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Using a tadpole-improved SU~2! gluodynamics action, the non-Abelian potential and the Abelian potential
after the Abelian projection are computed. Rotational invariance is found restored at coarse lattices both in the
non-Abelian theory and in the effective Abelian theory resulting from the maximal Abelian projection.
Asymptotic scaling is tested for the SU~2! string tension. Deviation of the order of 6% is found for lattice
spacings between 0.27 and 0.06 fm. Evidence for asymptotic scaling and scaling of the monopole density in
maximal Abelian projection is also seen, but not at coarse lattices. The scaling behavior is compared with
analyses of Wilson action results, using bare and renormalized coupling schemes. Using extended monopoles,
evidence is found that the gauge dependence of the Abelian projection reflects short distance fluctuations, and
may thus disappear at large scales.@S0556-2821~97!02113-9#
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I. INTRODUCTION

Considerable progress has been achieved recently in lat-
tice QCD as a result of combining two relatively old ideas:
~I! improving the continuum limit behavior of the lattice ac-
tion by adding terms that cancel the leading finite lattice
spacing corrections~‘‘Symanzik improvement’’@1#! and~II !
identifying a renormalized coupling which connects lattice
perturbation theory and Monte Carlo~MC! simulations@2,3#.
The key observation is that the disagreement between MC
results and lattice perturbation theory can, to a large extent,
be attributed to scale-independent~tadpole! renormalizations
of the bare coupling. By converting lattice perturbation ex-
pansions in the bare coupling to ones using a renormalized
coupling that effectively takes these tadpole corrections into
account, lattice perturbation theory with the Wilson plaquette
action can be reconciled with results from simulations in the
scaling region@3#. Moreover, tests of asymptotic scaling of
physical quantities are much more successful when the per-
turbativeb function is computed using such a renormalized
coupling @4–6,3#. At the same time, the above observation
suggests a mean-field-type modification of the relation be-
tween lattice links and continuum gauge fields@2,3#, which
implies that the leading order coefficients of the correction
terms to effect Symanzik improvement have been signifi-
cantly underestimated, the more so, the coarser the lattice
@7#. Thus, besides improving lattice perturbation theory, the
effectiveness of lattice gluodynamics simulationsper secan
be dramatically enhanced by working at coarse lattices and
using a tadpole-improved version~also referred to as ‘‘Cor-
nell’’ action @7#! of the continuum-limit-improved action of
Lüscher and Weisz@8#. The effectiveness of the method can

be demonstrated, e.g., by computing the off-axis interquark
potential at small (64), coarse lattices~lattice spacing
a.0.4 fm! in SU~3! pure gauge theory. The violation of
rotational symmetry inherent in the Wilson action, manifest
in the&40% deviation of the off-axis potential from a linear-
plus-Coulomb fit to the on-axis values, is reduced to&15%
using the continuum-limit-improved Lu¨scher-Weisz action,
and is essentially eliminated~of the order a few %! by using
the continuum limit plus tadpole-improved action@7#.

In the present work we apply these ideas in SU~2! pure
gauge theory, focusing on confinement related aspects in the
framework of an Abelian projection~AP! picture@9,10#. Af-
ter partial gauge fixing the original SU(N) gauge symmetry
is reduced to the U~1!N21 largest Abelian~Cartan! subgroup.
Under this residual group, diagonal gluon components trans-
form as Abelian ‘‘photons,’’ off-diagonal gluons and quarks
as doubly and singly charged matter fields, respectively. The
effective Abelian theory~APQCD! that results from the in-
tegration over the off-diagonal gluons contains a complicated
assortment of Abelian Wilson loop operators of various sizes
and charges, which describe the dynamics of the Abelian
photons@11,12#, and, furthermore, mass terms for monopoles
of different sizes and shapes@13#. These monopoles are iden-
tified as singularities in the gauge-fixing condition. The con-
jecture is then that condensation of these Abelian monopoles
leads to confinement, in the spirit of the dual superconductor
confinement mechanism in compact QED@14,15#.

One question that we wish to address in this work is
whether the improvement of the non-Abelian action leads as
well to improved continuum limit behavior of the effective
Abelian theory resulting from the projection. We do this by
computing the on- and off-axis potential from Abelian Wil-
son loops in APQCD and comparing the violation of rota-
tional symmetry between the APQCD resulting from using
the Wilson action~APQCD-W! and APQCD resulting from
using the tadpole-improved action~APQCD-I!. We find that
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the off-axis Abelian potential shows restoration of rotational
invariance as well, allowing one~at least in principle! to
study the Abelian projection in small, coarse lattices.

The Abelian projection is gauge dependent. Early studies
@10# using local projections, e.g., diagonalizing an adjoint
operator, did not seem to support ’t Hooft’s conjecture. One
evidently successful projection is the maximal Abelian~MA !
@16,17#, corresponding in the continuum toDm

nAm
ch[

]mAm
ch2 ig0@Am

n ,Am
ch# 5 0, where the gauge fieldA is decom-

posed in neutral (n) and charged ~ch! components,
Am5Am

n1Am
ch. One nice property of MA projection is that

the Abelian monopole density is consistent with asymptotic
scaling behavior in both three-@18,19# and four- @20–22#
dimensional SU~2!, which suggests it may be a physical
quantity. However, the evidence in four dimensions is not
indisputable, essentially because of the lack of a dimension-
ful parameter in pure gauge four-dimensional QCD
~QCD4). Scaling behavior has not been observed in other
projections.

Thus, the second issue that we wish to address is whether
renormalized perturbation theory and tadpole improvement
allow one to make more conclusive tests of asymptotic scal-
ing of the monopole density. We first use renormalized per-
turbation theory to reanalyze the results which have been
obtained with the Wilson action. In agreement with SU~3!
results@3# and also with earlier SU~2! analyses@5,6# using
the ‘‘energy’’ scheme coupling, the asymptotic scaling be-
havior of the string tension shows remarkable improvement
when using the ‘‘potential’’ scheme renormalized coupling
@3#. In the case of the monopole density, however, although
we do find that the degree of scaling violation is reduced
when the renormalized coupling is used, asymptotic scaling
is clearly violated for lattice spacingsa.0.1 fm, indepen-
dently of the coupling~bare or renormalized! used. We also
find evidence for~nonasymptotic! scaling of the monopole
density against the string tension, which clearly breaks down
for a.0.1 fm, as well.

We then study the string tension of the improved theory
~QCD-I! and the monopole density in its Abelian projection
~APQCD-I!. We find deviations from scaling to be typically
of the same order of magnitude as with the Wilson action.
Monopole properties are also similar with those in the pro-
jected Wilson theory. In particular, we see a small scaling
window for the monopole density in MA gauge setting in at
b53.3 where the lattice spacing is quite smalla.0.1 fm,
and that only for relatively large lattices (L>12). We also
find good evidence for~nonasymptotic! scaling of the mono-
pole density, although not at coarse lattices. Thus, the im-
provement program reveals that the monopole definition is
plagued by certain lattice artifacts that do not allow one to
work at coarse lattices.

A final objective of this work is to shed some light on the
issue of gauge dependence of the Abelian projection, along
the spirit of previous work@19# in three dimensions. There, it
was shown that the difference between MA and local projec-
tions can be attributed to highly correlated short distance
fluctuations. Confinement, being a large-scale phenomenon,
should be oblivious to such fluctuations. It was shown that
by considering monopoles defined nonlocally on the lattice
~extended monopoles! such fluctuations are averaged over,
resulting in a converging behavior between MA and local

gauges. In the last part of this work, we apply similar con-
siderations in the four-dimensional theory, using the tadpole-
improved action. We find a similar converging behavior of
the density of extended monopoles between MA and F12
gauge as a function of the lattice sizem of the extended cube
used to define the extended monopoles. The weakening of
the gauge dependence at large physical scales is also dem-
onstrated by showing that the density of extended monopoles
in physical units forms a universal~independent of the lattice
size of the extended monopole and the projection! trajectory
as a function of their size in physical units. These results
allow some optimism that the large-scale dynamics of the
Abelian projection may after all be independent of the spe-
cific gauge used to implement it.

The structure of this article is as follows: in Sec. II the
action and the observables considered in this work are de-
scribed. Results are presented in Sec. III and our conclusions
appear in Sec. IV.

II. METHOD

The action used in this work is a tadpole-improved ver-
sion of the tree-level continuum-limit-improved SU~2! action
of Lüscher and Weisz. We begin by briefly summarizing the
action improvement program. The Wilson action for
SU(N) Yang-Mills readsS@U#5b(plSpl , where

Spl[
1

N
Re Tr~12Upl!5

g0
2

2N
a4Tr~F12

2 !1O~a6!. ~1!

Hereg0
254pa0 is the bare lattice coupling constant,a the

lattice spacing, and we have taken for simplicity the
plaquetteUpl to be in the~1,2! plane. The continuum action
is recovered by identifyingb52N/g0

2. To improve the con-
tinuum limit behavior of the theory~‘‘Symanzik improve-
ment’’ @1#! one adds operators that correct for theO(a6)
terms. Among other possible choices@23# one can use a
132 rectangular Wilson loop~labeled ‘‘rt’’ ! and a 13131
parallelogram Wilson loop~labeled ‘‘pg’’! term @8#

S@U#5bcpl(
pl

Spl1bcrt(
rt

Srt1bcpg(
pg

Spg, ~2!

where the sums extend over all lattice points and relevant
orientations of the operators. To first nontrivial order in per-
turbation theory,ci5ci

014pa0D i , the action in Eq.~2! re-
produces the continuum action up to and includingO(a6)
terms, providedcpl

055/3, crt
0521/12, cpg

0 50 ~at tree level
the coefficients are independent of the specific gauge group
and the space-time dimensionality@24#!. One-loop correc-
tionsD i have been computed by Lu¨scher and Weisz for both
SU~2! and SU~3! ~Table 1 in@8#!.

Following the convention of Ref.@7# we setcib→b i and
redefineb[bpl , which makes the tree-level coefficient of
the 132 term21/20 @25#. Givenb ~which implicitly deter-
mines the strong coupling! the other two couplings are per-
turbatively renormalized:

b rt52
b

20F12S 35Dpl112D rtD4pa0G ,
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bpg5
3

5
bDpg4pa0 . ~3!

As described in Ref.@7#, the continuum limit behavior of
the Lüscher and Weisz action can be further improved by
making the lattice links more ‘‘continuum like.’’ At the
mean-field level this entails settingUm→u0

21Um , where one
possible choice for the mean-field factoru0 is using the ex-
pectation value of the average plaquette

u05 K 1NReTrUplL 1/4. ~4!

The average plaquette with Wilson action has been calcu-
lated in lattice perturbation theory toO(a2) @26# and re-
cently toO(a3) @27#. It has also been calculated using the
Lüscher and Weisz action, Eq.~2!, by Weisz and Wohlert
@24#. However, in the latter case the result is numerically
known to first order only:

2 lnK 1NReTrUplL 5jNas ,

~5!

jN50.366 262p
N221

N
5H1.725 97 forN52,

3.068 39 forN53.

The Lüscher-Weisz action can now be tadpole improved by
explicitly pulling au0

21 factor out of each link and replacing
a0 with a nonperturbatively renormalized couplingas
definedthrough Eq.~5!. SinceUpl involves four links and
U rt , Upg six links, one further redefinesb→bu0

24, and to
recover the correct continuum limit, the relative weight of
the correction terms is readjusted byu0

25@12jNas/2#, using
Eq. ~5!:

b rt52
b

20u0
2F12S 35Dpl112D rt1

jN
8p D4pasG ,

bpg5
3

5u0
2bDpg4pas. ~6!

Using Table 1 of Ref.@8# we recover for SU~3! the improved
action of Ref.@7#, while for SU~2! we find

S5b(
pl

Spl2
b

20u0
2@110.2227as#(

rt
Srt

20.022 24
b

u0
2as(

pg
Spg. ~7!

The success of tadpole improvement can be seen in the value
of the one-loop correction to the coefficient of the rectangu-
lar term, which for SU~2! becomes (1.085 73
20.862 98)→0.2227, a quarter of the original value. This
is similar to what happens in SU~3!, where it was shown that
the difference between results obtained using the one-loop
corrected and tree-level tadpole-improved actions is insig-
nificant @7#. The results reported here are in fact obtained
from simulations using tree-level improvement only: i.e.,

S5b(
pl

Spl2
b

20u0
2(

rt
Srt . ~8!

For recovering the correct continuum limit it is important to
realize that, in the convention of Ref.@7# that we follow here,
the relationship between the bare couplinga0 and the simu-
lation parameterb in Eq. ~8! must be modified to take into
account the absorption ofcpl

0 in b @25#,

a05
5

3

N

2pb
, ~9!

while an additional factor (111.019 38a0) is needed in the
case of the one-loop corrected action of Eq.~7! to account
for the one-loop correctedcpl @23#. Arguably, the right-hand
side of Eq.~9! should be further divided byu0

4. Following
Ref. @23#, this is not done here; instead, we will denote the
coupling resulting from such a division as a ‘‘tadpole-
improved’’ or ‘‘boosted’’ coupling,aTI5a0u0

24, as in the
case of the Wilson action.

To simulate Eq.~8! we thermalize using the heat-bath
algorithm, beginning with a few steps whereu0 is kept fixed
to 1. After obtaining a first estimate of the average plaquette
@and therefore foru0, cf. Eq.~4!#, we thermalize a few thou-
sand times withu0 computed every 2–4 updates and then fed
into the action, untilu0 stabilizes within a few parts in
1025. For extracting the on- and off-axis SU~2! potential, we
compute temporalT3C Wilson loops. HereC are spatial
paths of three types:~a! straight-line spatial paths of up to six
links, from which we extract theR51,2, . . . ,6 on-axis po-
tential, ~b! planar spatial pathsC5132, 133, from which
the off-axis potential atR5A5,A10 is extracted, and~c! cu-
bic spatial pathsC513131 from which theR5A3 poten-
tial is obtained. In the case of nonstraight line spatial paths
we sum over the possible combinations allowed given the
edges of the spatial path so as to obtain the lowest energy
(J50) state. Retaining only those paths minimally deviating
from the diagonal, there are two such paths for~b! and six
for ~c!. Measurements are separated by 20–100 heat-bath
updates.

We then perform the Abelian projection to our non-
Abelian configurations@we henceforth restrict our attention
to SU~2!#. A lattice implementation of the Abelian projection
was formulated in Refs.@10,16#, in which several gauge-
fixing conditions were also developed~following ’t Hooft
@9#!. Local ~generally nonrenormalizable! projections can be
defined by the diagonalization of an adjoint operator@10#.
Examples are diagonalization of a plaquette or a Polyakov
line @10#. The maximal Abelian~MA ! projection@16# corre-
sponds in the continuum limit to the renormalizable differ-
ential gaugeDm

3Am
650, whereAm

6[(Am
16 iAm

2 )/A2. Param-
etrizing the SU~2! links in the form@28,12#

Ux,m̂5S cosfx,m̂e
iux,m̂ sinfx,m̂e

ixx,m̂

2sinfx,m̂e
2 ixx,m̂ cosfx,m̂e

2 iux,m̂D , ~10!

with fP@0,p/2# and x, uP@2p,p#, MA projection
amounts to making the transformed linksUx,8 m̂ as close to
the identity as possible:
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max(
x,m

cos~2fx,8 m̂ !. ~11!

Under diagonal SU~2! transformations the phasesu and
g[x1u transform like an Abelian gauge field and charge-
two matter field~in the continuum!, respectively, whilef
remains invariant@12#. Equation~11! is enforced iteratively;
to speed convergence~typically by a factor of 3! we use the
overrelaxation algorithm of Ref.@29# with the parameter
v51.7. The iteration is repeated until the gauge transforma-
tion Gx becomes sufficiently close to the identity at all sites

max$12 1
2 Tr Gx%<d!1, ~12!

with d5;1027 used as a stopping criterion.
The Abelian potential after the projection is obtained from

singly charged Abelian Wilson loops constructed from the
phasesu,

WT3C
Abel5 ReH )

iPT3C
eiu iJ 5cosS (

iPT3C
u i D[cosuT3C,

~13!

with the same choice of spatial pathsC as for the SU~2!
Wilson loops discussed above.

Monopoles are identified in the Abelian configurations us-
ing the algorithm of DeGrand and Toussaint@15#. First, re-
duced Abelian plaquette anglesũ pl are defined

ũ pl[upl22pNpl , ũ plP~2p,1p#, ~14!

whereNpl is identified with the number of Dirac strings pass-
ing through the plaquette (NplP$0,61,62%). The net flux of
monopole current out of the ‘‘elementary’’~that is, of size
13) cubeC(n,m), labeled by the dual lattice link (n,m), is
equal to the sum of Dirac stringsNpl passing through the
oriented 131 plaquettes on the surfaces of the cube@10#:

Nm51~n,m!52(
pl

Npl . ~15!

We also consider type-II@30# extended monopolesNm con-
structed as the number of elementary (m51) monopoles mi-
nus antimonopoles in a spatial cube of sizem3. For the lat-
tice density of monopoles we have adopted the definition of
Ref. @21#:

r lat
[m]5

1

LtLs
3(

n
uNm~n,4!u, ~16!

i.e., the three-dimensional density of the time (m54) com-
ponents of the monopole currents, averaged over all time
slicesLt .

III. RESULTS

A. The Abelian potential

We first discuss the continuum limit behavior of the ef-
fective Abelian theory after the projection. In Fig. 1 we show
the on- and off-axis QCD potential with Wilson action
~QCD-W! and the Abelian potential resulting from its maxi-

mal Abelian projection~MAQCD-W!. The results have been
obtained from 3100 configurations on a 64 lattice at
b51.7, with measurements separated by 40–100 updates. A
problem common to both Wilson and improved actions when
working at coarse (a.0.4 fm! lattices is the difficulty in
establishing plateaus in the time direction for the correlators,
since afterT52 time slices~corresponding to 0.8 fm! the
S/N ratio has dropped dramatically. In this work we follow
Ref. @31# and evaluate the potential atT52 @32#. The on-
axis potential is fitted to an ansatzV(r )5sr2p/12r1c
~dotted line!. To set the scale we adopt the familiar practice
@33,6# of using the physical string tension,
aAsNc52, Nf505Asphys.0.44 GeV, which suggests a lattice

spacing a.0.39 fm, corresponding to the fit value
s50.75. The large deviation of the off-axis points from the
on-axis fit clearly shows the violation of rotational symmetry
plaguing both the Wilson theory and its Abelian projection at
coarse lattices. Results for the tadpole-improved action
~QCD-I! and its maximal Abelian projection~MAQCD-I! are
shown in Fig. 2. They come from 3200 measurements on a
64 lattice atb52.4. A similar fit to the potential atT52
suggestsa.0.39 fm. A more careful estimation of the string
tension using APE smearing@34# shows that the lattice spac-
ing has been overestimated by.5%, and is rather close to
0.37 fm, which is, nevertheless, sufficiently coarse for our
purposes. The QCD results are in agreement with recent cal-
culations in both SU~3! @7# and SU~2! @35#, and show that

FIG. 1. The on- (h) and off-axis (j) non-Abelian ~a! and
Abelian ~b! potential from 64 lattices atb51.7 using the Wilson
action.
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the continuum limit behavior of the Cornell action is clearly
improved, even with tree-level tadpole improvement only.

The new feature emerging from these results is that not
only QCD, but the Abelian projected theory as well, shows
improved continuum limit behavior and restoration of rota-
tional invariance, at least in MA projection. In a generic
~other than MA! projection, APQCD contains Abelian Wil-
son loop operators of various sizes and charges. In order to
Symanzik improve such an action, the coefficients of these
terms should be carefully rearranged and, possibly, new
terms should be added. It is not obvious whether the addition
of the rectangular term in the QCD action with the appropri-
ate coefficient so as to effect tree-level Symanzik improve-
ment will, after the partial gauge fixing, automatically fine-
tune the coefficients of the APQCD action in such a way as
to eliminateO(a6) corrections in both QCDandAPQCD. In
the case of MAQCD-W the effective Abelian action is domi-
nated by an Abelian plaquette term@11,12,36# and using the
approximations in Ref.@36# one may argue that the observed
restoration of rotational invariance is due to a corresponding
improved Abelian action dominating MAQCD-I. In that re-
spect, it would be interesting to test the behavior of the off-
axis Abelian potential in a local projection~e.g., field-
strength gauge, F12!. Although we have seen some evidence
that rotational invariance is restored in F12 gauge as well,
the F12 Abelian Wilson loops are much more noisy and do
not allow definitive conclusions to be drawn. Using aniso-
tropic lattices may allow one to clarify this point, as well as

the issue of Abelian dominance at small and coarse lattices,
which we have not addressed here.

B. Scaling studies

In this section we discuss the scaling behavior of the
SU~2! string tension and the Abelian monopole density. The
string tension has dimension@length# 22, while @from the
physical interpretation of the monopole density as defined in
Eq. ~16!# the monopole density has dimension@length# 23.
Thus, the monopole density in physical units reads
r [m]5r lat

[m]a235@r lat
[m] /(La)3#L3, while the string tension

s5s lata
225@s lat /(La)2#L2. For these quantities to be

physical, the coefficient ofL3 in the monopole density and
that of L2 in the string tension have to become constant
@independent ofa(b)# as the continuum limit is approached
(b→`). In previous scaling studies~with the Wilson action!
the bare coupling was employed to extract a scaleL using
the two-loop perturbativeb function

a~b!L5S 12p

11Na D 51/121expS 2
6p

11Na D . ~17!

Before discussing the scaling behavior with the improved
action, however, it may be instructive to revisit the scaling
behavior of the Wilson action results, this time using both
bare~BPT! and renormalized~RPT! perturbation theory.

1. Wilson action

In BPT, the bare couplinga0 5 (pb)21 is used to extract
the scale from Eq.~17!, while, in RPT, a renormalized cou-
pling is employed, e.g., the ‘‘energy’’ coupling
aE5@2N/p(N221)#(12^h&) @2,4#, or the ‘‘tadpole-
improved’’ couplingaTI5a0u0

24 @3#, or, more effectively,
the ‘‘potential’’ scheme couplingaV , defined from the non-
perturbatively computed heavy-quark potential@3#. In the
latter case, instead of measuring the potential, one invokes
the lattice perturbation theory expansion of the heavy-quark
potential@37#

V~q!52
N221

2N

4pa0

q2 H 11a0FN3 11

2p
lnS p

aqD2
NJ

4pG J
1O~a0

3!

[2
N221

2N

4paV

q2
, ~18!

whereJ5219.695 and216.954, forN53 andN52, re-
spectively, together with the analogous expansion of some
other short distance quantity, e.g., the average plaquette
@26,27#,

12 K 1NReTrUplL 5c1a01c2a0
21O~a0

3!,

c15
N221

2N
p,

c25~N221!S 4p

2ND 2S 0.0203N22
1

32D , ~19!

FIG. 2. As in Fig. 1 but using the improved action, atb52.4,
where the lattice spacing is approximately the same.
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in order to extractaV from the measured value of this quan-
tity:

2 lnK 1NReTrUplL 5
N221

2N
paVS q*a D ~11dNaV!,

~20!

where

dN5
11N

6p
lnS q*p D1

NJ

4p
1
c2

c1
1
c1

2
. ~21!

At q*5p one hasdN521.3386 and20.8925, forN53
and N52, respectively. According to the procedure pro-
posed by Lepage and Mackenzie for fixing the scale,
q*53.41 @3#. Another nonperturbative coupling may by ob-
tained by solving Eq.~20! to first order~i.e., ignoringdN)
and will be denoted byas , so as to facilitate comparisons
with the improved action@cf. Eq. ~5!#.

Consider first the density of elementary monopoles,
whose asymptotic scaling behavior has been tested, using
BPT, in Refs.@20,21#!. The open circles in the inner graph of
Fig. 3 correspond to the 124 data in Fig. 1 of Ref.@20#.
Although the results are not incompatible with scaling, more
solid evidence is required. The recently computed three-loop
b function for Wilson action@38# modifies Eq.~17! by a
factor (110.083 24 4pa0), which, however, does not im-
prove the evidence for asymptotic scaling, since theb52.5
andb52.6 values come closer by less than 1%. Asymptotic
scaling in MAQCD-W using the same data but renormalized
perturbation theory is tested in the main graph in Fig. 3, with
aL extracted from theaV coupling andq*53.41. Only re-
sults with the two-loopb function are shown, since the
~scheme dependent! three-loop correction is negligible in
renormalized coupling schemes@38#. The values still do not
lie on a plateau, however, theb dependence is significantly
reduced: betweenb 5 2.5 (a. 0.085 fm! and 2.6 (a.

0.061 fm! the density drops by 23% using the bare coupling,
but by much less~9%! using the potential coupling. Between
b 5 2.5 and 2.7 (a.0.045 fm! the corresponding numbers
are 37% and 13% witha0 and aV , respectively. Reduced
scaling violation is observed with other renormalized cou-
plings as well, however, it is less effective compared to the
potential scheme: betweenb52.5 andb52.7 we find 27%
scaling violation withaTI and 17% withas ~the ‘‘first-order
potential’’ coupling!. Results from larger lattices show
smaller scaling violation: by reanalyzing the 164 data points
in Table 2 of Ref.@21# we find 9.3%, 4.5%, and 4.2% scaling
violation with a0 , aTI, and as , respectively, between
b52.5 andb52.6.

The information Fig. 3 reveals regarding the status of the
MA monopole density as a possibly physical quantity should
be properly assessed against similar tests forbona fidephysi-
cal quantities, such as the string tension. Asymptotic scaling
for the SU~2! string tension has been tested in bare PT@33#,
as well as in renormalized PT, using the energy scheme cou-
pling @5,6#. In Fig. 4 we reproduce the BPT test~inner graph!
and also show results for RPT in theaV scheme~main
graph! @39#. As has been observed in Ref.@33#, asymptotic
scaling is not satisfied in bare PT, although theb.2.7 data
from more recent calculations@5,6# approach a plateau. Scal-
ing violation is substantially reduced when renormalized PT
is used, in agreement with Refs.@5,6# where theaE coupling
was employed. Specifically, from Table I it follows that be-
tweena.0.17 and.0.4 fm the violation of asymptotic scal-
ing is .27% when the bare coupling is used, 16% with the
tadpole-improved coupling, 8% with either the energy cou-
pling, aE or as , the coupling obtained from Eq.~20! to first
order, and is reduced to 6% with theaV coupling, obtained
by solving Eq.~20! to second order, withq*53.41.

Moreover, combining all these calculations we find be-
havior compatible with~nonasymptotic! scaling of the mono-
pole density against the string tension, as is seen in Fig. 5
~see also@40#!. However, this scaling clearly breaks down at
lattice spacings larger than some critical value somewhere
between 0.12 and 0.09 fm.

2. Improved action

When testing asymptotic scaling with the improved action
of Eq. ~8!, we again extract the scaleL from Eq.~17!. Given

FIG. 3. Asymptotic scaling test for the density of elementary
monopoles in MA projection using the Wilson action~MAQCD-
W!. Data from Ref.@20# ~circles! and Ref.@21# ~squares!. Open
symbols: two-loop evolution with theaV coupling@Eq. ~20!# for the
main graph, and the bare couplinga0 5 (pb)21 for the inner
graph. Solid symbols: three-loop evolution~bare coupling only!.
The dashed line corresponds to the scaling curve,r5@66L#3,
quoted from Ref.@20#.

FIG. 4. Asymptotic scaling test for the Wilson action SU~2!
string tension. The scaleaL is extracted as in Fig. 3. Data are from
Refs.@5,6,33#.
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the value ofb used in the simulation, several choices of
associated strong couplingsa to be used with Eq.~17! are
available, as with the Wilson action, e.g., the bare coupling,
Eq. ~9!, or the ‘‘tadpole-improved’’ couplingaTI5a0u0

24.
The situation is somehow different with respect to the poten-
tial scheme coupling,aV , since, as remarked in Sec. II, the
expansion leading to Eq.~5! has been~numerically! carried
out to first order only. Thus, we do not have the analog of
Eq. ~20! whose solution~to second order! would give the
correspondingaV coupling for the improved action. A solu-
tion to first order~in which case it does not matter which
scaleq* is the coupling extracted at! is available, of course,
and corresponds to the nonperturbative couplingas of Eq.
~5!.

Let us now discuss the results obtained with the improved
action. Starting with the density of elementary (m51)
monopoles in APQCD-I, results from 84, 124, and 164 lat-
tices, forb values between 2.7 and 3.7, are shown in Fig. 6
~see also Table II!. The behavior of the monopole density is
very similar to what has been observed in earlier studies
using the Wilson action@20,21#. In particular, the raw den-

sity of F12 monopoles appears to be independent ofb ~and
therefore of the lattice spacing!, implying that in physical
units it diverges likea23. On the other hand, the MA mono-
poles do seem to develop an exponential falloff which is a
necessary condition for scaling behavior. One also notices
the considerable volume dependence of the MA monopole
density results, which should be expected if monopoles play
some role in the confinement mechanism: the lattice spacing
is a.0.087 fm atb53.4 ~Table III! and the underestimation
of the density on the 84 lattices compared with the 124 re-
sults reflects the inadequacy of the smaller lattice to provide
for the typically 1 fm confinement scale~similarly at
b53.5, wherea.0.075, between the 124 and 164 results!.
This underestimation is also in agreement with the expecta-
tion that it is the large monopole loops that are strongly
correlated with confinement@41,42#.

Asymptotic scaling for the monopole density in
MAQCD-I is tested in Fig. 7, using the bare coupling of Eq.
~9!, the boosted or tadpole-improved couplingaTI , and the
‘‘first-order potential,’’ nonperturbative couplingas . The re-
sults are, in every case, not incompatible with scaling, at

TABLE I. Asymptotic scaling test for SU~2! string tension with Wilson action. Different coupling
schemes are used to geta(b)L from Eq. ~17!. The bare couplinga05(pb)21, the tadpole improved
coupling aTI5a0^h&21, the energy couplingaE5(4/3p)(12^h&), and the potential coupling obtained
from Eq.~20! with q*53.41, to first order,as52(4/3p)ln^h&, and to second order,aV . Data are from@5,6#
and references therein.

b ^h& As
As

L0

As

LTI

As

LE

As

Ls

As

LV

as

aTI

aV

aTI

2.3 0.6024 0.3690~30! 62.4~ 5! 6.59~ 5! 22.29~18! 2.49~2! 1.12~1! 0.936 1.199
2.4 0.6300 0.2660~20! 57.8~ 4! 6.44~ 5! 22.75~17! 2.55~2! 1.16~1! 0.931 1.155
2.5 0.6522 0.1870~10! 52.3~ 3! 6.03~ 3! 22.07~12! 2.47~1! 1.14~1! 0.929 1.127
2.5115 0.6544 0.1836~13! 52.9~ 4! 6.11~ 4! 22.41~16! 2.51~2! 1.15~1! 0.929 1.124
2.6 0.6701 0.1360~40! 49.0~14! 5.76~17! 21.52~63! 2.41~7! 1.11~3! 0.930 1.109
2.635 0.6757 0.1208~ 1! 47.5~ 1! 5.62~ 1! 21.08~ 2! 2.36~1! 1.09~1! 0.931 1.104
2.7 0.6856 0.1015~10! 47.1~ 5! 5.62~ 6! 21.28~21! 2.38~2! 1.11~1! 0.932 1.096
2.74 0.6913 0.0911~ 2! 46.8~ 1! 5.61~ 1! 21.32~ 5! 2.38~1! 1.11~1! 0.932 1.092

FIG. 5. Scaling test for the density of elementary monopoles
against the non-Abelian string tension, using the Wilson action.
Data are from Refs.@5,20,33#.

FIG. 6. The density of elementary monopoles~in lattice units! in
the Abelian-projected improved theory~APQCD-I!. Results are
shown for F12 projection on 84 lattices (L), and MA projection on
84 (n), 124 ~s!, and 164 (h) lattices.
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level similar to that of the Wilson action results: between
b 5 3.4 and 3.6 (a.0.087 and 0.063 fm, respectively, cor-
responding roughly to thebP@2.5,2.6# interval for the Wil-
son action discussed above! the scaling violation of the 164

data is 8.6%, 6.1%, and 3.4% usinga0 , aTI, andas , re-
spectively. At even smaller lattice spacings, for fixed lattice
size, the lattice volume becomes too small and this results in
the expected ‘‘enveloping’’ curve@20#.

Turning to the string tension, this is extracted from linear
1 Coulomb chi-squared fits~without fixing the Coulomb
coefficient to the Lu¨scher value! to the time-dependent po-
tential V(R,T)5 ln(W@R,T21#/W@R,T#), using jackknife er-
rors forV(R,T). It is known that the correction terms in the
action spoil the hermiticity of the transfer matrix@43#. As a
result, correlators show damped oscillatory behavior inT
@32#. Using APE smearing@34#, we have nevertheless estab-
lished plateaus inT in our fits of the string tension~Table
III !; results from the 164 lattices are shown in in Table IV.
Aboveb53.4 the string tension from 124 lattices~not shown
in Table IV! is underestimated~commensurate with the de-
viation of the monopole density results between 124 and
164 lattices discussed above!, since the lattice size is below 1
fm in this case. This can be seen in Fig. 8, where we test
asymptotic scaling for the string tension using the improved
action, and with the same choice of couplings as for the
monopole density. Since the three-loop correction to theb
function is not universal, the Wilson action computation in
Ref. @38# in not applicable in this case. The results appear
compatible with asymptotic scaling, especially when the

boosted coupling,aTI , is used. Specifically, from Table V is
seen that the violation of asymptotic scaling between
b52.7 (a.0.26 fm! andb53.6 (a.0.06 fm! is .6% with
aTI , but more pronounced,. 12.5%, using either one of
a0 , as, andaE5(12^h&)/1.7259~not shown!. Apparently
~and unlike the monopole density results discussed above!
the nonperturbative couplingas is not so successful here,
compared toaTI . However, this depends strongly on the

TABLE II. Runs for monopole density determination. After
Ntherm thermalization steps,Nmeasurmeasurements are taken, sepa-
rated byNseparupdates.

b Lattice Ntherm Nmeasur Nsepar ^h& rMA
[1]

2.7 124 2 100 100 0.5771~2! 0.09157~27!
2.9 124 2500 500 60 0.6216~1! 0.05295~10!
3.1 124 2500 500 60 0.6581~1! 0.02548~ 9!

3.2 124 2 30 20 2 0.01641~36!
164 2500 30 50 0.6730~1! 0.01706~13!

3.3 124 2500 500 60 0.6862~1! 0.01106~ 7!

164 3000 30 50 0.6864~1! 0.01068~17!
3.4 124 3000 30 70 0.6980~2! 0.00662~29!

164 2500 30 60 0.6979~1! 0.00724~13!
3.5 124 2500 50 100 0.7086~2! 0.00364~22!

164 2500 100 50 0.7086~1! 0.00450~ 8!

3.6 124 3000 30 70 0.7182~2! 0.00164~14!
164 2 26 2 2 0.00271~21!

TABLE III. String tension sT and the corresponding lattice
spacing, as extracted from linear-plus-Coulomb fits to
V(R,T5fixed).

b T sT sT11 a ~fm!

3.1 3 0.0985~ 8! 0.0965~13! 0.141~ 6!

3.3 4 0.0483~11! 0.0476~16! 0.098~11!
3.4 5 0.0378~ 9! 0.0377~ 7! 0.087~11!
3.5 5 0.0278~ 6! 0.0277~ 7! 0.075~ 8!

FIG. 7. Asymptotic scaling test for the density of elementary
monopoles in maximal Abelian projected SU~2! using the improved
action ~MAQCD-I!. The scaleaL is extracted~a! from the bare
couplinga0 @Eq. ~9!#, ~b! from the boosted couplingaTI5a0u0

24,
and~c! the nonperturbative couplingas @Eq. ~5!#. Results shown for
124 ~s! and 164 (h) lattices.

TABLE IV. Runs for string tension determination.Niter itera-
tions of APE smearing with parameterc0 are used.

b Lattice Ntherm Nmeasur Nsepar c0 Niter ^h& s

3.1 164 2500 200 40 8 20 0.6581~1! 0.0985~20!
3.2 164 2500 200 40 6 20 0.6732~1! 0.0702~20!
3.3 164 2500 200 20 6 20 0.6862~1! 0.0483~19!
3.4 164 2500 200 20 5 20 0.6980~1! 0.0378~ 5!

3.5 164 2000 200 20 5 20 0.7086~1! 0.0278~ 7!

3.6 164 2 200 20 5 20 0.7184~1! 0.0195~10!
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value of the string tension at the coarser lattice considered,
b52.7: the scaling violation betweenb52.9 (a.0.2 fm!
andb53.6 is 6% and 4% withaTI andas , respectively. In
general, asymptotic scaling tests using these two couplings

give rather similar results, since the ratioas /aTI slowly var-
ies around 0.930 with either Wilson or improved action, as
seen from Tables I and V. Notice, though, that the ratio does
not monotonically decrease withb, as does, e.g., for the ratio
as /a0 in the case of the improved action~cf. Table V!, or,
in the case of the Wilson action, when one instead of using
as solves Eq.~20! to second order to obtainaV ~last column
in Table I!. It is conceivable that knowledge of the second-
order terms in Eq.~5! and the improved action lattice pertur-
bation expansion of the potential@the analog of Eq.~18!#,
which would allow one to extract theaV coupling with the
improved action, might lead to even smaller asymptotic scal-
ing violation.

As with the Wilson action, we can now combine the re-
sults to test ~nonasymptotic! scaling. Reading off
As.3.8LTI from Fig. 8~b! and estimating the scaling value
for the monopole density atr [1].54LTI

3 from Fig. 7~b! sug-
gests that the dimensionless combinationr [1]s23/2 should
saturate to 5433.823.1. This is indeed verified in Fig. 9.
By combining the 124 and 164 results for the two quantities,
their individual volume dependence cancels, to a large ex-
tent, in the dimensionless ratio. Thus, the evidence for scal-
ing from this graph is more compelling than the evidence for
asymptotic scaling in Fig. 7. It appears, therefore, that the
elementary monopole density in maximal Abelian gauge is
indeed a physical quantity. UsingAs50.44 GeV with
r [1].s3/2 implies a density of approximately 11 elementary
monopoles per fm3, in good agreement with estimates using
the Wilson action@21#. However, although scaling is ob-
served, its onset is at relatively small lattice spacingsa. 0.1
fm, and therefore the situation for the monopole density is
quite similar to what we found with the Wilson action~Fig.
5!.

3. Comparison of Wilson and improved action

A comparison of the scaling results discussed above with
the two actions suggests the following.

~1! In both cases, renormalized couplings lead to im-
proved asymptotic scaling behavior compared to the bare

FIG. 8. Asymptotic scaling test for the non-Abelian string ten-
sion with improved action~QCD-I!. The scale is extracted as in Fig.
7. Results are shown for 124 ~s! and 164 (h) lattices. The dashed
line in ~b! corresponds to 3.8LTI .

TABLE V. Asymptotic scaling for SU~2! string tension with
improved action. Different coupling schemes are used to get
a(b)L from Eq. ~17!: a05(5/3)(pb)21, aTI5a0^h&21, and
as52 ln^h&/1.726, from Eq.~5!.

b Lattice As

L0

As

LTI

As

Ls

as

a0

as

aTI

2.7 124 18.86~52! 3.76~10! 4.35~12! 1.732 0.935
2.9 124 18.84~47! 3.91~10! 4.64~12! 1.609 0.936
3.1 164 17.75~18! 3.82~ 4! 4.72~ 5! 1.519 0.932
3.2 164 17.38~25! 3.79~ 5! 4.76~ 7! 1.486 0.931
3.3 164 16.73~33! 3.68~ 7! 4.68~ 9! 1.457 0.931
3.4 164 17.17~11! 3.81~ 3! 4.89~ 3! 1.433 0.932
3.5 164 17.10~22! 3.81~ 5! 4.93~ 6! 1.411 0.933
3.6 164 16.63~43! 3.72~10! 4.85~12! 1.392 0.934

FIG. 9. Scaling test for the density of elementary monopoles
against the non-Abelian string tension, using the tadpole-improved
action. Results are shown for 124 ~s! and 164 (h) lattices.
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coupling;1 among renormalized couplings, the nonperturba-
tive ones (as or aV , when available! are typically more
successful than the tadpole-improved couplingaTI .

~2! The string tension using the Wilson action shows
more pronounced scaling violation compared to using the
improved action, but only when analyzed with the bare cou-
pling. When renormalized couplings are used, the results are
rather similar for the two actions, for both observables tested
here ~string tension and monopole density!, i.e., renormal-
ized PT with the improved action does not improve renor-
malized PT analyses of Wilson action results significantly.
Thus, the results using the improved action lead to the same
interpretation as the one drawn from using a renormalized
coupling with the Wilson action: the string tension calcula-
tion suggests that the improvement program does allow con-
finement to be studied at relatively coarse lattices; evidently
a physical quantity, the monopole density in maximal Abe-
lian projection is, nevertheless, sensitive to small distance
(a50.1 fm! physics. This sensitivity persists even when a
continuum-limit-improved action is used.

In that respect, the merit of the tadpole-improvement pro-
gram~in the form of, first, renormalized perturbation theory,
and second, tadpole-improving the action itself!, insofar as
Abelian monopoles are concerned, has been to point out that
the asymptotic scaling behavior of the string tension can be
extended to coarser lattices, while that of the monopole den-
sity cannot, something that — due to the lack of asymptotic
scaling with Wilson action and with the bare coupling —
could not have been previously realized. To further clarify
some of the above points, more accurate determinations of
the string tension with the improved action using anisotropic
lattices ~following Ref. @32#! and, possibly, a continuum-
limit-improved version of Creutz ratios@44#, should be per-
formed.

C. Gauge dependence and extended monopoles

It has been pointed out by several authors@19–22,28# that
the large number of monopoles and the associated scaling
violation observed in local, unitary gauges~such as F12 or
Polyakov gauge! can, to some degree, be attributed to strong
short distance fluctuations. Defining monopoles nonlocally
~e.g., extended monopoles, introduced first by Ivanenko
et al. @30#!, may help average—at least partially—over such
fluctuations and therefore reduce the gauge dependence of
the Abelian projection. The main results of an analysis along
these lines in thed53 theory with Wilson action by Trottier,
Woloshyn, and this author were the following@19#.

~1! Monopoles in MA projection form a dilute plasma in
d53. The monopole distribution is basically random and
characterized by the average minimum monopole-
antimonopole separation̂rmin& which in physical units
scales. The density of extended monopolesr lat

[m] remains
roughly the same for ‘‘sizes’’ma,^rmin& ~in physical units!.

~2! In local gaugesr lat
[1] does not scale. The distribution is

significantly narrower than what is expected from a random
distribution, indicating strong short-distance correlations.

However, unlike MA monopoles,r lat
[m] drops rapidly with

m, suggesting that by considering extended monopoles such
correlations~which are absent in MA projection but create
‘‘spurious’’ monopoles in, e.g., F12! are being ‘‘washed
out.’’ Accordingly, the ratio of extended monopoles between
F12 and MA projections is found to decrease asm increases.

~3! For extended monopoles with fixed~physical! size,
r [m] ~in physical units! scales for MA gauge but not for local
ones. However, thedegree of scaling violationis found to
decrease substantially as the extended monopole size in-
creases.

To what extent do such considerations apply to the four-
dimensional theory? The situation appears quite similar on a
first inspection:r lat

[m] drops faster in the local projections than
in MA, as can be seen by plotting the ratio
R[m][rF12

[m] /rMA
[m] as a function ofm ~Fig. 10!. Empirically,

we find that the extended monopole density in local gauges
~which is, in d54, practically independent of the lattice
spacing for allm) behaves like

r lat
[m]~b!5

C

mg , ~22!

with C50.31(1) andg51.64(1), over a range ofb values
where the lattice spacing drops by a factor of 3~Fig. 11!;
C and g depend very mildly on the particular local gauge
fixing, suggesting a purely geometrical origin ofg, which,
however, we have not identified. The MA density can also be
parametrized in the form of Eq.~22!, although the fits are not
equally good. In this case the the coefficients decrease with
b, mildly for gMA ~Fig. 11! and exponentially forCMA ~not
shown!. Since gMA,gF12, the convergence betweenrMA

[m]

andrF12
[m] for fixedb seen in Fig. 10 readily follows from this

parametrization. The more rapid convergence for the higher
b values observed in Fig. 10 is accounted for bygF12 and
gMA being independent ofb and decreasing withb, respec-
tively.

1Note that this is not true for the improved action ifaTI is inter-
preted as a bare coupling@see discussion below Eq.~9!#.

FIG. 10. The ratio of densities of extended monopoles between
F12 and MA projections using the improved action, as function of
the sizem of the lattice cube defining the type-II extended mono-
pole. Results from 124 lattices at b52.7 (h), b53.1 (L),
b53.3 ~o!, b53.5 (n).
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Moreover, one may show that, although, as in
d53, r [m]5Cm2ga23 ~the density in physical units! does
not scale, the degree of scaling violation decreases as a func-
tion of the monopole sizema in physical units. Unlike
d53, whereb is dimensionful and therefore this can be
tested directly by comparing densities withm/b 5 fixed, in
d54 can only be implicitly deduced, from Eq.~22!; indeed,
a measure of scaling violation, as the continuum limit
a→0 is approached, is given by]r [m] /]ae, with e,0. From
the above parametrization,

]r [m]

]ae U
ma5fixed

5C~ma!2g, e5g23,0. ~23!

Since 0,g,3, the degree of scaling violation for the ex-
tended monopole density in unitary gauges will decrease as a
function of the extended monopole size~in physical units!,
as in QCD3 @19#.

These results suggest that there is more contamination
from short distance physics in the local projection, as ex-
pected from the nonlocality of the gauge condition in maxi-
mal Abelian projection. In attempting to draw parallelisms
with the d53 case, one should bear in mind that monopole
degrees of freedom are pointlike ind53 but form closed
loops ind54. Thus, although a concept of minimum sepa-
ration can still be devised atd54, it is probably not the
correct way to describe the monopole distribution. Indeed,
although we find that̂ rmin& is larger in MA than in F12
projection~by a factor ranging from 1.2 to 2 for theb values
we have considered!, when converted to physical units nei-
ther scales. That may explain whyr lat

[m] in MA projection
does not remain constant over some range in Fig. 10, as in
d53, but instead starts to drop immediately with increasing
m. The appropriate way to describe the monopole distribu-
tion is probably by categorizing the loops according to their
length @42#; although not discussed here, the analog of the
d53 case may be to examine how close to random the MA
monopole loop length distribution found in Ref.@42# is.

In order to test the behavior of monopoles at large scales
we plot in Fig. 12 a family ofm5fixed trajectories for
rF12
[m] and rMA

[m] as functions of the extended monopole size
ma in physical units, using the scale extracted from theaTI
coupling. The linear behavior of the F12 data points, with the
m-independent, equal to23, slope and the increasing like
lnm ordinates for a given abscissa, follows directly from the
b independence of the coefficients in Eq.~22! with g,3:

ln~r lat
[m]a23!5 lnC1~32g!lnm23ln~ma!. ~24!

For each individualm5fixed trajectory, Fig. 12 essentially
tests asymptotic scaling forr [m] . The most interesting fea-
ture is the formation of a universal, i.e.,m-independent, tra-
jectory for MA extended monopoles of large size inphysical
units. Unlike the F12 case, the dependence ofCMA , gMA on
b ~and therefore, implicitly, ona) does not allow a simple
explanation of this feature. The deviation of the individual
m5fixed curves from this universal trajectory occurs at
macLTI. 0.32, 0.22, 0.16, 0.11, form5 6, 4, 3, 2, respec-
tively. Thus, the crossover points involve a common critical
lattice spacingacLTI.0.055, which, from the scaling value
As53.8LTI 5 0.44 GeV impliesac.0.094 fm. Given that
these results are from 124 lattices, and since for fixedm the
continuum limit is to the left on the horizontal axis in Fig.
12, it appears that this deviation from the universal trajectory
is merely another manifestation of the finite physical volume
effect occurring when the lattice sizeLa is less than 1 fm, as
described in@20# and also observed in Sec. III. It is quite
conceivable that towards the infinite volume limit this uni-
versal trajectory will extend to arbitrarily small physical
sizes. We also notice that the difference between MA and
F12 results decreases rapidly with increasing monopole size
and at large physical sizes a projection-independent trajec-
tory seems to form, indicating that also ind54 the Abelian
projection shows evidence of gauge independence when
large scales in physical units are probed.

IV. SUMMARY

In this work the ideas of renormalized perturbation theory
and tadpole improvement have been used to study confine-

FIG. 11. Fitting the lattice density of type-II extended mono-
poles according to Eq.~ 22!: CF12 ~s!, gF12 (h), gMA (j). The
dashed line corresponds toC50.31 and the dotted line tog51.64
~see text!.

FIG. 12. The density of extended monopoles as a function of
their size for F12 and MA projections. The logarithm is to base 10.
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ment related aspects of lattice SU~2! gluodynamics. Observ-
ables have been studied that are either directly related to
confinement, e.g., interquark potential-string tension, or con-
jectured to be in the context of a dual superconductor picture,
e.g., monopoles and Abelian potential after the Abelian pro-
jection. Two types of studies have been undertaken. First,
tests are done of the improvement program in QCD and its
Abelian projection, APQCD, specifically~a! whether
asymptotic scaling and scaling is observed, and~b! what is
the continuum limit behavior of APQCD at small, coarse
lattices. Second, studies of extended monopoles are made,
using the tadpole-improved action as a new, better tool, with
the objective of shedding some light onto the issue of the
apparent, albeit bothersome, gauge dependence of the Abe-
lian projection. The results can be summarized as follows.

At small, coarse lattices the degree of violation of rota-
tional invariance is similar in Wilson QCD and its Abelian
projection. With the improved action, though, rotational in-
variance is restored in both QCDand the corresponding
Abelian theory, at least in MA projection.

Deviation from asymptotic scaling for the SU~2! string
tension is observed at the 6% level betweena50.06 and
0.27 fm. This order of scaling violation is quite similar with
renormalized coupling analyses of Wilson action results, al-
though considerably improved in comparison to the corre-
sponding bare coupling analysis, even when the three-loop
b function is used. The quality of our calculation does not
allow statements to be made about scaling at the 1% level.
Using anisotropic lattices will allow more accurate determi-
nation of the string tension for lattice spacingsa.0.2 fm.
However, it does not seem very likely that, even with this
technique, asymptotic scaling will be verified at the 1% level
for coarse and small lattices. The fact that continuum limit

improvement is not very evident in the string tension calcu-
lation is, however, not surprising, since the string tension is
obtained from the standard on-axis potential.

Good evidence for scaling of the density of maximal Abe-
lian monopoles@using the SU~2! string tension to set the
scale# is found. Some evidence for asymptotic scaling is seen
as well, although hampered by finite volume effects. It is,
nevertheless, clear, that neither scaling nor asymptotic scal-
ing hold for the MA monopole density at as coarse lattices as
10% asymptotic scaling for the string tension does.

The gauge dependence of the density of Abelian mono-
poles is significantly reduced when considering extended
monopoles of large sizes in physical units.

The scaling studies of the monopole density suggest that
the monopole density in MA projection is a physical quan-
tity, and thus seem to settle a hitherto not entirely clarified
issue. Together with the reduced scaling violation in local
projections at large scales, this may be considered as sup-
porting evidence for the Abelian projection picture of con-
finement. However, despite the encouraging results from the
off-axis Abelian potential, scaling of the monopole density
breaks down at coarse lattices. It is conceivable that this
necessitates improvement of the monopole identification al-
gorithm besides improving the action@45#.
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