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An approximation is used that permits one to explicitly solve the two-point Schwinger-Dyson equations of
the U(N) lattice chiral models. The approximate solution correctly predicts a phase transition for dimensions
d greater than two. Ford<2, the system is in a single disordered phase with a mass gap. The method
reproduces knownN5` results well ford51. For d52, there is a moderate difference withN5` results
only in the intermediate coupling constant region.
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I. INTRODUCTION

The generation of a mass gap in two-dimensional spin
systems is believed to be analogous to the generation of a
nonzero string tension in four-dimensional non-Abelian
gauge theories@1,2#. Of particular interest are thed52 ma-
trix chiral models. They are asymptotically free and have
properties similar tod54 gauge theories@1–3#. A solution
to theN5` chiral models has not yet been found. In con-
trast, it is straightforward to solve the O(N) vector spin mod-
els asN→`.

The degrees of freedom of the O(N) models are
N-component vectorsv(x) assigned to the sitesx of a lattice
satisfying the constraintv(x)•v(x)51. If it were not for this
constraint, the O(N) vector model would be a theory ofN
noninteracting particles. Thus the effect of the constraint is
to introduce interactions. Due to these interparticle forces, an
interesting picture of mass generation arises@3#. In terms of
bare quanta, the interactions are repulsive and of order 1/N.
The quantum vacuum involves fluctuations in which any one
of theN quanta are created and destroyed. From a Euclidean
viewpoint, such events correspond to particle loops, and so
the vacuum is like a gas of closed loops. Such loops are
small and dilute in strong coupling since the mass of a par-
ticle is large. As one moves to weaker couplings, the mass
decreases and the loops become larger and more plentiful. If
interactions could be turned off, the mass would eventually
vanish and a phase transition would occur. For dimensions
<2, two large closed loops generically intersect. Because
there are repulsive forces at such intersection points, a par-
ticular loop feels a pressure from the gas of surrounding
loops. Ford<2 andN>3, this pressure prevents any par-
ticular loop from becoming too large and generates an
interaction-induced mass which never vanishes. By these
means, the vector models avoid a phase transition when
d<2. The models remain in the strong coupling phase in
which the particles are massive and the system is disordered:

Correlation functions fall off exponentially with distance. In
the largeN limit, the vector model is exactly solvable: after
interactions are incorporated into an effective coupling, par-
ticles are free. Ford<2, the effective coupling never attains
a value sufficient to produce a phase transition to a massless
spontaneously broken phase.

The picture for the matrix chiral models is qualitatively
the same@3#. Forces at the intersection of particle loops are
repulsive, as can be seen from Fig. 6 of@3#. However, no
effective free-theory formulation of the model has been de-
rived, although an exactS matrix has been proposed@4,5#.
For SU(N), the spectrum isMn5Msin(np/N)/sin(p/N),
for n51,2, . . . ,N21. Interestingly, asN→`, theS matrix
becomes the identity matrix to leading order in a 1/N expan-
sion. This suggests that perhaps the largeN limit of the
SU(N) chiral model is a free theory of particles.

II. THE APPROXIMATE LARGE N METHOD

In this work, we obtain an approximate solution for the
chiral models. Correlation functions and the mass gap are
obtained. Because the method is similar to the one used in
the vector models, it is useful to quickly review the vector
models in the largeN limit. The action A for the
d-dimensional U(N) vector model is

A5bN(
x,D

v* ~x!•v~x1D!, ~1!

wherev(x) is anN-dimensional complex vector satisfying
v* (x)•v(x)51, b is proportional to the inverse coupling
constant, and the sum overD is over the 2d nearest neighbor
sites, i.e.,D is 6e1, 6e2, . . . , 6ed , whereei is a unit
vector in thei th direction. The U(N) model is equivalent to
the O(2N) vector model.

The lattice Schwinger-Dyson equation for the two-point
function is
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dxy5^v* ~x!•v~y!&2b(
D

^v* ~x!•v~y1D!&

1b(
D

^v* ~x!•v~y!v* ~y1D!•v~y!&. ~2!

Since the four-point function enters in the last term, the vec-
tor model is not a free theory. However, largeN factorization
allows the four-point function to be expressed in terms of
two-point functions via

^v* ~x!•v~y!v* ~y1D!•v~y!&

5^v* ~x!•v~y!&^v* ~y1D!•v~y!&1O~1/N!. ~3!

The nearest neighbor expectation,^v* (y1D)•v(y)&, is in-
dependent ofy. A linear equation for̂ v* (x)•v(y)& is thus
obtained when Eq.~3! is substituted in Eq.~2!. Conse-
quently, theN5` vector model is a free theory governed by
an effective coupling

be f f5
b

112db^v* ~0!•v~D!&
. ~4!

For d<2, no phase transition is encountered asb→`: The
mass gap is a decreasing function ofbeff but the effective
coupling does not reach the critical value at which the mass
gap vanishes. The theory remains in the strong coupling dis-
ordered phase. Ford.2, a phase transition occurs to a weak
coupling spin-wave phase in which Goldstone bosons appear
due to the breaking of the global U(N) symmetry. This is in
agreement with expectations@6,7#.

The actionA of the matrix chiral model is

A5bN(
x,D

Tr@U†~x!U~x1D!#, ~5!

whereU(x) is a unitary matrix in a groupG. The chiral
model is the nonlinear effective low-energy theory of the
massless quark model involvingN flavors. For this reason
when d54, G5SU(N) is often used withN52 or N53.
The matricesU(x) can be regarded as the Goldstone bosons
of spontaneous broken chiral SUL(N)3SUR(N).

In what follows, we treat the caseG5U(N). The
Schwinger-Dyson equation for the two-point function is

dxy5
1

N
^Tr@U†~x!U~y!#&2b(

D

1

N
^Tr@U†~x!U~y1D!#&

1b(
D

1

N
^Tr@U†~x!U~y!U†~y1D!U~y!#&. ~6!

Equation ~6! is not useful in weak coupling whereb be-
comes large because the last two terms individually become
sizable. Since the left-hand side remains constant, a delicate
cancellation between the two takes place.

Equation~6! is similar to Eq.~2!, except that matrix prod-
ucts arise instead of dot products. Consequently, the four-
point function which enters in Eq.~6! cannot be factorized in
the largeN limit. However, one may consider the vector-
model-like replacement

1

N
^Tr@U†~x!U~y!U†~y1D!U~y!#&

→a
1

N
^Tr@U†~x!U~y1D!#&1b

1

N
^Tr@U†~x!U~y!#&,

~7!

wherea andb are arbitrary functions ofb, whose choices
are at one’s disposal.

It is important to use values ofa andb which reproduce
the leading orders of perturbation theory, since one is inter-
ested in taking the continuum limit for which the coupling
g goes to zero. WritingU(y)5exp@iF(y)# and expand-
ing about the identity matrix, one findsU(y)U†(y
1D)U(y)5112iF(y)2 iF(y1D)1•••. Hence, if
U(y)U†(y1D)U(y)→aU(y1D)1bU(y) then one needs

a5211O~g2!, b521O~g2!. ~8!

Alternatively, one can perform an operator product expan-
sion. Write

U~y!U†~y1D!U~y!52U~y!2U~y1D!

1@U~y1D!2U~y!#U†~y1D!

3@U~y1D!2U~y!#. ~9!

Note that the third term is a higher dimensional operator
since it involves two derivatives. One again concludes that
a andb have the perturbative expansions of Eq.~8!.

After the substitution in Eq.~7! is made, one obtains

1

N
^Tr@U†~x!U~y!#&

5
dxy

~112dbb!
1beff(

D

1

N
^Tr@U†~x!U~y1D!#&, ~10!

where

beff5
b~12a!

112dbb
. ~11!

One advantage of the substitution in Eq.~7! is that the effec-
tive couplingbeff remains finite asb→` so that the corre-
sponding equation for the two-point function does not in-
volve the above-mentioned delicate cancellation between
large terms.

One possibility is to choose

a521, b52GD , ~12!

where the average linkGD is

GD[
1

N
^Tr@U†~y1D!U~y!#&. ~13!

The choice in Eq.~12! produces the correct result in Eq.~7!
when y5x. As a side remark, selectinga50 and b5GD

yields the two-point function of the vector model in the large
N limit.
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The equation for two-point function G(x,y)
[^Tr@U†(x)U(y)#&/N in Eq. ~10! is linear. The solution is

G~x,y!5
1

112dbbE2p

p ddp

~2p!d
exp@ ip•~y2x!#

122beff( i51
d cos~pi !

.

~14!

If one requires thatG(x,y)51 for y5x, then the self-
consistency condition

15
1

112dbbE2p

p ddp

~2p!d
1

122beff( i51
d cos~pi !

~15!

must be satisfied.
A more detailed analysis reveals that the substitution in

Eq. ~7! with a and b given in Eq. ~12! is guaranteed to
reproduce theO(1) andO(g2) terms of correlation functions
when a perturbative expansion of the theory is performed.
Furthermore, Eqs.~12! and ~14! lead to qualitatively the
same results as in the vector model case: Ford<2, the chiral
model is in the disordered phase and there is a mass gap for
all values ofb. Ford.2, a transition occurs at a finite value
of b to a phase in which global symmetries are spontaneous
broken. This is in agreement with expectations@1–3#.

III. THE ONE-DIMENSIONAL CASE

Whend51, the chiral model can be solved exactly. So-
lutions are known for the continuum and lattice cases at fi-
nite N and forN5` @8,9#. This case allows one to test the
approximate largeN method. Whend51, solving Eqs.~7!
and ~14! gives

G~x,y!5S 12A124l2

2l D uy2xu

, ~16!

where

l5
~12a!b

112bb
5beff . ~17!

As a consequence of the self-consistency condition in Eq.
~15!, one also has

b5
211A114b2~12a!2

2b
. ~18!

For largeb, the mass gapm is

mL215
1

2~12a!b
2

1

48b2~12a!2
1•••, ~19!

whereL21 is the lattice spacing, which is often denoted by
a.

The continuum limit is obtained by takingb→` and
L21→0 with bL51/(gc

2N) fixed. Here,gc is the con-
tinuum coupling constant. Hence,

m5
gc
2N

4
. ~20!

This is the exactd51 result for the U(N) gauge theory.

IV. THE TWO-DIMENSIONAL CASE

Whend52, the approximate largeN method leads to a
mass gap which is exponentially small asb→`:

mL21'exp@22pb~12a!#. ~21!

For a521, m'Lexp@24pb#. It is remarkable that an ex-
ponentially suppressed mass gap is obtained, given that the
substitution in Eq.~7! is guaranteed only to reproduce per-
turbative results to orderg2. However, the mass gap in Eq.
~21! for a→21 is not as suppressed as the result obtained
from perturbative renormalization group analysis, which
givesm'Lexp@28pb# @10#.

One possibility to overcome this discrepancy is to permit
the coefficientsa andb in Eq. ~7! to depend on the distance
betweenx and y. For weak coupling,a;21 at short dis-
tances but at large distancesa;23. However, one would
have to find some theoretical justification for this depen-
dence ofa on uy2xu.

V. THE MATCHING OF BOTH STRONG
AND WEAK COUPLING

Although the values ofa andb in Eq. ~12! produce good
results for weak couplings, they fail to do so in the strong
coupling region: For example, the mass gap behaves as
2 ln(2b)1O(b) instead of2 ln(b)1O(b). To obtain re-
sults which are accurate in both strong and weak coupling,
we have found that

a52~GD!2, b5GD1~GD!3 ~22!

works reasonably well. These values ofa andb satisfy the
weak coupling limits in Eq. ~8! since GD51
2g2N/(4d)1O(g4). In addition, one can show that they
reproduce correlation functions correctly toO(g2) in a per-
turbative expansion. It turns out that Eq.~22! produces the
correctN5` strong coupling expansions for the mass gap
and GD to order b3. Since Eqs.~14! and ~22! give good
results in both the strong and weak coupling limits, there is a
reasonable chance that results are good throughout the entire
coupling constant region. The idea of weak-strong coupling
interpolation recently was used successfully in an approxi-
mate analytic computation of the 011 glueball mass in the
SU~3! gauge theory@11#.

To examine how well Eq.~22! works for intermediate
couplings, one can use the solvabled51 case as a guide.
When N5`, GD5b for b<0.5 andGD5121/(4b) for
b>0.5 @8,9#, and the two-point function is given by

G~x,y!5~GD! uy2xu. ~23!

Using the approximate largeN method with Eqs.~18! and
~22!, one obtains the following equation forGD :

~GD!41
GD

b
51. ~24!

For the approximate largeN method, the two-point correla-
tion function is again given by Eq.~23! but with GD deter-
mined from Eq.~24!. Hence the difference between the exact
and approximate results is governed byGD . Figure 1 dis-
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playsGD . The approximate largeN method yields values of
GD which are slightly less than the exactN5` value. The
difference reaches a maximum of 6.7% nearb50.6. Very
good agreement is, of course, obtained forb small or large.

The latticeN5` d52 chiral model has not been exactly
solved, but Monte Carlo data are available for finite values of
N and there exist analytic weak and strong coupling results
@12–14#. In Fig. 2, we compare the approximate largeN
method for the values ofa andb in Eq. ~22! versus weak and

strong coupling results. For the average linkGD , displayed
in Fig. 2~a!, the approximate method agrees well with the
11th-orderN5` strong coupling series of@3# for b,0.25. It
also agrees the weak couplingN5` series,
121/(8b)21/(256b2)1••• for largeb, but in the interme-
diate coupling region it is below both curves and below the
U~2! Monte Carlo data@15#. Since the data for U~2! do not
differ greatly from the data for SU~10! of @14#, the dots in
Fig. 2~a! are probably close to theN5` results. By allowing
a andb to be a polynomial inGD of sufficient high order, the
approximate largeN method can be adjusted to produce
more terms in the strong coupling series. When this is done,
agreement for the average link is obtained to less than 5%
throughout the entire coupling constant region.

From the mass gap,mL21[ f (g), one can obtain a lattice
b function b(g) ~not to be confused with the inverse cou-
pling! via 2b(g)/g5 f /@g(] f /]g)#. In Fig. 2~a!, the ap-
proximate method is compared to the strong coupling result
@3# and to perturbation theory for which
2b(g)/g5g2N/(16p)1 . . . . Excellent agreement is ob-
tained forb,0.25. In weak coupling, the approximate large
N method gives results for2b(g)/g which are twice as
large because the mass gap is exponentially suppressed only
by half as much as the renormalization group result.

VI. CONCLUSION

In this work, we have used a vector-model-like method to
linearize the lattice Schwinger-Dyson two-point function in
the U(N) chiral model. Ford<2, the approximate method
produces no phase transition. This is in agreement with ex-
pectations for the finiteN case: The system is believed to be
in the disordered phase and to have a mass gap for all cou-
plings. ForN5`, a phase transition occurs@8,9,16#, even
though the system is disordered on both sides of the transi-
tion. For d<2, our approximate method does not see this
largeN transition, probably because the transition is rather
mild and because it occurs in the intermediate coupling con-
stant region, where the method is least accurate. Ford.2, a
phase transition occurs for allN and is expected to be first
order @7,17#. The approximate method correctly sees the
transition and correctly predicts the nature of the phases:
symmetry breaking with massless Goldstone bosons at weak-
ing coupling, while a disordered phase with a mass gap in
strong coupling. Thus the method gives what-is-believed-
to-be the correct qualitative phase diagram in all dimensions
for the finiteN case. By adjusting the method to agree with
strong coupling expansions, the approximate method gives
reasonably good results throughout the entire coupling con-
stant regime for the average link and mass gap.

It is of interest to adapt the method to lattice gauge theo-
ries. The Schwinger-Dyson equations lead to relations
among Wilson loops@18–20#. A non-self-intersecting loop is
related to loops modified at a link by the addition of
plaquettes in the 2d directions minus loops modified by the
addition of 2d ‘‘twisted plaquettes.’’ The structure of the
equation is similar to Eq.~6! in the sense that the inverse
coupling b multiplies the two terms and there is a sizable
cancellation between the two terms in weak coupling. The
analog approximate largeN method involves replacing each
twisted-plaquette term by an untwisted loop and an original

FIG. 1. The average linkGD vs b for theN5` d51 case.

FIG. 2. ~a! The average linkGD vs b for theN5` d52 case.
The dots areN52 Monte Carlo data.~b! The b function
2b(g)/g vs the inverse couplingb. TheN5` perturbative term
comes from renormalization group analysis.
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loop multiplied, respectively, by coefficientsa and b. We
have three comments on this approximate approach to large
N for lattice gauge theories.~i! Although Wilson loops are
related to Wilson loops after the substitution of the twisted-
plaquette terms is made, there appears to be no way to find
an analytic expression for Wilson loops whendÞ2. This
problem is probably related to the lack of an analytic de-
scription of free lattice string theory.~ii ! When d.2, the
method appears to depend on the link on which the
Schwinger-Dyson equations are derived. This implies that
certain consistency issues must be addressed.~iii ! When
d52, the approximation can be consistently applied to the
lattice gauge theory. For a U(N) gauge group, the results are
identical to those of the U(N) chiral model. The value of a
non-self-intersecting Wilson loopWL of areaA is

WL5S 12A124l2

2l D A, ~25!

where l is given in Eq. ~17!. The choice
a52(^TrUP&/N)2 and b5(^TrUP&/N)1(^TrUP&/N)3,
where ^TrUP&/N is the average plaquette@these values of
a and b are the gauge-theory analog of Eq.~22!#, leads to
good results. The self-consistency condition becomes
(^TrUP&/N)41^TrUP&/(Nb)51. The value of the Wilson
loop then becomes

~^TrUP&/N!A. ~26!

In the exact largeN limit, the Wilson loop value is given by
Eq. ~26! with ^TrUP&/N5b for b<0.5 and
^TrUP&/N5121/(4b) for b>0.5. Thus the discrepancy be-
tween the approximate and exact largeN results is the same

as in thed51 chiral model: The error is at most 6.7% near
b50.6 and there is good agreement in the strong and weak
coupling regimes. When a continuum limit is taken, the exact
continuum solution is obtained.

The picture of mass-gap generation for spin models in
d<2 has an analogy for gauge models ind<4. In the lattice
gauge theory, the strong coupling expansion involves sums
over closed surfaces. From a Euclidean viewpoint, such sur-
faces can be thought of as the propagation of strings. When
two surfaces overlap, there are repulsive forces. In fact, the
surface-surface interactions involve potentials which are ex-
actly the same as in the chiral-model case@3#. The quantum
vacuum involves fluctuations in which strings appear, ex-
pand, contract, and self-annihilate. This creates a medium in
which any individual string must propagate. Whend<4, two
large surfaces generically intersect, and since forces are re-
pulsive, the medium creates a pressure which inhibits strings
from becoming large. If this mechanism is sufficient robust
asb increases andg2 becomes smaller, then the string ten-
sion will remain nonzero in the continuum limit. The same
mechanism can inhibit the spanning surface of a Wilson-loop
computation from becoming large. Hence one arrives at a
possible physical picture for confinement and mass-gap gen-
eration ind<4 gauge theories. The idea fails ford.4 be-
cause two two-dimensional surfaces do not generally inter-
sect.
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