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We present lattice calculations in QCD using Shamir’s variant of Kaplan fermions which retain the con-
tinuum SU(N)L3SU(N)R chiral symmetry on the lattice in the limit of an infinite extra dimension. In par-

ticular, we show that the pion mass and the four quark matrix element related toK0-K̄0 mixing have the
expected behavior in the chiral limit, even on lattices with modest extent in the extra dimension, e.g.,
Ns510. @S0556-2821~97!00113-6#

PACS number~s!: 12.38.Gc, 11.30.Rd, 12.15.Hh

A fundamental property of the QCD Lagrangian is chiral
symmetry or invariance under independent global flavor ro-
tations of the left-handed and right-handed quark fields.
Through the familiar Goldstone theorem, the spontaneous
breakdown of this symmetry generates massless excitations,
and hence chiral symmetry is important to the dynamics of
QCD. In reality the symmetry is also explicitly broken by
small quark masses, and so the excitations are not massless,
but very light compared to masses of other hadrons. Until
now, lattice simulations of QCD have only accounted for this
symmetry approximately or not at all, relying on the con-
tinuum limit to restore it exactly. Since most simulations are
far from the continuum limit, this is not satisfactory. Below
we describe lattice calculations using Shamir’s variant of Ka-
plan fermions@1,2# which retain the full chiral symmetry of
the continuum in the limit of an infinite extra dimension. We
find that, for a finite extra dimension of modest extent, these
fermions retain the full continuum chiral symmetry to a high
degree of accuracy.

The two popular discretizations of the Dirac action used
to date for lattice simulations of QCD are the Wilson quark
action and the Kogut-Susskind action. For nonzero lattice
spacing, each breaks the continuum SU(N)L3SU(N)R chiral
symmetry. The Wilson action includes a masslike term, and
the Lagrangian quark mass renormalizes additively. In this
case, the chiral symmetry breaking is severe, and fine-tuning
of the bare parameters is required to obtain a massless pion,
which defines the chiral limit. Indeed, these Goldstone
bosons may not even be related to chiral symmetry in the
nonperturbative regime, but instead to the spontaneous
breakdown of parity-flavor symmetry@3#. In addition, Wil-
son fermions lead to mixing of operators of differing chiral-
ity which is absent in the continuum. Physical results depend
crucially on removal of these effects. This has been a long-
standing problem in lattice calculations of weak matrix ele-
ments with light hadrons@4,5# that use Wilson quarks. Weak
coupling perturbation theory is unable to accurately match
the lattice operators to their continuum counterparts. Various
methods have been developed over the years to deal with this
problem, and so far none is very satisfactory@6–9#.

Kogut-Susskind fermions retain an exact U(1)3 U(1)

remnant of the continuum SU(N)L3SU(N)R chiral symme-
try @10#, and so the bare quark mass renormalizes multipli-
catively, and the chiral limit is obtained as in the continuum,
by taking the quark mass to zero. Because of this remnant
chiral symmetry, Kogut-Susskind quarks are preferred for
light hadron matrix element calculations and simulations of
QCD at nonzero temperature where it is now widely believed
that QCD undergoes a phase transition that restores chiral
symmetry. This phase transition happens at a critical tem-
perature of roughly 150 MeV or approximately the mass of
the pion. Thus, the correct number of pions is important to
describe the dynamics of the phase transition. However, at
finite lattice spacing the Kogut-Susskind action has only one
Goldstone pion instead of theN221 in the continuum
theory.

For these reasons it is desirable to use a discretization of
the QCD action that preserves chiral symmetry. Some time
ago Kaplan@1# proposed a discretization of the Dirac action
for chiral fermions that avoids the notorious fermion-
doubling problem and hence could be used to formulate a
nonperturbative chiral gauge theory. The impossibility of
formulating such a theory, whose action is local and gauge-
invariant, is summarized by the Nielsen-Ninomiya no-go
theorem@11#. For each chiral fermion that one starts with in
the continuum, a doubler of the opposite handedness appears
that renders the lattice theory vectorlike. This phenomenon is
quite general and occurs already in free field theory. How-
ever, for free Wilson-like fermions ind11 dimensions, Ka-
plan showed that including a mass term with a defect along
the extra dimension results in a single chiral fermion which
is bound to thed-dimensional defect. Thus a low energy
effective theory of chiral fermions may be described on the
lower dimensional subspace of the defect. On a finite lattice
with periodic boundary conditions, an antidefect appears
with a bound chiral fermion of opposite chirality, and so
again the theory is vector like. However, if the extent of the
extra dimension is large, the fermions have exponentially
small overlap and do not mix; one is free to study the lattice
chiral fermion on either wall. Unfortunately, when the chiral
symmetry is gauged, the fermions mix, or if only one is
gauged, new particles appear in the spectrum, and the chiral
properties are probably lost@12#. But see also the overlap
formalism of Ref.@13#.

The above considerations are irrelevant for QCD which is
a vector gauge theory; i.e., right- and left-handed fermions
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couple to the gauge fields with equal strength. The important
point is that Kaplan’s fermions retain the full
SU(N)L3SU(N)R continuum chiral symmetry on the lattice
which makes them an attractive alternative for simulating
QCD. Actually, at the tree level one can show that the sym-
metry is broken explicitly by terms which are exponentially
small in the size of the extra dimension@2#. The main pur-
pose of this work is to verify that these terms remain small in
nonperturbative simulations and do not spoil the chiral be-
havior of observables.

Below we describe calculations in QCD with a variant of
Kaplan’s original fermions that has been proposed by Shamir
@2,14#. In this version only half of the lattice in the extra
dimension is used. The chiral fermions, one left handed and
one right handed, reside on opposite boundaries of the five-
dimensional space, and they interact with four-dimensional
gauge field configurations which are the same on each slice
in the five-dimensional world. The gauge links in the fifth

dimension are set to the identity except for the links which
connect the boundaries. Those links explicitly couple the two
chiral fermions with a strength equal to2m. In perturbation
theory it was shown in Ref.@2# thatm is proportional to the
bare quark mass of the vector fermion constructed from the
left-handed and right-handed quarks on the opposite walls of
the fifth dimension,mq5mM(22M ). HereM is the ordi-
nary Dirac mass in lattice units for a five-dimensional fer-
mion. Then in Ref.@15# it was shown that as the number of
lattice sites in the extra dimension,Ns , is sent to infinity, the
axial currents of domain wall fermions satisfy nonperturba-
tive Ward identities. Thus the chiral limit is obtained by
simply settingm50, unlike in the case of regular Wilson
fermions.

For details on Kaplan fermions and the variant of Shamir
we refer the reader to Refs.@1,2,15#; here, we simply state
the quark action for one of the flavors@15#:

Sq52 (
x,y,s,s8

c̄ ~D” x,yds,s81D” s,s8dx,y!c,

D” x,y5
1

2(m @~11gm!Ux,mdx1m̂,y1~12gm!Uy,m
† dx2m̂,y#1~M24!dx,y ,
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2
d1,s82m

~12g5!

2
dNs21,s82d0,s8, s50,

~11g5!

2
ds11,s81

~12g5!

2
ds21,s82ds,s8, 1<s<Ns22,

2m
~11g5!

2
d0,s81

~12g5!

2
dNs22,s82dNs21,s8, s5Ns21,

~1!

wherec is a five-dimensional Dirac fermion. TheUx,m are
the usual four-dimensional gauge links and are elements of
the color group SU~3!. Note the Wilson term which removes
the doublers is added to the action with minus the conven-
tional sign. x and y denote four-dimensional coordinates
while s and s8 denote coordinates along the extra fifth di-
mension.Ns is the number of sites in this dimension. The
simplest choices for operators which create and destroy light
four-dimensional quarks are@15#

qx5
~11g5!

2
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~12g5!

2
cx,Ns21 ,

q̄ x5 c̄ x,Ns21

~11g5!

2
1 c̄ x,0

~12g5!

2
. ~2!

In fact, any operators localized near the boundaries that have
finite overlap with the boundary states will do as interpolat-
ing operators for the quark states.

As a first step in implementing domain wall quarks for
QCD, we measure observables constructed from the above
operators on existing configurations. The gauge field con-

figurations that we have used are a set of 20 lattices gener-
ated with two flavors of Kogut-Susskind dynamical quarks at
gauge coupling 6/g255.7 and bare quark massmKS50.01
@16#. The lattice size for these configurations is 163332. In
all of our calculations, the Dirac massM was set to 1.7.

For free quarks one must take 0,M,1 to obtain mass-
less states with strictly positive Green’s functions@2#. For
1,M,2 there exists a massless mode, but its Green’s func-
tion oscillates like (12M )s. This free field condition is
renormalized at strong coupling as we found only heavy
states forM,1. This can be seen from perturbative argu-
ments @2# and a simple mean field treatment which gives
424U0,M,624U0. Here U0 is the fourth root of the
plaquette expectation value or the mean field value of the
gauge link. The mean field propagator then falls off like
@52(M14U0)#

s. On the above configurationsU0'0.577,
yieldingM'1.52 for the most rapid decay of the propagator
in the extra dimension and, thus, the smallest overlap of the
boundary states. The above mean field result agrees fairly
well with the ‘‘optimal’’ value of M51.7 which we deter-
mined by observing the exponential decay of the quark
propagator in the extra dimension. AsM departs from this
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optimal value, the extra dimension must be increased to
avoid possible overlap of the massless modes. While mass-
less pions may still exist forM,1 at strong coupling, we did
not observe them due to the relatively small extent of the
lattice in the extra dimension. Thus, for efficient lattice simu-
lations with domain wall quarks it is important to determine
the optimal value ofM . In this study we set the number of
sites in the fifth direction toNs54 and 10 to study the ef-
fects of finite size in the extra dimension on the chiral sym-
metry properties of observables. Below we will see that for
M51.7, Ns510 is sufficiently large to suppress the overlap
of the light modes.

The simplest test of chiral symmetry~breaking! for do-
main wall fermions is to measure the pseudoscalar two-point
correlation function and extract the mass. Chiral perturbation
theory requires this mass to go to zero likeAm, ormp

2}m. In
Fig. 1 we showmp

2 versusm for the two values ofNs . The
masses were extracted from a single-particle covariant fit to
the pseudoscalar correlator at large Euclidean time separa-
tion from the source~see below!. At Ns510, the lightest two
points linearly extrapolate to 0.000260.0160 while for
Ns54 the results clearly miss the origin to the left. It appears
that Ns510 is large enough to suppress the explicit chiral
symmetry-breaking effects due to the overlap of the two chi-
ral modes. TheNs54 case shows that the approach to the
Ns→` limit is from above which is expected since the Wil-
son term is added to the action with minus the conventional
sign.

For a more stringent test of the chiral symmetry properties
of domain wall quarks we turn to the calculation of hadronic
matrix elements, which as mentioned above is problematic
with conventional lattice operators. The canonical example is
theK0-K̄0 mixing matrix elementMLL required to determine
theCP-violating phase of the Cabibbo-Kobayashi-Maskawa

~CKM! matrix. Explicitly, MLL5^K̄u@ s̄gn(12g5)d#2uK&
and is expected to vanish asmK

2 in the chiral limit. However,
as we have mentioned, it is well known that the matrix ele-
ment of this operator constructed from Wilson quarks does
not vanish in the chiral limit. Only by fine-tuning a linear
combination of all four quark operators with differing Dirac
structures does one obtain the correct behavior. To date, no
satisfactory method of fine-tuning has been found to solve
this problem @6–9#, so lattice operators which avoid this
mixing are much preferred. These include operators con-
structed from Kogut-Susskind quarks and now domain wall
quarks, as we demonstrate below.

In Fig. 2 we show ^K̄u@ s̄gn(12g5)d#2uK&/
u^0u s̄g5duK&u2 versusm for both values ofNs and the usual
Wilson quark operator whose mixing coefficients were deter-
mined using lattice weak coupling perturbation theory
@17,18# with a boosted coupling@19#. This ratio has the same
mass dependence asMLL in the chiral limit since the de-
nominator is just proportional to the square of the kaon de-
cay constant. From Fig. 2 it is clear that theNs510 result
exhibits the required behavior in the chiral limit: The values
at the two smallest quark masses extrapolate linearly to
0.00260.015 atm50. On the other hand, theNs54 domain
wall quark and Wilson quark results significantly miss the
origin. We note that while the errors are considerably larger
for the Wilson case, the results at each quark mass are highly
correlated and a fit which accounts for this does not go near
the origin. Indeed, previous lattice calculations have shown
that increased statistics do not remedy the problem. Also

FIG. 1. The pion mass squared as function ofm. m is propor-
tional to the quark mass. The last two points forNs510 ~octagons!
extrapolate linearly to zero well within statistical errors. The
squares denote results forNs54.

FIG. 2. The ratio of the four quark matrix element forK0-K̄0

mixing to the square of the pseudoscalar density matrix element,
calculated with domain wall fermions@octagons (Ns510) and
squares (Ns54)#. TheNs510 curve exhibits the correct behavior
in the chiral limit. Also shown is the result using the same gauge
field configurations for Wilson quarks~crosses! which extrapolates
to zero far fromm50 @note that for Wilson quarks the quark mass
is defined as the difference of the inverse quark hopping parameter
with the inverse critical hopping parameter,m[ 1

2(k
212kc

21)#.
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note that the domain wall results again approach the large
Ns limit from above.

The ratios in Fig. 2 corresponding to domain wall quarks
are determined with the following procedure. First we calcu-
late five-dimensional propagators from wall sources at times
0 and 31~the ends of the lattice! on each boundary in the
fifth dimension. The quark propagators are then constructed
using Eq.~2!. Because of the chirality projection operators in
Eq. ~2!, only two source spins on each boundary are re-
quired. We find that the added cost of inverting the five-
dimensional fermion matrix scales linearly withNs . Next,
these propagators were contracted using point sinks to form
three correlation functions on each gauge field configuration,
a two-point pseudoscalar correlation function from each wall
source, and a three-point correlation function from the same
two wall sources. Each correlation function is averaged over
configurations. The ratio is found by dividing the three-point
correlation function by the product of the pseudoscalar cor-
relators, all three being evaluated at the same sink time slice.
For large time separations between the sink time slice and
the two wall sources, the result is a constant. Our results
were averaged over sink time slices 10–20 where this con-
stant plateau was evident. The errors displayed in Fig. 2,
which are statistical, are calculated from a jackknife proce-
dure. In fact, simultaneous covariant fits to all three correla-
tion functions, which have goodx2, give similar results. The
Wilson quark results were calculated in similar fashion, but
with point sources.

A similar ratio as shown in Fig. 2, but witĥ0u s̄g5duK&
replaced bŷ 0u s̄g5g0duK&, gives the parameterBK which
chiral perturbation theory predicts to be nonzero in the chiral
limit. We are in the process of calculating this important
phenomenological quantity. Preliminary measurements indi-
cate that the ratio depends weakly onm and is nonzero as
m→0. The numerical value ofBK is scale dependent~as is

MLL) and thus requires a renormalization factor. In addition,
finite lattice spacing effects must be studied by simulating at
several couplings to understand the continuum limit ofBK .
Thus much work needs to be done before a meaningful value
can be given.

The above results show that domain wall quarks exhibit
excellent chiral behavior, even atg2;1. In particular the
bare quark mass appears to receive only multiplicative renor-
malization; i.e., no fine-tuning of the couplings is required to
reach the chiral limit, in contrast to the case with Wilson
quarks. Strictly speaking, this is true only in the limit
Ns→`; however, residual chiral symmetry-breaking effects
coming from finiteNs , which were not detectable in our
calculations withNs510, are in principle removable by sim-
ply increasingNs . These encouraging results also show that
domain wall quarks are a vast improvement over Wilson
quarks for matrix element calculations. Again, there is no
fine-tuning or cumbersome operator subtractions necessary
to obtain the correct chiral behavior. Similarly, they are
likely to prove useful for other QCD calculations where chi-
ral symmetry is crucial, e.g., the QCD phase transition for
nonzero temperature where current simulations suffer from
explicit chiral symmetry-breaking effects. Finally, we reem-
phasize that domain wall quarks atNs510 retain the full
chiral symmetry of continuum QCD to a remarkable degree,
unlike either Wilson or Kogut-Susskind quarks.
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