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Factorization theorems, effective field theory, and nonleptonic heavy meson decays
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The nonleptonic heavy meson decads>D*)w(p), J/yK™*), andD—K*) 7 are studied based on the
three-scale perturbative QCD factorization theorem developed recently. In this formalism the Bauer-Stech-
Wirbel parameters, anda, are treated as the Wilson coefficients, whose evolution fromAfHeoson mass
down to the characteristic scale of the decay processes is determined by effective field theory. The evolution
from the characteristic scale to a lower hadronic scale is formulated by the Sudakov resummation. The
scale-setting ambiguity, which exists in the conventional approach to nonleptonic heavy meson decays, is
removed. Nonfactorizable and nonspectator contributions are taken into account as part of the hard decay
subamplitudes. Our formalism is applicable to both bottom and charm decays, and predictions, including those
for the ratiosR and R, associated with th8—J/#K*) decays, are consistent with experimental data.
[S0556-282(197)01115-9
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[. INTRODUCTION guark symmetry, and be modeled by different ansatz. The
nonfactorizable contributions which cannot be expressed in
The analysis of exclusive nonleptonic heavy meson determs of hadronic transition form factors, and the nonspecta-
cays has been a challenging subject because of the involvédr contributions from th&V boson exchange are neglected.
complicated QCD dynamics. These decays occur through thie this way the BSW method avoids the complicated QCD
Hamiltonian dynamics.
Though the BSW model is simple and gives predictions in

Ge . — . — fair agreement with experimental data, it encounters several
Hzﬁviivkl(qlqk)(qiqi)v (D difficulties. It has been known that the lardé limit of
a;,, i.e., the choicea;=c;(M.)~1.26 anda,=c,(M,)
with Gg the Fermi coupling constany’s the Cabibbo- =~ 0-52, withM, the c quark mass, explains the data of

Kobayashi-MaskawdCKM) matrix elementsq’s the rel- ~ charm decay§1]. However, the same largdl limit of

—. a;=c¢4(Mp)~1.12 anda,=c,(M,)~ —0.26, M, being the
evant quarks, andqg)=qv,(1-ys)q the V—A current. 1=~
Hard gluon corrections cause an operator mixing, and theip quark mass, does not apply to the bottom case. Even after

A . . Including thec, ,/N term so that,; =1.03 anda,=0.11, the
renormalization-groupRG) summation leads to the effective BSW predictions are still insufficient to match the data. To

Hamiltonian overcome this difficulty, parametess denoting the correc-
G tions from the nonfactorizable final-state interactions, have
Heff=TFVijV§|[01(M)01+ Co()05], (2)  been introduced2]. They lead to the effective coefficients
2
. . eff _ 1 eff _ 1
where the four-fermion operator©;, are written as Ay =CitCo g tX1), 82 =CotCaf GtXz) (€

O:=(9,0x)(d;9;) and O,=(q;q,)(q,9;). The Wilson co-
efficientsc, ,, organizing the large logarithms from the hard y should be negative for charm decays, canceling the color-
gluon corrections to all orders, describe the evolution fromsuppressed term i/ and be positive for bottom decays in
the W boson masdV,, to a lower scaleuw with the initial  order to enhance the predictions. Unfortunately, the mecha-
conditionsc,(Myy) =1 andc,(M,,)=0. nism responsible for this sign change has not been under-
The simplest and most widely adopted approach to exclustood completely. Furthermore, in such a framework theoret-
sive nonleptonic heavy meson decays is the Bauer-Steclical predictions depend sensitively on the choice of the scale
Wirbel (BSW) model[1] based on the factorization hypoth- x for the Wilson coefficients: Setting to 2M, or M,/2
esis, in which the decay rates are expressed in terms @jfives rise to a more than 20% difference.
various hadronic transition form factors. Employing the Equivalently, one may regam , as free parameters, and
Fierz transformation, the coefficient of the form factors cor-determine them by data fitting. However, the behavior of the
responding to the externdlV boson emission ia;=c;  transition form factors involved in nonleptonic heavy meson
+c,/N, and that corresponding to the intern&l boson decays requires an ansatz as stated above, such that the ex-
emission isa,=c,+ ¢, /N, N being the number of colors. traction ofa,; , from experimental data becomes model de-
The form factors may be related to each other by heavypendent. On the other hand, it was found that the ratio
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a,/a; from an individual fit to the CLEO data of parameters. The branching ratios of various decay modes
B—D®)(p) [3] varies significantlyf4]. It was also shown B—D®)x(p) andD—K™*)7, and the ratioR andR, as-

that an allowed domaina ,a,) exists for the three classes sociated with theB—J/yK*) decays can all be well ex-

of decays@—o(*)*, B~D®)0 andB~—D®)O, only  plained by our formalism.

when the experimental errors are expanded to a large extent In Sec. Il we derive the three-scale PQCD factorization

[5]. theorem, concentrating on the separation of the contributions
Moreover, it has been very difficult to explain the two characterized by different scales. The incorporation of the
ratios associated with ﬂ'B_)J/wK(*) decayq:G]’ Sudakov resummation is b”eﬂy reviewed. In Sec. lll the

decaysB—D™)7(p) are investigated to demonstrate the
B(B— I yK*) B(B—J/yK*) importance of the nonfactorizable contributions. We then ap-
-~ R=-——"" (4 plythe formalism to the decay@—K*)7 in Sec. IV, and
B(B—J/yK) B(B—J/yK™) show that the internalV-emission amplitude can become
sufficiently negative in charm decays. In Sec. V we compute
simultaneously in the BSW framework, where the decay rates d—J/#K™*) and find that the predictions
B(B—J/yK) is the branching ratio of the decay for R andR, match the data simultaneously. Section VI is
B—J/yK. It was argued that the inclusion of nonfactoriz- the conclusion, where possible further improvements and ap-
able contributions is essential for the resolution of this con-plications of our approach are proposed.
troversy[7]. Such contributions have been analyzed (8]
based on the Brodsky-Lepage approach to exclusive pro-
cesse$9], in which the full Hamiltonian in Eq(1) was em- Il. THREE-SCALE FACTORIZATION THEOREMS

ployed. It was found that the nonfactorizable internal . . -
W-emission amplitudes are of the same order as the factor- N this section we construct the modified PQCD formal-

izable ones. However, this naive perturbative QGIDCD) Ism, that embodies both effective field theory and factoriza-

approach cannot account for the destructive interference b&On theorems. The motivation comes from the fact that the

tween the external and intern@l-emission contributions in  Wilson coefficientsc, ; of the effective Hamiltonian in Eg.
charm decays. This is obvious from the fact that the coeffi{2) &re explicitly. dependent. Since physical quantities such

cient associated with the internl emissions i, = 1/N in as the decay rates, which are expressed as the products of

both bottom and charm decays, and thus does not chan%@,2 with the matrix elements of the four-fermion operators
sign. ' 12, do not depend onu, the latter should contain @&
Recently, a modified PQCD formalism has been propose&Iependence to cancel that of the former. However, such a

following the series of work§10—16, where the PQCD for- cancel!ation has never been implemented in any preyious
malism constructed from the full Hamiltonia#h was shown analysis of nonleptonic heavy meson decays. As stated in the

to be applicable to thB— D) decayg15] in the fast recoil Introdu_ction, the BSW _method emp_loys the factorization hy-
region of final-state hadrofia3]. It was recognized that non- POthesis[1], under which the matrix elements @, , are
leptonic heavy meson decays involve three scales:Wthe actorized into two hadronic matrix elements of tfexial
boson mas#ly, the typical scalg of the decay processes, Vector currents ¢q). Since the current is conserved, the
and the hadronic scale of ordarcp. Accordingly, the de- hadronic matrix elements have no anomalous scale depen-
cay rates are factorized into three convolution factors: thélence, and thus the dependence of the Wilson coefficients
“harder” W-emission function, the hard quark decay sub- remains. To remedy this problemy, should be chosen in
amplitude, and the nonperturbative meson wave functionSuch a way that the factorization hypothesis gives dominant
which are characterized Wy, t, andAqcp, respectively. contributions. However, the hadronic matrix elements in-
Radiative corrections then produce two types of |arge |ogaV0|Ve both a Short—QiStance scale a.SSOCiated with the heaVy
rithms INMy/t) and In¢/Aqcp)- In this three-scale factoriza- gquark and a long-distance scale with the mesons. Naively,
tion theorem Inily,/t) are summed to give the evolution Settingu to the heavy quark mass will lose large logarithms
from M,y down tot described by the Wilson coefficients containing the small scale. It is then quite natural that theo-
a; At), and Inf/Aqcp) are summed into a Sudakov factor retical predictions are sensitive to the valuewof18].
[17], which describes the evolution frotrto the lower had- ~ We shall show that the cancellation of thedependence
ronic scale. The former has been derived in effective fieldS €xplicit in our formalism. We begin with the idea of the
theory, and the latter has been implemented by the resumm&onventional PQCD factorization theorem for tife—D
tion techniqug 11]. transition form factors, which describe the amplitude df a
This modified PQCD formalism ig. independent, i.e., quark decay into & quark through the current operator
RG invariant, and thus the scale-setting ambiguity existing if(c, y,b,). Radiative corrections to these form factors are
conventional effective field theory is removet6]. As the ultraviolet (UV) finite, because the current is not renormal-
variablet runs to belowM, and M., the constructive and ized. However, the corrections give rise to infralgd) di-
destructive interferences involved in bottom and charm devergences at the same time, when the loop gluons are soft or
cays, respectively, appear naturally. Furthermore, not onlgollinear to the light partons in the mesons. These IR diver-
the factorizable, but the nonfactorizable and nonspectatagences should be separated from the full radiative corrections
contributions are taken into account and evaluated in a syssnd grouped into nonperturbative soft functions.
tematic way. With the inclusion of the nonfactorizable con- The separation of IR divergences in one of the higher-
tributions, we find thag; , restore their original role of the order diagrams is demonstrated by Figa)l where the
Wilson coefficients, instead of being treated as the BSW fredubble represents the lowest-order decay subamplitude of the
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b region,U contains large logarithms In(d), characterizing
( 53 _ ﬁ .\ @ ~ ﬁ its soft nature. If Sudakov suppression is not strong enough,
U should be included, and the large In{i/need to be
summed for a more accurate analysis. On the other hand,
U involves complicated color flows. Hence, we leave its dis-
cussion to a separate work9.
Though the full diagrams are UV finite, the IR factoriza-
tion introduces UV divergences int$ andH, which have
opposite signs. This observation hints a RG treatment of the
Q + 5@ factorization formula derived above. Let, be the anoma-
lous dimension of$. Then the anomalous dimension idf
must be—y,,. We have the RG equations

V42 2| 7 J—
M@dF—m:—M@H, ®

whose solutions are given by

(b)
rdu S

FIG. 1. (a) Separation of the infrared and haB«s) contribu- d(b,p)= d)(b,l/b)exr{ - flm: yolas(n))|, (6
tions in PQCD.(b) O(«) factorization into a soft function and a M
hard decay subamplitude. o

t
M J—
. . . . H(t, =H(t,t)ex —f: . 7
B meson. This diagram is reexpressed into two terms: The (tp) (t.1) F{ i volas(n) 0

first term, with proper eikonal approximation for quark

propagators, picks up the IR structure of the full diagram.Equation(6) describes the evolution @f from the IR cutoff
The second term, containing an IR subtraction, is finite. Thel/b to an arbitrary scalg., and Eq.(7) describes the evolu-
first term, being IR sensitive, is absorbed into a meson wavéon of H from u to the typical scalé. The physics charac-
function ¢(b,u), if the radiative correction is two-particle terized by momenta smaller thanblis absorbed into the
reducible, or into a soft functiot (b,u), if the radiative initial condition ¢(b,1/b), which is of nonperturbative ori-
correction is two-particle irreducible as shown in Figa)l  gin. After the RG treatment, the large logarithmstiaj in
Hereb is the conjugate variable of the transverse momentunid are grouped into the exponent, and thus the initial condi-
ks carried by a valence quark of the meson, and thus can bigon H(t,t) can be computed by perturbation theory. Com-
regarded as the transverse extent of the meson. It will bedining Egs.(6) and (7), the factorization formula becomes
come clear later that the scaléblderves as an IR cutoff of free of theu dependence as indicated by

the associated loop integral. The functidncorresponds, in

some sense, to the nonfactorizable final-state interactions in ~ H(t,x) ¢(b,u)=H(t,t) (b,1/b)

the literature of nonleptonic heavy meson decfk The —

second term, being IR finite, is absorbed into the hard decay xex;{ - ft d—ﬁy (ag(p))
subamplitudeH (t, ) as a higher-order correction, wheres ) oi7s

its typical scale.

The above factorization procedure is graphically de- The effective HamiltoniarH¢; in Eq. (2) can be con-
scribed by Fig. (b), where the diagrams in the first paren- structed in a similar way. Consider the nonleptobiquark
theses contribute td, and those in the second parentheses talecays through &V boson emission up t®(«as). We reex-
¢ or U. Below we shall negledt), because of the pair can- press the full diagram, which does not possess UV diver-
cellation between the diagram in Fig(al and the diagram gences because of the current conservation and the presence
with the right end of the gluon attaching the lower quarkof the W boson propagator, into two terms as shown in Fig.
line. The combination of these two diagrams leads to ar2(a). The first term, obtained by shrinking th& boson line
integrand proportional to a factor-1e'''®, |1 being the into a point, corresponds to the local four-fermion operators
transverse loop momentum. It is then apparent thas un- O, appearing inH.¢, and is absorbed into the hard decay
important, if the main contributions to the form factors camesubamplitudeH(t, «). This subamplitude is characterized by
from the smallb region. It will be shown that the Sudakov momenta smaller than th& boson mas#ly, that is, by the
factor mentioned in the Introduction exhibits a strong sup-typical scalet of the heavy meson decays, since gluons in
pression at largé, and thus justifies the neglect bf. H do not “see” theW boson. The second term, character-

Note thatU has no IR pole due to the factor—e''T"®, ized by momenta of ordevl,, due to the subtraction term, is
which vanishes a$;—0, though each individual diagram absorbed into a “harder” functiotd,(My,,x«) (not an am-
contributing toU has, while the meson wave function, to plitude). Note that the factorization iH is not complete yet,
which such a pair cancellation does not happen, possesses lagcause it still contains IR divergences, i.e., the contributions
IR pole. The disappearance of the IR poleldfhas been characterized by the hadronic scale.
employed to deduce the universality of hadron wave func- We then obtain th®(«,) factorization formula shown in
tions in the literature. However, when moving to the largeFig. 2(b), where the diagrams in the first parentheses contrib-

. (8
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FIG. 2. (a) Separation of the hard and harde(as) contribu-
tions in effective field theory.(b) O(ag) factorization into a

“harder” function and a hard decay subamplitude. ®

. . FIG. 3. (a) O(«a) factorization of a soft function from a full
ute toH,, and those in the second parenthesesitorhis  gecay amplitude(b) O(as) three-scale factorization formula for a
formula should be interpreted as a matrix relation because Qfecay amplitude.

the mixing between the operatof3; and O,, or equiva-
lently, the four-fermion vertex should be regarded as the lin3(b). The diagrams in the last parentheses are identified as
early combined operator®,+ O,, which evolve indepen- the hard decay subamplitudte It is obvious that its anoma-
dently. The four-fermion vertex in the denominator meansous dimension is given bWn=— Y4~ yu . Applying the
that H, does not carry Dirac and color matrix structures.pg analysis to each convolution factor, vrve derive
Similarly, UV divergences are introduced in the above fac-
torization procedure, when th& boson line is shrunk, and  H, (M, x)H(t, &) (b, w)=c(t)H(t,t) (b, 1/b)
thus bothH andH, need renormalization. The RG improved .
factorization formula is written as tdu —

xexp[ o =)

1b 72
(10

H (M, u)H(t, 1)

O \where the Wilson coefficierd(t) represents the exponential
in Eq. (9). The cancellation of the dependences among the
with y,, the anomalous dimension bf, . It is easy to iden- three convolution factors is explicit. The two-stage evolu-

tify the exponential in Eq(9) as the Wilson coefficient, im- tions fror;: ﬂ_) to thandhfrom_'l[ 0 My r;f:_av_e been established.
plying that the scalg in the Wilson coefficient should be set We emphasize that the Wilson coefficient appears as a con-

to the hard scale. The functionH,(My,,My) can now be volution factor of the three-scale factorization formula,
. r )

safely taken as its lowest-order expresslidﬂ)= 1, since the which is, however, a constant coefficigionce its argument

. . . _ p is set to a valugin the conventional approach of effective
large logarithms In{l,,/w) have been organized into the ex field theory.

ponent. Note that the appropriate active flavor number In the leading logarithmic approximatian , are given, in

should be substituted'int.@s(ﬂ), 'vyhen u evolves .f'rom terms of the combination. (x)=c,() = c,(1), by

My down tot. The continuity conditions for the transition of

ag(un) between regions with different active flavor numbers

[20] are understood. Ce(m)=
We are now ready to construct the three-scale factoriza-

tion theorem by combining Eq$8) and (9). Start with the  with the constants 2, = —y_=—2, andn; the number of

nonleptonic heavy meson decay amplitude u@f{ers) with-  active quark flavors. Below we shall employ the more com-

out integrating out th&V boson. The IR sensitive functions plicated two-loop expressions of , presented in the Appen-

are first factorized according to Fig(e3, such that the dia- dix A, that include next-to-leading logarithni20].

grams in the first parentheses are characterized by momenta A remark is in order. Though Eq10) is u independent,

larger than the IR cutoff. Employing Fig.(l) to separate another ambiguity arises from the nonperturbative nature of

H,, we arrive at the factorization formula described by Fig.the meson wave functios(b,1/b), which describes physics

Mwdu _
= Hr(MWiMW)H(t’t)eXF{ J; TYHF(QS(M))

—6y. /(33-2ny)

ag(My) , (11)

as(um)
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below the IR cutoff 1b. This cutoff is arbitrary, and the The nonspectator contributions from th&-exchange dia-
others differing from 1 by a factor of order unity, for ex- grams, which may be factorizable or nonfactorizable, are not
ample, 2b, are equally good. For a different cutoff,should  included either. However, the naive PQCD analysis based on
change accordinglyfor example, to¢(b/2,2/b)] such that the full Hamiltonian in Eq(1) has shown that the nonfactor-
predictions remain the same. However, in practice, the exadrable contributions are comparable to the factorizable ones
behavior of¢ with b is unknown, and is neglected usually as for the internalW emissions and for the/ exchange$8].
in the following sections. It turns out that our predictions In this section we shall investigate the importance of the
depend on the cutoff slightly. nonfactorizable and nonspectator contributions to exclusive
At last, we explain how to incorporate the Sudakov factornonleptonic heavy meson decays employing the more so-
into the above factorization formula. The RG solution in Eq,phisticated three-scale PQCD factorization theorem devel-
(6) sums only the single logarithms contained in the mesoroped in the previous sectidi6]. We evaluate the branching
wave functione. In fact, there exist also double logarithms ratios of theB— D)7 (p) decays, taking into account the
coming from the overlap of collinear and soft divergencesfactorizable, nonfactorizable, and nonspectator contributions,
Hence, an extra large-scae” (or P7), the dominant light-  and letting the Wilson coefficients; , evolve according to
cone component of the meson momentum in the Breit framegffective field theory. In this framework the externvedlemis-
should be added intgp as an argument. The scalt’ is  sions also give nonfactorizable contributions. The relevant
associated with the collinear divergences, while the smalleffective Hamiltonian is given by
scale 1B is associated with the soft divergences as stated at
the beginning of this section. Before reaching Esg), one E .
performs the resummation for these double logarithms, and HEﬁ:EVCqud[Cl(M)Ol+ Ca(u)O5], (14)
obtains

H(P* b, u)=(b,w)exd —s(P*,b)]. (12) with t_he i)ur-fermion operatorsO;=(du)(cb) and
O,=(cu)(db). The full HamiltonianH is then a special
e * is the Sudakov factor, which exhibits a strong supprescase with the choice;=1 andc,=0.
sion in the largeb region. The single-scale wave function  We first study the8— D*) 7 decays. The analysis of the
¢(b,u), discussed above, is then identified as the initial conB—~D®)p decays is similar. The factorizable external
dition of the resummation for the two-scale wave functionw-emission amplitudes define ttie—D®) transition form

Eb(P+?jb,M)- For the detailed derivation of EL2), refer to  factors¢ through the hadronic matrix elements:
11,13.

In summary, the large logarithms M(,/t) are grouped (D(Py)|V#B(P1))=+VMgMp[ &, (n)(v1+vp)*
into the Wilson coefficients; ,, and In¢b) are organized by
the resummation technique and by the RG method. Combin- +& () (vi—v2)*],
ing Egs.(10) and(12), we derive the final expression of the _
three-scale factorization formula (D*(P2)|VH[B(P1)) =i VMgMpx &y(7) €* *PeSv 4014,
H (M, uw)H(t, ) p(x,P" b, ) (D* (P2)|A#|B(P1))=\MgMpx[ £ (7)(77+1)€**

=c(H(t,1)é(x,b,1/b) —&n,(m e vl
2

. (13 —én(n) € - vvh]. (15

t d_ _
X ex;{ —s(P*,b)— L/b%m(as(ﬂ))

_ _ _ P, (Py), Mg (Mpw)), andv, (v,) are the momentum,
where the momentum fraction associated with a valence the mass, and the velocity of tie (D*)) meson, satisfying
quark of_the meson has b(.aenllnserted. No.te thatEi]Js i the relationP;=Mgv; (P,=Mpwv,). € is the polariza-
fact the integrand appearing in the factorization formula forijony vector of theD* meson. The velocity transfer, - v, in

the exclusive nonleptonic heavy meson decays, and all thgys.hody nonleptonic decays takes the maximal value
variablesx, t, andb will be integrated over. That is, the 7=(1+r2)/(2r) with r=Mpe)/Mg. In the rest frame of

Wilson coefficientc, the hard decay subamplituée andthe e B meson P, and P, are expressed asP,=

meson wave fqnct_ion& are i_n a convolution relation, instegd (Ma/+2)(1,10) andP,=(Mg/+2)(1r2,0;) [13]. For the
of the mulnphcauqn relation as shown in thg effective analysis below, we defink, (k,) the momentum of the
Hamiltonian equatior(2). Hence, our formalism is a non- light valence quark in th& (D*)) mesonk; may have a
trivial extension of effective field theory. minus componenk; , giving the momentum fractios, =
ki /P; , and small transverse componekis . k, may have
a large plus componeikt, , giving x,=k, /P, , and small

In the conventional BSW approach the branching ratios oKot- The pion then carries the momentuRy=P;— P,
the exclusive nonleptonic heavy meson decays are pararwhose nonvanishing component is ority . One of its va-
etrized only by the factorizable contributions from the exter-lence quark carries the fractional momentug® 5, and small
nal and internaW emissions as stated in the Introduction. transverse momentls;. In the infinite mass limit oMy
The associated nonfactorizable contributions, which canncand Mp ) the form factors & with
be expressed in terms of hadronic form factors, are ignored=+, —, V, Ay, A,, andA; obey the relations

ll. THE B—D™)z(p) DECAYS
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FIG. 4. Factorizable extern&ll emissions fron{a) the operator (e) ®
0, and from(b) O,, factorizable internaW emissions from(c)
0O, and from(d) O4, and factorizabl&V exchanges fronte) O, and FIG. 5. Nonfactorizable extern&/ emissions from(a) the op-
from (f) O,. eratorO,; and from(b) O,, nonfactorizable internalV emissions
from (c) O, and from(d) O,, and nonfactorizabl&V exchanges
E.=&y= §A1: §A3: £ &= §A2:0. (16) from (e) O, and from(f) O;.

£ is the so-called Isgur-Wise functig@1], which is normal- and are thus color suppressed. Their expressions are more

ized to unity at zero recoihp— 1 by heavy quark symmetry. complicated, and cannot be written in terms of hadronic form
Equation(15) is the standard definition of the form factors factors. The amplitudeMé*) for the nonfactorizable exter-

& . In our approach, however, the factorization formulas fornal W emissions depend on the Wilson coefficient/N.

&, will contain the Wilson coefficients as the extra convolu- They have the same expressions for the charged and neutral

tion faCtOfS.gi include the contributions from the hadronic B meson decayS, because rep|acing the Specgtzquark in

matrix element o0, shown in Fig. 4a) and from the color- the B~ meson by thej_quark does not change the Feynman

suppressed mairix element @ in Fig. 4@‘ Therefore, rules. The amplitudeg1§*) for the nonfactorizable internal
their factorization formulas involve the Wilson coefficient - . ) .. (%)
W emissions contain the Wilson coefficient/N. M;*’ for

= i (x) in-
a1 Cl+02/'.\l' We dpfme the fOTm f_actors,m for the """ the nonfactorizablaV exchanges involve the Wilson coeffi-
ternal W-emission diagrams, which include the factorlzableCientc N
1 .

contributions from the matrix elements @f, in Fig. 4(c), .

and from the color-suppressed matrix eIer?nenOQ?in Fig. The decay rates @— D) have the expression

4(d). These form factors then contain the Wilson coefficient

a,=C,+c,/N. Similarly, we define the form factoeg*) for

the W-exchange diagrams, which include the factorizable

contributions from the matrix elements @f, in Fig. 4(e),

and from the color-suppressed matrix elemenOgfin Fig.

ggi)éile-lnir;cf, these form factors also contain the Wilson €O here iil, 2 3 and 4 denote the_modeB‘H
For the nonfactorizable contributions to te-D®*);  D°7 , B°=D"7", B"—D*°z", and B°-D*"7,

decays, the possible diagrams are exhibited in Fig. 5, Whicﬁespectlvely_. With the above form f_actors and th_e nonfactor-

correspond to those in Fig. 4. Figure@) 5(c), and e) do izable amplitudes, the decay amplitudeg are written as

not contribute aD(«) simply because a trace of odd num-

ber of color matrices vanishes. Hence, all the nonfactorizable

contributions come from Figs.(B), 5(d), and 5f), denoted My=F [(L+1)é —(1—r)E_ ]+ Tpéipt Mp+ My,

by the amplitudesm{), M§) | and M), respectively, (18)

4 (1-r1?)3

|y GE[Vepl?[Vud *ME ; |IMi2, (17

1
T 1287
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neglect the intrinsido dependence of the wave functions,
denoted by the argumeht and theO(«4(1/b)) corrections,
denoted by the argument bl/ That is, we assume
¢(x,b,1/b)= ¢(x). The wave functionse;(x), i=B, D,
D*, and, satisfy the normalization

M= [(A+1) & —(1-1)E_ ]+ fglexct Mpt M,
19

1+r
M3:7fw[(1+r)fAl_(l_r)(r§A2+ a1+ fow &l

+ My + M3, (20

1 f,
i(X)dx= ——=. 24
fotﬁ( ) 276 (24)
1+r
M4:7fw[(1+r)§Al_(1_r)(r§A2+§A3)]+fngxc o
The exponens is written as[23]

+ My + Mf, (21
wherefg, fpw), andf. are theB meson,D*) meson, and odu[ (Q
pion decay constants. We have made explicit that the s(Q,b)=f — In(—) Alas(u))+ B(as(/.L))}, (25
chargedB meson decayB~—D®*)%7~ contain the external Ll Y

and internaW-emission contributions, and the neutBame-

son decay83°—D™*)* 7~ contain the externalV-emission

and W-exchange contributions. one loop are given by
In the considered maximal recoil region with

PJS>Mpw /\2>P, , we regard thd*) meson as a light

meson for simplicity[13]. Double logarithms contained in

the B meson, D*) meson, and pion wave functions A

$s, dpix), and ¢, respectively, are organized into the

corresponding Sudakov factors using the resummation tech-

where the anomalous dimensioAsto two loops andB to

I
(@)
¥

nique[13,17,22:

¢dp(X1,Pq by, )= ¢p(Xq1,b1,1/b1)exd —Sg(u)],

Ppx)(Xa, P; D2, 1) = dpx)(Xz,02,1/b5)exd — Spe(u) ],

b(X3,P3 .03, 1) = ¢ (X3,b3,1/bz)exd — S (u)],

(22
with the exponents
_ “ d,u_ -
Sg(u)=s(x,P; ’b1)+2f1/b 7—7(“5( ),
1
Spi () =S(XaP3 ,02) +5(1-X2)P3 ,by)
du _
2 [" L),
by u
S,(u)=8(x3P3 ,b3) +s((1—x3)P3 ,b3)
du _
+2[" Lyla(u). (23
bz

The quark anomalous dimensiop= — a /7 is related to
Y¢=27, introduced in Sec. Il. The spatial extertsof the
mesons are the Fourier conjugate variablek;pf We shall

(26)

with Ce=4/3 the color factor andg the Euler constant. The
two-loop expression of the running coupling constant,

as(m) 4 168, Inin(w?/A?)
= rywii ey ey ra N V)
T Boln(uA) By In“(u/A?)
will be substituted into Eq(25), with the coefficients
33— 2nf 153— 1g1f
Po=—73 1 Bi=—p — (28)

and the QCD scald =A g¢p.

Combined with the evolution of the hard decay subampli-
tudesH, the variablesu in Eq. (23) are replaced by the hard
scalest as shown in Eq(13), leading to the RG-invariant
Sudakov exponentSg(t), Sp«)(t), andS,(t). Since large
logarithms have been organized, we computeo lowest
order by sandwiching Figs. 4 and 5 with the matrix structures
(P,+Mpg)ys/y2N from the initial B meson, with
vs(Po+Mp)/\2N, E(P,+Mpx)/\2N, and ysPs/\2N
from the finalD meson,D* meson, and pion, respectively.

The expressions of all the form factors and nonfactoriz-
able amplitudes for th8—D®) 7 decays are listed below.
The form factorsfj, i=+, Aj, andAz, and§;, j=— and
A,, derived from Figs. @) and 4b), are given by
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1 )
£=16mCe\IM} fo dxdx, fo bydbsb,dbyde(X1) o (X2)as(t) ag(t)

X[(1+ &ixar)h(Xq,X2,01,b5,m) + (r+ £/ X1 )h(X2,X1,b5,by) Jexd — Sg(t) — Spe)(1) ], (29

1 [
§=16mCe\TM3 JO dx; dx, JO badb;b,db,dg(X1) Ppix(Xa)as(t) as(D) £Xarh(Xq, Xz by, 02) + £/ X1h(Xz X1 b2, b1)]

xexd —Sg(t) = Spxi(t) ], (30)
|
with the constant§15]
(3,=0, Lh,=—1- ==,
Ay 2 772_ 1
, n—1 1
GL=G=a 72T NF L 7 2) ) e i m2 1 a1
N N
(=0 =— E[ n— 14_ il _ E” Here 5 takes the maximal velocity transfer
2 2 n—1 2 n=(1+r?)/(2r) as stated before. For the behavior of the
above form factors at other values of velocity transfer, refer
to [15].
2—p—n*-1 1 L) (*) i (*)
= — 7—N7 = The form factorsg)y’ from Figs. 4c¢) and 4d), and £/
A 2(p+1) = A 2(np+1)’ from Figs. 4e) and 4f) are written as

1 )
€' =16mCe Mg fo dxyxs fo b,db;b3dbsbe(X1) b.r(Xa) (L) (i)

XA[14+X3(1—12) Thi(X1, X3, b1, 03, M) + £k X1 2hin( X3, X1 b3, b1 , My bexd — Sp(tin) — SH(tin) 1, (32)
1 )
€430 167CTME | dxctts [ 2dbbadbs o (605069 2ol e st
X{[Xs(l_rz)_g(*)rz]hexc,(xzvX3ab2ab3amexc)+XZheX(,(XB1X2!b3ab2ameX(‘)}qu_SD(*)(texc)_Sqr(texc)]a (33)

exc

with the constantsin= lexc= — = — {%,=1. In the derivation oft{*) we have assumed thig has a plus component

ki =x;P; . Itis obvious that&*) and (%) are exactly thd— 7 andD*)— 7 transition form factors, respectively, evaluated

at maximal recoil.
In Egs.(29), (30), (32), and(33) the functionsh’s, obtained from the Fourier transform of the lowest-orderare given by

h(Xy,X2,b1,05,m)=Kg(X1Xomby)[ 81 —by) Ko(Vxomiby)1o(VXamby) + 6(by—b1) Ko( VXomby) 1o(VXomby) ], (34)

Nind(X1,X3,b1,03,Min) =h(X1,X3,01,03,Mjne), (395

2
exd X2 Xa b2 D3, Mex) = 7~ HE (VXX aMerd2) [ (02~ D) HEY (\XaMeD2) Jo \XaMexdba) + (b3~ b) HEY
X(VX3Mexd3) Jo( VX3Mex2) ], (36)
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with m=M3 and M= Mey=(1—r?)M3. We observe that the longitudinal momenta of the internal quarks in the dia-
the W-exchange contributions are complex due to the exgrams of Fig. 4, because the gluon energjes;m are al-
change of timelike hard gluons. The hard scalase chosen Wways smaller. The scalesh]/are associated with the trans-

as verse momenta. Then Sudakov suppression guarantees that
the main contributions come from the largeegion, where
t=max \yX;m,Vxom,1/b,1/b,), (370 the running coupling constanig(t) is small, and perturba-
tion theory is reliable.
tine= Max X1 Ming, VX3Mine 101,1/b3), (39 For the nonfactorizable amplitudes, the factorization for-

mulas involve the kinematic variables of all the three me-
texc= MaX VXoMeyo VX3Mexo 1/05,1/03), (39 sons, and the Sudakov exponent is given $¥ Sg+
Sp+)+S,,. The integration ovebs can be performed trivi-
where we consider only the energigg;m and yx;m from ally, leading tobz;=b; or by=b,. Their expressions are

1 ©
Mfa*):32W\/mCF\/FM éjo [dx] fo b,db;b,dbyde(X1) P )(X2) @ (X3)

(1), C2(th) (1) 2 (%)(p_ 2 (1) (2, C2(th”)
X1 as(th) =X = S|, -5, JL (1= r2) (1= %g) = X1+ L (r =r2) (= %) I (% by) — ars( ) ——
X ex — S(t)p,-p,J[ (2= )X = (1= )Xo — (1= 1?)xa]hi? (x; ,by) (40)
2 [* *
Mg =32m2NCeTM g fo [dx] fo b,1db;b2dbde(X1) i 1(Xe) 67X £5")
ca(ty) cy(tf)
X as(tg) = exi = S(tg") lo,-b, JXa = Xo = Xa( 1= r2) I (x; by) + st ——
X exf — S(t)|b,=b, ][ (X1 +X2) (1+ £ r?) = 1The (x; ,by) 1, (42)
1 )
MM =327 \2NCeTM 3 fo [dx] fo bdb;badbydg(X1) Ppie)(X2) a(X3)
cy(tt) cy(tf?)
X [ as(tf) @XM = S(t) |-, X0 ( 1+ 112 = £ o 2= (1= r?) T (3 b)) — (i) ——
X ex = S(t?)p,—p, )L (Xs+ X2) (1+ £ 1) = £ 2] (% by) (42)
with the definition[ dx]=dx;dx,dxz. The constants arg, q 1= —{pai=1.
The functionsh®, j=1 and 2, appearing in Eq&0)—(42), are written as
Ko(BjMgb,) for B;=0
()= _ _ .
hbJ —[H(bl bz)Ko(BMBbl)lo(BMBb2)+0(b2 bl)Ko(BMBbZ)IO(BMBbl)] IgH(Ol)(lBJ|MBb2) f0r ngo ’
(43)

Ko(DjMgby) forD;=0

() — _ _ i
hd [0(b1 bz)Ko(DMBbl)lo(DMBb2)+ 0(b2 bl)KO(DMBbZ)IO(DMBbl)] IgHgl)qDJlMBbz) for D]SO )

(44)



1624 TSUNG-WEN YEH AND HSIANG-NAN LI 56

Ko(FjMgb,) for F;=0

(i—; T b HW b HW -
th =1 2[0(b1 b2)H0 (FMBbl)Jo(FMBb2)+ 0(b2 bl)HO (FMBbZ)JO(FMBbl)] I_WHB]_)(|FJ|MBb1) for FJSO

2
(45
|
with the variables final p. and p; mesons ardP;/\2N and £P3/+2N with
5 5 e-P3=0, respectively. We also assume a vanishingeson
B =X1Xa(1-r7), mass.
X In the evaluation of the various form factors and ampli-
BI= (X1 —Xp)Xg(1—12) +X;Xp(1+T2), tudes, we adopiGg=1.1663%10"° GeV 2, the decay
constants fg=200 MeV, fp=fp+=220 MeV, f_ =132
B3=X;Xp(1+12)— (X1 —Xp)(1—X3)(1—r?), MeV [3], and f,=200 MeV, the CKM matrix elements
V| =0.043 [13,19 and |V,4=0.974, the masses
D2=F2?=x,x3(1—r?), Mg=5.28 GeV, Mp=1.87 GeV, andMp«=2.01 GeV
[25], and theB® (B~) meson lifetime7go=1.53 (rg-=
DZ=Ff=(x3—Xz)x3(1—r?), 1.68) ps[26]. As to the wave functions, we employ the
model
D2=(Xg+Xp)r2—(1—X;—X;)X3(1—r?),
2 ( 1 2) ( 1 2) 3( ) ¢ (X) NB,D(*) X(l—X)2 (48)
) (X)= ,
F%Z(X1+X2)+(1_X1_X2)X3(1_r2). (46) 8.0 16772 ME’D(*)—FCB,D(*)(l_X)
The scales) are chosen as for the B and D*) mesons, and the Chernyak-Zhitnitsky
models from QCD sum rule4],
t))=maxBMg,|Bj|Mg,1/b;,1/b,),
b X B | J| B 1 2) 5\/6
. b-(X)= ——F. x(1-x)(1-2x)?, (49)
t{’=maxDMg,|D;|Mg,1/by,1/b,), 2
- 5\6
t)=max FMg,|F;|Mg,1/b;,1/b,). (47) gbt(x):%—fpx(l—x)[o.Zal—Zx)er0.15], (50)
Here we include also the gluon energéMg, DMy, and
FMg except for the energiedB;|Mg, |Dj|Mg, and T _5\/5f 2(1—%)? (51)
|FJ-|MB of the internal quarks, because the former may not bp(X)= 2 ok (1=%)%,

be smaller than the latter.

The corresponding form factors and the nonfactorizabldor the pion and thep meson, respectively.
amplitudes for theB—D*)p decays can be computed in a  The normalization constaiig and the shape parameter
similar way, and their expressions are presented in the ApCg are determined by two constraints from the relativistic
pendix B. The only differences are the matrix structures ofconstituent quark model[10]. They are given by
the p meson in the calculation of the hard decay subampliNg=604.332 GeV and Cz=—27.5 Ge\f, which corre-
tudes, and the extra transverse-mode contributions from thgpond tofz=200 MeV listed above. The shape parameters
pt meson, except for the longitudinal-mode contributionsCp and C§ are adjusted such that our predictions for the
from thep, meson. The matrix structures associated with thebranching ratios of the various modesB3- D *) 7 fall into

TABLE |I. Predictions for the branching ratios of tile—D®)7(p) decays from the PQCD formalism
based orH (1), onHg (11), and from the BSW model with the parametess=1.15 anda,=0.26 (BSWI)
[3] and witha;=1.012 anda,/a;=0.224(BSWII) [4]. The CLEO datd3] are also shown.

Modes 1(%) Il (%) BSWI (%) BSWII (%) Data (%)

B —D%" 0.52 0.50 0.57 0.51 0.5340.025
BO—D* 0.33 0.33 0.35 0.28 0.3680.026
B~ —D*%7" 0.49 0.48 0.56 0.56 0.4970.044
BO—D* 0.32 0.32 0.34 0.27 0.3840.024
B-—D%" 1.34 1.21 1.07 111 1.0220.067
B-D"p- 0.63 0.68 0.82 0.69 0.8610.078
B-—D*%" 1.34 1.62 1.27 1.48 1.4440.134

B%—D**p~ 0.58 0.83 0.93 0.83 0.8440.071
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TABLE II. Contributions to theB—D™)x decays from the factorizable externidl emissions and
internal W emissiongor W exchanges and from the nonfactorizable amplitud.esf;f&f in Egs.(18)—(21).
The unit is 103 GeV.

Amplitudes ExternalV Internal W M) M)
(factorizable (factorizable

My 95.1 2.5 —5.3+14.9 18.5-10.4

M, 86.5 2.6 6.6-20.6 17.0-10.8

Amplitudes ExternaWW W exchange ME) VIS
(factorizable (factorizable

Ms 95.1 —0.6+0.4i —-5.3+14.9 2.2-3.1

M,y 86.5 —-0.6+1.3 6.6—20.6 3.0-3.1

the errors of the experimental dd@] shown in Table I. We  kinds of contributions are small. Hence, the branching ratios
determine Cp=—3.372 GeV and Cp«=—3.772 GeV, of the former are predicted to be (1°Q(rg-/750)~1.6
and the corresponding normalization constartg,= times of the latter, which is well consistent with the data.
92.85 GeV and Np«=119.51 GeV from fp=fp«= This conclusion differs from the previous one drawr &j,
220 GeV. Results along with those from the naive PQCDwhich is based on the naive PQCD formalism: The factoriz-
formalism based on the full Hamiltoniail (i.e., with  able internalW emissions give 20% of the factorizable ex-
c,=1 andc,=0), are exhibited in Table I. We find that the ternalW-emission contributions, and are responsible for the
predictions forB meson decays from these two approachegsatio of the charged to neutralB decay rates. Though the
are close to each other. For comparison, we quote the BSWalues in column | and in column Il of Table | are close, the
results from[3] (BSWI), and from[4] (BSWII), in which a  relative weights of the various contributions change. The
modified pole ansatz is employed to make the extraction ofV-exchange contributions are always negligible, which are
the ratioa,/a; less mode dependent. only about 5% of the extern&/-emission amplitudes. If the
Certainly, Eqs(48)—(51) are not the only choices of the conventional factorization hypothesis for nonleptoBiene-
meson wave functions. For example, the oscillator waveson decays is correct, only the diagrams in Fig. 4 are consid-

function for theB meson, ered. However, our analysis has indicated that Fi¢s. and
) 4(d) give small contributions. This is the reason the naive
Ng Mz choice u=M, for the arguments of the Wilson coefficients
! _ 2 b
Pe(X)= va(l—x)ex;< T 2028 ) (52 in the BSW model cannot match the data.

The results for the branching ratios of tBe-~D™*)p de-
with «=0.4 GeV, has been proposed [27], and the cays listed in Table | are also satisfactory. Note that after

asymptotic pion wave function fixing the D*) meson wave function from the data of
B—D® )z, there is no free parameter left in the analysis of
, G theB—D®)p decays. Hence, the consistency of our predic-
ba(X)= 7fwx(1—x) (53 tions with the data is nontrivial. The cutoff dependence of

the modified PQCD formalism can be tested simply by sub-

is widely adopted in the literature. The predictions fromstituting 2b for 1/b in the factorization formulas. The pre-
these models have been evaluated, and presented in Fig.dittions change by about 5%. In the conventional approach
and Table | of[12]. ¢ peaks ax—0 much more sharply of effective field theory the substitution ®fl, by 2M,, for
than ¢g, their second moments which carry the informationthe arguments of the Wilson coefficients , results in a
of the function profiles differing by five times. However, the more than 20% difference. Hence, the scale-setting ambigu-
results of the form factorg, and¢_ from ¢g are only 2.5 ity is indeed moderated in our approach.
times larger than those froghg. We also find that the rela-
tive decay rate of each mode is insensitive to the models of *)
the wave functions. This is satisfactory enough, since the IV. THE D—K™"a DECAYS
variation of the absolute rates can always be compensated by \we have stated that the naive choice of the BSW param-
other overall parameters. _ etersa; =c;(M.) +¢c,(M.)/N anda,=c,(M.) +c1(M.)/N

Different kinds of contributions to the decay amplitudes ;gnnot explain the data of charm decays. To do it, the large
M; in Egs. (18—(21) associated with the decays p ansatza; =c,(M.)~1.26 anda,=c,(M.)~ —0.51 must
B—D™) are presented in Table Il. It is obvious that the pe  assumed [1]. However, the same ansata,=
nonfactorizable internaW-emission amplitudes\($*) play  ¢,(M,)~0.11 does not work for bottom decays, because the
an essential role for the explanation of the branching ratiogest fit to the experimental data givag~0.22[4]. We ar-
of the B—D™) 7 decays: In the chargeB meson decays gue that the larg&l ansatz is the consequence of the factor-
M) is about 20% of the factorizable externatemission ization hypothesis employed in the BSW model. If the non-
contributions, while in the neutrd meson decays only the factorizable contributions along with the evolution of the
factorizable externaWW emissions dominate, and all other Wilson coefficients are taken into account, such an ansatz is
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not necessary. In this section we apply the three-scale factor- TABLE Ill. Predictions for the ratioR; andR, associated with
ization theorem to the decay@—K®)z, and explore in the D—K®)z decays from the PQCD formalism based tdn(l)
details how the contributions from Figs. 4 and 5 vary, whena@nd onHeg (I1). The experimental dae29] are also shown.
they are evaluated at different energy scales. In our approach

the factorizable and nonfactorizable contributions changdtodes ' I Data
with the characteristic scalésof the decay processes in dif- pq 4.96 0.74 0.72
ferent ways, such that their combination can explain both the,, 5.00 0.35 0.38

bottom and charm data. That is, our work provides a unified
viewpoint to the exclusive nonleptonic heavy meson decays.

Before proceeding with the calculation of the decay ratesg  meson decays. For the kaon, we have the masses
we emphasize that the applicability of PQCD Do meson M, =0.497 GeV antV .« =0.892 GeV, the decay constants

decays withMp=1.87 GeV is marginal. This is hinted by f. =160 andf.. =220 MeV. and the model wave functions
the conclusion irf28], which showed that the PQCD analy- 4o from (KQCD sum ruleged] wave functi

sis of the proton form factor with the Sudakov effects in-
cluded is reliable for the energy scale above 2-3 GeV.
Therefore, we concentrate only on the mechanism of the de-
structive interference involved in charm decays. For this pur-
pose, it is enough to consider the ratios of the chamed
meson decay rates to the neuttalmeson decay rates,

dr(X)= \/TEfo(l— x)[3.001—2x)%2+0.4], (56)

\/6
L = 0 * - . - 2 .
_B(D_HKOW_) PDex(X) > frxx(1—x)[0.5(1-2x)°+0.9], (57

 B(DO—K 7 )’

_B(D_HK*O’IT_)

=————— (54
B(D°—K**77) 64

1 2

brx (X)=\6Fxx(1—x)[0.7—(1-2%)2], (59
instead of the individual branching ratios.

The D—K®) r through a similar effectiv .
eu m decays occu ough a simiiar efiective for theK, K, andKF mesons, respectively. Note that we

Hamiltonian
take ¢, as theK* meson wave functions throughout the
Gr analysis of theD meson decays for simplicity. Then all the
HeﬁZEVcsV’Jd[Cl(M)OﬁCz(M)Oz], (55  factorization formulas in Sec. lll can be adopted directly

without further modification. Compared to the pion wave
function ¢, in Eq. (49), ¢«’s do not possess dips at the
middle of the momentum fractiox. ¢;* has a single hump
atx=1/2, differing from the behavior o and ¢k* .
Because of the smallé meson mass, the transverse de-
similar to Eq.(17), but with the subscripts=1, 2, 3, and 4 grees of freedom are more important in the definitions of the
) 0. B ot — e hard scales. Hence, we choose the maximum of the scales
denoting the modesD™ —Km~, D"—=K" @, D"~ 1 for the arguments of the Wilson coefficients. In this
K*%7~, andD°—K* * 7™, respectively. At the same time, case Sudakov suppression is weaker, and thus insufficient to
the CKM matrix elementV.{=1.0 is substituted fofVy|,  diminish the contributions from the region withclose to
and the meson masséép and M) for Mg andMpe), A qep, wherec, , diverge. To have meaningful predictions, a
respectively. In all the form factors and nonfactorizable am4gyer boundt.=(1+€)Agcp must be introduced for the
plitudes the kinematic variables of tie (D*)) meson are variablest in the numerical analysis, where is a small
replaced by those of th® (K*)) meson. TheD® (D)  number. We then have=max(1b;,t.). The results ofR,
meson lifetime istpo=0.415 (rp-=1.05) ps[29]. TheD and R, for €e~0.0002 are exhibited in Table IIl, which are
meson wave function has been determined in the study of theell consistent with the data. Note thatcan be regarded as

where the four-fermion operators a@,=(du)(sc) and
O,=(su)(dc). The analysis of the nonleptoni8 meson
decays in the previous section can be copied tdthreeson
decays directly. The expressions of the decay rateare

TABLE IV. Contributions to theD —K®)7 decays from the factorizable extern&l emissions and
internal W emissiongor W exchanges and from the nonfactorizable ampIituciv&\«z%{)’fd{f . The unit is 103

GeV.

Amplitudes ExternaW Internal W M) M§)
(factorizable (factorizable

My 368.0 —192.4 —19.7+17.1 18.5-24.4

Mg 752.0 —576.7 44.9-10.3 119.2-39.9

Amplitudes Externalv W exchange Mg M)
(factorizable (factorizable

M, 368.0 3.6-2.1i —19.7+17.% —10.7+24.7

My 752.0 —25-37.8 44.9-10.3 51.6-5.6




56 FACTORIZATION THEOREMS, EFFECTIVE FIELD ... 1627

one and the only one free parameter in the analysis of the Ge
D meson decays. Therefore, the simultaneous fRR{cand Hei=—=VcepVad C1( ) O1+Co( ) O,], (59
R, is not trivial. 2

The contributions from different diagrams are listed in -
Table IV. The W-exchange contributions to the neutial ~ With the four-fermion operatorsO;=(sc)(cb) and
meson decays are negligible as in the neuaheson de- O,=(cc)(sb). The relevant decay rates have the expres-
cays. It is easy to observe that withrunning to below sion
M., the factorizable internalV-emission contributions to
the charged meson decays become very negative due to N=——
the evolution ofa,, and overcome the (po)sitive nonfactoriz- ' 1287
able internalW-emission amplitudes\y*’. Note that the . :
factorizable internaW-emission contributions are positive with r=M,, /Mg, .M_J"/f:3'096 GeV being thé/y meson
and small in theB meson decays. The naive PQCD formal- mass_.The SUbSC”F_'t_l denotes the modes _’_‘]/‘/’_K
ism based on the full Hamiltonia without considering the and B®—J/yK®, which possess the same factorization for-
evolution of the Wilson coefficients,8] cannot account for mulas, and =2 denotesB™—J/K* ~ and B®— J/yK*°.
this sign change, since the corresponding coefficeents  Since the decay amplitude; contain only the internal
always equal to N. It then predicts that the chargeddl ~ W-emission contributions from Figs.(@ and 4d) as the
meson decay rates are larger than the neutral ghewalues factorizable part, and from Fig.(& as the nonfactorizable
of R; andR, in column | of Table Ill are greater than unjty part, their expressions are given by
as in theB meson case.

2 2 2 3(1—r2)3 2
GF|Vcb| |Vcs| mBf|~/\/li| ) (60)

My ="F 5,60+ MV, (61)

V. THE B—J/4K*) DECAYS . L L
. i o - MZZfJ/i//fintlp + My, (62)
As mentioned in the Introduction, it has been very diffi-
cult to explain the ratiosR and R, associated with the M=t DT L AT 63
B—J/yK™*) decays simultaneously, which were defined in 2= Lorui d 63
Eq. (4), in the BSW framework based on the factorization yhere the superscripts and T denote the longitudinal and
hypothesis. We have observed in Secs. Il and IV that thg.;sverse mode8— J/yK* andB— J/yK* , respectively
nonfactorizable contributions play an essential role in theand f314=390 MeV is theblw meson deca,y constafif] '
(*) (*) it i - ! L :
decaysB—D *'m(p) and D— K™ m. Therefore, it is €x-  gqation(61) is similar to Eq.(18) and Eqs(62) and(63) to
pected that the nonfactorizable effects are also important 'Eq. (20), but with the externaM-emission contributions

the decaysB—J/K™*). In fact, it has been suspected that —5 0
the discrepancy between model-dependent BSW prediction%mpped' The type of the mod#™—J/yK" corresponds to

and the experimental dafé] is attributed to the breakdown that of B®— D% which was not considered in Sec. IIl.
of the factorization hypothes[80]. Note that theB°— D°#° decay involves not only the internal
In this section we apply the three-scale factorization theo\W-emission but also the@/-exchange diagrams.
rem to theB— J/yK*) decays, and show that our predic-  Employing the matrix structuré(P,+M,)/\2N for
tions for the branching ratios of the various decay modes anthe final J/¢4 meson, and the vanishing kaon masses
for R andR_ are in good agreement with the data. Similarly, M =My« =0 for simplicity, the factorization formulas of
the decayB— J/yK*) occur through the effective Hamil- the form factors and of the nonfactorizable amplitudes are
tonian derived straightforwardly. They are written as

1 o0
Ein"'=— € = 16mC\TM f (dxdxs JO 1,03 B be(X1) by 1(Xa) Bz(tine) st

X{[1+X3(1=r?)Thind(X1, X3, D1,D3,Ming) = X1 2Nine( X3, X1, 03,01, Min) teXd — Sp(tind = Sk(tind 1, (64)

1 [
eV T=32mCe\TM éfo Xmdxsfo bldblb3db3¢’B(X1)¢-|£*(X3)32(tint)as(tint)rhint(xl1X3ab1ab3,mint)
X exfd — Sg(tin) — Sk (tin) 1, (65)
1 )
MG =~ M= 167\ BNC MG [ 101 | yclbubdbabax) 4, 0) B 06

R cy(tf)
X as(tg“)Texp[— S(t§)b,=b, 12— 12— 20X+ X2) (1= r%) T (x; ,by) + as(tgz))T

X exff = S(t§) b, =b, J[4X1 = 12— 2Xp(1+12) = 2x3(1=r*) TP (x; ,by) [, (66)
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TABLE V. Predictions for the branching ratios of the—J/¢K™*) decays from the PQCD formalism
based onH () and onHg; (Il), and from the BSW model with the parametems=1.012 and
a,/a;=0.224(BSWII) [4]. The CLEO and CDF datg81] are also shown.

Modes (%) Il (%) BSWII (%) Data (%)

B —J/yK~ 0.11 0.11 0.1020.014

BO J/yKO 0.10 0.10 0.11%0.023

B~ —J/yK* ™ 0.14 0.15 0.158 0.047
BO_ J/ yK*O 0.13 0.14 0.136:0.027

R 1.32 1.47 1.84 1.360.17+0.04

1.32+0.23+0.16(CDF)

R, 0.62 0.56 0.56 0.520.07+0.04

0.65+0.10+ 0.04(CDF)

Lo ca(ty”)
M= 327 BNCeTM3 [ 1) [ "b1dbybobadi,) 6500 s 060 s 1) 2 e — S

X 2r (1—x,=x)hg! (x; ,by) — as(tgz))l(Tdex;{—S(tgz))|b3:bl]2r(1—x1+x2)hff)(xi b (67)
|
The total Sudakov exponent for the nonfactorizable ampli- ¢§,w(x)=NJ,¢x”(1—x)”, (72

tudes is given byS=Sg+S;,,+ Sk, whereS;,, (S¢) has

the same expression &) (S;) in Eg. (23). The hard 5.6

functionsh;y andh{’, j=1 and 2, are the same as those b3(X)= TfWXz(l—X)Z- (73
appearing in Eqs(35) and (44), but with the arguments

) ) The constanN,,,, is related to the normalization condition
Mine=Mg—Mj,,, (68)

1 f
D2=x,x3(1—r?), (69) fo dXeb(X) = %- (74)

2

D2—(1 1412)— (3—2 T We stress that the particular form of tdéys meson wave
1= (1= X%2)X(1+r1%) —( X2 X2)4

functions is not important. We have tried other models, such
asx(1—x)exd —(1—2x)?], and found that it works equally

+(Xp+X— 1)Xa(1-r2), (700 well. The kaon wave functions have been shown in Egs.
(56)—(58).
D3=XXp(1+12)+ (X1 — Xp)Xg(1—r2) + (Xp— $)r2. The experimental data of the branching ratios of the

(7)  B—J/yK™) decays, and oR andR, [31] are exhibited in
Table V. We determine the parameter1.25 from the
The hard scales are also similar to those in the analysis of branching ratioB(B—J/#K), and then the normalization
the B—D®) 7 decays but with the insertion of the above Ny, =0.858 GeV from Eq.(74). After fixing the J/y me-
arguments. son wave functions, we evaluate the branching ratios of the
To evaluate the form factors and the nonfactorizable amdecaysB—J/¢K{ and B—J/¢K7 . Results and the corre-
plitudes, we need the information of thiéy meson wave sponding factorizable and nonfactorizable contributions are
function. Unfortunately, there are not yet convincing modelspresented in Tables V and VI, respectively. Obviously, both
for them. However, it should be most possible that the two
charm quarks in thé/¢ meson carry equal fractional mo-  TABLE VI. Contributions to theB— J/y/K*) decays from the
menta. Hence, we assume, for convenience, that the wayactorizable interna’v emissions and from the nonfactorizable am-
function ¢],,, for the (3/4) meson with transverse polariza- plitudes M{""). The unit is 10° GeV.
tion possesses the same form ds<x?(1—x)? for the pr
meson in Eq.5)), becauseqb; has a maximum ax=1/2.
We further assume thaztﬁ,¢ for the (J/¢), meson with lon-

Amplitudes InternaW VISE2
(factorizable

gitudinal polarization is proportional "(1—x)" withna M, 165.7 —39.3+6.45
free parameter, which will be determined by the data of theus —158 42.8-0.3
decayB— J/ K. That is, we propose the model wave func- M3 47.9 45.6+40.3

tions
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the branching ratios of the various decay modes, Rrahd APPENDIX A: TWO-LOOP EXPRESSIONS OF C; (p)

R, are explained successfully. If the nonfactorizable ampli- In this appendix we present the expressions of the Wilson

(%) _
tudes Mg*’ are excluded, we shall hav®=1.48 and  qefficientsc, A w) to two loops, which are given in terms of
R, =0.92, which are too large. It implies that the nonfactor-¢ , —¢, +¢, by [20]

izable contributions are indeed essential for the decays

B—J/yK&*), d.
4 Co(p)=| 1+ a’z(/-‘/)‘]t as(MW)}
w as( )
VI. DISCUSSION ol aS(AfMW)(B:—Jt)} (A1)
In this paper we have developed a modified PQCD for- ™
malism for the study of the exclusive nonleptonic heavy me-, .
son decays, which embodies effective field theory and fac\—Nlth the constants
torization theorems. It involves three scales: ihveboson d. e 40
massMy, the characteristic enerdyof the decay processes, Jo=—pB;— —, L=
and the transverse extelntof the mesons. The evolution of Bo 2o 2o
the Wilson coefficients fronM,y, to t and of the Sudakov _
factor fromt to 1hb are established to make the factorization 7,(o>: -+ 12M
formulas explicitlyu independent. The factorizable, nonfac- s TTT2N
torizable, and nonspectator contributions from the external
W emissions, the internal/ emissions, and the/ exchanges 1 N¥1 57_19 4
are all taken into account, and have been evaluated reliably. Y= TN | 1iﬁ+§Ni§nf_2130kt '

We emphasize again that the Wilson coefficient appears as a
convolution factor of the factorization formulas in our analy- NE1
sis, instead of a constant coefficient as in the conventional B.=——+[*11+k.]. (A2)
A 2N
approach of effective field theory.
Basically, the two main controversies in the exclusive

nonleptonic heavy meson decays, i.e., the extractioa, of The scheme-dependent parametersare

from bottom and charm decays, and the simultaneous expla- k.=0 NDR
nation of R andR, , have been resolved by our formalism: - '
The nonfactorizable internalW-emission contributions =¥4 't Hooft—Veltman. (A3)

M&*) alone, which are 20% of the factorizable one, account
for the data of theB—D®)(p) decays. The factorizable The constant®, and 8; have been defined in E¢28). In
internal W-emission contributions, becoming negative this paper we adopt the naive dimensional reductNDR)
enough to overcoma1$*) in theD meson case, successfully scheme. However, we have tested the sensitivity of our pre-
explain the data of th®—K®) = decays. That is, the evo- dictions to these two scheme;, and found that the schgme
lution of the Wilson coefficients can lead to the necessanf€Pendence can be absorbed into the meson wave functions.
constructive and destructive interferences involved in bottomiVamely, the wave functions vary with the scheme such that
and charm decays. It is the nonfactorizable contributions thaf'® Predictions almost remain the same.
make trivial to account for the ratio® and R, associated When the scalgw in ag(u) evolves from aboveM,, to
with the decayB— J/ K *). b_elc_JW My, the flavor numbemn; changes from 5 to 4. A

Note that the free parameters contained in our formalisn$iMilar change frormy=4 to 3 occurs ag evolves from
are less than the decay modes considered. Hence, the mafAoveMc to below M. To makeas continuous at these
of the theoretical predictions with the experimental data ishrésholdsAqcp must change accordingly. However, again,
nontrivial, and indicates that we may have explored the corth® dependence ohocp can also be absorbed into the wave
rect mechanism responsible for the nonleptonic heavy mesdinctions, such that our predictions are insensitive to whether
decays. It is worthwhile to compute other decay modesO’ hot the continuity conditions ofrs are implemented.
whose consistency with the data will further justify our ap- Hence, for simplicity and within the errors of the data, we
proach. Inclusive nonleptonic heavy meson decays are a@SSign the valué\ ocp=0.2 GeV, anchy=4 for bottom de-
other important subject to which our formalism can be ap-cays anchy=3 for charm decays in the numerical analysis.
plied. The nonfactorizable soft correctioks will give the
fine-tuning of our predictions. These topics will be investi-
gated in separate works. APPENDIX B: FACTORIZATION

OF THE B—D®)p DECAYS

The factorization formulas for thB—D®)p decays can
be derived straightforwardly. The only differences from the
We thank C. H. Chang, H. Y. Cheng, and B. Tseng forB—D®)7 case are the matrix structures of themeson in

useful discussions. This work was supported by the Nationahe calculation of the hard decay subamplituéigsand the
Science Council of Republic of China under the Grant No.extra contributions from the transverse modes involving the
NSC-86-2112-M-194-007. pt meson, as stated in Sec. lll.
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The decay rates are given by Ef7) withi=1, 2, 3, and
4, representing the modeB™—D%, B°~D*p,
B~ —D*%", and BO—D* *p~, respectively. The decay
amplitudesM; are written as

M=, [(1+1) & —(1=r) & ]+ fpéin— Mp+ My,

(B1)

MZZfp[(1+r)§+_(1_r)§—]+fB§exc_Mb+Mf1

(B2)

L 1+r .
M=~ T l(A+1) 6, — (1 =) (réa, + En ) ]+ fox &iny

+ M — Mg (B3)

M=ot + M (B4)

TSUNG-WEN YEH AND HSIANG-NAN LI
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1+r
M= 1 [(LH0)Ep ~ (1=1)(rén, + En)]+ Faélie
+M* * (BS)
MI fBgexc M-fr*’ (86)

where the superscrifit (T) denotes the longitudinatrans-
versé modeB—D*p-(M. We have used the same notation
as that for theB—D*) 7 decays without confusion.

The form factors¢,, i=+, —, A;, A,, andAs, re-
lated only to theB— D) transitions, are the same as those
associated with thd8— D)7 decays. The form factors
&) and £3) and the nonfactorizable amplitudgd () ; are
similar to those in th&8— D™*) 7 decays, but with the pion
wave functiong ,(X3) replaced by the, meson wave func-
tion ¢>t(x3) given in Eq.(50). The Sudakov exponeng; for
the p meson andS,, for the pion are the same. Below we
give only the form factorsf,m and £1*. and the nonfactoriz-
able amphtudes/\/l 41 involved in the transverse modes
B—D*pr:

1 )
5 =167 M | dxclts | 1 badbs b6 40X 2t el ) i .15 )

X ex;{ - SB(tint) - Sp(tint)]:

1 0
€17~ 16mC T | 0%, | tbobsdb o (00 401l tsd (Lo sl X2, )

X eXF{ - SD* (texc) - Sp(text‘)]l

MG =32 NCATM | 101 [ “badbybdbaoxs) bos (120 <x3>( a1

cy(t)
X r[1—x;—x,]h{P(x; ,bj) + ag(tP)———

M{* =327 \[2NCe\TM f [dx] f b,db;b,db,da(X1) dpx(X2) b <x3>( ay(tih)———

(t<2>
Xr2[1—x;—%,]h{Y x,,b)+as(t(2))

(B7)
(B8)
(1) 1( ta) (1
) &xH —S(tg")|p,=b,]
N q—8<t32>>|b3bl]r(xl—x2>h32><xi,bi>], (BY)
<<1>>
ol exif = S(t{")|p,-b,]
S g S(t?) |og=p, 7 2(Xa— x2>h<2>(x.,b)] (B10)

with the Sudakov expone=Sg+ Sp« +S, . The functionshi,, h{’, andh{’, j=1 and 2, and the hard scalebave been

defined in Sec. lll.
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