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Model-independent representation of electroweak data
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General model-independent expressions are developed for the polarized and unpolarized cross sections for
e*e —ff near thez resonance. The expressions assume only the analyticBynuditrix elements. Angular
dependence is included by means of a partial wave expansion. The resulting simple forms are suitable for use
in fitting data or in Monte Carlo event generators. A distinction is made between model-independent and
model-dependent QED corrections and a simple closed expression is given for the effect of initial-final state
bremsstrahlung and virtual QED corrections.
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I. INTRODUCTION for treating the QED and other background effects. Details of
experimental cuts, detector geometry, etc., should all be me-
The purpose of an experiment such as the CERN"~ ticulously recorded.

collider (LEP) is twofold. First and foremost it should mea-  Fortunately a third possibility exists by which the experi-
sure and record experimental results with a minimum of themental results can forever be recorded in a way that makes
oretical input or prejudice and without presupposing that thehem straightforwardly available for testing theoretical mod-
data are described by a particular theoretical model. Only ils as they appear. That is to identify and extract the model-
this way can the hard-won experimental data be of uséndependent physical observables that are inherent in the
should our present understanding of the physics change @lata and record those. The resulting set of physical param-
the standard model be supplanted. eters is small and convenient to use having all detector-
The second purpose is to test the correctness of the varilependent effects removed from it. In order to test the con-
ous candidate theoretical models that describe the physics sfstency of a candidate model one needs only calculate the
the processes involved. Such theoretical models will contaigiven physical observable in terms of the parameters of that
parameters, such as $iy, that can be extracted by fitting model and compare it to the recorded value. There is no
the data with predictions of the model. A given model isconvention, model, or scheme dependence in the physical
ruled out when the values obtained for the extracted paranpbservables so that the comparison can be safely and unam-
eters differ depending on the measurement or physical prdiguously made.
cess from which it was obtained. The values of model pa- Part of the reason why experimental data has not gener-
rameters should be extracted and recorded for comparisaally been recorded in this way may be the lack of under-
between past and future experiments. However, these pararstanding of the distinction between model-independent
eters may become meaningless once the model to which thgghysical observables and parameters specific to a given
pertain is ruled out or modified. They therefore cannot perimodel. The distinction between the two is considered in Sec.
form the function of recording experimental data for poster-Il.
ity. To be fair to experimentalists, the results of LEP experi-
While the high-energy physics community has been satuments are extracted in a relatively model-independent way.
rated with analyses that confront the standard model and itS§emiempirical expressions are fitted to the data in order to
possible extensions with the experimental data, much lesgxtract quantities such as the mass, total and partial width of
attention has been given to preserving the data in an unanthe Z° boson[1]. The shortcoming is that these expressions
biguous model-independent form. are indeed semiempirical and at some level of accuracy they
One way to do this would be to make a complete set ofwill fail to describe the data correctly. Being semiempirical
raw data available. The sheer volume of data makes thithey are also somewhat arbitrary and one needs to have the
impractical. In addition, “raw” data is seldom truly raw hav- detailed expressions that were used in the data analysis in
ing been subjected to on-line triggering. It therefore bears therder to interpret the experimental results.
stamp of the on-line selection procedure. The first serious attempt to consistently describe LEP data
Another possible way is that experimentalists providein a fundamentally model-independent way was made by
plots of raw cross sections as a function of, say, center-ofBorrelli et al. [2]. They clearly recognized the inadequacies
mass energy or scattering angle. Such cross sections agaitherent in model-dependent analyses of the data. Their ap-
suffer from the problem that they have been subjected t@roach involved expressing cross section©iay) in terms
on-line selection. To produce such plots, experimental cutsf five independent physical observablbs; I, B, R, and
generally need to be introduced. Z. These observables represent the mass, width, branching
Both of the above possibilities require that the potentialratio, nonresonant, and absorptive pieces of the matrix ele-
user, who wishes to test a given model for consistency withment, respectively. This work was extended by Isid&ii
experiment, have a fairly sophisticated machinery in placeAn important consequence of R¢R] is the clear statement
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of the need for five independent measurements to fully deexcluding bremsstrahlung diagrams. It easily follows that ne-
scribe LEP data. Motivated by this Consoli and Picda#  glecting termsO(I'2/M2) and higher,

suggested that the final LEP scan at #febe extended to

include five energies rather than just three.

The shortcoming of the analysis performed in Hé&f. is A(S)= o5
that at a certain level of accuracy it becomes unclear as to P
just what the physlcal ob.servables are. These authors fo'e}nd therefore depends on three complex numbeys:R,
lowed the conventional wisdom and expanded about a red . -

o . ; ~and By. Here and in what followsO(I'z/M2)=0(N;a),
massM chosen to coincide with the renormalized mass in . . S L .
o . hereN; is the number of fermions species into which the
the popular on-shell renormalization scheme. The choice of, . ) -

. ; L . can decay. The cross section will thus depend on five real
this M as an expansion point is arbitrary and hence the arameters, in agreement with Borredli al. [2], since the
physical observables extracted using it will also be arbitrary!D » 1N ag . S s

) e - . overall phase is lost. The difference here is that expansion is

To elucidate the difficulties of defining physical observ- ade about the pole which is a fundamental property of the

ables further, consider the problem of determining the tota P property

) 0 S matrix element. The resulting coefficients and definitions
width of theZ" resonance. In principle an energy scan can be :
. _ . of physical observables are therefore not dependent on an
performed for the cross section fei"e~ producing some

final state determined. The full width at half maximum of the arbitrary choice of real expansion poiit. If it were not fpr
the tree-level photon exchange diagram we could d@gjn

resulting resonan rv n then r ff. A raw resq= .
esulting resonance curve can then be read o aw res g. (2) to obtain the stated level of accurad¥(s) would

nance curve will, of course, wear a radiative tail generated b hen depend on three real numbers onlv. The auestion of the
initial-state photon radiation. That being removed the exac -P A Y- q
odel-independent parametrization of the angular depen-

shape of the resonance curve will depend, via final-state Ve'mence of the scattering amplitude was not considered in Ref
tex corrections, on which final state has been selected for til% g amp :

measurement. Thus the width of the resonance curve does-, . .
not provide a way of directly determining a unique model- Subsequently Leiket al.[9] repeated the analysis of Ref.

independent total width for the° boson [8] explaining how the Laurent expansion could be imple-

The mass is equally problematic to define. Even in themented in practice. They carried out an actual fit to data

most naive of anal . |rECIuding QED corrections. They suggested a parametriza-
yses the resonance peak lies far from wh .

is assumed to be the mass. A discussion of the issues iﬁ_on _that made the presence of ph_oton exchange diagrams
volved can be found in Ref5] and in the following section. explicit rather than absorbing them into background:

As discussed in Refl5] similar problems exist for the R R
def!nmon of parfual widths. _Fortunately a way does exist to A(s)= Z vy B(s), 3)
define the physical properties of t#& boson and describe $S—S, S
LEP data in a simple and truly model-independent way. Prior
to 1991 most calculations of physics at td8 resonance WhereB(s) is a function having no poles. This parametriza-
where demonstrably gauge-dependent. It was shown in Refion was incorporated into the computer programATASY
[6] how the gauge-dependence could be removed by appedLO].
ing to the known properties of the analyt®&matrix near Including the photon contributioR, /s and background
resonance. The solution involved starting from the knowrtogether in this way may lead to difficulties however.
structure of the complet&-matrix element and then per- Whereas Eq(1) is a self-consistent Laurent expansion about
forming a Laurent expansion about its complex psig, It a simple poles,, and valid within some radius of conver-
was pointed out there, and independently in R&f.that the  gence, Eq(3) is not. Hence the coefficien®, and B; are
physical mass, traditionally used for unstable particles andot independent quantities. In particular the photon exchange
defined fromS-matrix theory, differed significantly from that term may be written as a Taylor series expansion abgut
being extracted by LEP. The analyfematrix seems to pro-

+Bo, @

vide the only way of defining the properties of tA& boson R, R, ) R, )
in a simple and truly model-independent way. As such it is S5  2ETstF(sTsy) (4)
the most appropriate and robust way of preserving LEP data. P Sp Sp

In Ref.[8], a paper concerned with the general renormal- ]
ization of the pole expansion, it was shown that the poleThus any change ifR, can be exactly compensated by a

expansion could be used to obtain a simple general expre§orresponding change in the coefficieBiswhich is an un-
sion for the S-matrix element near th&° resonance for desirable feature for fitting. Whereas finite truncations of the

series>B;(s— sp)i may produce adequate fits, as more and

ete"—ff, with f being a generic fermion species. Pro- " cluded in th es th ficients b
vided one is not too close to a production threshold the gen_r_nore erms are included in the series the coetlicients become

eral matrix element takes the form of a Laurent expansion indeterminate. . . .
P The L3 Collaboratiorf11] performed an analysis of their

data based on E@3), curiously without a citation to Ref8]

R . that was the original source for tt®matrix approach. They
= — n .
Als) S—Sp +n§=:o Bn(S=Sp) @ truncated their amplitude at
for fixed scattering angle. It was clearly stated that this ex- A(s)= Rz n & )

pression was applicable to two-particle final states thereby s—s, S
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so that the coefficients are indeed independent and thus amiiled model-dependent input. It is known to factorize,
nable to fitting. Ri=R;-R; and theR; can form the basis for a model-

In this paper we look in more detail at the model- independent definition of the partial widfb].
independenS-matrix description of LEP data as a way of = The essential point about a model-independent physical
preserving the experimental results in a transparent and natobservable is that once a set of experimental measurements
ral way that will continue to be understandable and useful fois available its value is fixed. In the case of Thomson scat-
many years to come. In Sec. Ill the baSienatrix formalism  tering or the measurement of the muon lifetime, a single
is reviewed and extended. It is shown how to describe th@aumber is returned by the experiment and what one means
angular dependence of the scattering amplitude in a modeby a model-independent physical observable is clear-cut.
independent way. In Sec. IV the inclusion of QED correc-Things become less obvious for observables, sucs), and
tions is discussed. A distinction is made between modelR;;, that need to be extracted by fitting experimental data
independent and model-dependent bremsstrahlung. We alswer a certain energy range but they still represent viable
give a simple exact formula for initial-final state interferencemodel-independent physical observables.

corrections to the resonant term. By contrast, model-dependent parameters require the La-
grangian of the underlying model be known and specified. A
Il. PHYSICAL OBSERVABLES VS MODEL-DEPENDENT detailed calculation is required in order to fit the experimen-
PARAMETERS tal data. The values obtained will be sensitive to which

) ] ] renormalization scheme was used in the calculation and will
In this paper the term model-independent physical observyg subject to whaad hocmodifications(improved Born ap-
abl_e WiII_ be taken to mean a quantity that can be directly, roximations, effective mixing angles, and the )ikene
defined in terms of some set of experimental m_easuremenfﬁakes above and beyond a consistent truncated perturbation
without the need for input from some theoretical model.ggries.
Thus the electromagnetic coupling constanis exactly de- A good example of a model-dependent parameter is
fined from the result of a Thomson scattering experiment: sinfé,. From a theoretical point of view, in the standard
) model, 8,y is the angle of rotation that diagonalizes the mass
8w a ©6) matrix of the neutraW; and B boson that appears in the
g' lowest-order renormalized Lagrangian. In all renormalization
schemes the relation

T m

Similarly the muon decay constarg,, is exactly de-
fined from the experimental measurement of the muon life- M2

time, 7,, through the relation siffy=1— M_\;v 8
z
, GIm>[  8m: 3m,  a(25
e I Sl I 5 —t AT holds providedM,, and M are the renormalized masses in
192w My Mw the particular scheme that has been chosen. In the modified

minimal subtraction (M¥ renormalization schem#!,,, and

20 m
x| 1+ 3—In—“) . (7) M depend on an arbitrary scale and hence so doég,sin
T Me Once a particular renormalization scheme has been chosen,

) ) ) ] experimental results may be used as input to determine the
The relation(7) is quite complicated but nevertheless, onceyg|yes of the renormalized parameters. These renormalized
7, Is measureds , is unambiguously defined. The complex- parameters generally have no physical meaning outside of
ity of Eq. (7) arises from an attempt to factor out QED cor- the particular model or renormalization scheme that has been
rections. There may exist a more convenient or pragmatighosen and are eminently unsuitable for recording experi-
way of definingG,, from 7, but the one given is well- mental results. They can, however, still be used to test a
established and in common use. Note that, in principle at gjven model by using it to make predictions for other physi-

certain level of precision, what one means by the lifetime of ., . co v aples. Thus the M@normalization scheme has

n un I rticl m nclear h . . -
an u ;tab € pa t'c e beco es unclea becaqse t e dec normalized masses that are clearly unphysical but is still a
curve is not precisely exponential. These considerations arg

relevant for thez® boson but, because of its extremely lon lable and convenient scheme (o use in many situations.
. : ’ YIoNg At the risk of blurring the distinction between physical
lifetime, are unlikely to ever be of concern for the muon.

. guantities andunphysical renormalized parameters, one can
. The position of t_he poles,, may be regarde_d asa model- try to define a renormalization scheme that sets the renormal-
independent physical °b.s‘?r"ab'e becau.se 'ts. ex.|sten.ce dﬁ’ed parameters to be equal to physical observables as was
pends only on the ana!yt|C|ty of th@mamx which is ulti- ._done in Ref.[12]. Again the problem of just what are the
mgte_lyl bekl)leveol to tdgrlfve from causallty.t Its f\ﬁ\\lue can, in hysical observables arises. Furthermore in gauge theories,
principle, be extracted Irom measurements of In€ Cross Seggi, their interrelated coupling-constant and mass counter-

tion o(e"e”—ff) over a large energy range using analytic terms, one must take care not to violate Ward identities. In
continuation onto the second Riemann sheet. The same valig original incarnation the on-shell renormalization scheme
of s, will be obtained for any process involving an interme-[12] used a definition for the physical mass that was subse-
diate Z°. quently shown[13,14 to be gauge-dependent. In the same

_In a similar way the residu;; at the pole for a given works it was suggested to modify the on-shell renormaliza-
f f final state can be extracted from experiment without detion scheme in such a way that the renormalized mass is
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identified with the manifestly gauge-invariant, but arbitrary,t. For massless electrons and final-state fermions only vector
quantity (11) constructed from the pole of th® matrix. In and axial-vector currents can appear and thus
principle, since the renormalized mass is not a physical
guantity, it is not required to be gauge-invariaatpriori
althoggh it is of great practl_cal convenience _to have [t S0. A(s,t)= E Mit(s,O[v (Pe+) ¥, ¥iU(Pe-)]
Consistency of this renormalization scheme with Ward iden- i.f=LR
tities has yet to be explored. —

It is important to keep in mind the clear distinction be- X[u(p) yuryio(Pr)], (13
tween the physical mass and the unphysical renormalized

mass. The former is a model-independent physical Obser\ﬁlhereu andv are the fermion wave functions and , yx

able but the latter is not. An unstable particle is assomate%re the usual helicity projection operatoys n= (1 ys)/2.

\r’!gr ;XEOII? ii;nt:i]sei-orpna;re); ilﬁrr:sgis;sg \I/)\:Lnogllebter}]lg':ﬂi/stgiysi For massive final-state fermions, magnetic moment terms,
. - v v -
cally significant. For convenience two real numbers can bér“”q 7 ando,,q"yg, are possible but these can be at

extracted froms, and identified with the massyl, and .rgotiteolgg?f;r:gltzgsﬁrxlecr().ﬁst;;(g;gpea;gcv:rlé?Eedéogffge
width, I'. There is no fundamental way of doing this and anyI YSIS. Wi :

such decomposition will be arbitrary. Two long-standing %“;:gt;rﬁrﬁqzhingoeﬂt Lté):;ogg/ t;n]:ﬁrr:(t:ttignggstc;r:zecg;r}[theer-of—
conventions are to define P ij

cosine of the scattering angle. These may be expanded as a
Sp= M2—iMT, (9 Laurent series about the complex pole of the scattering am-
R plitude,
i
spz(M—EF) . (10 R,
Mi(s,c089) = —— + By 1(cO9) + By j1(COH) (S—S
It was noted6,7] that in the case of th&° the definition(9) i ) S—sp 0if(COSH)+ Bajr(COD)(S=5p)
produces a value that is 34 MeV below the value being ex-
tracted by LEP. The latter is based on the use of the on-shell
renormalization scheme. In Rdfl3] it was suggested that,
rather than employ the traditional definitior(8) and (10),  that is valid within a radius of convergence defined by the

+oo (14)

0 ; " ) X
the Z” boson mass should be defined as position of the nearest branch point which corresponds to a
(Ims,)? production threshold. For th&° resonance the low-order
M§= Res,+ P (11 thresholds for fermion production lie sufficiently far from the

P ;
Resp resonance so as to be unlikely to ever to be of concern.

- . . However, some interesting physical consequences arise in
This is reasonable because it turns out to be numer|call¥he case of nearby thresholfs; 16]

close to the value being extracted by LEP and hence requires As a consequence of Fredholm theory it is known that the

m|n_|mal modification of eX|s_t|r?g analyses and existing eX- asidue at the pole factorizes and we may wRig=R - R;
perimental results. However it is no more nor less fundamen-

) .~ whereR; does not depend on the properties of the final-state
':)afl pt)rr]l?/rslggglortn(alg and no more nor less deserving of the title particle andR; is independent of those of the initial-state

Attempts have been made to give physical definitions tcpart'd?' The functionsB,,; can be expanded in partial
sirféy. Llewellyn-Smith and Wheatef15] defined an ex- aves.
perimental sifg{yP from the ratios of charged- and neutral-
current neutrino scattering experiments. Although this defi- °°
nition constitutes a model-independent physical observable it Bn,it(cos) = 2 Bi{"Pm(cosd), (19
is not the parameter that appears in the standard model La- m=0
grangian. It is really some convenient way of encapsulating
the result of cross-section measurements that once extract@ghere P, (x) is the Legendre polynomial of orden. All
from experiment must be corrected by means of a detailed;nstants . Ri¢, andB[\™ are, in principle, complex num-
model-dependent calculation, in order to yield a value foryg g P '

sirfhy in some particular renormalization scheme. The general differential cross section in the center-of-

mass frame for the process e~ —f f with massless incom-

IIl. MODEL-INDEPENDENT LINE SHAPE ing electrons of polarization?, colliding with unpolarized

The general matrix element for the process%e‘—ﬁf_ positrons is
near resonance is a sum over current-current interactions
d(T _ 1+P 2(d0'|_|_+ dULR)+<1_P>2(dURR+ dO'RL)
A(s,t) = Mig(s,t)J;- I (12 dQ |\ 2 dQ ' dO 2 dQ ' dQ
i,f

(16)

and is a function of the usual Mandelstam varialdeand
t. The form factorsM;;(s,t) are analytic functions of and  with
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doj; s 1+ Bcosh) ? i 3+ B B L
d‘;” - 64"7372{( i | My cgzzRif(TB}f"*igsﬁﬁul—seﬁﬁ* +Jild(cosﬁ)
1- g2 1+ Bcos\?
+ 4'8 )ReMifof], (17) X(T |Boj(cosp)|?. (21)

where 8= \/1—4m2f/s andm; is the mass of the final state Using the properties of Legendre polynomials

fermion. The upper sign pertains forf and the lower for 1 1+ Bcoss)\ 2
i#f. The second term is a helicity flip term and is needed f d(cose)<_—) |Boj;t(cosd)|?
-1

only for massive final-state fermions. There the index 2
means the opposite helicity fo Performing the angular in- 1.7 1 D24 2m— 1
tegrations over the full solid angle it becomes clear that cross - —E ( +p2 (2m m-1)
sections must take the general form 2m=o | (2m+1) (2m—-1)(2m+1)(2m+3)
_ . ” (m+1) .
sg | cf, i) X |[BIM2+ 8> ReBOBYM 1
Uif_ﬁ[|s—sp|2+R s—s, +Cp (18 m=o (2m+1)(2m+3)
2 (m+1)(m+2) REBOMROM* 2*

keeping terms up to ord@(F%/M%) relative to the leading m=0 (2m+1)(2m+3)(2m+5) it
one and the leading term proportional to- ,’82=4mf/s. 22)

This last term only contributes in the case of thauark.
The above form is likely to be adequate for all practical
purposes in the foreseeable future. The constaﬁtzsand
ci are real ands, and ¢, are complex and hence to this
level of accuracy the cross section depends only on six re
constants: Rg,, Ims,, ¢',, Rec”';, Imc'";, andcg . Be-

To orderO(I';/M) the last term in Eq(18) can be
dropped and the cross section then depends on five real con-
s1tants as first pointed out by Borredit al. [2]. This same
Fotal was obtained in Ref8] using arguments based on ana-

. . - lyticity similar to those above. The forr(l8) is extremely
causes, is the same for alb;, summation over initial or = gepara) and robust being valid for polarized and unpolarized

final states will lead to a cross section of the same overalf, iy elements as well as for angular integrations over less
form. Using the usual normalization for the Legendre poly-i .1 the full solid angle.

nomials To this level of accuracy one further assumption can be

made to further simplify the expressiofk9)—(21). Since no
fl [P, (x)]2dx= 2 new particles have been found with a massM,/2 we
" 2n+1’ may be sure that the first terms that give rise to corrections
that depend on the scattering anglere box Feynman dia-
grams corresponding to twd/ or two Z exchange. These
diagrams are one-loop and nonresonant. They therefore rep-
resent corrections dD(al /M) relative to the lowest or-
. n=0, der and may be dropped by settiBé“=O.
6 The constants appearing in E48) can be extracted from
data in a model-independent manner and can be calculated in
1(1£Bx\? dx={ +,3 1 any theoretical model. By comparing their measured and pre-
f 2 Pr(x)dx= -3’ ' dicted value candidate models may be tested. The fa8n
assumes only the analyticity of tf&matrix element which
B? is a consequence of causality. It may happen that some of the
\ 15° 2, constants in the above parametrization may seem to be
poorly determined especially those in higher orders. This is a
fact of life and represents a limit on how well the model-
we have independent parameters can be determined from a given ex-
periment. The parameters in this formulation, once deter-
1-p° mined, remain valid even in the face of dramatic changes to
4 theoretical models. They can only be adjusted by improved
experiments and remain a fundamental and meaningful de-
scription of the data. They are thus largely impervious even
+2R;; to possible profound changes to theoretical understanding.
The temptation should be resisted to inject more detailed
) model-dependent assumptions into the data analysis even

and the results

3+ B2
6

it _
C_2_

|Rif|2+( )ReRif L (19

: 3+ 2 2
c'_f1:2Rif(—63 B rge?ﬁ* + f—SB?fZ*

3+82 2
x(sp—s’g)( 6'8 B}fo*igBilfl*nLEB}fz*

when this seems to yield tighter bounds on the parameters. If
it is done it should be in addition rather, than instead of the
(20 extraction of the above constants.
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The complete generality of Eq18) means that Monte The initial-state and final-state QED corrections are re-
Carlo event generators can be set up assuming that the umarkable in their compactness and their relative simplicity.
derlying cross section is of this form. The constantsin the case of initial-final state corrections, i.e., diagrams
sy, Rit, andB{}" corresponding to the predictions of an par- having a photon connected to both the initial-state and final-
ticular model may then be input from independent sourcestate fermion lines, similar convolution integral forms have
and consistency with experimental results studied. This probeen derived20], however, a simple exact expression exists
vides an efficient method of parametrizing corrections thafor first order QED corrections to the resonant part of the
depend on the scattering angte, Typically these come from Ccross section. This expression can be obtained directly from
box diagrams whose analytic structure is complicated andRefs. [22,23. The O(«) corrections to the cross section

cumbersome for Monte Carlo simulations. o;;:(s) coming from initial-final state bremsstrahlung and vir-
tual corrections applied to the resonant parts of the amplitude
IV. QED CORRECTIONS are exactly given by

Ultimately in the confrontation of theoretical predictions 3a Sp R
with experimental data QED corrections must be taken into Aci(s)=£——QiQrl 2| < Kmax| if(S) (24)
account. These QED corrections may be grouped into two
classes; model-independent and model-dependent. Model;, 4
independent QED corrections are those in which the photon

is attached only to external fermion legs. Such corrections " sg ¢,
sense nothing of the detailed structure of the underlying Uif(s)zﬁﬁ- (29
model. They may therefore be accounted for using a struc- S7Sp

ture function approachl7-19 applied to a general cross o . L

section of the form(18) or by Monte Carlo methods. In The upper sign n Eq(24) pertains if the pola_rlzatlomzf

general the Feynman diagrams contributing to the model@nd the lower ifi = . Q; andQ are the electric charges of

independent QED corrections are infrared divergent and cafi€ initial- and final-state fermionp,, is the maximum.

therefore give rise to large logarithms particularly if strong@/owed photon energy in the bremsstrahlung contribution

cuts are applied to the photon energy. expressed as a fraction of the center-of-mass energy,
Model-dependent QED corrections are those in WhiCthyl\/g<kmax:

photons are connected to internal charged particles. For ex- ko 47-1

ample a photon that is produced by bremsstrahlung off an, Z(kamax)zRe{ Z(z+ 1)/~ 4 (z—1)(1—Kra)

internalW is sensitive to the charged current structure of the z

underlying model. Such corrections cannot be treated in a

model-independent manner. They are however always infra-

red finite and so do not give rise to anomalously large cor—F ther | t the phot i

rections. In the case where final-state photons are indivigu:©" rather loose cuts on the photon energy, Kgax near

ally detected ars-matrix motivated form analogous to Egs. 1, the function[z Passes through zero somewhere near the
(13 and (14 could be developed for the process resonance. This behavior was explained recef@4] on

— hysical grounds. Near resonance a physical unstZBle
e"e” —ffy. The size of the model-dependent QED correc—p y d Py

X ; ; with a finite lifetime is created. Its finite propagation length
tions represent the level of accuracy to which a given model,qang that the virtual photon must itself propagate a finite
independent analysis is valid.

X ) distance in order to connect the initial and final states and the
_Applying the structure function approach to treat thegmiinide is therefore reduced. Alternatively the finite
|_n|t|z;l—state QED corrections ]eads to a corrected cross SeGropagation length may be regarded as resulting in a loss of
tion in the form of a convolution integral correlation between initial and final states. The upshot is that

initial-final state QED corrections have a rather small but
O'T(S):f ds’'o(s')pini(1—s'ls), (23)  manageable contribution to the resonant line shape when
cuts are loose.

—1In|z| — 21Nk ax- (26)

wherep;,; is a known structure function.

Final-state corrections may be treated similarly but for
most purposes result in an overall multiplicative factor being
applied to the cross section. Detailed descriptions can be The author wishes to thank T. Riemann for useful sugges-
found in the literaturd9,20]. QED corrections to asymme- tions. This work was supported in part by the U.S. Depart-
tries may also be handled in this manf2t]. ment of Energy.
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