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The matrix element for muon capture by a proton is calculated toO(p3) within heavy baryon chiral
perturbation theory using the newO(p3) Lagrangian of Ecker and Mojzˇiš. External nucleon fields are renor-
malized using the appropriate definition of the wave function renormalization factorZN . Our expression for
ZN differs somewhat from that found in the existing literature, but is the one which is consistent with the
Lagrangian we use and the one which ensures, within our approach, the nonrenormalization of the vector
coupling as required by the conserved vector current. Expressions for the standard muon capture form factors
are derived and compared to experimental data and we determine three of the coefficients of the Ecker-Mojzˇiš
Lagrangian, namely,b7 , b19, andb23. @S0556-2821~97!00715-7#

PACS number~s!: 23.40.2s, 11.30.Rd, 12.39.Fe

I. INTRODUCTION

Chiral perturbation theory~CHPT! is an effective theory
for QCD that allows systematic calculations to be performed
whenever external momenta are small with respect to the
chiral symmetry-breaking scale,Lx;1 GeV. The theory
was originally formulated for light mesons only@1#, but
heavy baryons can also be included without sacrificing the
small-momentum expansion@2#. As for any effective theory,
the Lagrangian of CHPT contains parameters which are not
determined by CHPT itself, but which can be inferred from
experimental data. Recent reviews of the vast amount of
work that has been done with CHPT can be found in Refs.
@3–6#.

The complete Lagrangian for a single nucleon coupling to
pions and external fields up to third order in small momenta
~denotedLpN

EckM) has only recently been constructed by Ecker
and Mojžiš @7#, although calculations for specific processes
had been performed earlier. In the present work, we study
muon capture by a proton with the new Lagrangian,LpN

EckM.
The form factors that appear in the muon capture amplitude
have been considered previously within heavy baryon CHPT
@4,8#, but not with the new LagrangianLpN

EckM.
Our calculation gives explicit expressions for each of the

muon capture form factors, in terms of parameters that ap-
pear inLpN

EckM. We use experimental data to determine the
numerical values of the parameters, which are directly trans-
ferable to future calculations of other processes where
LpN
EckM is used. In particular, the parameters of the present

work are a subset of the ones that appear inradiativemuon
capture by a proton, for which interesting results have been
obtained in a recent TRIUMF experiment@9#. A study of
radiative muon capture in heavy baryon CHPT is in progress
@10#.

The external nucleon fields in our calculation are renor-
malized by defining a wave function renormalization factor,

ZN , which is the residue of the full nucleon propagator at the
pole. The derivation ofZN will be discussed in some detail,
since our result differs from that of other groups because of
the different Lagrangian. We will show, however, that within
our formalism our form ofZN is the one that is necessary to
ensure that the vector coupling is not renormalized, a result
required by CVC~conserved vector current! theory, which of
course ultimately follows from QCD.

In Sec. II, the amplitude for muon capture is written in
two ways: a standard relativistic expression containing form
factors, and the heavy baryon CHPT expression containing
renormalizable Green’s functions. Section III presents the
calculation of these Green’s functions, with particular em-
phasis on renormalization. In Sec. IV, the heavy baryon re-
sults are translated into expressions for the standard relativ-
istic form factors, and experimental data are used to
determine some of the parameters in the Ecker-Mojzˇiš
O(p3) heavy baryon chiral Lagrangian.

II. THE MUON CAPTURE AMPLITUDE

The muon capture reaction refers to a muon and proton
with negligible relative momentum, interacting to produce a
neutron and neutrino:

m1p→n1n. ~1!

The four-momentum transfer in this process,q5pn2pp ,
satisfies

q25q
*
2 [

2mm~mp
22mn

21mmmp!

mp1mm
,0. ~2!

For nonradiative muon capture,q
*
2 520.88mm

2 and so is a
small parameter in the context of the CHPT expansion.

The general amplitude for muon capture can be param-
etrized as
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M5
2 iGb

A2
ū~pn!ga~12g5!u~pm! ū~pn!FGV~q2!ga

1
iGM~q2!

2mN
sabqb2GA~q2!gag5

2
GP~q2!

mm
qag5Gu~pp!, ~3!

whereGV(q
2), GM(q

2), GA(q
2), andGP(q

2) are the form
factors to be studied, and

Gb

A2
5
GFcosu

A2
5
gW
2 cosu

8mW
2 5~0.803060.0008!

31025 GeV22 ~Ref. @11# !. ~4!

HeremN denotes the physical nucleon mass,GF is the Fermi
constant,u is the Cabibbo angle, andmW ,gW are the mass
and weak coupling constant of the W boson.~The proton-
neutron mass difference is small and will be neglected.! The
so-called ‘‘second class currents’’ have not been shown, and
do not arise in our CHPT calculation.

With the sign conventions of Eq.~3!, GA(q*
2 ) and

GP(q*
2 ) are positive, matching the conventional positive

sign for the parameter ‘‘gA’’ in heavy baryon CHPT. The
opposite signs forGA(q

2) andGP(q
2) have almost always

been used in non-CHPT studies of radiative and nonradiative
muon capture,~e.g., Ref.@12#! and are used in Ref.@11#.

Following closely the notation of Ref.@7#, the heavy
baryon chiral Lagrangian is written in the form

LpN
EckM5L̂pN

~1!1L̂pN
~2!1L̂pN

~3! , ~5!

where the superscripts on the right-hand side denote powers
in the momentum expansion. The explicit forms of these
three terms are given in Eqs.~13!, ~20!, and~23! of Ref. @7#.
L̂pN
(1) contains two parameters,F0 andgA , which correspond

to the chiral limits of the pion decay and axial-vector cou-
pling constants, respectively.L̂pN

(2) introduces seven new pa-
rameters, labeleda1 ,a2 , . . . ,a7, two of which will appear in
our calculation, plus the nucleon mass in the chiral limit.
Another 24 parameters,b1 ,b2 , . . . ,b24, arise from L̂pN

(3) ,
and four of these will be present in our study.

The pion field of Ref.@7# will be expressed here in an
exponential representation,

U5u25expF isapa

F0
G , Tr@sasb#52dab. ~6!

To match ourO(p3) calculation with the heavy baryon La-
grangian, we will require terms throughO(p4) from the
pure-meson chiral Lagrangian, and for these we use the con-
ventions of Gasser, Sainio, and Sˇvarc @13#, in particular the
terms involving l 3 ,l 4 given in their Eq.~5.9!. In both the
meson and baryon sectors of the Lagrangian, the charged
weak gauge bosons are included as external fields in the
following manner:

l m5
2gWcosu

A2 S 0 Wm
1

Wm
2 0

D , rm50. ~7!

Throughout our calculation, we write the proton and neutron
four-momenta as

pp
a5m0Nv

a1kp
a , pn

a5m0Nv
a1kp

a1qa, ~8!

wherem0N is the bare nucleon mass, i.e., the nucleon mass in
the chiral limit, anda is the Lorentz index. Any choices for
va andkp

a which satisfy the on-shell conditions for the nucle-
ons are valid, and the verification of this reparametrization
invariance@14# offers a check on our results.

In heavy baryon CHPT, the muon capture amplitude takes
the form

M5 ū~pn!
2 igW

2A2
ga~12g5!u~pm!

i

mW
2 n̄ v~pn!X

a~q!nv~pp!.

~9!

We choose to denote the general field operator appearing in
the relativistic Lagrangian byc(x) and for the matrix ele-
ment use the Dirac four-spinorsu(p), with p being the three-
momentum, which arise in the expansion of the free field.
Similarly, Nv(x) is the heavy baryon field andnv(p) are the
heavy baryon four-spinors.Nv(x) is obtained by making the
usual heavy baryon transformation on the Dirac field opera-
tor: i.e.,

Nv~x!5exp@ im0Nv•x#
1

2
~11v” !c~x!. ~10!

Some care must be exercised with the normalization. In ma-
trix elements we always use normalized spinors,
ūu5 n̄ vnv51.
The function Xa(q) in Eq. ~9! has a one-particle-

irreducible term and a pion pole term:

Xa~q!5GpWn
~r ! a~q!1Gppn

~r ! ~q!F i

q22mp
2 GGWp

~r ! a~q!, ~11!

wheremp represents the physical pion mass, and the super-
script ‘‘( r )’’ on each of the components means it has been
renormalized individually and is finite. To the order consid-
ered the renormalized pion propagator has the form of the
free propagator, but with the physical mass.

III. CALCULATION AND RENORMALIZATION

We will now calculate the renormalized components of
Xa(q), beginning with those from the pure-meson Lagrang-
ian. Working to O(p4), the charged-pion, one-particle-
irreducible, unrenormalized, amputated, two-point, Green’s
function is the sum of tree-level and one-loop contributions,
which we compute using dimensional regularization ind di-
mensions.
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Gpp~q2!5 i ~q22m0p
2 !1

im0p
2

F0
2 H 2q2l 422m0p

2 ~ l 31 l 4!

1
~m0p

2 24q2!

6~4p!2
FR1 lnSm0p

2

m2 D G J . ~12!

Herem0p is the bare pion mass andR contains the divergent
piece of the loop graphs:

R[
2

d24
211g2 ln~4p!1O~42d!. ~13!

Gpp(q
2) is related to the pion self-energyS(q2) via

Gpp(q
2)5 i @q22m0p

2 2S(q2)#. Now to obtain the mass and
wave function renormalization and the renormalized propa-
gator we follow standard field theory techniques as described
for example in Cheng and Li@15#. Thus we write, for the full
propagator, to the order to which we are working,

2
1

Gpp~q2!

5
i

q22m0p
2 2S~q2!

5
i

q22m0p
2 2S~mp

2 !2~q22mp
2 !S8~mp

2 !2S̃~q2!
.

~14!

To get the last equation we have expanded the self-energy
about the pointq25mp

2 so thatS(mp
2 ) and S8(mp

2 ) are,
respectively, the value and derivative ofS(q2) at that point

and S̃ is zero in this particular case, but in general is the
residual part which goes to zero atq25mp

2 at least as fast as
(q22mp

2 )2.
The physical pion mass is obtained from the condition

that the propagator have a pole at the physical mass, i.e., that
Gpp(mp

2 )50, givingmp
25m0p

2 1S(mp
2 ) or

mp
25m0p

2 H 11
2mp

2

F2 F l 3r ~m!1
1

4~4p!2
lnSmp

2

m2 D G J , ~15!

where the parameterl 3 has been renormalized to absorb the
divergence using

l 3
r ~m!5 l 31

R

4~4p!2
, ~16!

and where we have anticipated that the difference between
F0 and the renormalized valueF is of higher order and have
expressed all quantities in the outermost brackets of Eq.~15!
in terms of physical quantities.

The full propagator can now be written, to the order to
which we are working, as

2
1

Gpp~q2!
5

i

@12S8~mp
2 !#$q22mp

22S̃/@12S8~mp
2 !#%

[
iZp

q22mp
22ZpS̃

. ~17!

The value of the multiplicative wave function renormaliza-
tion constantZp is thus the residue of the propagator at the
pole ~i.e., at the on-shell point! and is given by

Zp5
1

12S8~mp
2 !

5F i ~q22mp
2 !

Gpp~q2! G
q25m

p
2

512
2mp

2

F2 F l 4r ~m!1
2

3~4p!2
R2

1

3~4p!2
lnSmp

2

m2 D G .
~18!

The parameterl 4 has been renormalized using

l 4
r ~m!5 l 42

R

~4p!2
~19!

which we will justify below. Note that with this choiceZp is
itself not finite, which is acceptable since, in contrast to
mp
2 , Zp is not an observable.
If we define a renormalized pion field by

p~r !~x!5
p~x!

AZp

, ~20!

then the two-point function for this renormalized field is fi-
nite,

Gpp
~r ! ~q2!5ZpGpp~q2!5 i ~q22mp

22ZpS̃!, ~21!

and the propagator for the renormalized field is the negative
inverse

2
1

Gpp
~r ! ~q2!

5
i

q22mp
22ZpS̃

. ~22!

At O(p4) S̃50, so that we obtain the renormalized propaga-
tor which appears in Eq.~11!.

The interaction between an unrenormalized pion field and
aW boson is obtained from tree-level and one-loop diagrams
using the meson chiral Lagrangian, and is

GWp
a ~q!5

F0

2
qagWcosuH 11

2m0p
2

F0
2 l 42

4m0p
2

3~4pF0!
2

3FR1 lnSm0p
2

m2 D G J . ~23!

The momentumq flows from theW boson to the pion, which

is our convention for muon capture. To get the interaction of

a renormalized pion, we multiply byAZp to obtain

GWp
~r ! a~q!5

F

2
qagWcosu, ~24!
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where

F5F0H 11
mp
2

F2 F l 4r ~m!2
1

~4p!2
lnSmp

2

m2 D G J . ~25!

The renormalization ofl 4 used in Eq.~19! above is required,
since F must be finite. Our normalization is such that
F592.460.3 MeV @11#.

Turning now to the nucleon Lagrangian, we use the
nucleon two-point function to determine the wave function

renormalization factor and the physical nucleon mass in a
fashion analogous to that used for the pion. Up toO(p3) we
find, for a nucleon with four-momentumpp5m0Nv1kp ,

GNN~pp!5 i @v•pp2m0N2S~pp!#5 i @v•kp2S~pp!#,

~26!

where the tiny effects of isospin splitting~proportional to
md2mu) have been neglected, and

S~pp!52
kp
2

2m0N
2
4a3m0p

2

m0N
2

3gA
2

~4pF0!
2H 34 v•kpSm0p

2 2
2

3
~v•kp!

2D FR1 lnSm0p
2

m2 D 2
2

3G1
~v•kp!

3

6

1@m0p
2 2~v•kp!

2#3/2Fp2 1arcsinS v•kpm0p
D G J ~27!

for (v•k)2,mp
2 . In this expression the term involvinga3 is a contact term coming from a piece ofL̂pN

(2) , the term with

1/(4pF0)
2 comes from loop contributions and thekp

2 term comes from the term inL̂pN
(2) proportional to2]2/2m0N which

involves no pions. We choose to include this as part of the interaction rather than part of the free Lagrangian and reserve for
the free Lagrangian theiv•] term from L̂pN

(1) .
For the determination of the physical nucleon massmN and renormalization constantZN we need the mass-shell condition,

pp
25mN

2 , and v•pp5mN , where this second condition is motivated by the form of the lowest order propagator,
i (v•pp2m0N)

21. Both conditions taken together are equivalent topp5mNv which is what is usually stated in the literature.
S(pp) is a function of the four-momentumpp and thus implicitly ofv andkp . This dependence can be written in terms of

the scalar variablesv•pp2mN and (pp2mNv)
2. In the vicinity of the pole atpp5mNv these two variables are, respectively,

first and second order in the~small! distance from the pole.
We now proceed in exactly the same fashion as done for the pion and obtain formulas for the full nucleon propagator

analogous to Eqs.~14! and ~17!: i.e. ~see however note added in proof!,

2
1

GNN~pp!
5

i

v•pp2m0N2S~pp!
5

i

v•pp2m0N2S~mNv !2~v•pp2mN!S8~mNv !2S̃

5
i

@12S8~mNv !#$v•pp2mN2S̃/@12S8~mNv !#%
5

iZN

v•pp2mN2ZNS̃
. ~28!

In these equationsS(mNv) andS8(mNv) areS(pp) and its
derivative with respect to (v•pp2mN) evaluated at

pp5mNv, i.e., at (v•pp2mN)50, and S̃ is the residual
which goes to zero at the pole at least as fast as
(v•pp2mN)

2.

The evaluation ofS(mNv), S8(mNv), andS̃ requires an
expansion of Eq.~27! but is relatively straightforward. To
the order we are working thea3 term contributes only to
S(mNv) whereas the loop piece contributes to all three. Note

in particular thatS̃ is not zero in this case. Thekp
2 term

requires some discussion however. We can use
pp2mNv5kp2(mN2m0N)v to write

kp
2

2m0N
5

~mN2m0N!2

2m0N
1
mN2m0N

m0N
~v•pp2mN!

1
~pp2mNv !2

2m0N
. ~29!

The first term on the right-hand side contributes to
S(mNv) but isO(1/mN

3 ), since as we shall see (mN2m0N) is
O(1/mN), and so can be neglected. The second term however
is onlyO(1/mN

2 ) and will contribute toS8(mNv). Finally the

third term contributes only toS̃.
One can now continue as before. The physical mass,

1786 56FEARING, LEWIS, MOBED, AND SCHERER



mN , is obtained from the requirement that the propagator
have a pole atpp5mNv, i.e., atmN5m0N1S(mNv), and we
find

mN5m0NF12
4a3mp

2

mN
2 2

3pgA
2mp

3

2mN~4pF !2G . ~30!

The value of the multiplicative renormalization constant
ZN is obtained as the residue of the propagator at the pole
and is~see however note added in proof!

ZN5
1

12S8~mNv !
5F i ~v•pp2mN!

GNN~pp!
G
pp5mNv

511
4a3mp

2

mN
2 2

9gA
2mp

2

4~4pF !2
FR1 lnSmp

2

m2 D 1
2

3G . ~31!

As in the pion case, we can now define renormalized nucleon
fields,

Nv
~r !~x!5

Nv~x!

AZN
, ~32!

and the two-point function for these renormalized fields is
finite (ZN itself is not finite!:

GNN
~r ! ~pp!5ZNGNN~pp!. ~33!

The propagator of the renormalized nucleon field is then

2
1

GNN
~r ! ~pp!

5
i

v•pp2mN2ZNS̃

5
i

v•kp2~mN2m0N!2ZNS̃
. ~34!

For our calculation the propagator is only needed within loop
diagrams, and thus only the leading term in the propagator,
i /v•kp , is needed. However, the full expression, given in
Eq. ~34!, will be required for the nucleons in tree-level dia-
grams in more complicated processes.

The expression for the renormalization factor of the
nucleon commonly found in the literature@4,16#,

ZN
lit[11FdS lit~v•kp!

dv•kp
G
v•kp50

5ZN2
4a3mp

2

mN
2 1OS 1

mN
3 D ,

~35!

differs somewhat from our result. The extra term we obtain
originates in the (mN2m0N) term from Eq.~29!. It involves
a3 by virtue of Eq.~30!.

The two definitions are not equivalent to the order of our
calculation, and in our formalism it isZN , not ZN

lit , which
represents the full multiplicative renormalization function for
the propagator. ThereforeAZN is the factor which exactly
accounts for the renormalization of external nucleons in the
calculation of a matrix element and allows us to express all
matrix elements in terms of fully renormalized and finite,
one-particle-irreducible vertex functions.

One way to see this difference explicitly is to compute
GV(q

2). Because the vector current is conserved, the calcu-
lation must giveGV(0)51 to all orders in the 1/mN expan-
sion. We will see that the use ofAZN for external nucleons in
our formalism does satisfy this constraint, whereasAZNlit does
not.

The origin of this difference can be traced to a difference
in the starting Lagrangian. The Lagrangian used in Refs.
@4,16# and in most previous calculations contains a term
which is transformed away using the equation of motion in
the form proposed by Ecker and Mojzˇiš @7#. This term gen-
erates ana3 term inZN which just cancels the one we find.
Of course the physical results must nevertheless be the same,
and in fact one finds that this term in the Lagrangian also
generates an additionala3 term in the matrix element, so that
the final result for, say,GV is the same.

Although ZN is in itself not measurable, it does affect
measurable quantities. Thus one must always work within a
consistent scheme in which the matrix elements,ZN , and all
other quantities are calculated consistently from the same
Lagrangian.

Clearly there is also some additional freedom in the way
the finite parts ofZN are handled, even within a consistent
scheme. In principle, for example, one could even within our
formalism define a hybrid renormalization scheme in which
ZN
lit accounts for all of the interactions on the external lines

except the one involvinga3. Then in amplitudes one would
have to add the one-particle-reducible diagrams involving
the a3 interaction on external legs. Alternatively, all inser-
tions on external legs could be calculated explicitly. While
not as elegant or easy to do as the standard scheme used
here, either of these approaches presumedly would lead to
the same final result. Obviously a value ofZN has meaning
only when what it includes and the scheme in which it is to
be used is precisely defined.

Two more components ofXa(q) in Eq. ~11! remain to be
determined. The pion-nucleon vertex, renormalized by in-
cluding the multiplicative factorZNAZp, is

Gppn
~r ! ~q!5

2A2
F

gAS•qS 11
4a3mp

2

mN
2 D 2

A2gA
8mN

2F
q•~2kp1q!S•~2kp1q!2

4A2
~4pF !2F

S•q mp
2 Fb17r ~m!2

b19
2

2
gA
3

4

2
gA
4

~112gA
2 !lnSmp

2

m2 D G , ~36!

and theW-nucleon vertex, including the factorZN , is
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GpWn
~r !a ~q!5

2 igWcosu

2A2
G̃pWn

~r !a ~q!, ~37!

G̃pWn
~r !a ~q!5~va22gAS

a!S 11
4a3mp

2

mN
2 D 1

1

2mN
@~2kp1q!a12gAS•~2kp1q!va18ia6e

abgdqbvgSd#1
gAq

2

4mN
2 S

a

1
4

mN
2 S a62 1

8D i eabgdqbkpgSd1
gA
2mN

2 @S•~kp1q!kp
a1S•kp~kp1q!a#2

gA
4mN

2 i e
abgdqbvgkpd

2
2q2va

~4pF !2
Fb7r ~m!1

1

12
~115gA

2 !lnSmp
2

m2 D G2
8mp

2

~4pF !2
SaFb17r ~m!2

gA
4

~112gA
2 !lnSmp

2

m2 D G
2

2b23
~4pF !2

~S•q qa2q2Sa!2
q2va

18~4pF !2
~1117gA

2 !1
2gA

3mp
2

~4pF !2
Sa1

2va

~4pF !2
Fmp

2

3
~112gA

2 !2
q2

12
~115gA

2 !G
3E

0

1

dx lnS 12x~12x!
q2

mp
2 D 2

4pgA
2mp

~4pF !2
i eabgdqbvgSdE

0

1

dxA12x~12x!
q2

mp
2 . ~38!

We have used the standard definition

Sa5
i

2
g5s

abvb . ~39!

Notice that we have chosen to write Eqs.~36! and ~38! in
terms of the physical pion decay constant and the physical
masses, rather thanF0 and the bare masses. The remaining
integrals in Eq.~38! can be done analytically for any value of
q2, taking into account the appropriate boundary conditions
in the propagators. For example, at the muon capture point
they become

E
0

1

dx lnS 12x~12x!
q
*
2

mp
2 D 5221y~q

*
2 !lnS y~q

*
2 !11

y~q
*
2 !21D ,

~40!

2E
0

1

dxA12x~12x!
q
*
2

mp
2

511A2q
*
2

4mp
2 y

2~q
*
2 !arccsc@y~q

*
2 !# ~41!

with

y~q
*
2 ![A12

4mp
2

q
*
2 . ~42!

The effects of renormalization on all of the parameters were
studied by Ecker@17# using heat kernel techniques. The form
appropriate to the Lagrangian we use can be found in Ecker
and Mojžiš @7#, Table I. We have used their results

b7
r ~m!5b71

1

12
~115gA

2 !R, ~43!

b17
r ~m!5b172

gA
4

~112gA
2 !R, ~44!

plus the fact thatb19 andb23 do not get renormalized. This
ensures thatGppn

(r ) (q) andGpWn
(r )a (q) are finite and do not de-

pend on the renormalization scalem.

IV. THE FORM FACTORS AND EXPERIMENTAL DATA

To obtain expressions for the muon capture form factors,
we compare the two forms for the amplitude, given in Eqs.
~3! and ~9!. This comparison requires the well-known mo-
mentum dependence of relativistic four-spinors,

u~p!5F mN1p”

A2mN~mN1E!
Gu~0!, ~45!

whereE[AmN
21p2, and also their relation to the normal-

ized heavy baryon four-spinors,

nv~p!5A 2mN

mN1v•pp

11v”
2

u~p!

5F12
k” p
2mN

1
mN2m0N

2mN
1

kp
2

8mN
2 1OS 1

mN
3 D Gu~p!

~46!

as implied by Eq.~10! and the remark about normalization
following it. Equation~46! is sufficient to rewrite Eq.~9! in

TABLE I. Parameters from the heavy baryon chiral Lagrangian
extracted from experiment in this work. The meaning of the uncer-
tainties is discussed in the text.

Lagrangian Parameter Numerical value

L̂pN
(2) a6 1.66160.004

L̂pN
(3) b7

r (mN) 20.5360.02

b19 20.760.4

b23 23.160.3
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the form of Eq.~3!. To reverse the procedure and rewrite Eq.~3! in the form of Eq.~9!, note that for the specific choice of
va, v051 andv i50 wherei51,2,3, we havenv(p)5u(0). This allows us to write, for that choice ofva,

u~p!5F mN1p”

A2mN~mN1E!
Gnv~p!

5F11
k” p
2mN

2
mN2m0N

2mN
1

kp
2

8mN
2 1OS 1

mN
3 D Gnv~p!. ~47!

The choice ofva has no physical consequences, since the parameterkp
a will adapt itself to the chosenva according to Eq.~8!.

Also in some cases the algebra becomes simpler with the choice of a particular Lorentz frame, such as the lab frame where the
muon and proton are stationary.

Whether or not such simplifying choices are made, the results are the same and we arrive at the following expressions for
the muon capture form factors:

GV~q2!512S a62 1

8D q
2

mN
2 2

q2

18~4pF !2
~1117gA

2 !2
2q2

~4pF !2
Fb7r ~m!1

1

12
~115gA

2 !lnSmp
2

m2 D G1
2

~4pF !2
Fmp

2

3
~112gA

2 !

2
q2

12
~115gA

2 !G E
0

1

dx lnS 12x~12x!
q2

mp
2 D , ~48!

GM~q2!54a6212
4pgA

2mpmN

~4pF !2
E
0

1

dxA12x~12x!
q2

mp
2 , ~49!

GA~q2!5gA1
4a3gAmp

2

mN
2 2

gA
3mp

2

~4pF !2
1

4mp
2

~4pF !2
Fb17r ~m!2

gA
4

~112gA
2 !lnSmp

2

m2 D G2
b23q

2

~4pF !2
, ~50!

GP~q2!5
2mmmN

mp
22q2

FGA~q2!2
mp
2

~4pF !2
~2b192b23!G . ~51!

To set the stage for our later calculation of radiative muon
capture@10# it is necessary to evaluate parameters appearing
in these expressions by comparison with other known experi-
mental quantities. We do this in a fashion analogous to that
of Ref. @8#. To extract numerical values for the parameters,
we need only the first two terms in aq2 expansion:

GX~q2![GX~0!F11
q2

6
^r 2&X1O~q4!G . ~52!

It is clear from Eq.~48! that GV(0)51, as required by
conservation of the vector current. Thea3 term in the first
line of Eq.~38! which arose fromZN just cancels the similar
term coming from the (mN2m0N) factor of Eq.~46! or ~47!
which are used in the extraction ofGV(q

2).
Neglecting the electron mass, experimental data from

neutron decay@11# giveGA(0)51.260160.0025.
The value ofGM(0) is related to the nucleon magnetic

moments, and implies a numerical value fora6.

kp2kn5GM~0!54a6212
4pmpmNGA

2~0!

~4pF !2
, ~53!

where kp51.7928 andkn521.9130 are the anomalous
magnetic moments@11#. This gives

a651.66160.004, ~54!

where the error is dominated by the uncertainty inF and
where we have used the average nucleon mass and the
charged pion mass in the evaluations. This is in agreement
with a recent precision determination of theLpN

(2) parameters
@18#. It should be noted that the error in Eq.~54! does not
contain any uncertainty relating to the convergence of the
heavy baryon expansion. For example, if we omit the last
term in Eq.~53!, corresponding to the neglect ofL̂pN

(3) , then
the predicted value ofa6 is reduced by 30%. The size of this
reduction provides some indication of the convergence of the
chiral expansion, at least for this particular quantity.

The muon capture form factors of Eqs.~48!–~51! are re-
lated by CVC to the familiar electromagnetic form factors
via

GV~q2!5F1
p~q2!2F1

n~q2!, ~55!
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GM~q2!5kpF2
p~q2!2knF2

n~q2!. ~56!

Also, for N5p,n,

GEN~q2![F1
N~q2!1

q2

4mN
2 kNF2

N~q2!, ~57!

GMN ~q2![F1
N~q2!1kNF2

N~q2!. ~58!

A simple parametrization which fits the electromagnetic data
reasonably well@19# is the dipole:

GEn~q2!'0,

GEp~q2!'
GMp ~q2!

11kp
'
GMn ~q2!

kn
'S 12

q2

0.71 GeV2D
22

.

~59!

This dipole approximation gives

^r 2&V50.41 fm2, ~60!

^r 2&M50.72 fm2. ~61!

The prediction of our CHPT calculation for̂r 2&M comes
from taking theq2 expansion ofGM(q

2), as given in Eq.
~49!. We obtain

^r 2&M5
2pmNGA

2~0!

mp~4pF !2GM~0!
50.52360.004 fm2. ~62!

The CHPT prediction for̂ r 2&M is about 30% smaller than
the dipole estimate, which is not inconsistent with our expec-
tation for the effect of truncating the chiral expansion at
O(p3), as discussed above fora6 itself. Using the dipole
prediction for ^r 2&V as input to Eq.~48!, we can obtain a
value for the parameterb7

r :

^r 2&V5
3

4mN
2 2

6a6
mN
2 2

117GA
2~0!

~4pF !2
2

12

~4pF !2
Fb7r ~m!

1
1

12
@115GA

2~0!# lnSmp
2

m2 D G ~63!

⇒b7
r ~mN!520.5360.02. ~64!

Errors due to the chiral truncation or to the uncertainty in the
dipole prediction for̂ r 2&V are not shown, though in fact they
are probably much larger than the other uncertainties in-
cluded.

The quantitŷ r 2&A has been measured in pion electropro-
duction @20#,

^r 2&A50.3560.06 fm2, ~65!

and also in antineutrino-nucleon scattering@21#,

^r 2&A50.4260.04 fm2. ~66!

Some corrections to the electroproduction analysis related to
nonzero pion mass actually bring that value into much closer
agreement with the neutrino scattering result@22#. With Eq.
~50! and the latter value of̂r 2&A , we obtain an estimate of
b23:

b2352
1

6
~4pF !2^r 2&AGA~0!523.160.3. ~67!

In principle,b19 can now be determined from the experi-
mental value of̂ r 2&P , which is, however, not very precise.
Instead, we observe that the pion-nucleon vertex function
Gppn
(r ) (q) is related to the renormalized pion nucleon coupling

constant via

2A2gpNNū~pn!g5u~pp!5 n̄ v~pn!Gppn
~r ! ~q!nv~pp!

~68!

and proceed in a fashion analogous to Ref.@4#. Applying the
same evaluation to this as was used for the other couplings
we find

gpNN5
mN

F SGA~0!2
mp
2b19

8p2F2D . ~69!

Thus we see thatb19 is related to the so-called Goldberger-
Treiman discrepancy

12
mNGA~0!

FgpNN
. ~70!

Using gpNN513.060.1 @23#, corresponding toq25mp
2 , we

find

b19520.760.4. ~71!

We can now evaluate Eq.~51! to obtain

GP~q
*
2 !58.2160.09, ~72!

which is in good agreement with the best value from nonra-
diative muon capture@24#:

GP~q
*
2 !58.761.9. ~73!

V. SUMMARY

In summary, we have computed the form factors of muon
capture by a proton within the framework of the recently
derived Ecker-Mojzˇiš O(p3) heavy baryon chiral Lagrang-
ian, and extracted numerical values~collected in Table I! for
some of the Lagrangian’s parameters from experimental
data. The wave function renormalization factor for nucleons
appropriate to this Lagrangian and approach was derived.
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Note added in proof

In a recent very interesting paper Ecker and Mojzˇiš @25#
considered the wave function renormalizationZN and evalu-
ated, in a simplified limit, some of the form factors we give
in Eqs.~48!–~51!. We show here how their results essentially
agree with ours.

First, the specific tree level results for physical quantities
which they obtain, namely,GE51 andGA5gA, agree with
our results, though to show this one must manipulate the
Lagrangian of Ref.@25# to put it in the same form as we
used, in the process generating nonzero values forb7 and
b17 to be used in our formulas.

Second, the expressions forZN are somewhat different, as
we do not have the momentum dependence found in Ref.
@25#. This seems not to be due to any approximation on our
part neglectingQ, whereQ is defined on shell byp5mNv
1Q. We chose to use only the lowest order propagator
i (vpp2mN)

21 with pole atpp5mNv. Had we included the
next order term2]2/2mN in forming the propagator, the
pole would have been atpp5mNv1Q. This, however, gives
exactly the same value ofZN.

Instead we think the momentum dependence comes from
a relative normalization of relativistic and heavy baryon

wave functions which we included in a different way than
done in Ref.@25#. In this regard, a paper by Balk, Ko¨rner,
and Pirjol@26# has been quite useful. Our spinorsnv include
a normalization factor 11k2/8mN

2 relative to those of Ref.
@25#. Thus our unrenormalized matrix elements contain
the factor 11(kp

21kn
2)/8mN

2 which is just the factor

appearing instead inAZNinZNout in Ref. @25#. Thus although our
expressions for the unmeasurable quantityZN, and for the
unrenormalized matrix elements, differ because of different
ways of including this factor, all physical quantities will be
the same.

We would like to thank G. Ecker for calling our attention
to Ref. @25#.
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