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The decayKL→p0ge1e2 occurs at ahigher rate than the nonradiative processKL→p0e1e2, and hence
can be a background toCP violation studies using the latter reaction. It also has interest in its own right in the
context of chiral perturbation theory, through its relation to the decayKL→p0gg. The leading order chiral
loop contribution toKL→p0ge1e2, including the (qe11qe2)2/mp

2 dependence, is completely calculable. We
present this result and also include the higher order modifications which are required in the analysis of
KL→p0gg. @S0556-2821~97!05715-9#

PACS number~s!: 13.20.Eb, 11.30.Er, 12.39.Fe

I. INTRODUCTION

There are three rare decay modes of the long-lived kaon
which have interrelated theoretical issues:KL→p0gg,
KL→p0e1e2, andKL→p0ge1e2. The first two have been
extensively studied; the latter has not been previously calcu-
lated. It is the purpose of this paper to provide a calculation
of the latter process and describe how it is related to the
phenomenology of the other two decays.

There is a curious and important inverted hierarchy of
these decay modes. The rate for the radiative decay
KL→p0ge1e2 is a power ofa larger than the nonradiative
transitionKL→p0e1e2. This is because theKL→p0e1e2

transition occurs only through a two-photon intermediate
state, or alternatively through a one-photon exchange com-
bined withCP violation ~which numerically appears to be
roughly of the same size as the two-photon contribution! @1#.
The KL→p0e1e2 rate is then of ordera4. However, in
KL→p0ge1e2 we need only a one-photon exchange to the
e1e2, leading to a rate of ordera3. Our attention was first
called to this inverted hierarchy by an observation that there
are infrared divergences in a detailed study of the
KL→p0e1e2 two-photon effect@1# which need to be can-
celed by the one-loop corrections to the radiative mode
KL→p0ge1e2 through the contributions of the soft radia-
tive photons. This implies that the theoreticaland experimen-
tal analyses ofKL→p0e1e2 andKL→gp0e1e2are tied to-
gether. The soft and collinear photon regions of
KL→gp0e1e2 form potential backgrounds to the studies of
CP violation in theKL→p0e1e2 mode.

TheKL→p0ge1e2 mode also has an interest of its own.
In recent years there have been important phenomenological
studies ofKL→p0gg in connection with chiral perturbation
theory ~ChPTh!. This decay is calculable at one-loop~i.e.,
orderE4) ChPTh with no free parameters, yielding a very
distinctive spectrum and a definite rate@2#. Surprisingly,
when the experiment was performed the spectrum was con-

firmed while the measured rate was more than a factor of 2
larger than predicted. The way out of this problem appears to
have been provided by Cohen, Ecker, and Pich~CEP! @3#. By
adding an adjustable new effect at orderE6, as well as in-
cluding known corrections to theKL→ppp vertex, they
found that the predicted rate can be increased dramatically
without modifying the shape of the spectrum much. This is
also a surprising result, yet as far as we know it is the unique
solution to the experimental puzzle. The ingredients of the
mode studied in this paper,KL→p0ge1e2, are the same as
for KL→p0gg, except that one of the photons is off shell.
Within the framework of the CEP calculation, the ingredients
enter with different relative weights for off-shell photons.
This will allow us to test the consistency of the theoretical
resolution proposed forKL→p0gg.

We outline the computation for theO(E4) contribution to
the process in Sec. II, and then we extend it toO(E6) in Sec.
III. Finally, we recapitulate our conclusions in Sec. IV.

II. THE O„E4
… CALCULATION

First let us provide the straightforwardO(E4) calculation
within ChPTh. This is the generalization tok1

2Þ0 of the
original chiral calculation of EPR@2#. Herek1 is the momen-
tum of the off-shell photon. This captures all thek1

2/mp
2 and

k1
2/mK

2 variations of the amplitudes at this order in the energy
expansion. There can be furtherk1

2/~1 GeV! 2 corrections
which correspond toO(E6) and higher. The easiest tech-
nique for this calculation uses the basis where the kaon and
pion fields are transformed so that the propagators have no
off-diagonal terms, as described in Ref.@2#. The relevant
diagrams are then shown in Fig. 1. Definingḡ as

ḡ5G8/3, G85GFuVudVus* ug8 , ug8u'5.1, ~1!

the diagrams give the following integrals, respectively:

Mmn
a 52e2 ḡgmnE d4l

~2p!4
3@~pK2p0!

22mp
2 #22@~ l 22mp

2 !1~ l2k12k2!
22mp

2 #

~ l 22mp
2 !@~ l2k12k2!

22mp
2 #

, ~2!
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Mmn
b 52e2 ḡE d4l

~2p!4
3@~pK2p0!

22mp
2 #22@~ l1k1!

22mp
21~ l2k2!

22mp
2 #

~ l 22mp
2 !@~ l1k1!

22mp
2 #@~ l2k2!

22mp
2 #

3~2l1k1!m~2l2k2!n1~k1 ,m!↔~k2 ,n!, ~3!

Mmn
c 58e2 ḡgmnE d4l

~2p!4
1

l 22mp
2 , ~4!

Mmn
d 524e2 ḡE d4l

~2p!4H ~2l2k1!m~2l2k1!n

~ l 22mp
2 !@~ l2k1!

22mp
2 #

1
~2l2k2!m~2l2k2!n

~ l 22mp
2 !@~ l2k2!

22mp
2 #J . ~5!

Interestingly when we add these together theK→3p amplitude factors out from the remaining loop integral resulting in

Mmn
p 56e2 ḡ @~pK2p0!

22mp
2 #E d4l

~2p4!

@gmn~ l 22mp
2 !2~2l1k1!m~2l2k2!n#

~ l 22mp
2 !@~ l1k1!

22mp
2 #@~ l2k2!

22mp
2 #
. ~6!

It is not hard to verify that this result satisfies the constraints
of gauge invariancek1

mMmn 5 k2
nMmn 5 0. At this stage,

the integral may be parametrized and integrated using stan-
dard Feynman-diagram techniques. Let us keep photon num-
ber one as the off-shell photon and setk2

250. In this case the
amplitude with one photon off-shell is described by

Mmn
p 56e2 ḡ @~pK2p0!

22mp
2 #

3S 2 i

16p2D ~gmnk1•k22k2mk1n!

k1•k2
@112I ~mp

2 !#,

~7!

with

I ~mp
2 !5E

0

1

dz1E
0

12z1
dz2

3
mp
22z1~12z1!k1

2

2z1z2k1•k21z1~12z1!k1
22mp

21 i e

5
mp
2

s2k1
2 @F~s!2F~k1

2!#2
k1
2

s2k1
2 @G~s!2G~k1

2!#.

~8!

The notation is defined by

s5~pK2p0!
25~k11k2!

2 ~9!

and

F~a!5E
0

1dz1
z1

lnFmp
22a~12z1!z12 i e

mp
2 G , ~10!

G~a!5E
0

1

dz1lnFmp
22a~12z1!z12 i e

mp
2 G . ~11!

The above functions are related to those presented by CEP
@3#:

F~a!5
a

2mp
2 FFCEPS a

4mp
2 D 21G , ~12!

G~a!52
a

2mp
2 FRCEPS a

4mp
2 D 1

1

6G , ~13!

remembering that

FCEP~x!512
1

x
@sin21~Ax!#2, x<1,

511
1

4xFln12A121/x

11A121/x
1 ipG 2, x>1,

RCEP~x!52
1

6
1

1

2x
@12A1/x21sin21~Ax!#, x<1,

2
1

6
1

1

2xF11A121/x

3S ln12A121/x

11A121/x
1 ip D G , x>1. ~14!

This agrees with the EPR result in thek1
2→0 limit.

At this order we have also calculated the additional con-
tribution resulting from the kaons circulating in the loops of
Fig. 1. They give rise to

Mmn
K 56e2 ḡ~mK

21mp
22s!E d4l

~2p4!

3
@gmn~ l 22mK

2 !2~2l1k1!m~2l2k2!n#

~ l 22mK
2 !@~ l1k1!

22mK
2 #@~ l2k2!

22mK
2 #
.

~15!

The resulting integral is similar to that of Eq.~8!, substitut-
ing the mass of the pion with that of the kaon. Attaching an
e1e2 coupled to either photon and adding all the above con-
tributions together, the result we obtain for the branching
ratio is

B~KL→p0ge1e2!51.031028. ~16!
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With the definitions

z5
s

mK
2 , y5

pK•~k12k2!

mK
2 , ~17!

the decay distributions inz andy provide more detailed in-
formation. We present them in Figs. 2 and 3.

III. THE O„E6
… CALCULATION

We also wish to extend this calculation along the lines
proposed by CEP@3#, who provide a plausible solution to the
problem raised by the experimental rate not agreeing with
theO(E4) calculation when both photons are on-shell. The
two primary new ingredients involve known physics which
surfaces at the next order in the energy expansion. The first
involves the known quadratic energy variation of the
K→3p amplitude, which occurs from higher order terms in
the weak nonleptonic Lagrangian@4,5#. While the full one-
loop structure of this is known@6#, it involves complicated
nonanalytic functions and we approximate the result at
O(E4) by an analytic polynomial which provides a good
description of the data throughout the physical region:

M~K→p1p2p0!54a1pK•p0p1•p214a2~pK•p1p0•p2

1pK•p2p0•p1!, ~18!

using

a153.131026mK
24 and a2521.2631026mK

24 .
~19!

a1 and a2 are obtained from a fit to the amplitude for
KL→p0p1p2 @4# and to the amplitude and spectrum for
KL→p0e1e2 @3#, so that their values are constrained within
their theoretical uncertainty of 10–20 %. We have numeri-
cally verified that such a variation of said parameters in-
volves a very modest change in the shape of the spectrum for
KL→gp0e1e2 and a change in its final branching ratio
somewhat smaller than the uncertainty on the parameters.

The other ingredient involves vector meson exchange
such as in Fig. 4. Some of such contributions are known, but
there are others such as those depicted in Fig. 5 which have
the same structure but an unknown strength, leaving the total
result unknown. In Ref.@3# the result is parametrized by a
‘‘subtraction constant’’ which must be fit to the data.

FIG. 1. Diagrams relevant to the process
KL→p0ge1e2 atO(E4) andO(E6).

FIG. 2. Differential branching ratio inz to orderO(E4). FIG. 3. Differential branching ratio iny to orderO(E4).
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In principle one can add the ingredients to the amplitudes
and perform a dispersive calculation of the total transition
matrix element. In practice it is simpler to convert the prob-
lem to an effective field theory and do a Feynman diagram
calculation which will yield the same result. We follow this
latter course.

The Feynman diagrams are the same as shown in Fig. 1,
although the vertices are modified by the presence of
O(E4) terms in the energy expansion. Not only does the
directK→3p vertex change to the form given in Eq.~18!,
but also the weak vertices with one and two photons have a
related change. The easiest way to determine these is to write
a gauge invariant effective Lagrangian with coefficients ad-
justed to reproduce Eq.~18!. We find

Mm~K→p1p2p0g!

54a1e~p12p2!m14a2e~p12p2!s~p0
spKm1pK

sp0m!,

~20!

Mmn~K→p1p2p0gg!528a1e
2gmnpK•p0

18a2e
2~pKmp0n1pKnp0m!. ~21!

The resulting calculation follows the same steps as described
above, but is more involved and is not easy to present in a
simple form. We have checked that our result is gauge in-
variant and reduces to that of CEP in the limit of on-shell
photons.

The contribution proportional toa1 can be computed
analogously to those already calculated for theO(E4) case:

Mmn54a1e
2~z22rp

2 !~11rp
22z!

1

~z2q!

3~gmnk1•k22k2mk1n!@112I ~mp
2 !#, ~22!

where

rp5
mp

mK
, z5

s

mK
2 , q5

k1
2

mK
2 . ~23!

The a2 part originates another set of integrals which can
be written as

Mmn
a 528a2~pK

r p0
s1pK

sp0
r!e2gmnE ddl

~2p!d
l r~ l2k12k2!s

~ l 22mp
2 !@~ l2k12k2!

22mp
2 #
, ~24!

FIG. 4. Vector meson exchange diagrams contributing to
KL→p0ge1e2.

FIG. 5. Vector meson exchange diagrams contributing to
KL→p0ge1e2 with unknown strength.
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Mmn
b 54a2~pK

r p0
s1pK

sp0
r!e2E ddl

~2p!dH ~2l1k1!m~2l2k2!n~ l1k1!r~ l2k2!s

~ l 22mp
2 !@~ l1k1!

22mp
2 #@~ l2k2!

22mp
2 #

1
~2l1k2!n~2l2k1!m~ l1k2!r~ l2k1!s

~ l 22mp
2 !@~ l2k1!

22mp
2 #@~ l1k2!

22mp
2 #J

58a2~pK
r p0

s1pK
sp0

r!e2E ddl

~2p!d
~2l1k1!m~2l2k2!n~ l1k1!r~ l2k2!s

~ l 22mp
2 !@~ l1k1!

22mp
2 #@~ l2k2!

22mp
2 #
, ~25!

Mmn
c 58a2~pKmp0n1pKnp0m!e2E ddl

~2p!d
1

l 22mp
2 , ~26!

Mmn
d 524a2~p0

spKn1pK
sp0n!e2E ddl

~2p!d
~2l2k1!m~2l2k1!s

~ l 22mp
2 !@~ l2k1!

22mp
2 #

24a2~p0
spKm1pK

sp0m!e2

3E ddl

~2p!d
~2l2k2!n~2l2k2!s

~ l 22mp
2 !@~ l2k2!

22mp
2 #
. ~27!

From the above formulas we obtain

Mmn5
1

~4p!2
FA~x1 ,x2!~k2mk1n2k1•k2gmn!1B~x1 ,x2!S pK•k1pK•k2k1•k2

gmn1pKmpKn2
pK•k1
k1•k2

k2mpKn2
pK•k2
k1•k2

k1npKmD
1D~x1 ,x2!S k12 pK•k2k1•k2

gmn2
pK•k2
k1•k2

k1mk1n1k1mpKn2
k1
2

k1•k2
k2mpKnD G , ~28!

where

A516a2e
2$2@122~x11x2!#I 1~z1z2!1x1I 1~z2!

1x2@2I 1~z2
2!2I 1~z2!1I 1~z1!#%

232a2e
2$@2x1

22x1~z1q!#@2I 2~z1
3z2!1I 2~z1

2z2!#

1@2x1x22x1~z2q!/22x2~z1q!/2#

3@2I 2~z1
2z2

2!1I 2~z1z2!2I 2~z1
2z2!2I 2~z1z2

2!#

1@2x2
22x2~z2q!#@ I 2~z1z2

2!2I 2~z1z2
3!#%

1
4

3
a2e

2ln
mp
2

mr
2 1~4p!2 VMDA , ~29!

B5232a2e
2I 3116a2I 41

4

3
a2e

2~z2q!S 211 ln
mp
2

mr
2 D

1~4p!2 VMDB , ~30!

D52
B

2
116a2e

2@2x22~z2q!/2#@2I 1~z1z2!2I 1~z2!#

116a2e
2~2y2q!@ I 1~z1!2I 1~1!/2#

14a2e
2@2x12~z1q!/2#I 51 ~4p!2 VMDD , ~31!

with

I 1~z1
nz2

m!5E
0

1

dz1E
0

12z1
dz2z1

nz2
mln

D1

mp
2 , ~32!

I 2~z1
nz2

m!5E
0

1

dz1E
0

12z1
dz2

z1
nz2

m

D1
, ~33!

I 35E
0

1

dz1E
0

12z1
dz2D1ln

D1

mp
2 , ~34!

I 45E
0

1

dz1D2ln
D2

mp
2 , ~35!

I 55E
0

1

dz1~4z1
224z111!ln

D2

mp
2 , ~36!

and

D15mp
222k1•k2z1z22k1

2z1~12z1!,

D25mp
22k1

2z1~12z1!,

x15
pK•k1
mK
2 , x25

pK•k2
mK
2 , ~37!

VMDA~x1 ,x2!52 (
V5v,r

GVF pK•~pK2k2!

~pK2k2!
22mV

2

1
pK•~pK2k1!

~pK2k1!
22mV

2 G , ~38!
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VMDB~x1 ,x2!52 (
V5v,r

GVk1•k2F 1

~pK2k2!
22mV

2

1
1

~pK2k1!
22mV

2 G , ~39!

VMDD~x1 ,x2!5 (
V5v,r

GV

k1•k2
~pK2k1!

22mV
2 , ~40!

assuming the numerical values@7#

GrmK
250.6831028, GvmK

2520.2831027. ~41!

The loop calculation that we have just described provides
all of the off-shell dependence scaled by the pion mass, and
is of the formk1

2/mp
2 . There can be an additional dependence

of the formk1
2/L2 whereL ' 1 GeV. We cannot provide a

model independent analysis of the latter. However, experi-
ence has shown that most of the higher order momentum
dependence is well accounted for by vector meson exchange.
Therefore we include thek1

2/L2 dependence which is pre-
dicted by the diagrams of Fig. 4. One can recover the param-
etrization inaV neglecting the dependence on (pK2k1)

2 and
(pK2k2)

2 in formulas ~38!–~40!, and performing the re-
placement@7#

pGeffmK
2

2G8amV
2→aV , ~42!

whereGeff ' Gr1Gv . This completes our treatment of the
KL→p0ge1e2 amplitude.

The calculation we have presented in this section leads to
the total branching ratio of

B~KL→p0ge1e2!52.331028. ~43!

The decay distributions are presented in Figs. 6 and 7.

IV. CONCLUSIONS

The behavior of theKL→p0ge1e2 amplitude mirrors
closely that of the processKL→p0gg. The more complete
calculation at orderE6 gives a rate which is more than twice
as large as the one obtained at orderE4, despite the fact that
the new parameter introduced at orderE6 is quite reasonable
in magnitude. This large change occurs partially because the
orderE4 calculation is purely a loop effect, while at order
E6 we have tree level contributions, and loop contributions
are generally smaller than tree effects at a given order. It was
more surprising that the spectrum inKL→p0gg was not
significantly modified by the orderE6 contributions. These
new effects are more visible in the lowz region of the pro-
cess we have calculated,KL→p0ge1e2.

This reaction should be reasonably amenable to experi-
mental investigation in the future. It is 3–4 orders of magni-
tude larger than the reactionKL→p0e1e2 which is one of
the targets of experimental kaon decay programs, due to the
connections of the latter reaction toCP studies. In fact, the
radiative process of this paper will need to be studied care-
fully before the nonradiative reaction can be isolated. The
regions of the distributions where the experiment misses the
photon of the radiative process can potentially be confused
with KL→p0e1e2 if the resolution is not sufficiently pre-
cise. In addition, since thep0 is detected through its decay to
two photons, there is potential confusion related to misiden-
tifying photons. The study of the reactionKL→p0ge1e2

will be a valuable preliminary to the ultimateCP tests.
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