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Using a tadpole-improved SP) gluodynamics action, the non-Abelian potential and the Abelian potential
after the Abelian projection are computed. Rotational invariance is found restored at coarse lattices both in the
non-Abelian theory and in the effective Abelian theory resulting from the maximal Abelian projection.
Asymptotic scaling is tested for the &) string tension. Deviation of the order of 6% is found for lattice
spacings between 0.27 and 0.06 fm. Evidence for asymptotic scaling and scaling of the monopole density in
maximal Abelian projection is also seen, but not at coarse lattices. The scaling behavior is compared with
analyses of Wilson action results, using bare and renormalized coupling schemes. Using extended monopoles,
evidence is found that the gauge dependence of the Abelian projection reflects short distance fluctuations, and
may thus disappear at large scalg30556-282(97)02113-9

PACS numbegs): 12.38.Gc, 12.38.Aw, 12.38.Bx, 14.80.Hv

[. INTRODUCTION be demonstrated, e.g., by computing the off-axis interquark
potential at small (6), coarse lattices(lattice spacing
Considerable progress has been achieved recently in lakr=0.4 fm) in SU(3) pure gauge theory. The violation of
tice QCD as a result of combining two relatively old ideas:rotational symmetry inherent in the Wilson action, manifest
() improving the continuum limit behavior of the lattice ac- in the <40% deviation of the off-axis potential from a linear-
tion by adding terms that cancel the leading finite latticeplus-Coulomb fit to the on-axis values, is reducedstb5%
spacing correction§‘Symanzik improvement”[1]) and(Il) using the continuum-limit-improved lscher-Weisz action,
identifying a renormalized coupling which connects latticeand is essentially eliminate@f the order a few %by using
perturbation theory and Monte CarMC) simulationg2,3].  the continuum limit plus tadpole-improved actifr.
The key observation is that the disagreement between MC In the present work we apply these ideas in(3lpure
results and lattice perturbation theory can, to a large extengauge theory, focusing on confinement related aspects in the
be attributed to scale-independétadpole renormalizations framework of an Abelian projectiofAP) picture[9,10]. Af-
of the bare coupling. By converting lattice perturbation ex-ter partial gauge fixing the original SN} gauge symmetry
pansions in the bare coupling to ones using a renormalizei$ reduced to the 1)V~ * largest Abeliar(Cartan subgroup.
coupling that effectively takes these tadpole corrections intdJnder this residual group, diagonal gluon components trans-
account, lattice perturbation theory with the Wilson plaquetteform as Abelian “photons,” off-diagonal gluons and quarks
action can be reconciled with results from simulations in theas doubly and singly charged matter fields, respectively. The
scaling regior[3]. Moreover, tests of asymptotic scaling of effective Abelian theorfAPQCD) that results from the in-
physical quantities are much more successful when the petegration over the off-diagonal gluons contains a complicated
turbative 8 function is computed using such a renormalizedassortment of Abelian Wilson loop operators of various sizes
coupling[4-6,3. At the same time, the above observationand charges, which describe the dynamics of the Abelian
suggests a mean-field-type modification of the relation bephotong11,12, and, furthermore, mass terms for monopoles
tween lattice links and continuum gauge fie[@3], which  of different sizes and shapgEk3]. These monopoles are iden-
implies that the leading order coefficients of the correctiontified as singularities in the gauge-fixing condition. The con-
terms to effect Symanzik improvement have been signifijecture is then that condensation of these Abelian monopoles
cantly underestimated, the more so, the coarser the lattideads to confinement, in the spirit of the dual superconductor
[7]. Thus, besides improving lattice perturbation theory, theconfinement mechanism in compact QED},15.
effectiveness of lattice gluodynamics simulatiqgpes secan One question that we wish to address in this work is
be dramatically enhanced by working at coarse lattices andihether the improvement of the non-Abelian action leads as
using a tadpole-improved versi@also referred to as “Cor- well to improved continuum limit behavior of the effective
nell” action [7]) of the continuum-limit-improved action of Abelian theory resulting from the projection. We do this by
Luscher and Weis8]. The effectiveness of the method can computing the on- and off-axis potential from Abelian Wil-
son loops in APQCD and comparing the violation of rota-
tional symmetry between the APQCD resulting from using
*Electronic address: gpoulis@physics.adelaide.edu.au the Wilson actiofAPQCD-W) and APQCD resulting from
"Present address. using the tadpole-improved acti¢APQCD-I). We find that
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the off-axis Abelian potential shows restoration of rotationalgauges. In the last part of this work, we apply similar con-
invariance as well, allowing onéat least in principle to  siderations in the four-dimensional theory, using the tadpole-
study the Abelian projection in small, coarse lattices. improved action. We find a similar converging behavior of

The Abelian projection is gauge dependent. Early studieghe density of extended monopoles between MA and F12
[10] using local projections, e.g., diagonalizing an adjointgauge as a function of the lattice sixeof the extended cube
operator, did not seem to support 't Hooft's conjecture. Oneused to define the extended monopoles. The weakening of
evidently successful projection is the maximal Abelip)  the gauge dependence at large physical scales is also dem-
[16,17, corresponding in the continuum t(DZAthE onstrated by showing that the density of extended monopoles
%A;h_ igo[A” AZ“] = 0, where the gauge fiell is decom- in physical units forms a universéhdependent of th_e lattice
posed in neutral ) and charged (ch) components, Size of the extended monopole and the projegttomiectory
AM:AnJrAch_ One nice property of MA projection is that @S @ function of the|r size in physical units. The§e results
the Abelian monopole density is consistent with asymptotic/oW some optimism that the large-scale dynamics of the
scaling behavior in both thred18,19 and four-[20-22 A_pellan projection may after al! be independent of the spe-
dimensional S(®), which suggests it may be a physical Cific gauge used to implement it. _
quantity. However, the evidence in four dimensions is not 1 he structure of this article is as follows: in Sec. Il the
indisputable, essentially because of the lack of a dimensiorction and the observables considered in this work are de-
ful parameter in pure gauge four-dimensional QCDscnbed..ResuIts are presented in Sec. lll and our conclusions
(QCD,). Scaling behavior has not been observed in othefPP€ar in Sec. IV.
projections.

Thus, the second issue that we wish to address is whether Il. METHOD
renormalized perturbation theory and tadpole improvement . . . . .
allow one to make more conclusive tests of asymptotic scal-. The action used in this work is a tadpole-improved ver-

ing of the monopole density. We first use renormalized per—Slon of the tree-level continuum-limit-improved &) action

turbation theory to reanalyze the results which have beeﬂf I__uscher and Weisz. We begin byhbrleflyl summarizing fthe

obtained with the Wilson action. In agreement with (S action |mprov§ment prograin. The Wilson action for

results[3] and also with earlier S(2) analyseq5,6] using SU(N) Yang-Mills readsS{U]= 82, Sy, where

the “energy” scheme coupling, the asymptotic scaling be- 2

havior of. the string tens_ior,ly shows remarkablg improvement Sp= iRe T(1-Uy)= &a“Tr(Fiz)JrO(aG). 1)

when using the “potential” scheme renormalized coupling N 2N

[3]. In the case of the monopole density, however, although

we do find that the degree of scaling violation is reducedHere gi=4ma, is the bare lattice coupling constaat,the

when the renormalized coupling is used, asymptotic scalingpttice spacing, and we have taken for simplicity the

is clearly violated for lattice spacingg>0.1 fm, indepen- plaquetteU, to be in the(1,2) plane. The continuum action

dently of the couplingbare or renormalizédused. We also s recovered by identifyingg=2N/g3. To improve the con-

find evidence for(nonasymptotit scaling of the monopole tinuum limit behavior of the theory“Symanzik improve-

density against the string tension, which clearly breaks dowment” [1]) one adds operators that correct for tB¢a®)

for a>0.1 fm, as well. terms. Among other possible choicg®3] one can use a
We then study the string tension of the improved theoryl x 2 rectangular Wilson looglabeled “rt”) and a x1x1

(QCD-I) and the monopole density in its Abelian projection parallelogram Wilson looglabeled “pg”) term[8]

(APQCD-I). We find deviations from scaling to be typically

of the same order of magnitude as with the Wilson action.
Monopole properties are also similar with those in the pro- SUJ=Bcp, Syt B SitBCp Spg (2
jected Wilson theory. In particular, we see a small scaling P! " Po
window for the monopole density in MA gauge setting in at
B=3.3 where the lattice spacing is quite smat0.1 fm,
and that only for relatively large latticed £12). We also
find good evidence fofnonasymptotigscaling of the mono- . ; .
pole density, although not at coarse lattices. Thus, the improduces the coontmuum Oact|on up tooand includidga®)
provement program reveals that the monopole definition i$€MS: Provided,=5/3, ¢ =—1/12, c,y=0 (at tree level
plagued by certain lattice artifacts that do not allow one toih€ coefficients are independent of the specific gauge group
work at coarse lattices. and the space-time dlmenS|on§IE§24]). One-loop correc-

A final objective of this work is to shed some light on the UONSA; have been computed by seher and Weisz for both
issue of gauge dependence of the Abelian projection, alongY(2) and SU3) (Table 1 in[8]).
the spirit of previous work19] in three dimensions. There, it  Following the convention of Ref7] we setc;3— g; and
was shown that the difference between MA and local project@define 3= By, which makes the tree-level coefficient of
tions can be attributed to highly correlated short distancdh® 1x2 term—1/20[25]. Given g (which implicitly deter-
fluctuations. Confinement, being a large-scale phenomenofflines the strong couplinghe other two couplings are per-
should be oblivious to such fluctuations. It was shown thafurbatively renormalized:
by considering monopoles defined nonlocally on the lattice
(extended monopolg¢ssuch fluctuations are averaged over, __ ﬁ 1- §A L12A. |4
resulting in a converging behavior between MA and local Be=—3 5P rt) ST o

where the sums extend over all lattice points and relevant
orientations of the operators. To first nontrivial order in per-
turbation theoryg;=c’+4magA;, the action in Eq(2) re-
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3
,Bpg=§,3Apg477ao. (3 SZﬂ% Soi— %g; Srt- (8)

As described in Ref.7], the continuum limit behavior of For recovering the correct continuum limit it is important to
the Luscher and Weisz action can be further improved byrealize that, in the convention of RéT] that we follow here,
making the |attice |inkS more “Continuum Iike.” At the the re|ationship between the bare Coup”:mand the Simu_
mean-field level this entails setting,—u, 'U,,, where one  |ation parameteg in Eq. (8) must be modified to take into
possible choice for the mean-field facty is using the ex-  account the absorption @€| in B [25],
pectation value of the average plaquette

" S N
wo” <%RGT’U m> | @ “073 2mp" ©

while an additional factor (% 1.019 3&,) is needed in the
Yase of the one-loop corrected action of Ef). to account
for the one-loop corrected, [23]. Arguably, the right-hand
side of Eq.(9) should be further divided bylé. Following
Ref. [23], this is not done here; instead, we will denote the
coupling resulting from such a division as a “tadpole-
improved” or “boosted” coupling,aT,=a0u54, as in the
1 case of the Wilson action.
—In<NReTrUp,> =N, To simulate Eq.(8) we thermalize using the heat-bath
algorithm, beginning with a few steps whargis kept fixed
(5 to 1. After obtaining a first estimate of the average plaquette

The average plaquette with Wilson action has been calc
lated in lattice perturbation theory 1©(«?) [26] and re-
cently to O(«?®) [27]. It has also been calculated using the
Luscher and Weisz action, EqR), by Weisz and Wohlert
[24]. However, in the latter case the result is numerically
known to first order only:

2 172597 folN=2 [and thereforg fouy, cf. Eqg.(4)], we thermalize a few thou-
£y=0.366 2627N_1:{ °9 ° ' sand times withuy computed every 2—4 updates and then fed
N [3.06839 foN=3. into the action, untilu, stabilizes within a few parts in

. . . : 10 °. For extracting the on- and off-axis $2) potential, we
The Luscher-Weisz action can now be tadpole improved bycompute temporall X C Wilson loops. HereC are spatial

explic?tly pulling au, * fact_or out of each [ink and replacing paths of three typesa) straight-line spatial paths of up to six
ag with a nonperturbatively renormalized couplings  |inks, from which we extract th&®=1,2, . . . ,6 on-axis po-
definedthrough Eq.(5). SinceUy, involves four links and  (engial, (b) planar spatial path€=1x 2, 1x 3, from which

Ur, Upg six links, one further redefine8— Bug 4 and 10 the off-axis potential aR= /5,110 is extracted, an¢t) cu-
recover tht_a correct pontmu_um limit, the relative we|ght of pic spatial path€=1X1x 1 from which theR= 3 poten-
the correction terms is readjusted i§=[ 1— éyas/2], USING  tjal is obtained. In the case of nonstraight line spatial paths
Eq. (5): we sum over the possible combinations allowed given the
edges of the spatial path so as to obtain the lowest energy
(J=0) state. Retaining only those paths minimally deviating
from the diagonal, there are two such paths (forand six
for (c). Measurements are separated by 20-100 heat-bath
updates.
Bpg:agﬂApg‘W“S' 6) We then perform the Abelian projection to our non-
Abelian configurationgwe henceforth restrict our attention
Using Table 1 of Ref[8] we recover for S(B) the improved t0 SU2)]. A lattice implementation of the Abelian projection
action of Ref.[7], while for SU2) we find was formulated in Refs[10,16, in which several gauge-
fixing conditions were also developdtbllowing 't Hooft
B [9]). Local (generally nonrenormalizabl@rojections can be
SZ:B% Spi— zTuz[HOQZZhs]; St defined by the diagonalization of an adjoint operdtb].
0 Examples are diagonalization of a plaquette or a Polyakov
line [10]. The maximal Abeliar(MA) projection[16] corre-
—0.022 2u2 a’s% Spg- () sponds in the continuum limit to the renormalizable differ-
0 ential gaugeD A, =0, whereA, =(A} *iA%)/\/2. Param-
The success of tadpole improvement can be seen in the valgérizing the SW2) links in the form[28,12
of the one-loop correction to the coefficient of the rectangu- A ] o
lar term, which for SW2) becomes (1.08573 cospy ;€' n Singy, ;€' *xx
—0.862 98)-0.2227, a quarter of the original value. This Usa=| —sing, ne i cospy e i | (10
is similar to what happens in §8), where it was shown that ' ’
the difference between results obtained using the one-loop o
corrected and tree-level tadpole-improved actions is insigWith ¢ €[0,#/2] and x, #e[—m,m], MA projection
nificant [7]. The results reported here are in fact obtainedamounts to making the transformed linkls u as close to
from simulations using tree-level improvement only: i.e., the identity as possible:

B 3 én
Bi=— ZTug[l_ (gApl+ 12An+ g

dmag
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maxY, cog2¢y ). (12)
X, p

Under diagonal SK2) transformations the phase$ and
y=x+ 6 transform like an Abelian gauge field and charge-
two matter field(in the continuun, respectively, while¢
remains invarianf12]. Equation(11) is enforced iteratively;
to speed convergendégypically by a factor of 3 we use the
overrelaxation algorithm of Ref[29] with the parameter
w=1.7. The iteration is repeated until the gauge transforma
tion G, becomes sufficiently close to the identity at all sites
max{1-3Tr G,}=6<1, (12)

with 6=~10" used as a stopping criterion.

The Abelian potential after the projection is obtained from
singly charged Abelian Wilson loops constructed from the

phases,
Re{ e ”i] = cos(
i C i

with the same choice of spatial patfisas for the SR)
Wilson loops discussed above.

Monopoles are identified in the Abelian configurations us-
ing the algorithm of DeGrand and Toussajtb]. First, re-

duced Abelian plaquette angl@g, are defined

I1

eTX

>

Abel
WT><C
eTX

0; ) =CO0Y¥7x (s
C
(13

’éplzepl_Zﬂ-Npl! Aép|E(_7T,+7T], (14)
whereN, is identified with the number of Dirac strings pass-
ing through the plaquetteN; e {0,+ 1,+ 2}). The net flux of
monopole current out of the “elementary(that is, of size
1%) cubeC(n,u), labeled by the dual lattice linkn{u), is
equal to the sum of Dirac stringd, passing through the
oriented 1X 1 plaquettes on the surfaces of the ciib@]:

Nmzlm,u):—% Np. (15)

We also consider type-[I30] extended monopoleN,,, con-
structed as the number of elementany=€ 1) monopoles mi-
nus antimonopoles in a spatial cube of sim& For the lat-
tice density of monopoles we have adopted the definition o
Ref.[21]:

1
pll=—3> INy(n,4)], (16)
LtLS n

i.e., the three-dimensional density of the time=4) com-
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FIG. 1. The on- ) and off-axis @) non-Abelian(a) and
Abelian (b) potential from 6 lattices atB=1.7 using the Wilson
action.

mal Abelian projectiofMAQCD-W). The results have been
obtained from 3100 configurations on a* @attice at
B=1.7, with measurements separated by 40—100 updates. A
problem common to both Wilson and improved actions when
working at coarse d=0.4 fm) lattices is the difficulty in
establishing plateaus in the time direction for the correlators,
since afterT=2 time slices(corresponding to 0.8 finthe
S/N ratio has dropped dramatically. In this work we follow
Ref.[31] and evaluate the potential @&t=2 [32]. The on-
axis potential is fitted to an ansa¥(r)=or—w/12r+c
fdotted ling. To set the scale we adopt the familiar practice
[33,6/ of using the physical string tension,
a\Jon =2, N=0=VTpnys=0.44 GeV, which suggests a lattice
spacing a=0.39 fm, corresponding to the fit value
0=0.75. The large deviation of the off-axis points from the
on-axis fit clearly shows the violation of rotational symmetry
plaguing both the Wilson theory and its Abelian projection at

ponents of the monopole currents, averaged over all timgoarse lattices. Results for the tadpole-improved action

slicesL;.

Ill. RESULTS
A. The Abelian potential

We first discuss the continuum limit behavior of the ef-
fective Abelian theory after the projection. In Fig. 1 we show
the on- and off-axis QCD potential with Wilson action
(QCD-W) and the Abelian potential resulting from its maxi-

(QCD-I) and its maximal Abelian projectiofMAQCD-I) are
shown in Fig. 2. They come from 3200 measurements on a
6* lattice at3=2.4. A similar fit to the potential aT =2
suggesta=0.39 fm. A more careful estimation of the string
tension using APE smeariri4] shows that the lattice spac-
ing has been overestimated by5%, and is rather close to
0.37 fm, which is, nevertheless, sufficiently coarse for our
purposes. The QCD results are in agreement with recent cal-
culations in both S(B) [7] and SUW2) [35], and show that
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4 . . . T : . - . , the issue of Abelian dominance at small and coarse lattices,
which we have not addressed here.

B. Scaling studies

~ In this section we discuss the scaling behavior of the

52 r - SU(2) string tension and the Abelian monopole density. The

° 8 ] string tension has dimensiofength] “2, while [from the
- physical interpretation of the monopole density as defined in

o Eq. (16)] the monopole density has dimensifiength] 3.

: T Thus, the monopole density in physical units reads

0 A S R plM=plMa=3=[plM/(Aa)%]A3, while the string tension

0 ! 2 5 4 5 o=op@a >=[o/(Aa)?]A?. For these quantities to be

physical, the coefficient oA® in the monopole density and

that of A2 in the string tension have to become constant

[independent ofi(B)] as the continuum limit is approached

. (b) MAQCD-1 (B—). In previous scaling studigsvith the Wilson actioh

3L . i the bare coupling was employed to extract a scalasing

=l the two-loop perturbativgd function

>32 | = : | 124 | 51121 67
© | | a(,B)A— m ex _11Na . (17)

'r e 7 Before discussing the scaling behavior with the improved
action, however, it may be instructive to revisit the scaling
X . . , ) behavior of the Wilson action results, this time using both
0 1 2 3 4 5 bare(BPT) and renormalizedRPT) perturbation theory.

1. Wilson action

In BPT, the bare coupling, = (78) ! is used to extract
the scale from Eq(17), while, in RPT, a renormalized cou-
pling is employed, e.g., the *“energy” coupling
_ o . o ag=[2N/m(N*-1)](1—(O)) [2,4], or the “tadpole-
the continuum limit behavior of the Cornell action is clearly improved” coupling at=agug” [3], or, more effectively,
improved, even with tree-le_vel tadpole improveme_nt only. the “potential” scheme couplingy,, defined from the non-

The new feature emerging from these results is that NOberturbatively computed heavy-quark potential. In the
only QCD, but the Abelian projected theory as well, showsiatter case, instead of measuring the potential, one invokes
improved continuum limit behavior and restoration of rota-the lattice perturbation theory expansion of the heavy-quark
tional invariance, at least in MA projection. In a generic potential[37]

(other than MA projection, APQCD contains Abelian Wil-

FIG. 2. As in Fig. 1 but using the improved action, @ 2.4,
where the lattice spacing is approximately the same.

son loop operators of various sizes and charges. In order to _ N?—14mag N11 (7)) NJ
Symanzik improve such an action, the coefficients of these (%)=~ 2N o2 Itag 35200 aq 4w
terms should be carefully rearranged and, possibly, new 3

terms should be added. It is not obvious whether the addition +0(ap)

of the regtgngular term in the QCD action with thg qppropri- N2—1 dmay

ate coefficient so as to effect tree-level Symanzik improve- =" N ? , (18

ment will, after the partial gauge fixing, automatically fine-
tune the coefficients of the APQCD action in such a way as,here J= — 19.695 and— 16.954. forN=3 andN=2. re-

. . 6 . .
to eliminateO(a”) corrections in both QCANAAPQCD. In - gpaciively, together with the analogous expansion of some

the case of MAQCD-W the effective Abelian action is domi- other short distance quantity, e.g., the average plaquette
nated by an Abelian plaquette tefrhl,12,36 and using the (26,27,

approximations in Ref.36] one may argue that the observed

restoration of rotational invariance is due to a corresponding 1

improved Abelian action dominating MAQCD-I. In that re- 1- <NR9 TfUp|> =clag+C2a5+0(ap),
spect, it would be interesting to test the behavior of the off-

axis Abelian potential in a local projectiofe.g., field- N2—1

strength gauge, F)12Although we have seen some evidence cl= N

that rotational invariance is restored in F12 gauge as well,
the F12 Abelian Wilson loops are much more noisy and do
not allow definitive conclusions to be drawn. Using aniso- 2 4\ , 1

. . ; . : c2=(N"=1)| =] | 0.020N"— -], (19
tropic lattices may allow one to clarify this point, as well as
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FIG. 3. Asymptotic scaling test for the density of elementary

monopoles in MA projection using the Wilson actiofAQCD-
W). Data from Ref.[20] (circles and Ref.[21] (squares Open
symbols: two-loop evolution with the,, coupling[Eq. (20)] for the
main graph, and the bare coupling, = (78)  for the inner
graph. Solid symbols: three-loop evolutidbare coupling only.
The dashed line corresponds to the scaling cugpve|66A ]2,
quoted from Ref[20].

in order to extract,, from the measured value of this quan-
tity:

1 2_ q*
— |n<NRe TrUp|> = WWQ'V(;) (1+ 6yay),
(20
where
5 11NI g}y NJ c2 cl -
Nr N tar Tt 2 @D

At q* =7 one hasdy=—1.3386 and—0.8925, forN=3
and N=2, respectively. According to the procedure pro-
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FIG. 4. Asymptotic scaling test for the Wilson action @Y
string tension. The scakeA is extracted as in Fig. 3. Data are from
Refs.[5,6,33.

0.061 fn) the density drops by 23% using the bare coupling,
but by much les$9%) using the potential coupling. Between
B = 2.5 and 2.7 §=0.045 fm the corresponding numbers
are 37% and 13% witlxg and «,, respectively. Reduced
scaling violation is observed with other renormalized cou-
plings as well, however, it is less effective compared to the
potential scheme: betwegd=2.5 andB=2.7 we find 27%
scaling violation withay, and 17% withag (the “first-order
potential” coupling. Results from larger lattices show
smaller scaling violation: by reanalyzing the*1#ata points

in Table 2 of Ref[21] we find 9.3%, 4.5%, and 4.2% scaling
violation with «q, ay, and «g, respectively, between
B=2.5 andB=2.6.

The information Fig. 3 reveals regarding the status of the
MA monopole density as a possibly physical quantity should
be properly assessed against similar testbfora fidephysi-
cal quantities, such as the string tension. Asymptotic scaling
for the SU2) string tension has been tested in bare[B3],
as well as in renormalized PT, using the energy scheme cou-
pling [5,6]. In Fig. 4 we reproduce the BPT tdatner graph

posed by Lepage and Mackenzie for fixing the scalegny aiso show results for RPT in the, scheme(main

g* =3.41[3]. Another nonperturbative coupling may by ob-
tained by solving Eq(20) to first order(i.e., ignoring &y)
and will be denoted by, so as to facilitate comparisons
with the improved actioiicf. Eq. (5)].

graph [39]. As has been observed in RE83], asymptotic
scaling is not satisfied in bare PT, although e 2.7 data
from more recent calculation§,6] approach a plateau. Scal-
ing violation is substantially reduced when renormalized PT

Consider first the density of elementary monopolesjs used, in agreement with Ref$,6] where theag coupling
whose asymptotic scaling behavior has been tested, usingas employed. Specifically, from Table I it follows that be-

BPT, in Refs[20,21)). The open circles in the inner graph of
Fig. 3 correspond to the f2data in Fig. 1 of Ref[20].

tweena=0.17 and=0.4 fm the violation of asymptotic scal-
ing is =27% when the bare coupling is used, 16% with the

Although the results are not incompatible with scaling, moretadpole-improved coupling, 8% with either the energy cou-
solid evidence is required. The recently computed three-loopling, ag or «, the coupling obtained from E@20) to first

B function for Wilson action[38] modifies Eq.(17) by a
factor (1+0.083 24 4ra,), which, however, does not im-
prove the evidence for asymptotic scaling, since #e2.5

order, and is reduced to 6% with tle, coupling, obtained
by solving Eq.(20) to second order, witlg* =3.41.
Moreover, combining all these calculations we find be-

and 8=2.6 values come closer by less than 1%. Asymptotichavior compatible witinonasymptoticscaling of the mono-
scaling in MAQCD-W using the same data but renormalizedoole density against the string tension, as is seen in Fig. 5
perturbation theory is tested in the main graph in Fig. 3, with(see alsd40]). However, this scaling clearly breaks down at

aA extracted from thev, coupling andg* =3.41. Only re-
sults with the two-loopgB function are shown, since the
(scheme dependenthree-loop correction is negligible in
renormalized coupling schemg38]. The values still do not
lie on a plateau, however, the dependence is significantly
reduced: betwee8 = 2.5 (a= 0.085 fm) and 2.6 a=

lattice spacings larger than some critical value somewhere
between 0.12 and 0.09 fm.

2. Improved action

When testing asymptotic scaling with the improved action
of Eq. (8), we again extract the scale from Eq.(17). Given
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TABLE I. Asymptotic scaling test for S(2) string tension with Wilson action. Different coupling
schemes are used to gatB)A from Eq. (17). The bare couplingyy=(7) !, the tadpole improved
coupling = ao(01) 71, the energy couplingve=(4/37)(1—{()), and the potential coupling obtained
from Eq.(20) with g* = 3.41, to first orderg = — (4/37)In{J), and to second orde,, . Data are froni5,6]
and references therein.

Vo Vo Vo Vo Vo

as ay
A ) \/E Ao A Ag As Ay aT) aT
2.3 0.6024 0.36980)0 62.45 6.595 222918 2.492) 1.121) 0936 1.199
24 0.6300 0.266@00 57.84) 6.445 22.7517) 2552) 1.161) 0.931 1.155
2.5 0.6522 0.187a0)0 52.33) 6.033) 22.0112 2471 1.141 0929 1.127
2.5115 0.6544 0.18363) 52.94) 6.114) 224116 2512 1.151) 0.929 1.124
2.6 0.6701 0.136@0) 49.014) 5.7617) 21.5263) 2.417) 1.113) 0.930 1.109
2.635 0.6757 0.12@81) 47451 5621 21082 2361 1.091) 0931 1.104
2.7 0.6856 0.1010) 47.1(5 5.626) 21.2821) 2.382) 1.11(1) 0.932 1.096

2.74 0.6913 0.09112) 46.81) 5611 21325 2391 1.1X1) 0.932 1.092

the value of 8 used in the simulation, several choices of sity of F12 monopoles appears to be independem® ¢ind
associated strong couplingsto be used with Eq(17) are therefore of the lattice spacingimplying that in physical
available, as with the Wilson action, e.g., the bare couplingunits it diverges likea™ 3. On the other hand, the MA mono-
Eq. (9), or the “tadpole-improved” couplingrr;=agu,®.  poles do seem to develop an exponential falloff which is a
The situation is somehow different with respect to the potennecessary condition for scaling behavior. One also notices
tial scheme couplinggy,, since, as remarked in Sec. ll, the the considerable volume dependence of the MA monopole
expansion leading to E@5) has beer(numerically carried  density results, which should be expected if monopoles play
out to first order only. Thus, we do not have the analog ofsome role in the confinement mechanism: the lattice spacing
Eq. (20) whose solution(to second ordérwould give the isa=0.087 fm at3=3.4(Table Ill) and the underestimation
corresponding, coupling for the improved action. A solu- of the density on the Blattices compared with the 12e-
tion to first order(in which case it does not matter which sults reflects the inadequacy of the smaller lattice to provide
scaleq* is the coupling extracted Jais available, of course, for the typically 1 fm confinement scalésimilarly at
and corresponds to the nonperturbative couplingof Eq.  3=3.5, wherea=0.075, between the $2and 186 results.
(5). This underestimation is also in agreement with the expecta-
Let us now discuss the results obtained with the improvedion that it is the large monopole loops that are strongly
action. Starting with the density of elementaryn€1)  correlated with confinemeé1,42.
monopoles in APQCD-I, results from*8 12, and 16 lat- Asymptotic scaling for the monopole density in
tices, for 3 values between 2.7 and 3.7, are shown in Fig. BMAQCD-I is tested in Fig. 7, using the bare coupling of Eq.
(see also Table )l The behavior of the monopole density is (9), the boosted or tadpole-improved coupliag,, and the
very similar to what has been observed in earlier studiesfirst-order potential,” nonperturbative couplings. The re-
using the Wilson actiofi20,21]. In particular, the raw den- Sults are, in every case, not incompatible with scaling, at

10 T T
2.2 T T T T
i o} (o] & (o3 [od ¢
20 F i 'k o 4
o o ° s
$ 1.8 . LE e o |
S < R g
o 1.6 - T o
107 - 8 o |
E (]
14 + .
10_4 ) I L | |
12 | | | | 2.6 3.0 3.4 3.8
2.3 2.4 25 2.6 2.7 28 B

FIG. 6. The density of elementary monopol@slattice units in
FIG. 5. Scaling test for the density of elementary monopolesthe Abelian-projected improved theoAPQCD-I). Results are
against the non-Abelian string tension, using the Wilson actionshown for F12 projection on‘@attices (¢ ), and MA projection on
Data are from Refg5,20,33. 8% (A), 128 (0), and 16 (O) lattices.
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TABLE I1l. Runs for monopole density determination. After 5500 . .
Ninerm thermalization stepNyeasurmeasurements are taken, sepa-
rated byNgeparUpdates. 5000 F (a) o B g 1
\ 4500 o 8 8 0 2]
B Lattice  Niypem Nmeasur Nsepar (O) Pl[\ﬂ« '_;‘34000 N o % 1
27 12 - 100 100 0.577@) 0.0915727) Q3500 1 ]
29 12 2500 500 60 0.6218) 0.0529%10) 2000 |
3.1 12 2500 500 60 0.6581) 0.02548 9) © % ]
32 12 - 30 20 - 0.0164136) 2300, 30 37 38
16* 2500 30 50 0.673@) 0.0170613) B
3.3 12 2500 500 60 0.6862) 0.011067) 60 . .
16* 3000 30 50 0.6864) 0.0106817) o
34 12 3000 30 70 0.698@) 0.0066229) 50 - (b) g 8 § o § |
16* 2500 30 60 0.6979) 0.0072413 " o
35 12 2500 50 100 0.7088) 0.0036422) _<:40 F § i
16* 2500 100 50 0.7088) 0.0045Q 8) Y o
36 12 3000 30 70 0.7182) 0.0016414) 30 | 5 ]
16' - 26 - - 0.0027121) o
20 L : .
2.6 3.0 3.4 3.8
level similar to that of the Wilson action results: between B
B = 3.4 and 3.6 §=0.087 and 0.063 fm, respectively, cor- 130 ' '
responding roughly to th@ [2.5,2.9 interval for the Wil- 1ok (c) oo g l
son action discussed abowie scaling violation of the 6 N B 8 9 3
data is 8.6%, 6.1%, and 3.4% usiag, a7, andas, re- ‘<m %0 r o 1
spectively. At even smaller lattice spacings, for fixed lattice = 5, | 5 ]
size, the lattice volume becomes too small and this results i < o
the expected “enveloping” curvg20l. 50 .
Turning to the string tension, this is extracted from linear 30 L2 . .
+ Coulomb chi-squared fit§without fixing the Coulomb 2.6 3.0 34 38
coefficient to the Lacher valugto the time-dependent po- 8

tential V(R, T) =In(WRT—1)/WRT]), using jackknife er-
rors forV(R,T). It is known that the correction terms in the
action spoil the hermiticity of the transfer matfi#3]. As a
result, correlators show damped oscillatory behaviofTin

[32]. Using APE smearin§34], we have nevertheless estab- coupling e, [Eq. (9)], (b) from the boosted coupling,= agug *,

llﬁh_ed plzla;te?us ”1] Inl%li'rtpts of the rs1tr|ng Fer.]S'c_)rl(]-L?blfv and(c) the nonperturbative couplings [Eg. (5)]. Results shown for
); results from the attices are shown in in Table IV. ;» (O) and 18 (0) lattices.

Above 8= 3.4 the string tension from f2attices(not shown

in Table IV) is underestimatecommensurate with the de- ) ) » )
viation of the monopole density results betweerf Ed boosted couplingg,, is used. Specifically, from Table Vis

16* lattices discussed aboyesince the lattice size is below 1 S€€n that the violation of asymptotic scaling between
fm in this case. This can be seen in Fig. 8, where we tesf=2.7 (@=0.26 fm) and=3.6 (a=0.06 fm) is =6% with
asymptotic scaling for the string tension using the improved¥T» but more pronounced= 12.5%, using either one of
action, and with the same choice of couplings as for the¥o, @s andag=(1-(0))/1.7259(not shown. Apparently
monopole density. Since the three-loop correction to ghe (and unlike the monopole_ den_5|ty results discussed gbove
function is not universal, the Wilson action computation inthe nonperturbative coupling; is not so successful here,
Ref. [38] in not applicable in this case. The results appeaicompared toar,;. However, this depends strongly on the
compatible with asymptotic scaling, especially when the

FIG. 7. Asymptotic scaling test for the density of elementary
monopoles in maximal Abelian projected @Jusing the improved
action (MAQCD-I). The scaleaA is extracted(a) from the bare

TABLE 1IV. Runs for string tension determinatiol;, itera-

TABLE Ill. String tension o and the corresponding lattice tions of APE smearing with parameteg are used.
spacing, as extracted from linear-plus-Coulomb fits to _
V(R, T=fixed). B Lattice Ninerm Nmeasur Nsepar Co Nier — (E1) o

B T o _ a (fm) 31 16 2500 200 40 8 20 0.6581) 0.098%20)

32 16 2500 200 40 6 20 0.678R 0.070220)
3.1 3 0.0985 8) 0.096513) 0.141 6) 33 16 2500 200 20 6 20 0.686R) 0.048319
3.3 4 0.048811) 0.047616) 0.09811 34 16 2500 200 20 5 20 0.698D 0.03785)
3.4 5 0.03789) 0.0371 7) 0.08111 35 16 2000 200 20 5 20 0.7089 0.0278 7)
3.5 5 0.02786) 0.02771 7) 0.075 8) 36 16 - 200 20 5 20 0.7184) 0.019510
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S % FIG. 9. Scaling test for the density of elementary monopoles
30 (b) 1 against the non-Abelian string tension, using the tadpole-improved
action. Results are shown for 120) and 16 (0) lattices.
2'52‘6 3.0 3.4 3.8
g give rather similar results, since the ratig/ a1, slowly var-
55 . . ies around 0.930 with either Wilson or improved action, as
5ol ] seen from Tables | and V. Notice, though, that the ratio does
' 3 a 0O § % 0 9 not monotonically decrease wi, as does, e.g., for the ratio
<45} 5 . aslag in the case of the improved actigof. Table V), or,
g\ ok % 1 in the case of the Wilson action, when one instead of using
b ag solves Eq(20) to second order to obtaim, (last column
35 (c) 1 in Table |). It is conceivable that knowledge of the second-
. order terms in Eq(5) and the improved action lattice pertur-
%6 3.0 34 38 bation expansion of the potentifthe analog of Eq(18)],
8 which would allow one to extract the,, coupling with the
improved action, might lead to even smaller asymptotic scal-
ing violation.

FIG. 8. Asymptotic scaling test for the non-Abelian string ten- . . . .
sion with improved actioiQCD-I). The scale is extracted as in Fig. As with the Wilson action, we can now combine the re

7. Results are shown for 120) and 16 (0) lattices. The dashed sults to test (nQHaSymptoti): .Scali'ng. Readi'ng off
line in (b) corresponds to 3/8y,. Jo=3.8A, from Fig. 8b) and estimating the scaling value
for the monopole density att'l=54A3, from Fig. 7b) sug-

value of the string tension at the coarser lattice consideredlests that the dimensionless combinatjgff o~ should
B=2.7: the scaling violation betweef=2.9 (a=0.2 fm) saturate to 54 3.8 3=1. This is indeed verified in Fig. 9.
and 8=3.6 is 6% and 4% withvy; and a,, respectively. In By combining the 12and 18 results for the two quantities,
general, asymptotic scaling tests using these two couplingd€ir individual volume dependence cancels, to a large ex-
tent, in the dimensionless ratio. Thus, the evidence for scal-
TABLE V. Asymptotic scaling for S() string tension with N9 from this graph is more compelling than the evidence for

improved action. Different coupling schemes are used to ge@SYMPtotic scaling in Fig. 7. It appears, therefore, that the
a(B)A from Eq. (17): ao=(5/3)(mB) L, an=ax(d) L, and  €lementary monopole density in maximal Abelian gauge is

ag=—In(00)/1.726, from Eq(5). indeed a physical quantity. Using/5=0.44 GeV with
pt=*2implies a density of approximately 11 elementary
B Lattice Jo Jo Jo @ a monopoles per fr, in good agreement with estimates using
A_o i . ay  aq the Wilson action[21]. However, although scaling is ob-

served, its onset is at relatively small lattice spaciags0.1
fm, and therefore the situation for the monopole density is

27 12 18.8@52) 37610 43512 1732 0935  (jite similar to what we found with the Wilson actidFiig.
2.9 12 18.8447) 3.91(100 4.6412 1.609 0.936 5).

3.1 16 17.7518) 3.824) 4725 1519 0.932
3.2 16 17.3825 3.795 4.767) 1.486 0.931
3.3 16 16.7333) 3.687) 4.689 1.457 0.931

3. Comparison of Wilson and improved action

3.4 16 17.1711) 3.81(3) 4.893) 1.433 0.932 A comparison of the scaling results discussed above with
35 16 17.1G22) 3.8 5 4.936) 1411 0.933 the two actions suggests the following.
3.6 16 16.6343) 3.7210)0 4.8512) 1.392 0.934 (1) In both cases, renormalized couplings lead to im-

proved asymptotic scaling behavior compared to the bare
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coupling among renormalized couplings, the nonperturba- 102
tive ones @ or ay, when availablg are typically more :
successful than the tadpole-improved coupling.

(2) The string tension using the Wilson action shows I
more pronounced scaling violation compared to using the | =
improved action, but only when analyzed with the bare cou-
pling. When renormalized couplings are used, the results ar £ 4o L ¢ 4
rather similar for the two actions, for both observables tester & g ]
here (string tension and monopole densjty.e., renormal-
ized PT with the improved action does not improve renor- i o o
malized PT analyses of Wilson action results significantly. ] o
Thus, the results using the improved action lead to the sam o o o
interpretation as the one drawn from using a renormalize« 10° ! ! . ! I !
coupling with the Wilson action: the string tension calcula- 0 1 2 3 4 5 6 7
tion suggests that the improvement program does allow cor
finement to be studied at relatively coarse lattices; evidenth
a physical quantity, the monopole density in maximal Abe- . -
lian projection is, nevertheless, sensitive to small distance FIG. 10. The ratio of densities of extended monopoles between

(a=0.1 fm) physics. This sensitivity persists even when aF12 and MA projections using the improved action, as function of
continuum-limit-improved action is used the sizem of the lattice cube defining the type-Il extended mono-

In that respect, the merit of the tadpole-improvement pro-p°|e' Results from 12 latlices at g=2.7 (1), B=31 (9),

gram(in the form of, first, renormalized perturbation theory, p=33(0), =35 (A).

and second, tadpole-improving the action itgeilfisofar as

Abelian monopoles are concerned, has been to point out thétowever, unlike MA monopoIeSpl[gt‘] drops rapidly with

the asymptotic scaling behavior of the string tension can ben, suggesting that by considering extended monopoles such
extended to coarser lattices, while that of the monopole dercorrelations(which are absent in MA projection but create
sity cannot, something that — due to the lack of asymptotic‘spurious” monopoles in, e.g., F)2are being “washed
scaling with Wilson action and with the bare coupling — out.” Accordingly, the ratio of extended monopoles between
could not have been previously realized. To further clarifyF12 and MA projections is found to decreasenasicreases.
some of the above points, more accurate determinations of (3) For extended monopoles with fixeghysica) size,

the string tension with the improved action using anisotropicy[™ (in physical unit scales for MA gauge but not for local
lattices (following Ref. [32]) and, possibly, a continuum- ones. However, thelegree of scaling violatios found to
limit-improved version of Creutz ratiggt4], should be per- decrease substantially as the extended monopole size in-
formed. creases.

To what extent do such considerations apply to the four-
dimensional theory? The situation appears quite similar on a
first inspectionpg{‘] drops faster in the local projections than

It has been pointed out by several authdi8-22,28that in MA, as can be seen by plotting the ratio
the large number of monopoles and the associated scalir]g[mlzp[F”l‘lz/p[M”H as a function ofm (Fig. 10. Empirically,
violation observed in local, unitary gaugésuch as F12 or e find that the extended monopole density in local gauges
Polyakov gaugecan, to some degree, be attributed to strongwhich is, in d=4, practically independent of the lattice
short distance fluctuations. Defining monopoles nonlocallyspacing for allm) behaves like
(e.g., extended monopoles, introduced first by Ivanenko
et al.[30]), may help average—at least partially—over such (] C
fluctuations and therefore reduce the gauge dependence of Prat (B)= e (22
the Abelian projection. The main results of an analysis along
these lines in the=3 theory with Wilson action by Trottier,

Woloshyn, and this author were the followih9]. with C=0.31(1) andy=1.64(1), over a range of3 values

(1) Monopoles in MA projection form a dilute plasma in where the lattice spacing drops by a factor ofF3g. 12);
d=3. The monopole distribution is basically random andC and y depend very mildly on the particular local gauge
characterized by the average minimum monopolefixing, suggesting a purely geometrical origin ®f which,
antimonopole separatiofr ;) which in physical units however, we have not identified. The MA density can also be
scales. The density of extended monopo% remains parametrized in the form of E¢22), although the fits are not
roughly the same for “sizesa<(r ) (in physical unit3. ~ equally good. In this case the the coefficients decrease with

(2) In local gauge|! does not scale. The distribution is B, mildly for yya (Fig. 11 and exponentially foCy, (not
significantly narrower than what is expected from a randonshown. Since yua<7ye12, the convergence betwegsi;a
distribution, indicating strong short-distance correlations.andp[FT]2 for fixed B seen in Fig. 10 readily follows from this

parametrization. The more rapid convergence for the higher
B values observed in Fig. 10 is accounted for fy, and
Note that this is not true for the improved actioraif; is inter-  yma being independent g8 and decreasing witj, respec-
preted as a bare couplifigee discussion below E()]. tively.

i

I

1>

C. Gauge dependence and extended monopoles
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FIG. 11. Fitting the lattice density of type-Il extended mono-  FIG- 12. The density of extended monopoles as a function of
poles according to Ed.22): Cri» (O), ye1p (1), yua (M). The  their size for F12 and MA projections. The logarithm is to base 10.

dashed line corresponds @=0.31 and the dotted line tp=1.64 .
(see text In order to test the behavior of monopoles at large scales

we plot in Fig. 12 a family ofm=fixed trajectories for
Moreover, one may show that, although, as inPF12 and pfi as functions of the extended monopole size

ma in physical units, using the scale extracted from &g
(égupling. The linear behavior of the F12 data points, with the
m-independent, equal te-3, slope and the increasing like
Inm ordinates for a given abscissa, follows directly from the

B independence of the coefficients in E§2) with y<3:

tion of the monopole sizena in physical units. Unlike
d=3, where 8 is dimensionful and therefore this can be
tested directly by comparing densities witll 3 = fixed, in
d=4 can only be implicitly deduced, from E(R2); indeed, |n(p[m]a—3): INC+(3— v)Inm—3In(ma). (24)

a measure of scaling violation, as the continuum limit lat

a—0 is approached, is given bip!™/ga*, with e<0. From  For each individuam=fixed trajectory, Fig. 12 essentially

the above parametrization, tests asymptotic scaling fgt™. The most interesting fea-
ture is the formation of a universal, i.en-independent, tra-
aptm jectory for MA extended monopoles of large sizepinysical

=C(ma)~ 7, e=vy—3<0. (23

ma=fixed

units. Unlike the F12 case, the dependenc€gf , yya ON
B (and therefore, implicitly, ora) does not allow a simple

Sj 0cv<3. the d f i iolation for th explanation of this feature. The deviation of the individual
ince O<y<3, the degree of scaling violation for the ex- \,_fiyaq curves from this universal trajectory occurs at

tended monopole density in unitary gauges will decrease asrﬂacAle 0.32, 0.22, 0.16, 0.11, fan= 6, 4, 3, 2, respec-

funptioncof thleg extended monopole sige physical units, tively. Thus, the crossover points involve a common critical
as in QCD; [19]. lattice spacinga.A1,=0.055, which, from the scaling value

These results suggest that there is more contaminatiog;_3 8\7, = 0.44 GeV impliesa,~0.094 fm. Given that

from short distance physics in the local projection, as e?('these results are from 42attices, and since for fixeth the

pected from the nonlocality of the gauge condition in MaXI" - ontinuum limit is to the left on the horizontal axis in Fig.

vn\ji?rl1 ',{A‘hbeecli'a:ns pggjsictlg:é ?hgfjtlzr%%tg;gint?n?r:gv:hgsﬁgilésprgfelz’ it appears that this deviation from the universal trajectory
degrees of freedom are pointlike th=3 but form closed Is merely another manifestation of the finite physical volume

loops ind=4. Thus, although a concept of minimum sepa_effect occurring when the lattice sita is less than 1 fm, as
ration can still be devised al—4, it is probably not the described in[20] and also observed in Sec. lll. It is quite

correct way to describe the monopole distribution Indeeolconceivable that towards the infinite volume limit this uni-
. . . L versal trajectory will extend to arbitrarily small physical
although we find tha{r ., is larger in MA than in F12 J y y Phy

action(by a fact g f 1210 2 for t | sizes. We also notice that the difference between MA and
projection(by atactor ranging from 1.2 10 2 for h@"? UES 12 results decreases rapidly with increasing monopole size
we have considergdwhen converted to physical units nei-

. m " and at large physical sizes a projection-independent trajec-
ther scales. That may explain WWat in MA projection tory seems to form, indicating that alsod=4 the Abelian

does not remain constant over some range in Fig. 10, as ifgjection shows evidence of gauge independence when
d=3, but instead starts to drop immediately with increasingarge scales in physical units are probed.

m. The appropriate way to describe the monopole distribu-
tion is probably by categorizing the loops according to their
length [42]; although not discussed here, the analog of the
d=3 case may be to examine how close to random the MA In this work the ideas of renormalized perturbation theory

monopole loop length distribution found in Ré#2] is. and tadpole improvement have been used to study confine-

dac

IV. SUMMARY
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ment related aspects of lattice @)Y gluodynamics. Observ- improvement is not very evident in the string tension calcu-
ables have been studied that are either directly related tiation is, however, not surprising, since the string tension is
confinement, e.g., interquark potential-string tension, or conebtained from the standard on-axis potential.

jectured to be in the context of a dual superconductor picture, Good evidence for scaling of the density of maximal Abe-
e.g., monopoles and Abelian potential after the Abelian prolian monopolesjusing the S(2) string tension to set the
jection. Two types of studies have been undertaken. Firsgcald is found. Some evidence for asymptotic scaling is seen
tests are done of the improvement program in QCD and it&S well, although hampere(_j by flnlte volume effects._ It is,
Abelian projection, APQCD, specifically(@) whether _nevertheless, clear, that neither sc_allng nor asymptotic scal-
asymptotic scaling and scaling is observed, dndwhat is ing hold forthe-_ MA mpnopole dens_lty at as coarse lattices as
the continuum limit behavior of APQCD at small, coarse 10% asymptotic scaling for the string tension d°e$-

lattices. Second, studies of extended monopoles are made, The'gaqge' erendence of the density c.)f Abellan mono-
using the tadpole-improved action as a new, better tool, witt©!€S i significantly reduced when considering extended
the objective of shedding some light onto the issue of thdnonopoles of large sizes in physical units.

apparent, albeit bothersome, gauge dependence of the Ab%— The scalirllg dstud[es .Of '\t/lh: mo_nopple .densitﬁ/ syggljest that
lian projection. The results can be summarized as follows. the monopole density in projection is a physical quan-

At small, coarse lattices the degree of violation of rota_f[ity, and thus seem to settle a hitherto not entirely clarified

tional invariance is similar in Wilson QCD and its Abelian issue. Together with the reduced scaling violation in local

projection. With the improved action, though, rotational in- projections at large scales, th's may be_ con_S|dered as sup-
variance is restored in both QCBnd the corresponding porting evidence for the Abehan projection picture of con-
Abelian theory, at least in MA projection finement. However, despite the encouraging results from the

Deviation from asymptotic scaling for the ) string off-axis Abelian potential, sc;aling of' the mor_10po|e density
tension is observed at the 6% level between0 06 and P°reaks down at coarse lattices. It is conceivable that this
0.27 fm. This order of scaling violation is quite similar with necessitates improvement of the monopole identification al-

renormalized coupling analyses of Wilson action results, algorlthm besides improving the actigs].
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