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QCD corrections to B—J/ ¢+ anything
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We calculate the branching ratio f@&— J/ ¢+ anything, within the color-singlet approximation fdfy
production, but including perturbative QCD corrections beyond the leading logarithm approximation. Such
higher order corrections are necessary, in order to obtain a result that is not strongly dependent on the
renormalization scale. As in the earlier work of Bergstrand Ernstrm, we use a double expansiondsg and
in the small ratio of Wilson coefficientsy/L,, to identify the dominant terms in the decay amplitude. We
complete their work by calculating all the leading order terms in this double expansion. The predicted branch-
ing ratio is then B(B—>J/z,b+anything)=0.9féj§><10‘3, which is well below the experimental value
Bexp=(0.80£0.08)%. This confirms the suspicion that nonperturbative corrections to the color-singlet ap-
proximation forJd/ ¢ production inB decays are importanfS0556-282(97)05415-5

PACS numbd(s): 13.25.Hw, 12.38.Bx, 14.40.Gx

. INTRODUCTION B—J/y+anything decay rate, in the color-singlet mecha-
nism.

The hadronid3 decays into charmonium originate in the  Up to small corrections of higher order gcp/m,, the
weak transitiorb— qgcc (with g=s,d), followed by the had- inclusive decayB— J/ ¢+ anything is described by the cor-
ronization of thecc pair into the charmonium bound state. responding parton decay. In the next section, we give the
They are examples of color-suppressed hadromic effective weak Hamiltonian for thb-quark decay, with the
decays: at the weak vertex, the pair is not created auto- Nnext-to-leading order Wilson coefficients of Re4]. In the
matically in a color singlet, and so it will be harder for it to following section, we adopt the program outlined in Ref,
hadronize into a charmonium state, rather than into a pair otnd obtain the leading terms in tie-qJ/4 decay ampli-
D-D mesons. The exclusive decays, suchBasK®*)J/4, tude. Finally, we give our numerical results and discuss their

and the inclusive decag— J/ s+ anything, as well as analo- significance.

gous decays into the charmonium stafg2S) and x.;, are

well studied experimentally. However, color-suppressed had-

ronic B decays are still not well understood theoretically.
We will concentrate on the inclusive decay The terms of interestin thaB=1 effective weak Hamil-

B—J/ ¢+ anything. In order for thec pair to hadronize into  tonian

a J/y, we require that it form a color singlet, with spin

S=1 and no relative velocity—this is the color-singlet Gk

mechanism fod/ production. Othecc configurations may eff:E

also hadronize intd/y; they appear at higher orders in an

expansion in the small relative velocity of tiéy constitu-  contain the operators

ents [1,2]. Since they contribute incoherently to the

Il. EFFECTIVE WEAK HAMILTONIAN
FOR THE b-QUARK DECAY

1
2, VerViq 3 Colw)O1+2Co(u) 05 (1)

B—J/y+anything decay rate, they can be studied sepa- O1=cy,(1-ys)cqy“(1—ys)b, 2
rately. We are interested in obtaining a reliable prediction for

the leading color-singlet contribution. Comparing our predic- Og= 3C\%y,(1— y5)CON?y*(1— ys)b, ®))
tion to the data will determine whether othec configura- o

tions are indeed important. and they correspond to tHe—qcc (g=s or d) transition,

At first sight, the decay rate in the color-singlet mecha-which occurs at the tree level in the weak interaction. The
nism, with QCD corrections included in the leading loga- subscripts inO, g designate the singl€fl) or octet(8) color
rithm approximation, appears to be well below the experi-structure of the/-A currents in those operators. The Wilson
mental value. However, the result is not satisfactory, as itoefficientsCy (u) include perturbative QCD corrections to
retains a strong dependence on the renormalization scale. The weak vertex. They depend on the renormalization scale
obtain a reliable prediction, it is necessary to include highe, which effectively separates those QCD corrections, from
order QCD corrections. This was the subject of the work ofthe QCD effects that appear in the matrix elements
Bergstran and Ernsfrm in Ref. [3]. These authors have (qJ/¢|O;gb). The u dependence of the matrix elements
shown how a clever reorganization of the higher order corshould cancel that in the Wilson coefficients, so that the final
rections can be used to identify the relevant contributions taesult for the decay amplitude is independent of the renor-
the decay rate, and how this will eliminate the strong depenmalization scale.
dence on the renormalization scale. Here, we complete their In the leading logarithm approximatioi.LA ), the Wil-
calculation and derive the prediction for the son coefficients arp4]
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whereas at next-to-leading ord@LO), they are[4] 7 (b)
Co(#)=2C., (1) =C_(n), (®) A
Calp)= $[C(m)+C_(w)], (© 7N
with b b = sd
Colp=La(w| 1225 3 gy ) v
ik 6 FIG. 1. Feynman graphs contributing Bo—qJ/ (q=s,d), to

lowest order in thexs-Ly/L, double expansion.
L as(w) = aMw) ( o P i”

=+ 2
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(10) b—qdly VI cbVcq mJ/l// 01 J a¥u ¥s5)Up
and +g2MpUgi 0,,,PY (14 y5)Upled/y. (14)

()= 4 B In[In(u?Adep)] The decay rate is then
S Bo IN(u?/AL 5 IN(u?IAG
Bo In(u QCD) Ba In(u QCD) T'(b—sJ )+ T (b—dJ/ )
2
The anomalous dimensions agedfunction coefficients are _ & IVep|2 Fary 2mg(1—r)2[|gllzr(1+2r)
16’7T m‘]/w
(0) - (1) 3+1 4 2 *
ve'=%23%1), yil=—g— | ~2lEg ni— 2ok |, +92/*(2+ 1)~ Re(g193 ) 6r], (15
(12) wherer=m?,/m2. The J/y decay constanty,, is a non-
1y Mp ¥
Bo=11-2n B,=102- ¥n (13) perturbative parameter that describes the hadronization of a
0~ 31y 1~ 3 i,

color-singletcc pair, with no relative velocity and in a spin

andn;=5 is the number of active flavors. In the modified S=1 State, into &/ meson. It is defined by

minimal subtraction MS) renormalization scheme, olcv el I/ = - ek (16)
Aqcp= A%z 209"3I MeV,  which  corresponds  to (Oley el =MarofargSiy.
ag(Mz)=0.118-0.003[5]. The quantityx. =0 [naive di- and it can be measured from the rate for the decay
mensional regularizatiofiNDR)], 4 ['t Hooft—Veltman J/y—e*e™.

(HV)] or ¥6—3 [dimensional reductiofDRED)] is regu- In the LLA, the decay amplitude is obtained from the
larization scheme dependent. A similar scheme dependentre-level matrix element of the effective weak Hamiltonian
appears in the calculation of the matrix elements(ifg, in Eg. (1). Only the singlet operato®; contributes[as in

such that the final result for the decay amplitude is regularfig. 1(a)], and one has
ization scheme independent. .
91=3Lo(n), 9.=0. 17

This leads to a LLA branching rati@ee Fig. 3that depends
strongly on the renormalization scale(to the point where it
The amplitude folb—qJd/¢ (Q=s or d), when the mass can actually vanish, fopu=2.5 Ge\j. As pointed out by
of the g quark is neglected, can be parametrized in terms oBergstran and Ernstrom [3], this means that higher order
the coefficientgy, andg,, which multiply the two possible contributions to the matrix elements of the operatorss,
Lorentz structures of the amplitud6] beyond the LLA, need to be considered. More specifically,

Ill. b—qJd/y DECAY AMPLITUDE
IN THE asLo/L, DOUBLE EXPANSION
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the strongu dependence in the LLA amplitude is due en- gram, and calculate all the leading order terms in the double
tirely to the Wilson coefficient o(«). An expansion of this expansion. Inexplicably, this was not done in H8f, where
coefficient around some fixed~m, gives the important terms of orderng in the decay rate were not
) calculated(and the estimate that was given is incoryect
_ - 212\ 1. At leading order in thers-Ly/L, expansion for the decay

Lo(n)=Lo(my) + ™ ats( M) Lo(Mp) I/ -+, amplitude, there is a tree-level contribution frath [Fig.
(18) 1(a)], proportional toCy, and one-loop contributions from
Og [Figs. 1b) and Xc)], proportional toaC,. From the
results for the Wilson coefficients in the previous section,
and to the order that we are interested in,

and although the. dependence only appears at ordgr, it

is important, since.y(mg)/L,(m,)=0.34 is of similar size
as ag(m,)=0.21. From Eq(18), one can conclude that the
terms in the matrix elements @1, g, which cancel the strong

1
w dependence that comes froly,, are terms of order =L + L —l_k+11
asL,. Such higher order terms ing appear at the one-loop ol i) =Lolp) +as(m)lalp) 3w “

ag(My)
as(pm)

level; they are absent from the LLA result, whefg g only

contribute at the tree level. n as(Mw) — as(i) (21+ 4n;) 1 6_'821“
The reason higher order termsdrg become important is as(pm) 680 Bo
the existence of a second small quantity in the calculation— (19)

the ratioLy/L,. Then, agl /Ly is not small compared to

unity, and the expansion i, fails. Bergstron and Ernstrm

advocated instead a double expansion in baeth and Co(m)=La(p) (20)
Lo/L,. Since these are the two small quantities in the calcu-

lation, this procedure will correctly identify the dominant [where we have replaced the regularization scheme-
terms in the matrix elements a@;g. Those are also the dependent parametet. by «=0 (NDR), 4 (HV) or 5
terms that are needed to cancel thdependence that comes (DRED)]. After a lengthy calculation, we obtain, for the pa-
from the Wilson coefficients. Here, we will follow this pro- rametersy, , in the decay amplitude,

1 1 B2\ ad(My) | ag(My) —ag(p) GIﬂ
- L ta L k' —k=6Inl = +11 21+4n -
91=3 Lo(w)+as(m)la(p) g (mg ag(u) as(p) ( " 880 85
v 2 trrrrarmar 2 e B8 g o OO 21
2—r | rrarin 2t Inrt o Ind-n=im — =1, 2
B L 1 2r 944ln2 2r | 4—3r n(1 - 4-=3r 29
9= as(w)la(pn) go5— +t4In2+ o Inr+ S ——In(l-r)—im -— 22

Both g; and g, are free of infrared divergences. The tice thatk’ is such that it cancels the scheme dependence
imaginary parts correspond to the contribution from the onfrom the Wilson coefficients, parametrized ky
shell intermediate state withe color octet, in the one-loop As for the dependence of, , on the renormalization scale
diagrams of Fig. (b). They have been previously calculated u, there is also an exact cancellation betweenghdepen-
in Ref. [7]. The ultraviolet divergence g, has been re- dence of the Wilson coefficients and that which originates in
moved using the samdS renormalization scheme as in the the one-loop matrix elements of tki3 g operators. The latter
calculation of the Wilson coefficienf#]: to leading order is shown explicitly in the expressions fgy ,. The former
in the double expansion, the counterterms that are needed at@n be obtained from the expansion bf(u) around
u~my in Eqg. (18), and the analogous results fag(w) and
La(u):

H GFEVV*[2 +In(4 )}
== cbVeql L niam
vz e e Lam=La(my)+-+- () =as(mp) - . (24

ag(um)

Xg Co() Oy (23)  Asin Eq.(18), the terms not shown are of higher order in the
double expansion imgs-Lgy/L,. In our final result(see Fig.
3), we have chosen to keep the full expressionsdgfu)
(for d=4—¢ dimensions The regularization of the diver- and Lo (u«), rather than use the above expansions. This
gence generates the scheme dependent#érm-2 (NDR), leads to a residual dependence in the branching ratio, since
2 (HV), or 3(DRED), in the expression fog, (see the Ap- higher order terms in Eq918) and (24) have not been
pendix for more details on how this term is generaté&tb-  matched by the corresponding higher order contributions to
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FIG. 2. Feynman graphs contributing B>—qJ/g (g=s,d), /,/’/,,/’
to lowest order in thexs-Ly/L, double expansion. 0.002} /,:/,/ Boy-Lo/Ls
— :/ -
the matrix elements 0®;g. The fact that the residugk e 3 : x s s To
dependence is small suggests that such higher order terms . u [GeV]

the matrix elements are negligible; keeping only the leading
order in the double expansion, as we do in here, is a goo&l1e

approximation. ; o ; X i
In order to obtain  the brjcmchin'g rati'o. for ';jgf,f'th?O?rpeifjr',ﬂa“?ﬁf\::agfs'n.vfz\ef ’ Lrg:izzldg Lébét\a/exp;r;

B—J/ ¢4+ anything, one must consider, in addition to AB = 209" 3 MeV

b—qJ/y, the contribution to the inclusive decay from other = ™S =~ 33 7=

possible parton processes. The dominant process is G2

b—qJ/ g, as it contributes to the rate at ordeyl 3 in our B(B—X.8 )= 5 ~on—g |Vcb|2mgf(ﬂ)h<ﬂ'mb),

double expansion, through the diagrams in Fig. 2. After in- 192 Mp/ | My

tegrating over the three-body phase space, the result for the (27)

decay rate is

FIG. 3. TheB—J/ ¢+ anything branching ratio as a function of
renormalization scalg. The theoretical curves, in the leading

and multiply it by the experimental resul]

I'(b—sJyg)+T(b—dJd/¥g) B(B—X.e ve)=(10.4+0.4%. (28
G2 f,\2 1
_ 2 2| iy 5 -~ In Eq. (27),
1627T2 |VCb| aSLZ( mJ/xﬂ) mb|:6 r(l r)
f(z)=1-82°+828—28~2472*In z (29

X(1+37 —8r?)—(1-6r)r Inr|, (29 s a phase space factor and

2ag( ) F(Z), (30)

with r=mj,,/m;. Notice that this contribution to the h(z,u)=1—
B—J/ ¢+ anything decay rate is of lower order in the double

expansion than the contribution frobm—qJ/ . However, with [9]

we have checked that the three-body phase space suppresses

the rate, so that both contributions are quantitatively of simi- h(2) = (72— 3 (1—7)2+ 2

lar size. This allows us to neglect correctionsbteqJ/ /g h(@=(m"=T)(1=2)"+z, S
and other,_pzartor? processes such Bs-qJ/¢gg Or 543 QCD correction factor. In our quantitative analysis, we
b—qJ/¢g9'q’, which appear in th&—J/y+anythingrate  tae for the b-quark pole massm,=4.8+0.15 GeV

at ordera?L3 or agloL,. They are of the same order as our gnq m,—Mm.=3.40 GeV, as in[10]. As for the J/¢
calculation for theb—qJ/¢ rate, but quantitatively smaller decay constant, it can be determined from

because of the phase space suppression. T'(J/y—ete )=(5.26-0.37) keV [5]. Within the color-
singlet approximationnow applied to thel/« decay and
IV. RESULTS including perturbative QCD corrections,
Using the expressions for the decay rates, in Ef$.and L AT, o oy 2
(25), together with the results of Eq&1) and (22), we ob- IJy—ete’)=— Qca(my,) | ——| My,
tain our prediction for thd8— J/ ¢+ anything branching ra- i
tio, 16ag(m
X[l— g J/w)}, (32)
37
B(B—J/y+ a”ythi”QZTBq;S,d [T'(b—qd/¥) with a(my,)=1/133 and ag(my,)=0.245 we find
fy,=515 MeV. Given the importance of the QCD correc-
+I'(b—qdlyg)]. (26)  tions of orderag, it is quite possible that higher order cor-

rections, not included in Eg32), will be significant. Be-
In order to eliminate the factor athg that appears in the cause of this potentially large theoretical uncertainty, we
decay rates, and so minimize the uncertainty in our result, wehoose to factor out the dependencefgy), in our final re-
divide the right-hand side of Eq26) by the expression for sult.
the inclusive semileptoniB decay ratd 9], In Fig. 3, we show the predicte®— J/ ¢+ anything
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The ' term in g, originates from the regularization of
the divergence in the unrenormalized one-lbep qJ/ ¢ am-
plitude. That divergence is of the form

branching ratio as a function of the renormalization sgale
for u ranging betweem,/2 and 2n,. The error band cor-
responds to the uncertainty m%. Adding to this the un-
certainty inmy, and that due to the residualdependence, we

find Ge . 1 [2
Agv=— 5 Vcchqczas 367 g_7E+|n(47T)
B(B—J/ hing = 13 i 0.9"11x10°3
(B—J/ytanything =| 725 0y) <0.9-03x 107 x(qd/y|Q|b), (A1)
(33 .
with

(We have not included the error due to the use of the parton
process to describe the inclusive decay of Bhmeson11].
That error is small when compared to the sensitivity of our

result to the exact value df% andm,.) The central value
in Eqg. (33 corresponds tou=m,=4.8 GeV and A%
=209 MeV.

Q= V(1= ¥5) Yo Y= Yo Va¥u(1— vs) IDC[ ¥ y*¥*
X(1=vs) = y*(1—vys)y*¥y"]c. (A2)

In d=4 dimensions(,; g form a complete basis under QCD
corrections, and) is proportional toO;: Q=—240;. In

It is clear that the prediction for thB— J/+anything d=4—e dimensions, however, th€, g basis must be ex-
decay rate, in the color-singlet approximation fns pro-  tended to include evanescent operatérsand
duction and decay, falls well short of the experimental value
Bexp=(0.80+0.08)%. Although one might have suspected
that this was so, already, from the LLA prediction, that result
could not be trusted because of the strong dependence on thge evanescent operatdesdo not exist in four dimensions,
renormalization scalésee Fig. 3. With a prediction that is and they do not contribute to the physical amplitude. On the
much more stable in, it can now be concluded with cer- other hand, the terms of orderin a,(e) will contribute to
tainty that new, nonperturbative, contributions to the descripthe finite part of theb— qJ/¢ amplitude, when inserted in
tion of theJ/¢ bound state are indeed importdai. A cal-  EQg. (A2). In order to determine these terms, we must com-
culation of theB— J/ 4+ anything decay rate which attempts pletely fix the regularization scheme by giving the form of
to include such contributions is given in RE2]. Our result  the evanescent operatoks (and the same form for these
can be used12] to improve the color-singlet part of the operators must be used in the calculation of the Wilson co-

B— J/ ¢+ anything decay rate that appears in there. efficienty. One way to do this is to define the evanescent
operators by the conditiof8]

Q=a,(e)O0,+E. (A3)
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APPENDIX

— -1
The origin of the scheme dependent tekh in the ex- A1(8)= Qg yol gyl 50 Orapyol oyl 5a)
pression forg, [see Eq(21)], deserves a brief comment. We =—172—-k'e+0O(e?)]. (A5)
summarize the more detailed discussion of R8f.(notice
that our result fo’ can be recovered from the more generalThis is the origin of the scheme-dependeitterm in the
case presented thére expression fog; of Eq. (21).
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