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We discuss a new general class of mass matrixAnsatz that respects the fermion mass hierarchy and
calculabilityof the flavor mixing matrix. This is a generalization and justification of the various specific forms
of the mass matrix by successive breaking of the maximal permutation symmetry. By confronting the experi-
mental data, a large class of the mass matrices are shown to survive, while certain specific cases are phenom-
enologically ruled out. Also theCP violation turns out to be maximal, when the phase of the~1,2! element of
the mass matrix isp/2. @S0556-2821~97!03815-0#

PACS number~s!: 12.15.Ff, 11.30.Er, 11.30.Hv, 12.15.Hh

With the discovery of the top quark@1#, the three family
structure of the fermion sector has been completely deter-
mined. Nevertheless, the flavor mixing and fermion masses
and their hierarchical patterns remain to be one of the basic
problems in particle physics.

Within the standard model, all masses and flavor mixing
angle are free parameters and no relations among them are
provided. Perhaps, a new theory could predict all masses and
flavor mixing parameters in terms of some new, few funda-
mental parameters, but we lack such theory at the moment
and are unable to derive the masses and the flavor mixing
parameters from the first principles. One can at the best take
a phenomenological standpoint in that one assumes a special
form for the mass matrices and hopes to be able to derive
phenomenologically viable relations for the flavor mixing
parameters in terms of the quark masses.

As an attempt to derive relationship between the quark
masses and flavor mixing hierarchies, mass matrixAnsatz
based on flavor democracy with a suitable breaking so as to
allow mixing between the quarks of near kinship was sug-
gested about two decades ago@2#. This, in fact, reflects the
calculability @2,3# that all flavor mixing parameters depend
solely on, and are determined by, the quark masses. In gen-
eral, thecalculability condition does not determine theCP
violation phase, for which either additionalAnsatzor input is
needed to determine. Of severalAnsätze proposed, the ca-
nonical mass matrices of the Fritzsch-type@2,4# have been
generally assumed to predict the entire Kobayashi-Maskawa
~KM ! matrix @5# or the Wolfenstein mixing matrix@6#.
Though theAnsatzof the Fritzsch texture@2,3# is attractive
because of its maximalcalculability, it predicts a top quark
mass to be no larger than 100 GeV and thus is ruled out@4#.

Alternatively, one may introduce a modification to the
Fritzsch texture of mass matrix by allowing a nonvanishing
~2,2! elements in the ‘‘hierarchical’’ mass eigenstates. Such
scheme was proposed sometime ago by Kaus and Meshkov
@7# based on a postulate of the ‘‘BCS mechanism’’ for the
quarks and assuming that the heaviest third generation quark
mass is to be identified by the nonzero eigenvalue of the
‘‘democratic mass matrix.’’ More recently, Fritzsch and co-
workers@8# have suggested the same type of mass matrix by
assuming that the ‘‘democratic’’ maximal permutation sym-
metry may be broken in a simple and analogous manner as

the mass mixing pattern of theh-h8 system. As a result, the
mass matrices contain only three zero elements at~1,1!,
~1,3!, and~3,1! positions in the hierarchical mass eigenstates.
Nevertheless, this does not necessarily imply lack ofcalcu-
lability because the additional nonvanishing~2,2! element
may be related to the~2,3! or ~3,2! elements.

With one such form for the mass matrices, Fritzsch and
co-workers @8# described the KM matrix in terms of the
quark mass ratios to the lowest order approximation and
claimed that they are in good agreement with the experimen-
tal values. However, this is not true at least forVcb element
because one getsuVcbu.(1/A2)(ms /mb2mc /mt) so that
mt(m51 GeV) can be at most 113 GeV from the experi-
mental rangeuVcbu50.036–0.046@9#. Several other authors
@10,11# have also discussed specific forms of this type of
mass matrices.

We present in this paper a generalization of this class of
mass matrices in such a way that it can maintain thecalcu-
lability property and consistency with experiments, while ac-
commodating aCP violation phase. We will show that this
can be achieved by breaking the democratic flavor symmetry
S(3)L3S(3)R successively down to S(2)L3S(2)R and to
S(1)L3S(1)R , so that the~2,2! element can be related to
~2,3! element appropriately in the hierarchical mass eigen-
states.

As is well known, the 333 ‘‘democratic mass matrix’’

c

3S 1 1 1

1 1 1

1 1 1
D ~1!

exhibits the maximal S(3)L3S(3)R permutation symmetry.
This can be achieved by breaking of the chiral symmetry
U(3)L3U(3)R to S(3)L3S(3)R , where U(3) is the symme-
try group connecting the three generations@7,12#. One may
say that the scale of this chiral symmetry breaking is the
electroweak symmetry-breaking scale at which the third gen-
eration quarks get heavy masses. Indeed, one can see this by
making unitary transformation of Eq.~1! with the help of

PHYSICAL REVIEW D 1 AUGUST 1997VOLUME 56, NUMBER 3

560556-2821/97/56~3!/1511~4!/$10.00 1511 © 1997 The American Physical Society



U5S 1

A2
2

1

A2
0

1

A6
1

A6
2

2

A6

1

A3
1

A3
1

A3

D . ~2!

This matrix is in fact reminiscent of the matrix for the mass
squared of the neutral pseudoscalar mesons in QCD in the
chiral limit. In order to account for the hierarchical pattern of
the second and first generation quark masses, one has to
break the S(3)L3S(3)R symmetry successively in two
stages to S(2)L3S(2)R and S~1!L3S~1!R . This can be
achieved by adding the following two matrices to the
‘‘democratic matrix’’ ~1!:

S 0 0 a

0 0 a

a a b
D , dS 1 0 21

0 21 1

21 1 0
D , ~3!

where the parameters (a,b) and d are responsible for the
breakdown of S(3)L3S(3)R and S(2)L3S(2)R symmetries,
respectively. It is also reasonable to anticipate that this two-
stage breaking happens to be at around 1 GeV scale in view
of the proximity of the second and first generation quark
masses compared to the third generation quarks.

Note that the two scales in proximity are related to the
generation of the second and first generation quark masses
and the evolution from the electroweak scale to 1 GeV scale
cannot alter the ‘‘ democratic ’’ pattern of the mass matrix
because of the symmetry S(3)L3S(3)R . Thus the resulting
mass matrix can be regarded as the one at 1 GeV scale.

In principle, the most general form of
S(3)L3S(3)R→S(2)L3S(2)R breaking can allow different
parameters at the~1,3!, ~2,3!, ~3,1!, and~3,2! elements. But
to maintain thecalculability property, the form of Eq.~3!
containing only two parameters (a,b) is necessary, which is
general enough to cover all different specific forms proposed
by others@7,8,10,11# as a special case. Then in the hierarchi-
cal basis after the unitary transformation with Eq.~2!, the
resulting mass matrixMH becomes

MH5S 0 A 0

A D B

0 B C
D , ~4!

whereA5A3d, D52 2
3 (2a2b), B52(A2/3)(a1b), and

C5 1
3 (4a1b)1c.
Note that in order to get a Hermitian mass matrix instead

of Eq. ~4!, one can use the following two matrices:

S p p a1q

p p a1q

a1q* a1q* b22p
D , ~5!

dS coss 2 isins 2e2 is

isins 2coss e2 is

2eis eis 0
D ,

where p5 4
9 (a1b)sin2d/2 and q5p(11 i 32e

id/2/sind/2), in
such a way that the matrices~3! are replaced by those of Eq.
~5!. Then, after the unitary transformation with Eq.~2!, the
~1,2! and ~2,3! elements becomeAe2 is andBe2 id, respec-
tively. However, since only one phase factor is sufficient to
describe theCP violation in the standard model containing
three family generations of quarks, we may introduce only
one phase factor in the Hermitian matrixMH such that only
~1,2! and ~2,1! elements are complex and conjugate to each
other. In this way, a Hermitian mass matrix of the type~4!,
with a complex element at~1,2! and its conjugate at~2,1!,
can be obtained from a general permutation symmetry-
breaking chain: i.e., S(3)L3S(3)R→S(2)L3S(2)R
→S(1)L3S(1)R .

At a glance, the matrixMH contains four independent
parameters even in the case of real parameters so that the
calculability is lost. However, one can make additionalAn-
satzto relatea to b, so thata5kb in general, with the same
ratio parameterk for both the up- and down-quark sectors, so
as to maintain thecalculability. On the other hand, one may
think that other choices thana5kb for both up and down
quarks might be interesting, but the choice ofa5kb meets
clearly the elegance of simplicity. Then, the~2,2! element is
related to ~2,3! element by w[B/D
5(k11)/A2(2k21) in the hierarchical mass eigenstate and
various specific mass matrices proposed by others can be
identified as a special case of different ratios, i.e.,
w55/3 (k50.9) for Ref. @7#, w52(1/A2) (k50) for
Fritzsch and co-workers@8#, w562A2 (k5 5

7 or
1
3 ) for Ref.

@10#, andw5A2(k51) for Ref. @11#. The case ofk5 1
2 re-

duces to the old Fritzsch-type withD50 which is ruled out
by experiments as we said before. We are, therefore, inter-
ested in the general case butkÞ 1

2 in this paper.
The next step is then to constraink for the general class of

mass matrix by confronting the experiments for consistency.
Obviously, a careful analysis with exact flavor mixing ele-
ments predicted from the newAnsatzis desired to confront
the experiments. The mass matrixMH of the type~4! can be
brought to a diagonal form by appropriate rotation of the
fermion fields in the hierarchical eigenstates via a biunitary
transformation,

UL
~u!MH

~u!UR
~u!†5diag@mu ,mc ,mt#,

UL
~d!MH

~d!UR
~d!†5diag@md ,ms ,mb#,

and the quark fields in the physical mass eigenstates are re-
lated to the hierarchical mass eigenstates by

qL~R!
~u! 5UL~R!

~u! uL~R!
0 ,

qL~R!
~d! 5UL~R!

~d! dL~R!
0 ,

where (q(u),q(d)) and (u0,d0) denote the physical mass
eigenstates and the hierarchical mass eigenstates for the up-
and down-quark sectors, respectively. We note that a phase
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factor is attached to the~1,2! and ~2,1! elements asAe2 is

andAeis in MH , whereA will be assumed to be positive
without loss of generality. Then bothULMHUL

† and
URMHUR

† are diagonal so thatULUR
†[K is again diagonal.

In our Ansatz, it turns out in general that, because of the
empirical mass hierarchym1!m2!m3, K5diag@1,21,1# ir-
respective of the sign ofD andK5diag@21,1,1# only for
positiveD. This point was not clearly understood in previous
works @8,10,11,13#. Fritzsch and co-workers@8# chose the
relative signs of the S(3)L3S(3)R-breaking terms different,
so that the sign ofmc is opposite to that ofms , while keep-
ing mu andmd to be negative as mass eigenvalues, which is
clearly inconsistent with the empirical quark mass hierarchy.
Other authors@13# assumed the same form of the mass ma-
trix without basing on a symmetry consideration and thus
treating the up- and down-quark sectors unevenly.

The parametersA, B, C, and D can be expressed in
terms of the quark masses. As emphasized earlier, in this
paper, we will deal with the same pattern for both the up-
and down-quark mass matrices so that the calculability of the
flavor mixing matrix from the quark masses is retained. In
view of the hierarchical pattern of the quark masses, it is
natural to expect thatA,uDu!C, and then the case of
K5diag@1,21,1# for positiveD can be excluded if the same
ratio parameterw is required for both up- and down-quark
sectors. Otherwise, the masses of the second family could be
unacceptably large.

The Case K5diag@21,1,1#. Because a Hermitian matrix
can be expressed as a unitary transformation of a real sym-
metric matrix, one can writeMH

(u,d)5P(u,d)Mr
(u,d)P̃(u.d),

where P(u,d)5diag@exp(2is(u,d)),1,1#, and the real matrix
Mr

(u,d) can be diagonalized by a real orthogonal

matrix R(u,d) so that R(u,d)Mr
(u,d)R̃(u,d)5diag@2m(u,d) ,

m(c,s) ,m(t,b)] . Then, UL
(u)5R̃(u)P(u)† and UL

(d)5R̃(d)P(d)†.

The flavor mixing matrix is given byV5UL
(u)UL

(d)†

5R̃(u)P(u)†P(d)R(d)5R̃(u)PR(d) where P5diag@eis,1,1#
with s5s (u)2s (d).

From the characteristic equation for theMr , the mass
matrixMr can be written by

Mr5S 0 Am1m2

12
e

m3

0

Am1m2

12
e

m3

m22m11e w~m22m11e!

0 w~m22m11e! m32e

D ,

~6!

in which the small parametere is related to w, i.e.,
w.6(Aem3/m2)(11m1 /m22m2/2m3), whose range is to
be determined from the experiments. Note the sign ofB is
undetermined from the characteristic equation but the KM
matrix elements are independent of the sign ofB. Then, we
can obtain analytic expressions for the flavor mixing matrix
V in the leading approximation such as

uVusu.uAmd /msexp~ is!2Amu /mcu, ~7!

uVcbu.uw~ms /mb2mc /mt!u, ~8!

uVubu/uVcbu.Amu /mc, uVtdu/uVtsu.Amd /ms. ~9!

Notice thatuVcbu depends on the quark mass ratios andw. In
fact, the w dependence appears in the four elements
Vub , Vcb , Vts , and Vtd only. Since the second term of
uVcbu is negligible compared to the first term, it is easy to
examine the range ofw for which uVcbu is compatible with
experiments. We use the light quark masses@14#,
mu55.160.9 MeV,md59.361.4 MeV, andms5175625
MeV, and the heavy quark masses@15#, mc51.3560.05
GeV andmb55.360.1 GeV, all of which correspond to the
masses at a modified minimal subtraction~MS! renormaliza-
tion point of 1 GeV. The top quark massmt of the recent
measurementmt517566 GeV corresponds to the running
massmt(m51 GeV! .280–450 GeV forLMS5150–200
MeV @16#.

Using the valueuVcbu50.036–0.046 from experiments
@9#, Eq.~8! leads to 1.01&uwu&2.02 so that 0.82&k&1.31 if
w.0 and 0.11&k&0.28 if w,0 in the leading approxima-
tion, which is close to the exact result 0.97&uwu&1.87 so
that 0.85&k&1.36 ifw.0 and 0.10&k&0.26 ifw,0. Note
that e5O(m1) for the allowed range ofk andw.

Next, we examine if this range ofw preserves the consis-
tency with experiments for other KM elements. Since several
KM elements depend on the phase factors, we have to
determine the allowed range of the phase factor first. We see
from Eq. ~7! that uVusu depends on the phase factors, while
independent of w. Using the experimental value
uVusu.0.219–0.224@9#, the allowed range ofs turns out to
be 26°–111°. In particular, the maximal weakCP phase
conjectures5p/2 suggested previously by Ref.@17# follows
when ms.0.206 GeV from Eq.~7! and whenms.0.194
from exact calculation for the central values of the param-
etersmu , md , mc , and uVusu. The exact numerical result
gives 39°&s&117°. In addition, we find that all other KM
elements are in good agreement with experiments for the
above ranges ofw ands.

The Case K5diag@1,21,1#. For a negativeD, the real
symmetric matrix Mr

(u,d) can be diagonalized as

R(u,d)Mr
(u,d)R̃(u,d)5diag@m(u,d) ,2m(c,s) ,m(t,b)#, thus re-

versing the signs ofm1 andm2 in Eq. ~6!. As we noted, a
positiveD in this case is excluded for the reasons of natu-
ralness due to the quark mass hierarchy andcalculability.
Following the similar analysis as in the previous case, we get
1.14&uwu&2.76 so that 0.72&k&1.17 if w.0 and
0.14&k&0.33 if w,0, and the same range ofs as in the
previous case in the exact numerical calculation, while we
find the same result ofw ands as in the previous case in the
leading approximation. Consequently, theAnsatzadopted by
Fritzsch and co-workers@8#, corresponding tok50, is not
consistent with experimental data ofVcb and theAnsatz
adopted by Ref.@10#, corresponding tow258, is slightly
beyond the upper bound of the allowedw.

Now, we note that the predicted ratiouVubu/uVcbu
(&0.07) tends to be on the low side of~but consistent with!
the present experimental range,uVubu/uVcbu50.0860.02 @9#
or 0.0860.016@18#.
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In terms of the three inner angles of the unitarity triangle
@19#, a5arg(2Vub* Vud /Vtb* Vtd), b5arg(2Vtb* Vtd /
Vcb* Vcd), and g5arg(2Vcb* Vcd /Vub* Vud), we obtain
a.s.26°–111°, b.6°–13°, and g.180°2a2b
.148°256° in the leading order approximation. These
angles are independent ofk. From the Jarlskog determinant
@20#, DetC.@(k11)2/(2k21)2#Amumdmsmcmt

2ms
2sins,

we see that theCP violation becomes maximal fors590°
which is an allowed value from our results.

Finally, the Wolfenstein parameters@6# can be determined
from uVusu.l, uVcbu.l2A, Vub.l3A(r2 ih), andVtd.
l3A(12r2 ih) in terms of the quark masses. Since
l'A(md /ms)„12A(msmu /mdmc)coss….uV12u from Eq.
~7!, we obtains.80.17° for all central values of quark
masses andl50.22. From the elementVcb , we get
A.0.74–0.95 and sinceuVubu/uVcbu5lAr21h2 ranges
0.06–0.10 from the semileptonicB decays @9#, we get
r21h2.0.074–0.207 for the central values of quark
masses, while from Eq.~9!, r21h250.0781.

In conclusion, we suggested a general class of Hermitian
mass matrices that can be obtained from successive breaking
chain U(3)L3U(3)R→S(3)L3S(3)R→S(2)L3S(2)R→
S(1)L3S(1)R so as to reflect the quark mass hierarchy and
to maintain thecalculability of the flavor mixing matrix and
its consistency with experiments. There are four regions of
k, the ratio parameter of the two elements of the
S(2)L3S(2)R symmetric matrix, for which the generalized
mass matrixAnsatzis compatible with experiments. In par-
ticular, theCP violation turns out to be maximal when the
phase of the mass matrix isp/2.
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