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We study the scaling properties of the static quark potential and the ratio of the critical temperatureTc to the
square root of the string tensions in the SU~3! pure gauge theory using a renormalization-group-improved
action. We first determine the critical couplingbc on lattices with a temporal extensionNt53, 4, and 6, and
then calculate the static quark potential at the critical couplings on lattices at zero temperature. We note that the
static quark potentials obtained are rotationally invariant with errors of at most 1–2 % in all three cases, and
that the potentialV(R) in physical units scales in the whole region ofR investigated. The values ofTc /As for
the three cases in the infinite volume limit are identical within errors. We estimate the value in the continuum
limit to be Tc /As50.656(4), which is slightly larger than the value in the continuum limit from the one-
plaquette action, 0.629~3!. @S0556-2821~97!01813-4#

PACS number~s!: 12.38.Gc, 11.15.Ha

I. INTRODUCTION

In numerical studies of lattice QCD, it is important to
control and reduce finite lattice spacing effects. Several im-
proved actions have been proposed for this purpose and
some of them have been tested for the scaling behavior of the
critical temperatureTc of the finite temperature deconfining
transition@1–5#.

In this work we study the scaling properties of the static
quark potential and the ratio of the critical temperature to the
square root of the string tensions, Tc /As, in the SU~3!
pure gauge theory, using a renormalization-group-
~RG-!improved action@6#:
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with c1520.331 andc05128c1, whereb56/g2 (g is the
gauge coupling!. In Eq.~1!, the loops are defined by the trace
of the ordered product of link variables and each oriented
loop appears once in the sum.

This paper is organized as follows. First we determine the
critical couplingbc’s for the finite temperature deconfining
phase transition on 9333, 12334, and 18336 lattices in
Sec. II. We also perform simulations on 12333, 15333,
16334, and 20334 lattices for a finite size scaling study.
Then the quark potentials at the threebc’s are calculated
from smeared Wilson loops on 93318, 123324, and
183336 lattices, respectively, in Sec. III. The string tension
is extracted from the quark potential assuming that the po-
tential takes the form of a sum of a Coulomb term and a
linearly rising potential. In Sec. IV, the scaling behavior of
the quark potential and that of the ratioTc /As are examined.
Finally, the value of the ratioTc /As in the continuum limit
and in the infinite volume limit is estimated.

II. CRITICAL COUPLING bc

In order to determine the critical couplingbc for the finite
temperature phase transition, we perform simulations on

9333, 12334, and 18336 lattices. The critical temperature
Tc is given byTc51/(aNt), whereNt is the linear extension
of the lattice in the temporal direction anda is the lattice
spacing at the critical coupling. Note that the physical spatial
volumes are identical for all the three cases,
(Nsa)

35(3Nta)
35(3/Tc)

3, whereNs is the linear extension
of the lattice in the spatial direction.

We also perform simulations on lattices with different
spatial volumes for an estimation of the infinite volume limit
of bc using finite size scaling analyses. The previous results
for the case of the standard one-plaquette action on spatially
large lattices@7,8# indicate that extrapolations from small
lattices with the aspect ratioNs /Nt<3 result in sizable sys-
tematic errors in the values ofbc in the infinite volume limit.
Therefore, we restrict ourselves to latticesNs /Nt>3 in this
paper. We perform simulations on 12333, 15333, 16334,
and 20334 lattices for finite size analyses. We reserve the
finite size study ofNt56 lattices for future investigation.

Gauge fields are updated by a Cabibbo-Marinari-Okawa
pseudo-heat-bath algorithm with eight hits both for the simu-
lations at finite temperatures and at zero temperature dis-
cussed in the next section. The simulation parameters are
compiled in Table I. We measure the Wilson loops and
Polyakov line every 10 sweeps. Their expectation values are
summarized in Tables II–VIII.~For the deconfinement frac-
tion, see below.!

The values of the critical couplingbc are determined as
the peak location of the susceptibilityx of theZ(3) rotated
Polyakov lineV:

x5^V2&2^V&2, ~2!

V55
RePexpF2

2
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p G , argPP@p/3,p!,

ReP, argPP@2p/3,p/3!,

RePexpF23pG , argPP@2p,2p/3!,

~3!
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whereP is the spatially averaged timelike Polyakov line
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U4~x,t !G . ~4!

The results of the susceptibility calculated using the spec-
tral density method@9# on the 9333, 12334, and 18336
lattices are shown in Fig. 1. The results obtained at several
simulation points are consistent with each other within the
errors and form a clear peak structure. The value ofbc is
determined from the data at theb which is the closest to
bc . The errors are estimated using a single-elimination jack-
knife method. The bin size in the jackknife method is deter-
mined by investigating the bin size dependence of the errors
of V, shown in Fig. 2. We note that the jackknife errors of
thebc’s are stable for a bin size larger than those adopted, as
shown in Fig. 3. The values of thebc’s and their jackknife
errors are summarized in Table IX.

There are several alternative definitions ofbc on finite
lattices. A popular method is to measure the ‘‘deconfinement
fraction’’ r given byr5(3p21)/2, wherep is the probabil-
ity such that argPP(2p/9,p/9), (2p/32p/9,2p/31p/9),
or (22p/32p/9,22p/31p/9), and to definebc as a point
wherer takes a given value. Our results ofr as a function of
b for the case of the aspect ratioNs /Nt53 are shown in Fig.
4. See also Tables II–IX. We find that the deconfinement
fraction r is approximately 0.75 atbc determined from the
peak location of the susceptibility, as summarized in Table
IX. We note that this fact for the deconfinement fraction is
also realized in the data@8# obtained for the standard one-
plaquette action on large lattices with high statistics~see
Table X!. The conditionr53/4 is the criterion taken in Ref.
@10# for the determination ofbc . ~See also the discussions in
Refs.@11,12#.! However, the volume dependence of the cor-
rections ofbc to the infinite volume limit is not known in

TABLE I. Parameters of finite temperature simulations.

Lattice size b Sweep Therm.

9333 2.125 100 000 30 000
2.145 100 000 30 000
2.160 70 000 30 000

12333 2.150 100 000 50 000
2.155 100 000 40 000

15333 2.150 180 000 80 000
12334 2.250 12 000 2 000

2.275 125 000 40 000
2.300 10 000 1500

16334 2.283 220 000 40 000
2.290 240 000 40 000

20334 2.2875 270 000 80 000
18336 2.5000 120 000 15 000

2.5125 256 000 50 000
2.5250 210 000 60 000
2.5375 135 000 5000

TABLE II. Results obtained on the 9333 lattice.

b52.125 b52.145 b52.160

131 Wilson loop 0.575 350~61! 0.582 07~12! 0.587 52~15!
132 Wilson loop 0.321 81~11! 0.33 120~22! 0.339 17~28!
232 Wilson loop 0.107 21~18! 0.116 00~32! 0.124 36~43!
Polyakov line 0.0675~23! 0.1055~40! 0.1575~52!
Deconfinement fraction 0.448~23! 0.666~29! 0.895~29!

TABLE III. Results obtained on the 12333 lattice.

b52.150 b52.155

131 Wilson loop 0.583 29~16! 0.585 46~11!
132 Wilson loop 0.332 77~31! 0.336 07~20!
232 Wilson loop 0.117 16~47! 0.120 94~31!
Polyakov line 0.0972~74! 0.1300~38!
Deconfinement fraction 0.691~53! 0.899~24!

TABLE IV. Results obtained on the 15333 lattice.

b52.150

131 Wilson loop 0.583 21~17!
132 Wilson loop 0.332 60~32!
232 Wilson loop 0.116 88~48!
Polyakov line 0.0862~57!
Deconfinement fraction 0.715~52!

TABLE V. Results obtained on the 12334 lattice.

b52.250 b52.275 b52.300

131 Wilson loop 0.608 085~91! 0.614 037~60! 0.620 07~28!
132 Wilson loop 0.365 52~18! 0.373 84~12! 0.382 55~52!
232 Wilson loop 0.144 48~25! 0.152 57~19! 0.161 75~76!
Polyakov line 0.0374~25! 0.0651~31! 0.1213~16!
Deconfinement
fraction

0.342~33! 0.640~23! 0.981~23!

TABLE VI. Results obtained on the 16334 lattice.

b52.283 b52.290

131 Wilson loop 0.615 677~33! 0.617 594~35!
132 Wilson loop 0.376 040~65! 0.378 940~69!
232 Wilson loop 0.154 51~10! 0.157 81~11!
Polyakov line 0.0549~30! 0.0906~30!
Deconfinement fraction 0.583~39! 0.853~27!

TABLE VII. Results obtained on the 20334 lattice.

b52.2875

131 Wilson loop 0.616 941~56!
132 Wilson loop 0.377 94~11!
232 Wilson loop 0.156 63~19!
Polyakov line 0.0744~57!
Deconfinement fraction 0.768~48!
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this case.1 On the other hand, a scaling relation is well es-
tablished for the thebc determined from the peak location of
the susceptibility. Therefore, we concentrate onbc deter-
mined from the peak location of the susceptibility for finite
size scaling analyses. In the following, we denote thebc on
the 9333, 12334, and 18336 lattices asbc(9

333),
bc(12

334), andbc(18
336), respectively.

III. STRING TENSION

We evaluate the string tensions atb5bc(9
333),

bc(12
334), andbc(18

336) on lattices at zero temperature:

93318, 123324, and 183336 lattices, respectively. Note
that the spatial sizes of the lattice are the same as those for
the finite temperature simulations in all three cases. The ratio
Nt /Ns is also fixed to 2. The simulation parameters are sum-
marized in Table XI. After thermalization sweeps, we mea-
sure Wilson loops every 200 sweeps. The spatial paths of the
loops are formed by connecting one of the spatial vectors
shown in Fig. 5.

In order to extract the ground-state contribution to the
potential, we adopt the smearing technique proposed in Ref.
@14#: Each spatial linkU is replaced with an SU~3! matrix
Unewwhich maximizes ReTr@FUnew#, with F being the sum

TABLE VIII. Results obtained on the 18336 lattice.

b52.5000 b52.5125 b52.5250 b52.5375

131 Wilson loop 0.655 687~59! 0.657 691~11! 0.659 676~11! 0.661 649~12!
132 Wilson loop 0.431 669~40! 0.434 539~25! 0.437 385~24! 0.440 230~24!
133 Wilson loop 0.288 927~53! 0.291 912~33! 0.294 884~33! 0.297 874~32!
232 Wilson loop 0.208 714~77! 0.211 717~46! 0.214 735~47! 0.217 780~34!
233 Wilson loop 0.109 884~87! 0.112 330~53! 0.114 813~54! 0.117 350~55!
333 Wilson loop 0.049 770~87! 0.051 480~54! 0.053 261~58! 0.055 096~59!
Polyakov line 0.0328~32! 0.0409~21! 0.0559~22! 0.0691~21!
Deconfinement fraction 0.555~51! 0.645~36! 0.861~31! 0.960~15!

FIG. 1. Susceptibilityx of the
Z(3) rotated Polyakov lineV on
the 9333, 12334, and 18336
lattices. Each curve is obtained
from the data at the simulation
point indicated by the filled sym-
bol using the spectral density
method. Errors for open symbols
are computed by a jackknife
method combined with the spec-
tral density method.

1The valuer53/4 corresponds to the case where the four peaks of the histogram ofP in the complex plane have the same volume fraction
@12#, assuming uniformity of the distribution in terms of argP in the confining phase. For theq-state Potts models with largeq, the value of
bc which corresponds to the case where (q11) peaks have the same volume fraction is shown to yield the correct infinite volume value of
bc up to exponentially suppressed corrections@13#. However, in the SU~3! gauge theory, uniformity of distribution in terms of argP in the
confining phase is not well satisfied. Therefore,r53/4 does not strictly correspond to the case of equal weight of four peaks. Thus, in
contrast with the case ofbc from the peak location of the susceptibility, no rigorous scaling relation is known for thebc determined from
the deconfinement fraction. In practice, when we adoptbc determined fromr53/4 and assume either a linear volume dependence or an
exponential volume dependence, we obtain a result forTc /As in the continuum limit which agrees, within errors, with that derived in the
text usingbc from the peak location of the susceptibility.
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of the spatial staple products of link variables aroundU. We
perform this procedure up to 10, 30, and 40 steps on the
93318, 123324, and 183336 lattices, respectively. Mea-
surements are carried out every smearing step on the
93318 and every 2 smearing steps on the other lattices. With
this smoothing procedure the behavior of the effective mass

meff5 ln@W~R,T!/W~R,T11!# ~5!

in terms ofT is much improved, especially for largeR as
shown in Fig. 6.

In the following, we discuss separately the results of the
potentialV(R) at bc for Nt54 and 6, and that forNt53,
because in the former case we are able to extract the coeffi-
cient of the Coulomb term by a straightforward fitting pro-
cedure examining the stability of the fit, while in the latter
case it is hard to fix it solely from the data due to a small
number of the data points caused by the coarseness of the
lattice atbc(9

333) ~see discussions below!.

A. Results atbc„12
334… and bc„18

336…

The potentialV(R) and the overlap functionC(R) are
extracted by a fully correlated fit of Wilson loops to the form

W~R,T!5C~R! exp@2V~R!T#. ~6!

The fitting range is determined by examining carefully
x2/NDF and the stability ofV(R) against the smearing step.
Figure 7 shows the results ofx2/NDF andV(R) versus the

smearing step atR54.0 for the case ofbc(12
334). When

we take the fitting rangeT5325, we find thatx2/NDF&1
andV(R) is quite stable after four smearing steps, while the
choice of the fitting rangeT5224 leads to ax2/NDF much
larger than 1 and a significant variation ofV(R) against the
smearing step. We find that the choice of the fitting range
T5325 leads to a reasonablex2/NDF and stability of
V(R) against the smearing step for allR except 2A6 ~where
x2/NDF takes a little large value;2.5, though the stability is
satisfied!. This stability implies that the contamination from
excited states is negligibly small. Therefore, we take the fit-
ting rangeT5325 for the data atbc(12

334). TheT range
427 atbc(18

336) is determined in a similar way.
We determine the optimum number of smearing steps for

eachR in such a way thatC(R) takes the largest value under
the conditionC(R)<1 which we call the ‘‘optimum smear-
ing step.’’ We note thatx2/NDF is stable (&1) against a
variation of the smearing step whenC(R).1. The optimum
smearing steps thus determined are about 8 atbc(12

334),
and are distributed from 12 to 40 atbc(18

336) ~see Tables
XII and XIII !.2 We take the value ofV(R) at the optimum
smearing step. The systematic error due to the choice of
smearing step is much smaller than the statistical error, be-
cause the value ofV(R) is stable against the smearing step as
mentioned above, and therefore we neglect it in the follow-
ing.

The values forV(R) are summarized in Tables XII and
XIII. Statistical errors are estimated by the jackknife method
with bin size 1. Note that measurements are performed every
200 sweeps. We confirm that the errors are quite stable
against the bin size.

The string tension is determined by fittingV(R) to the
rotationally invariant ansatz

V~R!5V02
a

R
1s latR, ~7!

wheres lat5sa2 is the string tension in lattice units. We take

2We find that the value ofC(R) for R51.0–2.0 on the 183336
lattice is greater than 1 at all smearing steps<40. We have checked
using 20 configurations that more than 60 smearing steps are
needed to getC(R)<1 for theseR’s. Because we do not use these
small loops for the fit of the potential, we stop the smearing steps at
40 times.

TABLE IX. The value ofbc and its jack knife error determined
by the peak location of the susceptibility, and the deconfinement
fraction r at bc , together with the bin size adopted.

bc r Bin size

9333 2.1508~12! 0.757~25! 1000
12333 2.1528~9! 0.771~48! 3000
15333 2.1546~11! 0.894~33! 8000
12334 2.2827~16! 0.774~47! 3000
16334 2.2863~10! 0.765~37! 6000
20334 2.2865~9! 0.742~52! 10 000
18336 2.5157~7! 0.698~34! 3000

FIG. 2. Bin size dependence of the jackknife error ofV.

FIG. 3. Bin size dependence of the jackknife error ofbc .
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into account the correlations amongV(R) at differentR us-
ing the error matrix derived from those forW(R,T). The
fitting ranges we take are

R5A624A2 ~123324!,

R52A324A5 ~183336!. ~8!

These ranges (Rmin – Rmax) are determined by investigating
the stability of fits and the value ofx2/NDF as explained in
the following. As we increaseRmin , the instability of the fit
first appears in the result ofa, while the results ofV0 and
s lat are stable. The error ofa becomes abruptly large as
Rmin increases: e.g., atbc(12

334) with Rmax54A2 fixed,
a50.332(11), 0.295(14), 0.154(101), and20.040~121! for
Rmin5A5, A6, 2A2, and 3.0, respectively. Therefore, we
restrict candidates forRmin to those for which the error of
a is less than 50% of the central value. We find that
x2/NDF is stable and;1 for 5<Rmax,6 @7<Rmax,9 # at

bc(12
334) @bc(18

336)# which we take as the candidates
for Rmax. The fitting range is determined by the condition
thatx2/NDF takes a value nearest to 1 in all the combinations
of the candidates forRmin andRmax. The values ofx2/NDF
are 1.5 and 1.2 atbc(12

334) andbc(18
336), respectively,

for the Rmin andRmax adopted. We have checked that the
results of a and s lat are stable for all candidates of
(Rmin ,Rmax) which satisfy

2.0<Rmin<A6, 5.0<Rmax<6.0 ~123324!,

3.0<Rmin<3A2, 7.0<Rmax<9.0 ~183336!. ~9!

Note that the changes of the fitting ranges ofR at these two
b ’s are consistent with the change of the scale between
b5bc(12

334) andbc(18
336), that is, the ratio of 4 to 6.

The results ofV0, a, s lat , and their jackknife errors are
summarized in Table XIV. The values ofV(R) are plotted in
Fig. 8, where different symbols correspond to different units
of the spatial path of the Wilson loops. The values ofV(R)
obtained from six types of Wilson loops are excellently fitted
to the rotationally invariant form, Eq.~7!. The deviations of
the data atbc(12

334) from the fitted curve are less than 2%

TABLE X. Deconfinement fractionr atbc determined from the
susceptibility in the case of the standard one-plaquette action. Data
of the Polyakov line are taken from a previous simulation by the
QCDPAX Collaboration@8#.

Lattice bc r

12332434 5.691 49 0.790~12!
24333634 5.692 45 0.732~46!
20336 5.8924 0.805~26!
24336 5.892 92 0.786~27!
36334836 5.893 79 0.739~40!

TABLE XI. Simulation parameters for the quark potential mea-
surements.

Lattice size b Thermalization No. of conf.

93318 2.1508 5000 400
123324 2.2827 5000 200
183336 2.5157 10 000 100

FIG. 4. Deconfinement frac-
tion r on the 9333, 12334, and
18336 lattices. Each curve is ob-
tained from the data at the simula-
tion point indicated by filled tri-
angles. The values of bc

determined from the peak position
of the susceptibility are shown by
filled circles.
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and the average of them is about 0.4%. For the data at
bc(18

336), the deviations are at most 1% with an average
of about 0.3%.

We note that the results ofa are consistent with a con-
stant within the errors. The resultinga.0.296 is slightly
larger thanp/12.0.262 derived in a string model@15#. We
also perform fits with the value ofa fixed top/12. Then the
values obtained ares lat50.1527(14) and 0.0667(6) at
bc(12

334) andbc(18
336), respectively. The values for the

ratio Tc /As using these results are consistent with our final
results using the values in Table XIV within one standard
deviation.

B. Results atbc„9
333…

We obtain the potentialV(R) at bc(9
333) by fitting

W(R,T) to the form ~6! with the fitting rangeT5224
~Table XV!. The fits with this fitting range have desirable
properties similar to those at the other twobc’s discussed in
the preceding subsection, a reasonablex2/NDF and stability
of V(R) against the smearing step.

When we make a fit of the potential to the form~7!, we
find that theRmin dependence ofa is stronger than the cases
discussed in the previous subsection, while the fits are quite
stable againstRmax, as in the previous cases. This is due to
the fact that we have only a small number of data points at
small R caused by the coarseness of the lattices at
bc(9

333). Therefore a small deviation from the rotational
invariance atR5Rmin sometimes affects the value ofa siz-

TABLE XII. Potential V(R) and overlap functionC(R) at
bc(12

334) obtained on the 123324 lattice. The optimum smearing
stepNopt is also given.

R Units of R V(R) C(R) Nopt

1.000 ~1,0,0! 0.474 08~35! 0.9997~8! 10
1.414 ~1,1,0! 0.632 07~60! 0.9987~14! 10
1.732 ~1,1,1! 0.721 36~89! 0.9955~23! 10
2.000 ~1,0,0! 0.7811~12! 0.9916~31! 12
2.236 ~2,1,0! 0.8304~11! 0.9880~25! 10
2.449 ~2,1,1! 0.8759~12! 0.9977~29! 8
2.828 ~1,1,0! 0.9472~17! 0.9990~43! 8
3.000 ~1,0,0! 0.9843~27! 0.9857~72! 10
3.000 ~2,2,1! 0.9806~19! 0.9799~48! 8
3.464 ~1,1,1! 1.0574~32! 0.9739~86! 8
4.000 ~1,0,0! 1.1507~15! 0.9779~41! 8
4.243 ~1,1,0! 1.1926~45! 0.982~12! 8
4.472 ~2,1,0! 1.2317~41! 0.976~11! 8
4.899 ~2,1,1! 1.3053~55! 0.971~15! 8
5.000 ~1,0,0! 1.3222~22! 0.9881~63! 8
5.196 ~1,1,1! 1.344 30~55! 0.9925~57! 6
5.657 ~1,1,0! 1.426~11! 0.982~29! 8
6.000 ~1,0,0! 1.479~19! 0.978~53! 8
6.000 ~2,2,1! 1.490 12~78! 0.9966~66! 6

FIG. 5. Units of spatial paths of Wilson loops.

FIG. 6. T dependence ofmeff5 ln@W(R,T)/W(R,T11)# with-
out ~a! and with ~b! smearing on the 123324 lattice. The results
shown in ~b! are obtained with the optimum smearing step ex-
plained in the text.

FIG. 7. Smearing step dependence ofx2/NDF and V(R) at
R54.0 on the 123324 lattice.
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ably. As a result, we are not able to find anRmin region for
which a is stable.

Therefore, we perform two kinds of fits at
b5bc(9

333). In the first fit, we fix the value ofa to the
average value 0.296 of those at the other twobc’s which are
constant within the errors. We set the fit range to be
R5222A5 so that the physicalR range is consistent with
the ranges atbc(12

334) andbc(18
336). As shown in Fig.

9, the fit well reproduces the data even atR,Rmin . In the
other fit, we perform the fit without fixing the value ofa for
the rangesRmin5A2,A3, and 2 andRmax52A5. These val-
ues ofRmin in physical units correspond to those at the other
two bc’s for which the stability ofa is observed.

We take the results of the former fit witha fixed as the
central values ofs lat andV0. The statistical errors are ob-

tained by the jackknife method with bin size 1. We then take
the upper bounds and lower bounds ofV0 ands lat obtained
by the fitsa unfixed, as systematic errors. The results of
V0 and s lat with the errors are given in Table XVI. The
potential data are shown in Fig. 9 together with its fit curve
(a fixed to 0.296!. The deviations from the fit are at most 2%
and the average of them is about 0.5%, which indicates that
the rotational invariance is well restored even at this small
value ofb.

TABLE XIII. The same as Table XII atbc(18
336) obtained on

the 183336 lattice.

R Unit of R V(R) C(R) Nopt

1.000 ~1,0,0! 0.391 87~22! 1.0059~7! 40
1.414 ~1,1,0! 0.508 09~29! 1.0065~10! 40
1.732 ~1,1,1! 0.569 17~44! 1.0059~17! 40
2.000 ~1,0,0! 0.606 93~62! 1.0042~21! 40
2.236 ~2,1,0! 0.638 12~56! 0.9991~19! 36
2.449 ~2,1,1! 0.664 09~68! 0.9991~21! 30
2.828 ~1,1,0! 0.705 97~77! 0.9964~25! 28
3.000 ~1,0,0! 0.7270~12! 0.9983~40! 30
3.000 ~2,2,1! 0.723 20~82! 0.9986~27! 24
3.464 ~1,1,1! 0.7671~14! 0.9970~49! 22
4.000 ~1,0,0! 0.8151~18! 0.9985~67! 20
4.243 ~1,1,0! 0.8340~18! 0.9915~58! 20
4.472 ~2,1,0! 0.8548~17! 0.9933~56! 20
4.899 ~2,1,1! 0.8872~19! 0.9914~65! 18
5.000 ~1,0,0! 0.8929~31! 1.000~11! 16
5.196 ~1,1,1! 0.9089~23! 1.0000~90! 16
5.657 ~1,1,0! 0.9462~28! 0.9894~97! 18
6.000 ~1,0,0! 0.9644~39! 0.993~15! 14
6.000 ~2,2,1! 0.9721~29! 0.992~10! 16
6.708 ~2,1,0! 1.0254~34! 0.982~11! 18
6.928 ~1,1,1! 1.0374~43! 0.984~15! 16
7.000 ~1,0,0! 1.043 34~53! 0.9905~64! 16
7.071 ~1,1,0! 1.0501~18! 0.9983~84! 16
7.348 ~2,1,1! 1.0674~41! 0.995~14! 14
8.000 ~1,0,0! 1.112 16~68! 0.9953~78! 14
8.485 ~1,1,0! 1.154 63~52! 0.9998~84! 16
8.660 ~1,1,1! 1.1714~32! 0.988~14! 18
8.944 ~2,1,0! 1.1743~22! 0.9870~78! 12
9.000 ~1,0,0! 1.178 69~54! 0.9794~86! 14
9.000 ~2,2,1! 1.186 90~47! 0.9975~78! 12

TABLE XIV. Results of V0, a, and s lat at bc(12
334) and

bc(18
336) obtained on the 123324 and 183336 lattices, respec-

tively.

b V0 a s lat

bc(12
334) 0.630~20! 0.295~14! 0.1493~25!

bc(18
336) 0.627~18! 0.297~19! 0.0655~12!

TABLE XV. The same as Table XII atbc(9
333) obtained on

the 93318 lattice.

R Unit of R V(R) C(R) Nopt

1.000 ~1,0,0! 0.548 92~35! 0.9982~5! 4
1.414 ~1,1,0! 0.753 90~63! 0.9984~10! 4
1.732 ~1,1,1! 0.877 52~99! 0.9942~16! 4
2.000 ~1,0,0! 0.9601~13! 0.9981~22! 5
2.236 ~2,1,0! 1.0349~13! 0.9965~21! 4
2.449 ~2,1,1! 1.1049~15! 0.9963~25! 2
2.828 ~1,1,0! 1.2101~22! 0.9945~39! 4
3.000 ~1,0,0! 1.2640~31! 0.9836~55! 5
3.000 ~2,2,1! 1.2685~23! 0.9591~39! 3
3.464 ~1,1,1! 1.3890~41! 0.9736~73! 4
4.000 ~1,0,0! 1.5420~18! 0.9750~34! 5
4.243 ~1,1,0! 1.6001~60! 0.987~12! 4
4.472 ~2,1,0! 1.6634~62! 0.978~11! 4
4.899 ~2,1,1! 1.7785~53! 0.973~13! 3

FIG. 8. Data for the potential and its fitting curves on the
123324 and 183336 lattices. The values ofa are determined from
s5(420 MeV)2. The legends for the symbols represent the units
of spatial paths of Wilson loops shown in Fig. 5.
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We also perform a fit witha fixed to p/12 to find
s lat50.2607(16). The ratioTc /As using this result is con-
sistent with our final result using the value in Table XVI
within the errors.

IV. SCALING PROPERTIES

In Fig. 10, the values ofVphys/Tc are shown as a function
of RaTc , whereVphys5V/a is the potential in physical units.
We note that the data on all the lattices are in excellent
agreement in the wholeRaTc region. This implies scaling of
our potential data in the range ofb values investigated. It
might be emphasized again that the deviation of the data
from the rotationally invariant fit is at most 2% for the
Nt53 and 4 cases and 1% for theNt56 case.

Using the results presented in the preceding section, we
obtain the values ofTc /As on the lattices with finite spatial
volume 93, 123, and 183, which are equal to
(3/Tc)

3'(2.2 fm)3 in physical units:

Tc /As~finite volume!5H 0.660~3!~210
114! ~Nt53!,

0.647~5! ~Nt54!,

0.651~6! ~Nt56!.
~10!

The number in the first brackets is the statistical error and the
second one forNt53 is the systematic error due to uncer-
tainty of the fitting range.

In order to estimate the values ofTc /As in the infinite
volume limit, we first obtain the finite size scaling relations
@7,8#

bc~Nt ,Ns
3!5bc~Nt ,`!20.122~54!Nt

3/Ns
3 ~Nt53!

~11!

and

bc~Nt ,Ns
3!5bc~Nt ,`!20.133~63!Nt

3/Ns
3 ~Nt54!,

~12!

from the data ofbc on theNs /Nt53, 4, and 5 lattices~see
Fig. 11!. We note that the slopes ofbc(Nt ,Ns

3) in Nt
3/Ns

3 in
the two relations are independent ofNt within the errors, as
observed previously in the case of the standard one-plaquette
action @8#. Therefore, we assume the relation~12! also for
Nt56. Then we have

bc~Nt ,`!5H 2.1551~12! ~Nt53!,

2.2879~11! ~Nt54!,

2.5206~30! ~Nt56!.

~13!

TABLE XVI. Results ofV0 ands lat at bc(9
333) obtained on

the 93318 lattice. The numbers in the first brackets are statistical
errors and the second are systematic errors due to uncertainty of the
fitting range.

V0 s lat

0.598~60!(248
157) 0.2554~26!(2110

172 )

FIG. 9. The same as Fig. 8 obtained on the 93318 lattice.
FIG. 10. Vphys/Tc vs RaTc . The constant term in the potential

is fixed so that the potentials have the same value atRaTc51.0.

FIG. 11. Finite size scaling ofbc on Nt53 and 4 lattices. The
solid lines are the results of a linear fit and the dashed lines indicate
the location of the infinite volume limit.
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The values of the string tension atbc(Nt ,`) are esti-
mated assuming an exponential scaling ofAs lat in terms of
b @16#. We obtain

As lat525.26~43!exp@21.828~7!b#, ~14!

by fitting the values ofs lat at bc(9
333), bc(12

334), and
bc(18

336) as shown in Fig. 12. This relation is used to
compute the shifts ins lat from the values atbc(Nt ,Ns

3) to
those atbc(Nt ,`). The values ofs lat@bc(Nt ,`)# are ob-
tained by adding the shifts to those ofs lat@bc(Nt ,Ns

3)# given
in Tables XIV and XVI:

s lat@bc~Nt ,`!#5H 0.2516~26!~11!~2110
172 ! ~Nt53!,

0.1464~25!~6! ~Nt54!,

0.0644~12!~7! ~Nt56!.
~15!

The number in the first brackets is the statistical error, the
second one is the error due to the error in the values of
bc(Nt ,`), and the third one forNt53 is the systematic error
due to uncertainty of the fitting range.

Finally, we obtain

Tc /As ~ infinite volume!5H 0.665~3!~1!~210
115! ~Nt53!,

0.653~6!~1! ~Nt54!,

0.657~6!~4! ~Nt56!.
~16!

The origins of the errors are the same as in Eq.~15!. Our
three values are consistent with a constant within the errors.
A weighted average of the values given in Eq.~16! gives

Tc /As50.656~4! ~17!

in the continuum limit.

Using the experimental values5s lat /a
25~420 MeV! 2,

we obtaina'0.23, 0.18, and 0.12 fm atbc for Nt53, 4, and
6, respectively. Thus the scaling behavior for the ratio
Tc /As starts at least arounda'0.23 fm with the RG-
improved gauge action. From Eq.~17! we also obtain
Tc'276(2) MeV.

Our results~16! are shown in Fig. 13 together with the
results using other actions@4,16#. Our result Tc /As
50.656(4) in the continuum limit is slightly larger than the
value with the standard action 0.629(3)@16#. We also com-
pare our results with those derived from the torelon mass
m(L) which is calculated from Polyakov line correlators on a
lattice of spatial sizeL. Defining s(L)5m(L)/L, we ex-
trapolate the values ofTc /As(L) to the continuum limit.
Then the value ofTc /As is estimated assuming the relation
s5s(L)1p/(3L2) derived in the string model@17#. @We
neglect the corrections due to the shift
bc(V5`)2bc(V5Ns

3).# For a fixed point action@2#, we
obtainTc /As 5 0.617~5! using the data forNt52, 3, and 4
with Ns52Nt . The result is about 6% smaller than our result
~17!. For a tadpole-improved Symanzik action@3#, we obtain
Tc /As 5 0.649~5! using the data forNt53 and 4 with
Ns52Nt . The result is consistent with our result.
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