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Scaling in SU3) pure gauge theory with a renormalization-group-improved action
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We study the scaling properties of the static quark potential and the ratio of the critical temp&atuthe
square root of the string tensian in the SU3) pure gauge theory using a renormalization-group-improved
action. We first determine the critical couplifty on lattices with a temporal extensidh= 3, 4, and 6, and
then calculate the static quark potential at the critical couplings on lattices at zero temperature. We note that the
static quark potentials obtained are rotationally invariant with errors of at most 1-2 % in all three cases, and
that the potential/(R) in physical units scales in the whole regionRfnvestigated. The values ﬁfcl\/g for
the three cases in the infinite volume limit are identical within errors. We estimate the value in the continuum
limit to be T./\Jo=0.654), which is slightly larger than the value in the continuum limit from the one-
plaquette action, 0.629). [S0556-282(97)01813-4

PACS numbdis): 12.38.Gc, 11.15.Ha

I. INTRODUCTION 93x 3, 12x 4, and 18x 6 lattices. The critical temperature
In numerical studies of lattice QCD, it is important to -(l)—]f 'lf\egll\;et:i]cgy;t]fh]e-z/(tae,*) ’O\’rvzge(;ﬁlzé;;;hng]ga;hzxﬁz?;ézn
control and reduce finite lattice spacing effects. Several im- acing at the critical coE lina. Note that the phvsical spatial
proved actions have been proposed for this purpose and’ 9 ping. pny P

some of them have been tested for the scaling behavior of th‘ég";’;‘fj ( 3Narae)3:|cé§r/1_'i_|c{asl w:10erreNa|:s tfgzelinete:]rriiten(;?jr?sy
critical temperaturd . of the finite temperature deconfining of ihe Iatticetin the s actiai directiorﬁ
transition[1-5]. P )

In this work we study the scaling properties of the statics Zggl 358mp::]% rgnsgzﬁg%gi C?fntf::tit:]i?nsitgv\lltgluﬂ;eﬁm:
quark potential and the ratio of the critical temperature to the P

. ; . of B; using finite size scaling analyses. The previous results
square root of the string tgnsmm, Te/\o, in .the.SuS) for the case of the standard one-plaquette action on spatially
pure gauge theory, using a renormalization-group

. . ] large lattices[7,8] indicate that extrapolations from small
(RG)improved actior(6]: lattices with the aspect ratidg/N,<3 result in sizable sys-
tematic errors in the values @ in the infinite volume limit.

SQ"=E co (1x1 loop+c, >, (1x2 loopf, (1)  Therefore, we restric‘F oursglves to lattiddg/N=3 in this
6 paper. We perform simulations on®23, 15X 3, 16X 4,

_ ) and 2Gx 4 lattices for finite size analyses. We reserve the
with ¢;=—0.331 andco=1—8c;, where=6/g> (g is the finite size study oN,=6 lattices for future investigation.
gauge coupling In Eq(1), the loops are defined by the trace  Gauge fields are updated by a Cabibbo-Marinari-Okawa
of the ordered product of link variables and each orientechseudo-heat-bath algorithm with eight hits both for the simu-
loop appears once in the sum. _ _ lations at finite temperatures and at zero temperature dis-

This paper is organized as follows. First we determine the.yssed in the next section. The simulation parameters are
critical coupling B’s for the finite temperature deconfining compiled in Table I. We measure the Wilson loops and
phase transition on*x3, 12x4, and 18x6 lattices in  polyakov line every 10 sweeps. Their expectation values are
Sec. Il. We also perform simulations on®¥23, 15x3,  summarized in Tables ll-VIII(For the deconfinement frac-
16°x 4, and 28x 4 lattices for a finite size scaling study. tion, see below.

Then the quark potentials at the thrgg’s are calculated The values of the critical coupling, are determined as

from smeared Wilson loops on®%18, 12x24, and the peak location of the susceptibiligy of the Z(3) rotated
18 36 lattices, respectively, in Sec. lll. The string tension Polyakov lineQ):

is extracted from the quark potential assuming that the po-
tential takes the form of a sum of a Coulomb term and a
linearly rising potential. In Sec. IV, the scaling behavior of —/02\_ 2

: : x=(Q%—(Q), 2
the quark potential and that of the rafip/\/o are examined.
Finally, the value of the ratid@./ /o in the continuum limit

and in the infinite volume limit is estimated. RePex;{ -3 argP e[ w/3,m),
II. CRITICAL COUPLING B. Q=< ReP, argPe[—n/3,7/3), 3)
In order to determine th_e_ critical couplirgy, fOI: the fmlte RePex = |, arPe[—m —ml3),
temperature phase transition, we perform simulations on 3
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TABLE I. Parameters of finite temperature simulations. TABLE II. Results obtained on the®X 3 lattice.
Lattice size B Sweep Therm. B=2.125 p=2.145 B=2.160
9%x3 2.125 100 000 30 000 1X1 Wilson loop 0.57535®1) 0.582 0712 0.587 5215)
2.145 100 000 30000 1X2 Wilson loop 0.3218@M1) 0.3312@22) 0.339 1728)
2.160 70 000 30000 2X 2 Wilson loop 0.107 28 0.116 0@32) 0.124 3643)
1% 3 2.150 100 000 50 000 Polyakov line 0.067&3) 0.105%40) 0.157%52
2.155 100 000 40 000 Deconfinement fraction  0.4433) 0.66629) 0.89529)
15°%x 3 2.150 180 000 80 000
12x 4 2.250 12 000 2000 TABLE Ill. Results obtained on the X 3 lattice.
2.275 125000 40 000
2.300 10 000 1500 B=2.150 B=2.155
3
16°x4 gssg 542,8 888 28 888 1X1 Wilson loop 0.583 24.6) 0.585 4611)
SFxa 5 .2875 970 000 80 000 1X2 Wilson loop 0.332 7(B1) 0.336 0720)
. 83X . S o000 0 000 rooog  2X2 Wilson loop 0.117 1617) 0.120 9431)
X S o195 256 000 soo0,  Poakov line 0.097¢74) 0.130G38)
' Deconfinement fraction 0.6683) 0.89924)
2.5250 210 000 60 000
2.5375 135000 5000 TABLE IV. Results obtained on the §% 3 lattice.
B=2.150
whereP is the spatially averaged timelike Polyakov line !
patially 9 y 1x 1 Wilson loop 0.583 2(17)
1X2 Wilson loop 0.332 6(B2)
2X 2 Wilson loop 0.116 8@!8)
N Polyakov line 0.086%7)
1 1 ; .
P=—5> =Tr [ U.xb) . (4)  Deconfinement fraction 0.71%)
N X 3 |i=1
TABLE V. Results obtained on the 12 4 lattice.
The results of the susceptibility calculated using the spec- B=2.250 B=2.275 B8=2.300

tral density method9] on the $x3, 12x4, and 18x6 :
lattices are shown in Fig. 1. The results obtained at severdy** 1 Wilson loop 0.608 0891) 0.614 03160) 0.620 0728)
simulation points are consistent with each other within thel*2 Wilsonloop  0.3655@8)  0.3738412)  0.3825%52)
errors and form a clear peak structure. The valuggpfis ~ 2X2 Wilsonloop ~ 0.1444@5  0.1525719)  0.161 7%76)
determined from the data at th@ which is the closest to Polyakov line 0.037@5  0.06513)  0.121316)
B.. The errors are estimated using a single-elimination jackPeconfinement 0.34233) 0.64023) 0.98123)
knife method. The bin size in the jackknife method is deter-fraction

mined by investigating the bin size dependence of the errors
of Q, shown in Fig. 2. We note that the jackknife errors of
the B.'s are stable for a bin size larger than those adopted, as
shown in Fig. 3. The values of th&.'s and their jackknife

TABLE VI. Results obtained on the $& 4 lattice.

errors are summarized in Table IX. p=2.283 p=2.290
There are several alternative definitions @f on finite  1x1 Wilson loop 0.615 67@3) 0.617 59435)
lattices. A popular method is to measure the “deconfinemeni x 2 Wilson loop 0.376 04@®5) 0.378 94069
fraction” r given byr=(3p—1)/2, wherep is the probabil- 2x2 wilson loop 0.154 5(110) 0.157 8111)
ity such that ar§ e (— #/9,%/9), (27/3— w/9,27/3+ =/9), Polyakov line 0.054&80) 0.090630)
or (—2m/3— m/9,— 27/3+ 7/9), and to defings; as a point  peconfinement fraction 0.5839) 0.85327)

wherer takes a given value. Our resultsroés a function of
B for the case of the aspect ratiy/N,= 3 are shown in Fig.
4. See also Tables II-I1X. We find that the deconfinement
fractionr is approximately 0.75 gB. determined from the

TABLE VII. Results obtained on the 3& 4 lattice.

peak location of the susceptibility, as summarized in Table B=2.2875
IX. We note that this fact for the deconfinement fraction is

also realized in the dati#8] obtained for the standard one- 1x1 Wilson loop 0.616 94(b6)
plaguette action on large lattices with high statistisee 1x2 Wilson loop 0.377 9d.1)
Table X). The conditionr =3/4 is the criterion taken in Ref. 2x2 wilson loop 0.156 639
[10] for the determination 0B . (See also the discussions in Polyakov line 0.07467)

Refs.[11,12].) However, the volume dependence of the cor-peconfinement fraction 0.7689)

rections of B; to the infinite volume limit is not known in
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TABLE VIII. Results obtained on the & 6 lattice.

153

B=2.5000 B£=2.5125 B=2.5250 B=2.5375
1Xx1 Wilson loop 0.655 6869 0.657 69111) 0.659 67611) 0.661 64912
1X2 Wilson loop 0.431 66@10) 0.434 53925) 0.437 38%24) 0.440 23024)
1X 3 Wilson loop 0.288 92(B3) 0.291 91233) 0.294 88433) 0.297 87432)
2X2 Wilson loop 0.208 71&7) 0.211 71746) 0.214 73%47) 0.217 78034)
2X 3 Wilson loop 0.109 8887) 0.112 33053 0.114 81854) 0.117 35055)
33 Wilson loop 0.049 77@7) 0.051 48Q54) 0.053 26159 0.055 09659)
Polyakov line 0.03282 0.040921) 0.055922) 0.069121)
Deconfinement fraction 0.5%51) 0.64536) 0.86131) 0.96Q15)

this casé. On the other hand, a scaling relation is well es-93x 18, 12x 24, and 18x36 lattices, respectively. Note
tablished for the thg8. determined from the peak location of that the spatial sizes of the lattice are the same as those for
the susceptibility. Therefore, we concentrate Bp deter-  the finite temperature simulations in all three cases. The ratio
mined from the peak location of the susceptibility for finite N, /N, is also fixed to 2. The simulation parameters are sum-
size scaling analyses. In the following, we denote faeon  marized in Table XI. After thermalization sweeps, we mea-
the $x3, 12x4, and 18x6 lattices aspB:(9°x3),  sure Wilson loops every 200 sweeps. The spatial paths of the
Bc(122x4), andB,(183X 6), respectively. loops are formed by connecting one of the spatial vectors
shown in Fig. 5.

In order to extract the ground-state contribution to the
potential, we adopt the smearing technique proposed in Ref.

We evaluate the string tensions g&=p8.(9°x3), [14]: Each spatial linkU is replaced with an S(3) matrix
Bc(122x4), andB,(18°x 6) on lattices at zero temperature: U e, Which maximizes ReTFU ,,J, with F being the sum

Ill. STRING TENSION

0.005 .
9°x3 12°x 4
0.004 0002 1
+ 0.008 1 X FIG. 1. Susceptibilityy of the
0.001 ¢ Z(3) rotated Polyakov ling) on
0.002 | the $x3, 12x4, and 18x6
lattices. Each curve is obtained
0.001 : : , , , , from the data at the simulation
’ 212 2.14 2.16 0000 = o 226 2.28 2.30 point indicated by the filled sym-
p bol using the spectral density
0.0007 . method. Errors for open symbols
P . are computed by a jackknife
00006 | 18°x6 method combined with the spec-
tral density method.
0.0005 |
x
0.0004 |
0.0003 |
0.0002 : - -
2.50 2,52 2.54

B

The valuer = 3/4 corresponds to the case where the four peaks of the histogrBrindfie complex plane have the same volume fraction
[12], assuming uniformity of the distribution in terms of &dn the confining phase. For thpstate Potts models with largg the value of
B which corresponds to the case wheger(1) peaks have the same volume fraction is shown to yield the correct infinite volume value of
B¢ up to exponentially suppressed correctiph3]. However, in the S(B) gauge theory, uniformity of distribution in terms of &gn the
confining phase is not well satisfied. Therefores 3/4 does not strictly correspond to the case of equal weight of four peaks. Thus, in
contrast with the case @, from the peak location of the susceptibility, no rigorous scaling relation is known fo8 tltetermined from
the deconfinement fraction. In practice, when we ad®ptetermined fronr = 3/4 and assume either a linear volume dependence or an
exponential volume dependence, we obtain a resuﬁl'goir\/E in the continuum limit which agrees, within errors, with that derived in the
text usingB. from the peak location of the susceptibility.
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TABLE IX. The value of 8. and its jack knife error determined

0.005 p by the peak location of the susceptibility, and the deconfinement
. © ¢ O o o fractionr at 8., together with the bin size adopted.
g 0004 . o —
5 ® L] L4 Be r Bin size
& ooos| _ ©
5 S . ° . 93x 3 2.150812) 0.75725) 1000
é 002 ® e LR I T PR ¢ 122x3 2.15289) 0.77148) 3000
% . . 15°% 3 2.154611) 0.89433) 8000
£ o001 | e oK 124 2.282116) 0.77447) 3000
* *18%6 16°x4 2.286310) 0.76537) 6000
0.000 L ‘ ‘ - ‘ ~ 208 4 2.286%9) 0.74252) 10 000
0 2000 4000 6000 800G 10000
bin size [sweep] 183% 6 2.51577) 0.69834) 3000

FIG. 2. Bin size dependence of the jackknife errofbf .
P : smearing step aR=4.0 for the case of3;(12°x4). When

of the spatial staple products of link variables arothdve ~ We take the fitting rang&=3-5, we find thaty*/Npe=1
perform this procedure up to 10, 30, and 40 steps on th@nd_V(R) is quite stable after four smearing gteps, while the
93x18, 12x 24, and 18x 36 lattices, respectively. Mea- Choice of the fitting rang& =2—4 leads to g“/Nps much
surements are carried out every smearing step on thi@rger than 1 and a significant variation ¥(R) against the
93x 18 and every 2 smearing steps on the other lattices. Wit§mearing step. We find that the choice of the fitting range

this smoothing procedure the behavior of the effective mass =3—5 leads to a reasonablg?/Npr and stability of

Meg= IN[W(R, T)/W(R, T+1)]

in terms of T is much improved, especially for large as

shown in Fig. 6.

V(R) against the smearing step for &lexcept 2/6 (where
X2/ Npr takes a little large value- 2.5, though the stability is
satisfied. This stability implies that the contamination from
excited states is negligibly small. Therefore, we take the fit-
ting rangeT=3-5 for the data aB.(122x4). TheT range

In the following, we discuss separately the results of the4—7 at B8,(18°x6) is determined in a similar way.

potential V(R) at 8. for N;=4 and 6, and that foN;=3,

We determine the optimum number of smearing steps for

because in the former case we are able to extract the coeffgachR in such a way tha€(R) takes the largest value under
cient of the Coulomb term by a straightforward fitting pro- the conditionC(R)<1 which we call the “optimum smear-
cedure examining the stability of the fit, while in the latter ing step.” We note thaty?/Npg is stable £1) against a
case it is hard to fix it solely from the data due to a smallyariation of the smearing step wh&@{(R)=1. The optimum

number of the data points caused by the coarseness of tRgnearing steps thus determined are about B.612°x4),
lattice atB.(9%% 3) (see discussions below

A. Results at 8,(12°x 4) and B.(18x 6)

The potentialV(R) and the overlap functiol©(R) are
extracted by a fully correlated fit of Wilson loops to the form

W(R,T)=C(R) exg—V(R)T].

and are distributed from 12 to 40 g(18*x 6) (see Tables
X1l and XIII).2 We take the value of/(R) at the optimum
smearing step. The systematic error due to the choice of
smearing step is much smaller than the statistical error, be-
cause the value &f(R) is stable against the smearing step as
mentioned above, and therefore we neglect it in the follow-
ing.

The values forV(R) are summarized in Tables XII and

The fitting range is determined by examining carefully XIIl. Statistical errors are estimated by the jackknife method
X?/Npe and the stability oV(R) against the smearing step. with bin size 1. Note that measurements are performed every

Figure 7 shows the results g/Npe and V(R) versus the

200 sweeps. We confirm that the errors are quite stable
against the bin size.
The string tension is determined by fitting(R) to the

rotationally invariant ansatz
09°%3
o 0.002 012x4 | a
o o *18°%6
5 o o V(R)=Vo— 5 +0aR, (7)
u O e] R
g o}
5 3 s o ®
o ] . T . S . .
T 0001 e® o whereo = oa“ is the string tension in lattice units. We take
x [ J
x
8 :,0”00030”
* 2We find that the value o€(R) for R=1.0-2.0 on the 18<36
0.000 - . - - - lattice is greater than 1 at all smearing step40. We have checked
2000 4000 6000 8000 10000

0

FIG. 3. Bin size dependence of the jackknife errorgBf

bin size [sweep]

using 20 configurations that more than 60 smearing steps are
needed to ge€(R)=<1 for theseR’s. Because we do not use these
small loops for the fit of the potential, we stop the smearing steps at
40 times.
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10} 10 12°x4
0.8 0.8 |
r r
0.6 | 0.6
04 04
0.2 - y . : 0.2 . " . FIG. 4. Deconfinement frac-
2,12 2.14 2.16 2,18 2.26 2.28 2.30 .

B B tion r on tlje §x3, 12x4, _and
18°x 6 lattices. Each curve is ob-
tained from the data at the simula-

. . . tion point indicated by filled tri-

10 18xe ] angles. The values of 8.
determined from the peak position

08 L ] of the susceptibility are shown by
filled circles.

r

0.6 |

04 |

0.2 . . .

2,50 2.52 2.54

into account the correlations amohg@R) at differentR us-  B.(12°x4) [B.(18°x6)] which we take as the candidates
ing the error matrix derived from those faW(R,T). The for R, The fitting range is determined by the condition

fitting ranges we take are that y°/Npr takes a value nearest to 1 in all the combinations
of the candidates foR, and Ryay. The values ofy?/Npg
R=6-42 (12x24), are 1.5 and 1.2 38,(12°x 4) andB.(18*x 6), respectively,
for the R, and R,5x adopted. We have checked that the
R=23-4\5 (18x36). (8) results of « and o, are stable for all candidates of

(Rmin»Rmay Which satisfy
These rangesR,in — Rmay are determined by investigating

the stability of fits and the value of?/Npg as explained in 2.0<Ryn=<V6, 5.0<Rn=<6.0 (12x24),
the following. As we increas®,,,, the instability of the fit
first appears in the result af, while the results oV, and 3.0<R; <32, 7.0sR,,=9.0 (18x36). (9

ot are stable. The error o becomes abruptly large as
Rmin increases: e.g., g8,(12°x4) with Ryn,,=442 fixed,  Note that the changes of the fitting rangesRoét these two
a=0.332(11), 0.295(14), 0.154(101), artD.04Q121) for ~ B's are consistent with the change of the scale between
Rmin=15, V6, 242, and 3.0, respectively. Therefore, we B=B.(122x4) andB,(18°x 6), that is, the ratio of 4 to 6.
restrict candidates foR, to those for which the error of The results oV, «, o5, and their jackknife errors are
«a is less than 50% of the central value. We find thatsummarized in Table XIV. The values ¥{R) are plotted in
X?INpg is stable and~1 for 5<R,;,<6 [7<Rn<9 ] at  Fig. 8, where different symbols correspond to different units
of the spatial path of the Wilson loops. The valuesv@R)
TABLE X. Deconfinement fraction at 3. determined from the obtained from six types of Wilson loops are excellently fitted
susceptibility in the case of the standard one-plaquette action. Dat@ the rotationally invariant form, Eq7). The deviations of
of the Polyakov line are taken from a previous simulation by thethe data aﬁc(123>< 4) from the fitted curve are less than 2%
QCDPAX Collaboration 8].

TABLE XI. Simulation parameters for the quark potential mea-

Lattice Be r surements.

12?( 24x4 5.691 49 0.79012 Lattice size B Thermalization No. of conf.
24X 36X 4 5.692 45 0.73@6)

20°x 6 5.8924 0.80&6) 93x 18 2.1508 5000 400
243% 6 5.892 92 0.78@7) 122x24 2.2827 5000 200

36°x48x 6 5.893 79 0.73@10) 18°%x 36 2.5157 10 000 100




156

Y. IWASAKI, K. KANAYA, T. KANEKO, AND T. YOSHIE

10.00 -

® Trange=3-5 o ©°
O Trange=2-4 °©
[o]
- o
E% 5.00 o
FIG. 5. Units of spatial paths of Wilson loops. = . o
° o]
0.00 ¢ ° ° P P ° '3 ® L] L ] [ ]
and the average of them is about 0.4%. For the data at 0 5 10 15 20
B.(18°%6), the deviations are at most 1% with an average smearing step
of about 0.3%. 18 - ‘
We note that the results @i are consistent with a con- ® Trange=3-5

stant within the errors. The resulting=0.296 is slightly © Trange=2-4 % %
larger thanw/12=0.262 derived in a string modgl5]. We ] % % {
also perform fits with the value at fixed to w/12. Then the & % %
values obtained arer,=0.1527(14) and 0.0667(6) at S $
B(12°x 4) andB.(18°x 6), respectively. The values for the R {
ratio T,/ /o using these results are consistent with our final SRR
results using the values in Table XIV within one standard
deviation. 114 L . m 5 P

B. Results atB.(93x 3)

We obtain the potentiaV/(R) at B,(9°x3) by fitting
W(R,T) to the form (6) with the fitting rangeT=2-4
(Table XV). The fits with this fitting range have desirable
properties similar to those at the other tyg's discussed in
the preceding subsection, a reasongléNpr and stability
of V(R) against the smearing step.

without smearing

®—®R=1.00
®—aR=1.73
@—@ R=3.00 (off axis)
A—AR=4.90

@ ]

0.50

with smearings

—O®R=1.00
®—aR=1.73
@—@R=3.00 (off axis)
A—AR=4.90

¢ ————o— o

—a————8— 8" —=8

2,00 | (B) 1

150

Mg

1.00

050 ¢—e—0——o—o

3.0 4.0 5.0
T

1.0 20

FIG. 6. T dependence afgz= IN[W(R,T)/W(R,T+1)] with-
out (a) and with (b) smearing on the £X 24 lattice. The results

shown in (b) are obtained with the optimum smearing step ex-

plained in the text.

smearing step

FIG. 7. Smearing step dependence y#Npr and V(R) at
R=4.0 on the 12x 24 lattice.

When we make a fit of the potential to the for), we
find that theR,,, dependence ok is stronger than the cases
discussed in the previous subsection, while the fits are quite
stable againsR,z, as in the previous cases. This is due to
the fact that we have only a small number of data points at
small R caused by the coarseness of the lattices at
B.(9°%3). Therefore a small deviation from the rotational
invariance aR=R,,, sometimes affects the value afsiz-

TABLE XII. Potential V(R) and overlap functionC(R) at
B:(122x 4) obtained on the £X 24 lattice. The optimum smearing
stepN, is also given.

R Units of R V(R) C(R) Nopt
1.000 (1,00  0.4740835  0.99978) 10
1.414 (1,1,0  0.6320760)  0.998714) 10
1.732 (1,1,)  0.7213689  0.995323) 10
2.000 (1,00  0.781112) 0.991631) 12
2.236 (21,0  0.830411) 0.988(25) 10
2.449 (21,1  0.875912) 0.997729) 8
2.828 (1,1,0  0.947217) 0.999G43) 8
3.000 (1,00  0.984327) 0.985772) 10
3.000 (2,2)  0.980619 0.979948) 8
3.464 (1,1,)  1.057432 0.973986) 8
4.000 (1,00  1.150715) 0.977941) 8
4.243 (1,1,0  1.192645) 0.98212) 8
4.472 (2,1,0  1.23174)) 0.97611) 8
4.899 (21,1  1.305355) 0.97115) 8
5.000 (1,00  1.322222 0.988163) 8
5.196 (1,1,)  1.3443055  0.992357) 6
5.657 (1,1,0  1.42611) 0.98229) 8
6.000 (1,00  1.47919 0.97853) 8
6.000 (2,2)  1.4901278)  0.996666) 6
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TABLE XIlI. The same as Table Xl a8.(18°% 6) obtained on

the 18x 36 lattice.
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R Unit of R V(R) C(R) Nopt
1.000 (1,00 03918722  1.00597) 40
1.414 (1,1,0 05080929  1.006510) 40
1.732 (1,1,) 05691744  1.005417) 40
2.000 (1,00 0.6069362  1.004221) 40
2.236 (21,0 0.6381256)  0.999119) 36
2.449 (21,)  0.664 0968  0.999121) 30
2.828 (1,1,0 0.7059777)  0.996425) 28
3.000 (1,00  0.727G12) 0.998340) 30
3.000 (2,2) 07232082  0.998627) 24
3.464 (1,1,)  0.767114) 0.997G49) 22
4.000 (1,00  0.815118) 0.998567) 20
4.243 (1,1,0  0.834G18) 0.991558) 20
4.472 (21,0  0.854817) 0.993356) 20
4.899 (21,0  0.887219) 0.991465) 18
5.000 (1,00  0.892931) 1.00Q11) 16
5.196 (1,1,)  0.908923 1.000q90) 16
5.657 (1,1,0  0.946228 0.989497) 18
6.000 (1,00  0.964439 0.99315) 14
6.000 (2,20  0.972129 0.99210) 16
6.708 (2,1,0  1.025434) 0.98211) 18
6.928 (1,1,)  1.037443) 0.98415) 16
7.000 (1,00 1.0433453)  0.990364) 16
7.071 (1,1,0  1.050118) 0.998384) 16
7.348 2,1,)  1.067441) 0.99514) 14
8.000 (1,00 11121668  0.995379 14
8.485 (11,0 11546352  0.999884) 16
8.660 (1,1,) 1171432 0.98814) 18
8.944 (21,0  1.174322) 0.987G78) 12
9.000 (1,00 1.1786954)  0.979486) 14
9.000 (22,)  1.1869@47)  0.997579) 12

ably. As a result, we are not able to find By, region for

which « is stable.

Therefore,
B=B.(93%x3). In the first fit, we fix the value of to the
average value 0.296 of those at the other #yts which are

we

perform

kinds

fits

1.50
s
Q
1)
@ 100 |
Z
€
=
0.50 |
00 10 20 30 40 50 60
Ra [GeV']
1.50 |
>
[
o
o 100}
S
3
>
0.50 |

00 10 20 30 40 50 60
Ra [GeV']

FIG. 8. Data for the potential and its fitting curves on the
122X 24 and 18x 36 lattices. The values af are determined from
o=(420 MeV)Y. The legends for the symbols represent the units
of spatial paths of Wilson loops shown in Fig. 5.

tained by the jackknife method with bin size 1. We then take
the upper bounds and lower bounds\gf and o|,; obtained
by the fits @ unfixed, as systematic errors. The results of
Vo and o, With the errors are given in Table XVI. The
potential data are shown in Fig. 9 together with its fit curve
(« fixed to 0.296. The deviations from the fit are at most 2%
and the average of them is about 0.5%, which indicates that
the rotational invariance is well restored even at this small
at value of 8.

TABLE XV. The same as Table Xl g8,(93x 3) obtained on

constant within the errors. We set the fit range to bethe $x 18 lattice.

R=2-24/5 so that the physicaR range is consistent with

the ranges aB.(12°x 4) andB.(18*x 6). As shown in Fig. R Unit of R V(R) C(R) Nopt
9, the fit well reproduces the data evenRt R,. In the

other fit, we perfFo)rm the fit without fixing the vgllrlje aof for 1.000 (1,0.0 0.548 9239 0.99815) 4
the rangeR = 2,V/3, and 2 anR,,,=2+/5. These val- 1.414 (1,10~ 0.7539063  0.998410) 4
ues ofR, in physical units correspond to those at the otherl'732 (1.LD 0.877 5299) 0.994216) 4
two B.'s for which the stability ofa is observed. 2.000 (10,0 0.960113) 0.998122) 5
We take the results of the former fit wita fixed as the 2230 (210 1.034913) 0.996521) 4
central values ofr;; and V. The statistical errors are ob- 2.449 (2,19 1104915 0.996325) 2
2.828 (1,2,0 1.210122) 0.994539) 4
TABLE XIV. Results of Vg, a, and o, at 8,(12°x4) and 3.000 (1,0,0 1.264G31) 0.983655) 5
B:(18x6) obtained on the £x 24 and 18x 36 lattices, respec- 3 oo 221  1.268523) 0.959139) 3
tively. 3.464 (1,1,)  1.389a41) 0.973673 4
B Vv 4.000 (1,0,0 1.542@198) 0.975@34) 5
0 4.243 (1,1,0 1.600160) 0.987112) 4
,8c(123><4) 0.63020) 0.29514) 0.149325) 4.472 (2,1,0 1.663462) 0.97811) 4
B(18%6) 0.62719) 0.29719 0.0655%12) 4.899 (2,1,)  1.778553) 0.97313) 3
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FIG. 9. The same as Fig. 8 obtained on %48 lattice.

We also perform a fit witha fixed to #/12 to find
01=0.2607(16). The ratid./\/o using this result is con-

FIG. 10. Vpys/ T¢ Vs RaT;. The constant term in the potential
is fixed so that the potentials have the same valueai.=1.0.

3\ _ _ 303 _

sistent with our final result using the value in Table XVI Be(Nt,Ng)=Bc(N,0) —0.13363)N/Ng - (Ny=4),

within the errors. (12
IV. SCALING PROPERTIES from the data of8. on theN¢/N;=3, 4, and 5 latticegsee

_ ~ Fig. 1. We note that the slopes @.(N;,N2) in NJ/NJ in
In Fig. 10, the values o,/ T, are shown as a function the two relations are independentMf within the errors, as
of RaTe, whereV, = V/a is the potential in physical units. observed previously in the case of the standard one-plaquette
We note that the data on all the lattices are in excellengction[8]. Therefore, we assume the relatitt?) also for

agreement in the wholRaT, region. This implies scaling of N,=6. Then we have

our potential data in the range ¢f values investigated. It

might be emphasized again that the deviation of the data _

from the rotationally invariant fit is at most 2% for the 2.155112)  (Ni=3),

N,=3 and 4 cases and 1% for thg=6 case. Be(N;,0)=14 2.287911) (N;=4),
Using the results presented in the preceding section, we 2.520630) (N,=6).

obtain the values of ./\/o on the lattices with finite spatial

volume ¢, 12 and 18, which are equal to

(3T)3~(2.2 fm)? in physical units: 2160 ! ‘
! N=3
0.6603)(Z19 (N=3), '
o 2.155 |
T./Jo(finite volume =4 0.6475) (N;=4), ;
0.65%6) (N;=6). ¢
10 2150 |
The number in the first brackets is the statistical error and the
second one folN;=3 is the systematic error due to uncer- 2145
tainty of the fitting range. '
In order to estimate the values &/ /o in the infinite
volume limit, we first obtain the finite size scaling relations
[7.8]
2.290
Be(Ni N3 = Be(Ny,) —0.12254NNS (N, =3)
11
B, 2285
and
TABLE XVI. Results of V, and oy, at B:(9°X 3) obtained on 2,280 :
the 9°x 18 lattice. The numbers in the first brackets are statistical i
errors and the second are systematic errors due to uncertainty of the !

000 0.0t 0.02_ 003 0.04

(13

fitting range. NE/Ns®
Vo Tlat . . . _ .

FIG. 11. Finite size scaling g8, on N;=3 and 4 lattices. The
0.59860)( " 34 0.255426)(* 12 solid lines are the results of a linear fit and the dashed lines indicate

the location of the infinite volume limit.
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® RG improved action

© standard action

A (1,2) Symanzik action

> (2,2) Symanzik action

¥ {1,2) Symanzik action {tadpole improved) |
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FIG. 12. Square root of the string tensiafary at 8. on the FIG. 13. T /o vs 1N All symbols represent the values in
finite volume lattices simulated together with its fitting curve. the infinite volume limit. The errors for our data in the cases of

N,=4 and 6 are statistical, while those ff=3 include the sys-
The values of the string tension @ (N,,) are esti- tematic error due to uncertainty of the fitting range.
mated assuming an exponential scalingyef, in terms of

B [16]. We obtain Using the experimental value= o,;/a®=(420 MeV)?,
we obtaina=0.23, 0.18, and 0.12 fm &, for N;=3, 4, and
Vo= 25.2643)exd —1.8287) 8], (14 6, respectively. Thus the scaling behavior for the ratio

T./\Jo starts at least around~0.23 fm with the RG-
improved gauge action. From Ed17) we also obtain
T.~276(2) MeV.

Our results(16) are shown in Fig. 13 together with the
results using other action§4,16]. Our result T./\o
=0.656(4) in the continuum limit is slightly larger than the
value with the standard action 0.629(R)6]. We also com-

by fitting the values ofr, at 8.(9°% 3), B.(12°x 4), and
B.(18%x6) as shown in Fig. 12. This relation is used to
compute the shifts i, from the values a]BC(Nt,Ng) to
those atB:(N;,»). The values ofo ] B:(N;,>)] are ob-
tained by adding the shifts to those®f{ B.(N; ,Ng)] given

in Tables XIV and XVI:

+72 _ pare our results with those derived from the torelon mass

0.251626/(1D(-110 (Ni=3) (L) which is calculated from Polyakov line correlators on a
01 Be(Ny,2)]=1 0.146425)(6) (N;=4), lattice of spatial sizel. Defining o(L)=u(L)/L, we ex-
0.064412)(7) (N,=6). trapolate the values of./\/o(L) to the continuum limit.

(15)  Then the value off ./ /o is estimated assuming the relation
_ _ _ o o=o(L)+ m/(3L?) derived in the string moddl17]. [We

The number in the first brackets is the statistical error, thgyeglect  the  corrections due to  the  shift
second one is the error due to the error in the values OBC(VZOO)_BC(V: Nﬁ).] For a fixed point actior[2], we

gtcj(eNttdolj)r{caelzrr‘g;[rr:g/ts;r;jhg?ﬁt{ﬁgtr_ai;: the systematic error ol_atainTC/\/E = 0.6175) using the data foN,=2, 3, and 4
. . : with Ng=2N;. The result is about 6% smaller than our result
Finally, we obtain (17). For a tadpole-improved Symanzik actif8], we obtain
0.6653)(1)(*13) (N=3), T./\Jo = 0.6495) using the data folN,=3 and 4 with
Ns=2N,. The result is consistent with our result.
T./\Jo (infinite volume=4 0.6536)(1) (N;=4),

0.6516)(4 N;=6).
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