormalized pion field by

07— mp,— 3 (m?) — (g%~ )%’ (m?) ~ (g?) 2000 = TX 20
then the two-point function for this renormalized field is fi-
To get the last equation we have expanded the self—enerdyte’ _
about the pointg?=m?2 so that3(m2) and 3'(m?) are, r'qd=z,1,.()=i(>-m2-2.3), (21

respgctlvely, the value and derivative B(q°) at that point and the propagator for the renormalized field is the negative
and X, is zero in this particular case, but in general is thejnverse

residual part which goes to zerogt= mf, at least as fast as

1 i
(o*—m3)2. - = - (22)
The physical pion mass is obtained from the condition Z2(9%) q2—m§;—z7,2
that the propagator have a pole at the physical mass, i.e., that " . )
I',.(m2)=0, givingm2=m2_+3(m2) or At O(p®) 2=0, so that we obtain the renormalized propaga-

tor which appears in Eq11).
The interaction between an unrenormalized pion field and
aW boson is obtained from tree-level and one-loop diagrams

2 2
1 m
r T
I3(’“)+4(477)2|n( MZ)“ (15 using the meson chiral Lagrangian, and is

1+

2 _ 22 ™
m’ﬂ'_mO’ﬂ F2

Zm(%,,I _4mg,
F2 4 3(4mFg)?

where the parametég has been renormalized to absorb the re ()= Eq“gwcosﬁ{ 1+
divergence using 2

X|R+In

méw) ] 23
R .
15 =15+ 777 (16 “

The momentung flows from theW boson to the pion, which

and where we have anticipated that the difference betweeig our convention for muon capture. To get the interaction of
Fo and the renormalized valde is of higher order and have
expressed all quantities in the outermost brackets of Ejj.
in terms of physical quantities.

The full propagator can now be written, to the order to
which we are working, as

a renormalized pion, we multiply byZ . to obtain

F
T (a) = 5 a"gweoss, (24)
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where renormalization factor and the physical nucleon mass in a
fashion analogous to that used for the pion. U®igp®) we

find, for a nucleon with four-momentum, = mgv +k,,
2

m7T
1+?

500 | | e
———lin| —=| |{.
a (477)2 ,U«Z
The renormalization off, used in Eq(19) above is required,
since F must be finite. Our normalization is such that
F=92.4+-0.3 MeV [11].
Turning now to the nucleon Lagrangian, we use thewhere the tiny effects of isospin splittingproportional to
nucleon two-point function to determine the wave functionmyg—m,) have been neglected, and

F= Fo
I‘NN(pp):i[U : pp_mON_E(pp)]:i[U ’ kp_z(pp)]y

(26)

kK2 dasm? 392 (3 2 m_\ 2] (v-kp)?
__ P 3'Mor . A o 2 _ = ) 2 ﬂ _“c p
2(pp) PMMon Mo (4WF0)2(4U kp( mg.. 3(U Kp) ) R+In Mz) 3 + 6
T v-k
+[mg,— (v-kp)?1¥3 E+arcsir( -~ p)” (27

for (v-k)?<m?. In this expression the term involving, is a contact term coming from a piece fif,z), the term with
1/(47F )% comes from loop contributions and t}ké term comes from the term iﬁigf,\), proportional to— d2/2mqy Which

involves no pions. We choose to include this as part of the interaction rather than part of the free Lagrangian and reserve for
the free Lagrangian thie - 9 term from (%) .

For the determination of the physical nucleon mamgsand renormalization constasf, we need the mass-shell condition,
pf,=m§, and v-p,=my, where this second condition is motivated by the form of the lowest order propagator,
i(v-pp— mon) L. Both conditions taken together are equivalenpfe=myv which is what is usually stated in the literature.

2(pp) is a function of the four-momentum, and thus implicitly ofv andk,. This dependence can be written in terms of
t_he scalar variables- Pp— My and (pp— myv)?2. In the vicinity of the pole ap,=myu these two variables are, respectively,
first and second order in tHemall distance from the pole.

We now proceed in exactly the same fashion as done for the pion and obtain formulas for the full nucleon propagator
analogous to Eqg14) and(17): i.e. (see however note added in prijof

1 i [

- Tn(py) - v-Pp~Mon—2(Pp) . pp—mON—E(va)—(v-pp—mN)E’(va)—i

i iz
= - - AR (28)
[1-2"(mw)H{o-pp—my—3/[1-2"(Mw)]}  v-pp—My—ZN2
|

In thesg equgtionE(va) andX'(myv) areX(pp) and its k’2J - (My—Mon)? My—Mon .
der|vat|ve'W|th respect to v('pp—ml).evaluatet'j at e 2o Mo (v-pp—My
Pp=myv, i.e., at ¢-p,—my)=0, andX is the residual )
which goes to zero at the pole at least as fast as +(pp_va) 29)
(v-pp—mN)z. 2mgy

The evaluation o (myv), %' (myv), andS requires an
expansion of Eq(27) but is relatively straightforward. To The first term on the right-hand side contributes to
the order we are working the; term contributes only to 3 (myw) butisO(1/m3), since as we shall seenf,—mqy) is
2 (myv) whereas the loop piece contributes to all three. NoteD(1/my), and so can be neglected. The second term however
in particular thatS is not zero in this case. The? term IS only O(1/my) and will contribute ta%' (myw). Finally the
requires some discussion however. We can usghird term contributes only t&.
Pp— Myv =Ky — (My—mgy)v to write One can now continue as before. The physical mass,
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my, iS obtained from the requirement that the propagatodiffers somewhat from our result. The extra term we obtain
have a pole ap,=myv, i.e., atmy=mgy+ 2 (M), and we  originates in the ifiy—moy) term from Eq.(29). It involves
find a5 by virtue of Eq.(30).

The two definitions are not equivalent to the order of our
calculation, and in our formalism it i€y, not ZIt  which
represents the full multiplicative renormalization function for
the propagator. ThereforeZ, is the factor which exactly

The value of the multiplicative renormalization constantaccounts for the renormalization of external nucleons in the
Zy is obtained as the residue of the propagator at the polgalculation of a matrix element and allows us to express all
and is(see however note added in prpof matrix elements in terms of fully renormalized and finite,

one-particle-irreducible vertex functions.
One way to see this difference explicitly is to compute
Gy(9?). Because the vector current is conserved, the calcu-
Pp=myv lation must giveG,/(0)=1 to all orders in the Thy expan-
2 2 2 2 sion. We will see that the use gy, for external nucleons in
4azm,  9gam; - . . . : T
—— 5 R*'”(—z (31) our formalism does satisfy this constraint, Wherdi{ does
mi  4(4mF)? u not.

. . ) _ The origin of this difference can be traced to a difference
As in the pion case, we can now define renormalized nucleop, ihe starting Lagrangian. The Lagrangian used in Refs.

4azm?  3wgim3

1= mg,  2my(47F)?

. (30

My = MoN

1

L i(-py—my)
N_l—E'(va) B

I'nn(pp)

=1+

+

§ .

fields, [4,16] and in most previous calculations contains a term
which is transformed away using the equation of motion in
N (x) = N, (X) (32) the form proposed by Ecker and M@j47]. This term gen-
v \/Z—N ' erates ara; term in Zy which just cancels the one we find.

Of course the physical results must nevertheless be the same,
and the two-point function for these renormalized fields isand in fact one finds that this term in the Lagrangian also

finite (Zy itself is not finite: generates an additiona} term in the matrix element, so that
the final result for, sayGy, is the same.
Fﬁ[,{,(pp)zzNFNN(pp). (33 Although Zy is in itself not measurable, it does affect

measurable quantities. Thus one must always work within a
The propagator of the renormalized nucleon field is then  consistent scheme in which the matrix eleme#tg, and all
other quantities are calculated consistently from the same
1 i Lagrangian.

— N = o2 Clearly there is also some additional freedom in the way

PN AN the finite parts ofzy are handled, even within a consistent

i scheme. In principle, for example, one could even within our

= =. (34  formalism define a hybrid renormalization scheme in which
v-Kp— (my—moy) —Z\Z Z" accounts for all of the interactions on the external lines

. . - except the one involvings. Then in amplitudes one would
For our calculation the propagator is only needed within lOOphave to add the one-particle-reducible diagrams involving

diagrams, and thus only the leading term in the propagatot[he aj interaction on external legs. Alternatively, all inser-

i/v-kp, Is .needed. However, the full EXpression, given Ny;ons"on external legs could be calculated explicitly. While
Eq. (34).' will be feq“'Fed for the nucleons in tree-level dia- not as elegant or easy to do as the standard scheme used
gran;]s In more c_omp;llcat(re]d processels. ion f £ th here, either of these approaches presumedly would lead to
nu;—leinec)i)pnzeni?)g; foourn(; ii trhe:ﬁtrggt'jét'g% actor of t €the same final rgsylt. Obviously a value &f has meanjn_g

B only when what it includes and the scheme in which it is to

" dslit(y. Kp) 4a3me 1 be used is precisely defined.a _ _
Zy=1+ o k. =ZN— ——— —, Two more components of“(q) in Eq. (11) remain to be
VB Jykg=0 M My determined. The pion-nucleon vertex, renormalized by in-

(35  cluding the multiplicative factoZy+Z ., is

3

-2 4agm7)  \2g 4\2 bis g
Fymn(@) =~ 948 0| 14— 5|~ gror a2yt IS (2K +0) — 7z S0 i) = 7=
2
da mﬂ'
—Z(1+Zgi)ln<? } (36)

and theW-nucleon vertex, including the facta@, is
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COSH~
I‘(r)a q

I )_W t(a), (37)

2

1 a a H aBys, gAq v
+m[(2kp+q) +29AS(2kp+q)U +8|a66 qBU785]+4 ZS

4
142

TUhe(q)=(0"—2gS")
N

4 l . ﬁ S, a .8
+F ae—g ie*P? qﬁkp785+ [S (Kp +q)k +S-kp(kp +q)“]— 2|e 9 dgv ,Kps
N
207" 1 1152|mi zs“ Alzzlmi
T @nF? 7(p)+ 75(1+5g)In 22| T @2 biAu)— —-(1+2ga)In 7z
2by3 v Yea q%*® 2 2gam> ay v 2 9> 2
_(47T—F)2(S'q q“—q S)—W(1+179A) (an F)ZS 4nF7 3 — (1+203) - 15(1+50%)
1 g%\ 4mgam,. 1 g
_ _ aByd — —x) —
Xfo den(l X(1—Xx) mv) (4 F)2 ie” qvaS,gfo dx/1—x(1—Xx) mi. (38
|
We have used the standard definition plus the fact thab,q andb,; do not get renormalized. This

i ensgres tI;]aF“)n(q) alnd I'§0(a) are finite and do not de-
o @ end on the renormalization sc
S =5 750 BUB. 39 P e

Notice that we have chosen to write E¢86) and (38) in V. THE FORM FACTORS AND EXPERIMENTAL DATA
terms of the physical pion decay constant and the physical To obtain expressions for the muon capture form factors,
masses, rather thaf, and the bare masses. The remainingwe compare the two forms for the amplitude, given in Egs.
integrals in Eq(38) can be done analytically for any value of (3) and (9). This comparison requires the well-known mo-
g2, taking into account the appropriate boundary conditiongnentum dependence of relativistic four-spinors,
in the propagators. For example, at the muon capture point
they become

u(p)=

y(a3)+1
y(q2)-1)
(40

my+p
V2my(my+E)

where E= \Jm?+p?, and also their relation to the normal-
ized heavy baryon four-spinors,

u(0), (45

1 g%
f dx In( 1-x(1—x) —2> = —2+y(qi)ln<
0 m

ko

2my  1+9

1 2 nv( ): U( )
ZJ dxﬂl—x(l—x)%’z— P my+v-p, 2 P
0 ™

k, my—m k2 1
¢ :[1_2n2 + N2m 0N+8”2+O —3) u(p)
=1+ \/ =2y%(a%)arccsfy(q2)] (41) N N N M
4m
(46)
with as implied by Eq(10) and the remark about normalization
2 following it. Equation(46) is sufficient to rewrite Eq(9) in
2N\ — m‘“’
y@)=\1-— (42) : .
i TABLE |. Parameters from the heavy baryon chiral Lagrangian

extracted from experiment in this work. The meaning of the uncer-
The effects of renormalization on all of the parameters wereainties is discussed in the text.
studied by Eckef17] using heat kernel techniques. The form
approprlate to the Lagrangian we use can be found in Eckaragrangian Parameter Numerical value
and Mojis [7], Table 1. We have used their results

2@ ag 1.661+0.004
1 A7T
bS(w)=b,+ 1—2(1+5g,§)R, 43 LB bh(my) ~0.53+0.02
b1g —-0.7-04
bas -3.1+0.3

g
A =bir— 7 (1+200)R, (44
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the form of Eq.(3). To reverse the procedure and rewrite B)in the form of Eq.(9), note that for the specific choice of
v% v°=1 andv'=0 wherei=1,2,3, we have,(p)=u(0). This allows us to write, for that choice of,

(0= =P p)
u(p)=|——=|n,
P V2my(my+E) P
kp mN_mON k2 1
1+ 2my 2my SmﬁJro m3 ) |" o(P)- @0

The choice ob“ has no physical consequences, since the paramigteill adapt itself to the chosen” according to Eq(8).
Also in some cases the algebra becomes simpler with the choice of a particular Lorentz frame, such as the lab frame where the
muon and proton are stationary.

Whether or not such simplifying choices are made, the results are the same and we arrive at the following expressions for
the muon capture form factors:

2 2
Gv(g®)=1-|a —E)—— i (1+17gz)—2—qz r(;L)Jri(14r5gz)|n M), 2 "(1+2gz)
v ® 8/my 18(4wF)? A (amF)? T 12 AN 2| T ()2 A
q° ! q°
_ 2 _ oy
15(1+502) fodxm(l x(1 X)mi)' (48
dmgim,my (1 q°
GM(q )= 436 1- W dx 1_X(1_X)Hzﬂ-, (49)
43‘39Ami— gimi 4m 2 (m b20°
2\ _ =
GA(q )_gA+ m[%] (4’7TF)2+(4 F) [ 17(1U’ (1+29A)|n “ (47TF)2, (50)
2 mM N 2 m2
Gp(g9)= fr P 5| Ga(Q®) — an F)2(2b19 boy)|. (51)

To set the stage for our later calculation of radiative muonwhere «,=1.7928 andx,=—1.9130 are the anomalous
capture[10] it is necessary to evaluate parameters appearingnagnetic momentgl1]. This gives
in these expressions by comparison with other known experi-
mental quantities. We do this in a fashion analogous to that
of Ref.[8]. To extract numerical values for the parameters, ag=1.661+0.004, (59
we need only the first two terms ingf expansion:

where the error is dominated by the uncertaintyFinand
92 where we have used the average nucleon mass and the
Gx(q*)=Gx(0)| 1+ €<r2>x+ o(gh|. (520  charged pion mass in the evaluations. This is in agreement
with a recent precision determination of ti&), parameters
It is clear from Eq.(48) that Gy(0)=1, as required by [18]. I_t should be no_ted that _the error in E(4) does not
conservation of the vector current. Thg term in the first contain any uncertalnfty relating to the convergence of the
line of Eq.(38) which arose fronZy just cancels the similar heaV)_/ baryon expansion. Eor example, if WeAO,g"t the last
term coming from the iy — myy) factor of Eq.(46) or (47)  term in Eq.(53), corresponding to the neglect of%), then

which are used in the extraction &,(g?). the predicted value dg is reduced by 30%. The size of this
Neglecting the electron mass, experimental data fronfeduction provides some indication of the convergence of the
neutron decay11] give GA(0)=1.2601+0.0025. chiral expansion, at least for this particular quantity.
The value ofGy(0) is related to the nucleon magnetic ~ The muon capture form factors of Eq#8)—(51) are re-
moments, and implies a numerical value & lated by CVC to the familiar electromagnetic form factors
via
47rm,myG4(0)

k= Gm(0)=4ae— 1= gz (39 Gu(0?)=FR(q?) ~Fi(a?), (55)
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Gm(a?) = kpF3(q%) — koF3(G?). (56)  and also in antineutrino-nucleon scatterfig],

Also, for N=p,n,
P (12),=0.42+0.04 fn?. (66)

N, 2 N2 q? N, 2 Some corrections to the electroproduction analysis related to
Ge(q?)=F1(q HW"NFZ(Q ), (57) nonzero pion mass actually bring that value into much closer
N agreement with the neutrino scattering re$aR]. With Eq.

(50) and the latter value ofr?),, we obtain an estimate of

Gm(a*)=F1(a?)+ rnF2(9%). (58)  bas:
A simple parametriz'ation Which fits the electromagnetic data 1
reasonably wel[19] is the dipole: bys= — 6(47TF)2<r2>AGA(O) - _31+03. (67
Ge(9)~0, In principle, b, can now be determined from the experi-

mental value ofr?)p, which is, however, not very precise.
Instead, we observe that the pion-nucleon vertex function

P 2 n 2 2 -2
GR(q?)~ Gu(d7) _9m(d’) %( -4 ) I'() (q) is related to the renormalized pion nucleon coupling
1+kp Kn 0.71 GeV constant via
(59
This dipole approximation gives — — (r
~ V2 unU (Pn) Y5U(Pp) = N, (P) T (AN, (Pp)
(68)
(r3,=0.41 fn?, (60) . . _
and proceed in a fashion analogous to Réf. Applying the
same evaluation to this as was used for the other couplings
(r®)y=0.72 fnt. (61)  we find

The prediction of our CHPT calculation fdr2),, comes

; 2 ) 5 . !
EzlogT \t/sl:r;%tg:gq expansion ofGy,(g°), as given in Eq. ngN=%< GA(O)_#zFlg)- 69
ZWmNGi(O) Thqs we see that,q is related to the so-called Goldberger-
<r2>M=mw(4WF)ZGM(O) =0.523+0.004 fnf. (62)  Treiman discrepancy
The CHPT prediction fo(r?),, is about 30% smaller than MyGA(0)
the dipole estimate, which is not inconsistent with our expec- 1- m (70)

tation for the effect of truncating the chiral expansion at
O(p®), as discussed above far itself. Using the dipole
prediction for(r?),, as input to Eq.(48), we can obtain a
value for the parameted?, :

Using g,,un=13.0=0.1[23], corresponding t@?=m?, we
find

big= —0.7+0.4. (72)
3  6ag 1+7G4(0) 12 |

2 _ _ 2% _ r w I Eg51 i
(ré)y I e (anF)? (477F)2[b7(’“) e can now evaluate E@51) to obtain

Gp(g2)=8.21+0.09, (72)

1 m2 S .
- 2 M which is in good agreement with the best value from nonra-
* 12[1+SGA(O)]In( ,uzﬂ 63 diative muon capturg24]:
2y —+
=bl(my)=—0.53+0.02. (64) Ge(0s)=8.71.9. 73
Errors due to the chiral truncation or to the uncertainty in the V. SUMMARY

dipole prediction foKr2), are not shown, though in fact they
are probably much larger than the other uncertainties in- !N Summary, we have computed the form factors of muon
capture by a proton within the framework of the recently

cluded.
. ~. v 3 .
The quantity(r2), has been measured in pion electropro—fjer'ved Ecker-Mojis O(p_) heavy baryon c_hlral Lagrang-
duction[20], ian, and extracted numerical valugsllected in Table)l for

some of the Lagrangian's parameters from experimental
data. The wave function renormalization factor for nucleons
(r?),=0.35-0.06 fn?, (65) appropriate to this Lagrangian and approach was derived.
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Note added in proof wave functions which we included in a different way than

In a recent very interesting paper Ecker and l#io[25] ~ done in Ref.[25]. In this regard, a paper by Balk, Keer,
considered the wave function renormalizatiygand evalu- and Pirjol[26] has been qu2|te ugeful. Our spinarsinclude
ated, in a simplified limit, some of the form factors we give & Normalization factor +k“/8my relative to those of Ref.
in Egs.(48)—(51). We show here how their results essentially[25]. Thus our unrenormalized matrix elements contain
agree with ours. the factor I+ (k3+k3)/8my which is just the factor

First, the specific tree level results for physical quantitiesappearing instead irdZ',{}Zﬁ“t in Ref.[25]. Thus although our
which they obtain, namelyge=1 andG,=g,, agree with  expressions for the unmeasurable quanfify and for the
our results, though to show this one must manipulate th@inrenormalized matrix elements, differ because of different
Lagrangian of Ref[25] to put it in the same form as we ways of including this factor, all physical quantities will be
used, in the process generating nonzero valuedfoand the same.

b, to be used in our formulas. We would like to thank G. Ecker for calling our attention

Second, the expressions 0y are somewhat different, as to Ref.[25].
we do not have the momentum dependence found in Ref.

[25]. This seems not to be due to any approximation on our

part neglecting, whereQ is defined on shell byp=mywv

+Q. We chose to use only the lowest order propagator The authors would like to thank Thomas Hemmert for
i(vpp— my) ~ 1 with pole atp,=myv. Had we included the useful conversations. S.S. would like to thank Norbert Kaiser
next order term—g%/2my in forming the propagator, the for a useful discussion on renormalization in HBCHPT. This
pole would have been @i, =myv + Q. This, however, gives work was supported in part by the Deutsche Forschungsge-
exactly the same value ay. meinschaft, the Natural Sciences and Engineering Research

Instead we think the momentum dependence comes fror@ouncil of Canada, and the NATO International Scientific
a relative normalization of relativistic and heavy baryonExchange Program.
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