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General model-independent expressions are developed for the polarized and unpolarized cross sections for

e1e2→ f f̄ near theZ0 resonance. The expressions assume only the analyticity ofS-matrix elements. Angular
dependence is included by means of a partial wave expansion. The resulting simple forms are suitable for use
in fitting data or in Monte Carlo event generators. A distinction is made between model-independent and
model-dependent QED corrections and a simple closed expression is given for the effect of initial-final state
bremsstrahlung and virtual QED corrections.
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I. INTRODUCTION

The purpose of an experiment such as the CERNe1e2

collider ~LEP! is twofold. First and foremost it should mea-
sure and record experimental results with a minimum of the-
oretical input or prejudice and without presupposing that the
data are described by a particular theoretical model. Only in
this way can the hard-won experimental data be of use
should our present understanding of the physics change or
the standard model be supplanted.

The second purpose is to test the correctness of the vari-
ous candidate theoretical models that describe the physics of
the processes involved. Such theoretical models will contain
parameters, such as sin2uW, that can be extracted by fitting
the data with predictions of the model. A given model is
ruled out when the values obtained for the extracted param-
eters differ depending on the measurement or physical pro-
cess from which it was obtained. The values of model pa-
rameters should be extracted and recorded for comparison
between past and future experiments. However, these param-
eters may become meaningless once the model to which they
pertain is ruled out or modified. They therefore cannot per-
form the function of recording experimental data for poster-
ity.

While the high-energy physics community has been satu-
rated with analyses that confront the standard model and its
possible extensions with the experimental data, much less
attention has been given to preserving the data in an unam-
biguous model-independent form.

One way to do this would be to make a complete set of
raw data available. The sheer volume of data makes this
impractical. In addition, ‘‘raw’’ data is seldom truly raw hav-
ing been subjected to on-line triggering. It therefore bears the
stamp of the on-line selection procedure.

Another possible way is that experimentalists provide
plots of raw cross sections as a function of, say, center-of-
mass energy or scattering angle. Such cross sections again
suffer from the problem that they have been subjected to
on-line selection. To produce such plots, experimental cuts
generally need to be introduced.

Both of the above possibilities require that the potential
user, who wishes to test a given model for consistency with
experiment, have a fairly sophisticated machinery in place

for treating the QED and other background effects. Details of
experimental cuts, detector geometry, etc., should all be me-
ticulously recorded.

Fortunately a third possibility exists by which the experi-
mental results can forever be recorded in a way that makes
them straightforwardly available for testing theoretical mod-
els as they appear. That is to identify and extract the model-
independent physical observables that are inherent in the
data and record those. The resulting set of physical param-
eters is small and convenient to use having all detector-
dependent effects removed from it. In order to test the con-
sistency of a candidate model one needs only calculate the
given physical observable in terms of the parameters of that
model and compare it to the recorded value. There is no
convention, model, or scheme dependence in the physical
observables so that the comparison can be safely and unam-
biguously made.

Part of the reason why experimental data has not gener-
ally been recorded in this way may be the lack of under-
standing of the distinction between model-independent
physical observables and parameters specific to a given
model. The distinction between the two is considered in Sec.
II.

To be fair to experimentalists, the results of LEP experi-
ments are extracted in a relatively model-independent way.
Semiempirical expressions are fitted to the data in order to
extract quantities such as the mass, total and partial width of
theZ0 boson@1#. The shortcoming is that these expressions
are indeed semiempirical and at some level of accuracy they
will fail to describe the data correctly. Being semiempirical
they are also somewhat arbitrary and one needs to have the
detailed expressions that were used in the data analysis in
order to interpret the experimental results.

The first serious attempt to consistently describe LEP data
in a fundamentally model-independent way was made by
Borrelli et al. @2#. They clearly recognized the inadequacies
inherent in model-dependent analyses of the data. Their ap-
proach involved expressing cross sections toO(a) in terms
of five independent physical observables:M , G, B, R, and
I. These observables represent the mass, width, branching
ratio, nonresonant, and absorptive pieces of the matrix ele-
ment, respectively. This work was extended by Isidori@3#.
An important consequence of Ref.@2# is the clear statement

PHYSICAL REVIEW D 1 AUGUST 1997VOLUME 56, NUMBER 3

560556-2821/97/56~3!/1515~7!/$10.00 1515 © 1997 The American Physical Society



of the need for five independent measurements to fully de-
scribe LEP data. Motivated by this Consoli and Piccolo@4#
suggested that the final LEP scan at theZ0 be extended to
include five energies rather than just three.

The shortcoming of the analysis performed in Ref.@2# is
that at a certain level of accuracy it becomes unclear as to
just what the physical observables are. These authors fol-
lowed the conventional wisdom and expanded about a real
massM chosen to coincide with the renormalized mass in
the popular on-shell renormalization scheme. The choice of
this M as an expansion point is arbitrary and hence the
physical observables extracted using it will also be arbitrary.

To elucidate the difficulties of defining physical observ-
ables further, consider the problem of determining the total
width of theZ0 resonance. In principle an energy scan can be
performed for the cross section fore1e2 producing some
final state determined. The full width at half maximum of the
resulting resonance curve can then be read off. A raw reso-
nance curve will, of course, wear a radiative tail generated by
initial-state photon radiation. That being removed the exact
shape of the resonance curve will depend, via final-state ver-
tex corrections, on which final state has been selected for the
measurement. Thus the width of the resonance curve does
not provide a way of directly determining a unique model-
independent total width for theZ0 boson.

The mass is equally problematic to define. Even in the
most naive of analyses the resonance peak lies far from what
is assumed to be the mass. A discussion of the issues in-
volved can be found in Ref.@5# and in the following section.

As discussed in Ref.@5# similar problems exist for the
definition of partial widths. Fortunately a way does exist to
define the physical properties of theZ0 boson and describe
LEP data in a simple and truly model-independent way. Prior
to 1991 most calculations of physics at theZ0 resonance
where demonstrably gauge-dependent. It was shown in Ref.
@6# how the gauge-dependence could be removed by appeal-
ing to the known properties of the analyticS-matrix near
resonance. The solution involved starting from the known
structure of the completeS-matrix element and then per-
forming a Laurent expansion about its complex pole,sp . It
was pointed out there, and independently in Ref.@7# that the
physical mass, traditionally used for unstable particles and
defined fromS-matrix theory, differed significantly from that
being extracted by LEP. The analyticS-matrix seems to pro-
vide the only way of defining the properties of theZ0 boson
in a simple and truly model-independent way. As such it is
the most appropriate and robust way of preserving LEP data.

In Ref. @8#, a paper concerned with the general renormal-
ization of the pole expansion, it was shown that the pole
expansion could be used to obtain a simple general expres-
sion for theS-matrix element near theZ0 resonance for
e1e2→ f f̄ , with f being a generic fermion species. Pro-
vided one is not too close to a production threshold the gen-
eral matrix element takes the form of a Laurent expansion

A~s!5
R

s2sp
1 (

n50

`

Bn~s2sp!
n ~1!

for fixed scattering angle. It was clearly stated that this ex-
pression was applicable to two-particle final states thereby

excluding bremsstrahlung diagrams. It easily follows that ne-
glecting termsO(GZ

2/MZ
2) and higher,

A~s!5
R

s2sp
1B0 , ~2!

and therefore depends on three complex numbers:sp , R,
and B0. Here and in what followsO(GZ /MZ)[O(Nfa),
whereNf is the number of fermions species into which the
Z0 can decay. The cross section will thus depend on five real
parameters, in agreement with Borrelliet al. @2#, since the
overall phase is lost. The difference here is that expansion is
made about the pole which is a fundamental property of the
S-matrix element. The resulting coefficients and definitions
of physical observables are therefore not dependent on an
arbitrary choice of real expansion pointM . If it were not for
the tree-level photon exchange diagram we could dropB0 in
Eq. ~2! to obtain the stated level of accuracy.A(s) would
then depend on three real numbers only. The question of the
model-independent parametrization of the angular depen-
dence of the scattering amplitude was not considered in Ref.
@8#.

Subsequently Leikeet al. @9# repeated the analysis of Ref.
@8# explaining how the Laurent expansion could be imple-
mented in practice. They carried out an actual fit to data
including QED corrections. They suggested a parametriza-
tion that made the presence of photon exchange diagrams
explicit rather than absorbing them into background:

A~s!5
RZ

s2sp
1
Rg

s
1B~s!, ~3!

whereB(s) is a function having no poles. This parametriza-
tion was incorporated into the computer programSMATASY
@10#.

Including the photon contributionRg /s and background
together in this way may lead to difficulties however.
Whereas Eq.~1! is a self-consistent Laurent expansion about
a simple pole,sp , and valid within some radius of conver-
gence, Eq.~3! is not. Hence the coefficientsRg andBi are
not independent quantities. In particular the photon exchange
term may be written as a Taylor series expansion aboutsp :

Rg

s
5
Rg

sp
2
Rg

sp
2 ~s2sp!1

Rg

sp
3 ~s2sp!

21•••. ~4!

Thus any change inRg can be exactly compensated by a
corresponding change in the coefficientsBi which is an un-
desirable feature for fitting. Whereas finite truncations of the
series(Bi(s2sp)

i may produce adequate fits, as more and
more terms are included in the series the coefficients become
indeterminate.

The L3 Collaboration@11# performed an analysis of their
data based on Eq.~3!, curiously without a citation to Ref.@8#
that was the original source for theS-matrix approach. They
truncated their amplitude at

A~s!5
RZ

s2sp
1
Rg

s
~5!
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so that the coefficients are indeed independent and thus ame-
nable to fitting.

In this paper we look in more detail at the model-
independentS-matrix description of LEP data as a way of
preserving the experimental results in a transparent and natu-
ral way that will continue to be understandable and useful for
many years to come. In Sec. III the basicS-matrix formalism
is reviewed and extended. It is shown how to describe the
angular dependence of the scattering amplitude in a model-
independent way. In Sec. IV the inclusion of QED correc-
tions is discussed. A distinction is made between model-
independent and model-dependent bremsstrahlung. We also
give a simple exact formula for initial-final state interference
corrections to the resonant term.

II. PHYSICAL OBSERVABLES VS MODEL-DEPENDENT
PARAMETERS

In this paper the term model-independent physical observ-
able will be taken to mean a quantity that can be directly
defined in terms of some set of experimental measurements
without the need for input from some theoretical model.
Thus the electromagnetic coupling constanta is exactly de-
fined from the result of a Thomson scattering experiment:

sT5
8p

3

a2

me
2
. ~6!

Similarly the muon decay constant,Gm , is exactly de-
fined from the experimental measurement of the muon life-
time, tm through the relation

tm
215

Gm
2mm

5

192p3S 12
8me

2

mm
2 D F11

3

5

mm
2

MW
2

1
a

2pS 254 2p2D
3S 11

2a

3p
ln
mm

me
D G . ~7!

The relation~7! is quite complicated but nevertheless, once
tm is measured,Gm is unambiguously defined. The complex-
ity of Eq. ~7! arises from an attempt to factor out QED cor-
rections. There may exist a more convenient or pragmatic
way of definingGm from tm but the one given is well-
established and in common use. Note that, in principle at a
certain level of precision, what one means by the lifetime of
an unstable particle becomes unclear because the decay
curve is not precisely exponential. These considerations are
relevant for theZ0 boson but, because of its extremely long
lifetime, are unlikely to ever be of concern for the muon.

The position of the pole,sp , may be regarded as a model-
independent physical observable because its existence de-
pends only on the analyticity of theS-matrix which is ulti-
mately believed to derive from causality. Its value can, in
principle, be extracted from measurements of the cross sec-
tion s(e1e2→ f f̄ ) over a large energy range using analytic
continuation onto the second Riemann sheet. The same value
of sp will be obtained for any process involving an interme-
diateZ0.

In a similar way the residueRi f at the pole for a given
f f̄ final state can be extracted from experiment without de-

tailed model-dependent input. It is known to factorize,
Ri f5Ri•Rf and theRf can form the basis for a model-
independent definition of the partial width@5#.

The essential point about a model-independent physical
observable is that once a set of experimental measurements
is available its value is fixed. In the case of Thomson scat-
tering or the measurement of the muon lifetime, a single
number is returned by the experiment and what one means
by a model-independent physical observable is clear-cut.
Things become less obvious for observables, such assp and
Ri f , that need to be extracted by fitting experimental data
over a certain energy range but they still represent viable
model-independent physical observables.

By contrast, model-dependent parameters require the La-
grangian of the underlying model be known and specified. A
detailed calculation is required in order to fit the experimen-
tal data. The values obtained will be sensitive to which
renormalization scheme was used in the calculation and will
be subject to whatad hocmodifications~improved Born ap-
proximations, effective mixing angles, and the like! one
makes above and beyond a consistent truncated perturbation
series.

A good example of a model-dependent parameter is
sin2uW. From a theoretical point of view, in the standard
model,uW is the angle of rotation that diagonalizes the mass
matrix of the neutralW3 and B boson that appears in the
lowest-order renormalized Lagrangian. In all renormalization
schemes the relation

sin2uW512
MW

2

MZ
2 ~8!

holds providedMW andMZ are the renormalized masses in
the particular scheme that has been chosen. In the modified
minimal subtraction (MS̄) renormalization schemeMW and
MZ depend on an arbitrary scale and hence so does sin2uW.
Once a particular renormalization scheme has been chosen,
experimental results may be used as input to determine the
values of the renormalized parameters. These renormalized
parameters generally have no physical meaning outside of
the particular model or renormalization scheme that has been
chosen and are eminently unsuitable for recording experi-
mental results. They can, however, still be used to test a
given model by using it to make predictions for other physi-
cal observables. Thus the MS̄renormalization scheme has
renormalized masses that are clearly unphysical but is still a
viable and convenient scheme to use in many situations.

At the risk of blurring the distinction between physical
quantities and~unphysical! renormalized parameters, one can
try to define a renormalization scheme that sets the renormal-
ized parameters to be equal to physical observables as was
done in Ref.@12#. Again the problem of just what are the
physical observables arises. Furthermore in gauge theories,
with their interrelated coupling-constant and mass counter-
terms, one must take care not to violate Ward identities. In
its original incarnation the on-shell renormalization scheme
@12# used a definition for the physical mass that was subse-
quently shown@13,14# to be gauge-dependent. In the same
works it was suggested to modify the on-shell renormaliza-
tion scheme in such a way that the renormalized mass is
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identified with the manifestly gauge-invariant, but arbitrary,
quantity ~11! constructed from the pole of theS matrix. In
principle, since the renormalized mass is not a physical
quantity, it is not required to be gauge-invarianta priori
although it is of great practical convenience to have it so.
Consistency of this renormalization scheme with Ward iden-
tities has yet to be explored.

It is important to keep in mind the clear distinction be-
tween the physical mass and the unphysical renormalized
mass. The former is a model-independent physical observ-
able but the latter is not. An unstable particle is associated
with a pole in theS-matrix elements5sp lying below the
real axis. It is this complex number as a whole that is physi-
cally significant. For convenience two real numbers can be
extracted fromsp and identified with the mass,M , and
width, G. There is no fundamental way of doing this and any
such decomposition will be arbitrary. Two long-standing
conventions are to define

sp5M22 iMG, ~9!

sp5SM2
i

2
G D 2. ~10!

It was noted@6,7# that in the case of theZ0 the definition~9!
produces a value that is 34 MeV below the value being ex-
tracted by LEP. The latter is based on the use of the on-shell
renormalization scheme. In Ref.@13# it was suggested that,
rather than employ the traditional definitions,~9! and ~10!,
theZ0 boson mass should be defined as

MZ
25Resp1

~ Imsp!
2

Resp
. ~11!

This is reasonable because it turns out to be numerically
close to the value being extracted by LEP and hence requires
minimal modification of existing analyses and existing ex-
perimental results. However it is no more nor less fundamen-
tal than~9! or ~10! and no more nor less deserving of the title
of physical mass.

Attempts have been made to give physical definitions to
sin2uW. Llewellyn-Smith and Wheater@15# defined an ex-
perimental sin2uW

exp from the ratios of charged- and neutral-
current neutrino scattering experiments. Although this defi-
nition constitutes a model-independent physical observable it
is not the parameter that appears in the standard model La-
grangian. It is really some convenient way of encapsulating
the result of cross-section measurements that once extracted
from experiment must be corrected by means of a detailed
model-dependent calculation, in order to yield a value for
sin2uW in some particular renormalization scheme.

III. MODEL-INDEPENDENT LINE SHAPE

The general matrix element for the processe1e2→ f f̄
near resonance is a sum over current-current interactions

A~s,t !5(
i , f
Mi f ~s,t !Ji•Jf ~12!

and is a function of the usual Mandelstam variabless and
t. The form factorsMi f (s,t) are analytic functions ofs and

t. For massless electrons and final-state fermions only vector
and axial-vector currents can appear and thus

A~s,t !5 (
i , f5L,R

Mi f ~s,t !@ v̄ ~pe1!gmg iu~pe2!#

3@ ū~pf !gmg fv~p f̄ !#, ~13!

whereu andv are the fermion wave functions andgL , gR
are the usual helicity projection operatorsgL,R5(16g5)/2.
For massive final-state fermions, magnetic moment terms,
smnq

ngL and smnq
ngR , are possible but these can be at

mostO(amf
2) in the final cross section and will be dropped

in the later analysis. We will therefore discard them at the
outset. At this point it is convenient to go to the center-of-
mass frame and expressMi j as a function ofs and cosu the
cosine of the scattering angle. These may be expanded as a
Laurent series about the complex pole of the scattering am-
plitude,

Mi f ~s,cosu!5
Ri f

s2sp
1B0,i f ~cosu!1B1,i f ~cosu!~s2sp!

1•••, ~14!

that is valid within a radius of convergence defined by the
position of the nearest branch point which corresponds to a
production threshold. For theZ0 resonance the low-order
thresholds for fermion production lie sufficiently far from the
resonance so as to be unlikely to ever to be of concern.
However, some interesting physical consequences arise in
the case of nearby thresholds@5,16#.

As a consequence of Fredholm theory it is known that the
residue at the pole factorizes and we may writeRi f5Ri•Rf
whereRi does not depend on the properties of the final-state
particle andRf is independent of those of the initial-state
particle. The functionsBn,i f can be expanded in partial
waves:

Bn,i f ~cosu!5 (
m50

`

Bi f
nmPm~cosu!, ~15!

wherePm(x) is the Legendre polynomial of orderm. All
constantssp , Ri f , andBi f

nm are, in principle, complex num-
bers.

The general differential cross section in the center-of-
mass frame for the processe1e2→ f f̄ with massless incom-
ing electrons of polarization,P, colliding with unpolarized
positrons is

ds

dV
5S 11P

2 D 2S dsLL

dV
1
dsLR

dV D1S 12P

2 D 2S dsRR

dV
1
dsRL

dV D
~16!

with
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ds i j

dV
5

sb

64p2H S 16bcosu

2 D 2uMi f u2

1S 12b2

4 DReMi fMi ,2 f* J , ~17!

whereb5A124mf
2/s andmf is the mass of the final state

fermion. The upper sign pertains fori5 f and the lower for
iÞ f . The second term is a helicity flip term and is needed
only for massive final-state fermions. There the index2 f
means the opposite helicity tof . Performing the angular in-
tegrations over the full solid angle it becomes clear that cross
sections must take the general form

s i f5
sb

32pH c22
i f

us2spu2
1ReS c21

i f

s2sp
D 1c0

i f J ~18!

keeping terms up to orderO(GZ
2/MZ

2) relative to the leading
one and the leading term proportional to 12b254mf

2/s.
This last term only contributes in the case of theb-quark.
The above form is likely to be adequate for all practical
purposes in the foreseeable future. The constantsc22

i f and
c0
i f are real andsp and c21

i f are complex and hence to this
level of accuracy the cross section depends only on six real
constants: Resp , Imsp , c22

i f , Rec21
i f , Imc21

i f , andc0
i f . Be-

causesp is the same for alls i f , summation over initial or
final states will lead to a cross section of the same overall
form. Using the usual normalization for the Legendre poly-
nomials

E
21

1

@Pn~x!#2dx5
2

2n11
,

and the results

E
21

1 S 16bx

2 D 2Pn~x!dx55
31b2

6
, n50,

6
b

3
, 1,

b2

15
, 2,

we have

c22
i f 5

31b2

6
uRi f u21S 12b2

4 DReRi fRi ,2 f* , ~19!

c21
i f 52Ri f S 31b2

6
Bi f
00*6

b

3
Bi f
01*1

b2

15
Bi f
02* D12Ri f

3~sp2sp* !S 31b2

6
Bi f
10*6

b

3
Bi f
11*1

b2

15
Bi f
12* D ,

~20!

c0
i f52Ri f S 31b2

6
Bi f
10*6

b

3
Bi f
11*1

b2

15
Bi f
12* D1E

21

1

d~cosu!

3S 16bcosu

2 D 2uB0,i f ~cosu!u2. ~21!

Using the properties of Legendre polynomials

E
21

1

d~cosu!S 16bcosu

2 D 2uB0,i f ~cosu!u2

5
1

2(
m50

` S 1

~2m11!
1b2

~2m212m21!

~2m21!~2m11!~2m13! D
3uBi f

0mu26b (
m50

`
~m11!

~2m11!~2m13!
ReBi f

0mBi f
0,m11*

1b2 (
m50

`
~m11!~m12!

~2m11!~2m13!~2m15!
ReBi f

0mBi f
0,m12* .

~22!

To orderO(GZ /MZ) the last term in Eq.~18! can be
dropped and the cross section then depends on five real con-
stants as first pointed out by Borrelliet al. @2#. This same
total was obtained in Ref.@8# using arguments based on ana-
lyticity similar to those above. The form~18! is extremely
general and robust being valid for polarized and unpolarized
matrix elements as well as for angular integrations over less
than the full solid angle.

To this level of accuracy one further assumption can be
made to further simplify the expressions~19!–~21!. Since no
new particles have been found with a massm&MZ/2 we
may be sure that the first terms that give rise to corrections
that depend on the scattering angleu are box Feynman dia-
grams corresponding to twoW or two Z exchange. These
diagrams are one-loop and nonresonant. They therefore rep-
resent corrections ofO(aGZ /MZ) relative to the lowest or-
der and may be dropped by settingBi f

1n50.
The constants appearing in Eq.~18! can be extracted from

data in a model-independent manner and can be calculated in
any theoretical model. By comparing their measured and pre-
dicted value candidate models may be tested. The form~18!
assumes only the analyticity of theS-matrix element which
is a consequence of causality. It may happen that some of the
constants in the above parametrization may seem to be
poorly determined especially those in higher orders. This is a
fact of life and represents a limit on how well the model-
independent parameters can be determined from a given ex-
periment. The parameters in this formulation, once deter-
mined, remain valid even in the face of dramatic changes to
theoretical models. They can only be adjusted by improved
experiments and remain a fundamental and meaningful de-
scription of the data. They are thus largely impervious even
to possible profound changes to theoretical understanding.
The temptation should be resisted to inject more detailed
model-dependent assumptions into the data analysis even
when this seems to yield tighter bounds on the parameters. If
it is done it should be in addition rather, than instead of the
extraction of the above constants.
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The complete generality of Eq.~18! means that Monte
Carlo event generators can be set up assuming that the un-
derlying cross section is of this form. The constants
sp , Ri f , andBi f

mn corresponding to the predictions of an par-
ticular model may then be input from independent sources
and consistency with experimental results studied. This pro-
vides an efficient method of parametrizing corrections that
depend on the scattering angle,u. Typically these come from
box diagrams whose analytic structure is complicated and
cumbersome for Monte Carlo simulations.

IV. QED CORRECTIONS

Ultimately in the confrontation of theoretical predictions
with experimental data QED corrections must be taken into
account. These QED corrections may be grouped into two
classes; model-independent and model-dependent. Model-
independent QED corrections are those in which the photon
is attached only to external fermion legs. Such corrections
sense nothing of the detailed structure of the underlying
model. They may therefore be accounted for using a struc-
ture function approach@17–19# applied to a general cross
section of the form~18! or by Monte Carlo methods. In
general the Feynman diagrams contributing to the model-
independent QED corrections are infrared divergent and can
therefore give rise to large logarithms particularly if strong
cuts are applied to the photon energy.

Model-dependent QED corrections are those in which
photons are connected to internal charged particles. For ex-
ample a photon that is produced by bremsstrahlung off an
internalW is sensitive to the charged current structure of the
underlying model. Such corrections cannot be treated in a
model-independent manner. They are however always infra-
red finite and so do not give rise to anomalously large cor-
rections. In the case where final-state photons are individu-
ally detected anS-matrix motivated form analogous to Eqs.
~13! and ~14! could be developed for the process
e1e2→ f f ḡ. The size of the model-dependent QED correc-
tions represent the level of accuracy to which a given model-
independent analysis is valid.

Applying the structure function approach to treat the
initial-state QED corrections leads to a corrected cross sec-
tion in the form of a convolution integral

sT~s!5E ds8s~s8!r ini~12s8/s!, ~23!

wherer ini is a known structure function.
Final-state corrections may be treated similarly but for

most purposes result in an overall multiplicative factor being
applied to the cross section. Detailed descriptions can be
found in the literature@9,20#. QED corrections to asymme-
tries may also be handled in this manner@21#.

The initial-state and final-state QED corrections are re-
markable in their compactness and their relative simplicity.
In the case of initial-final state corrections, i.e., diagrams
having a photon connected to both the initial-state and final-
state fermion lines, similar convolution integral forms have
been derived@20#, however, a simple exact expression exists
for first order QED corrections to the resonant part of the
cross section. This expression can be obtained directly from
Refs. @22,23#. The O(a) corrections to the cross section
s i f (s) coming from initial-final state bremsstrahlung and vir-
tual corrections applied to the resonant parts of the amplitude
are exactly given by

Ds i f ~s!56
3a

p
QiQfI 2S sps ,kmaxDs i f

R~s! ~24!

and

s i f
R~s!5

sb

32p

c22
i f

us2spu2
. ~25!

The upper sign in Eq.~24! pertains if the polarizationi5 f
and the lower ifiÞ f . Qi andQf are the electric charges of
the initial- and final-state fermions.kmax is the maximum
allowed photon energy in the bremsstrahlung contribution
expressed as a fraction of the center-of-mass energy,
2Eg /As,kmax:

I 2~z,kmax!5ReH z~z11!ln
kmax1z21

z
1~z21!~12kmax!J

2 lnuzu22lnkmax. ~26!

For rather loose cuts on the photon energy, i.e.,kmax near
1, the functionI 2 passes through zero somewhere near the
resonance. This behavior was explained recently@24# on
physical grounds. Near resonance a physical unstableZ0

with a finite lifetime is created. Its finite propagation length
means that the virtual photon must itself propagate a finite
distance in order to connect the initial and final states and the
amplitude is therefore reduced. Alternatively the finite
propagation length may be regarded as resulting in a loss of
correlation between initial and final states. The upshot is that
initial-final state QED corrections have a rather small but
manageable contribution to the resonant line shape when
cuts are loose.
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