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Physics from Breit-frame regularization of a lattice Hamiltonian
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We suggest a Hamiltonian formulation on a momentum lattice using a physically motivated regularization
using the Breit frame which links the maximal parton number to the lattice size. This scheme restricts parton
momenta to positive values in each spatial direction. This leads to a drastic reduction in the number of degrees
of freedom as compared to a regularization in the rest fréreater at zero momentymWe discuss the
computation of physical observables such(iashe mass spectrum in the critical regidii, structure and
distribution functions(iii) the S matrix, and(iv) finite temperature and finite density thermodynamics in the
Breit-frame regularization. For the scal@+1)-dimensional¢* theory we present numerical results for the
mass spectrum in the critical region. We observe scaling behavior for the mass of the ground state and for some
higher-lying states. We compare our results with renormalization group resultSdehéuand Weisz. Using
the Breit frame we calculate, for QCD, the relation betweenié tensor, structure functioripolarized and
unpolarized, and quark distribution functions. We use the improved parton model with a scale dependence and
take into account a nonzero parton mass. In the Bjorken limit we find the standard relations bEtween
F,, g,, and the quark distribution functions. We discuss the role of helicity. We present numerical results for
parton distribution functions in the scalar model. For #femodel we find no bound state with internal parton
structure [S0556-282(197)03015-4

PACS numbds): 11.15.Ha, 12.38.Gc, 13.60.Hb

I. INTRODUCTION which play a role in deep-inelastic scatterifiJS). We have
introduced a momentum lattice based on the Breit frame. It is
The standard model of strong interaction physiQ<D) centered around the proton momentgim the case of DIS
has been confi_rmed very successf_ully through compari§0proton scattering The scheme restricts parton momenta to
between experiment with perturbative and nonperturbativgositive values in each spatial direction and links the maxi-
(mostly lattice calculations. There are a number of observ-mal parton number to the lattice size. This leads to a drastic
ables, which need to be computed nonperturbatively. Ifeduction in the number of degrees of freedom as compared
some cases nonperturbative computational progress seemgsy regularization in the rest frame with the center at zero
very hard to come by. Let us mention the .followmg €X- momentum. We have applied the scheme to the sd8lar
?mpl;as.(:? S maftrtlﬁ for h?dron-had:pn lscat:erm(jzl? strluc- f+1)-dimensional</>4 (¢3.,) model. We have computed the
ure functions of the prg on, in particuar at smatl Valu€s ol qq spectrum and extracted physics close to the critical line
the Bjorken variablexg; (c) excited states in the hadron :
] X ; (second order phase transitjoWe have found very good
mass spectrum(d) finite density thermodynamics of had- . L A
ronic matter. agreement with the predictions of the renormalization group
by Luscher and Weisfl]. To our knowledge, critical behav-

In deep-inelastic lepton-hadron scatteri(@lS), one is . . : .
interested in structure functions and their interpretation in® Of @ (3+1)-dimensional field theory has been extracted
for the first time from a Hamiltonian formulation.

terms of distribution functions. In order to define distribution k '

choices are the rest frame, the infinite momentum framelively small numerical effortdiagonalization of matrices on
light-cone coordinates, or the Breit frame. Conventionally,the order of 50 makes us cautiously optimistic that other
the infinite momentum frame and light-cone coordinatesPhysical observables or other models could be treated as
have been used. The Breit frart@haracterized bg,=0) is  well. In this work we want to elaborate on these ideas. In
a particular frame in the sense tHat= \—q?, the momen-  Sec. Il we present the Hamiltonian formulation in the Breit-
tum of the exchanged photon is the resolution ability of theframe regularization. We explain physical and mathematical
photon to resolve the proton structure. This does not hold ifieasons for the method working. The calculation of the mass
any other frame withgy+#0. spectrum for theps. , model with numerical results near the
The Breit frame is not only conceptionally attractive, but critical line are presented in Sec. lll. In Sec. IV we discuss
we suggest here that it is useful also for nonperturbativéhe structure functions and distribution functions in the Breit
numerical calculations. We have introduced a new regularframe. For QCD we compute analytically the relation be-
ization scheme for a lattice Hamiltonian, based on the Breitween the hadronic tensW*”, the structure function§,,
frame. Its construction is guided by the kinematical variables=», g, g», and the quark distribution functions. We present
numerical results for the parton distribution function for the
scalar modelp3, ;. The usefulness of this method eventually
*Electronic address: hkroger@phy.ulaval.ca depends on its potential in numerical calculations of gauge
"Electronic address: nscheu@phy.ulaval.ca theories. Thus the Breit-frame regularization for lattice gauge
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theories is given in Sec. V. In Sec. VI, we discuss advantagegies to cope with the problem of a large number of degrees
of the Breit-frame regularization for the purpose to computeof freedom: E.g., Wilson and co-workers have pursued the
the S matrix of a scattering reaction from a Hamiltonian idea of the renormalization group, i.e., thinning out degrees
lattice formulation. Finally, the computation of thermody- of freedom and constructing a nefrenormalized Hamil-
namical observables at finite temperatare finite density  tonian with a sufficiently small number of effective degrees
from the Breit frame is the topic of Sec. VII. A summary is of freedom. Lischer[3] and Koller and van Badl4] have
given in Sec. VIII. discovered that much physics of the low-lying QCD spec-
trum can be described by zero-momentum dynamics plus a
Il. FORMALISM suitable treatment of the remaining degrees of freedom. The
idea of the ex[55] method[5] is that the linked cluster struc-
ture underlying a ground state in a many-body theory can be
Considering nonperturbative methods in many-bodygenerated by a suitable operafrand it automatically guar-
physics, statistical mechanics, and field theory, most succesgntees the correct infinite volume singularity of the ground
ful technigues are sum-rule techniques and lattice fieldtate energy. In the applications of the Kogut-Susskind
theory in the Lagrangian formulation using Monte Carlo Hamiltonian to QCD[2], several groups have developed
methods to compute functional integrals. Although there is &lever ways to take into account the high number of
Hamiltonian formulation of lattice field theory, i.e., the plaquettes and closed loop variables, e.g., via the
Kogut-Susskind Hamiltonian in lattice gauge thedi®], t-expansion method by Horn and co-work8i. Finally, an
Hamiltonian methods have not been mainstream in the doadvantage of the regularizédiscretized light-cone Hamil-
main of nonperturbative methods. One of the basic reasortonian method is that light-cone momenia of all partons
was that in order to treat adequately the physical degrees @fre positive and add up. Thus a total light-cone momentum
freedom, very many virtual particles have to be taken intoP™ drastically limits the number of degrees of freedom.
account. As a function of particle number the dimension ofHowever, this does not hold for the perpendicular momen-
Hilbert space increases exponentially. Neverthelessybe tump, .
due to shortcomings or slow progress in Lagrangian lattice Herein, we pursue the following alternative. Let us con-
field theory, over recent years several workers have ex-sider as an example the scalar model given by the Hamil-
plored Hamiltonian methods, by trying to work with effec- tonian
tive Hamiltonians having a small number of degrees of free-
dom. Examples are the work by &cher[3] and Koller and H:f d3x3(% 2
van Baal[4], the expS] method coming from nuclear phys- at
ics [5], applications of the Kogut-Susskind Hamiltonian to
compute glueball masses and string tension in Q6Pthe
Hamiltonian approach in light-cone quantizatipri, and wherem, and g, are the bare mass and coupling constant,
quite recently a Hamiltonian renormalization group approachrespectively. We construct the corresponding Hamiltonian in
[8]. These approaches have employed quite different stratenomentum space:

A. Hamiltonian formulation

1. mg 9o
+§(V¢>)2+ 7¢2+ Ed)“, €y

H= E w(k)af(k)a(k) +E4(—g

af(kya(NHa(m)a(k+T+m) e af(kyat(Na(m)a(k+T—m)
VoRoDo(Mao®+1+m) VoK) o(Do(M)o(k+T—m)
al(k+T+m)af(Naf(m)ak)

— | +129,> ———— .
VoK T+m) oD o(m oK) < 42 PaR) " w(l)

x| 4

+4 )

We did not do normal ordering, but we have subtracted th& his will be referred to as Breit-frame regularization in what
vacuum energy. We have written the Hamiltonian in dis-follows. As will be shown below, this yields a drastic reduc-
cretized form by introducing a lattice in momentum spacetion in the effective degrees of freedom as compared to the
with a momentum resolutiolhk and a momentum cutoff rest frame.
A. Conventionally, one would choose a regular lattice, sym-

metrical with respect to zero momentumest frame. This

would be suitable to compute the vacuum state with the

guantum numbeP=0. We propose the following alterna- The most important experiment in order to probe the
tive: We choose the same regularization, however, we retaistructure of hadrons is deep-inelastic scatteriBgS). Its
only those lattice momenta which correspond to fast movingsimplest form involves inclusive scattering of an unpolarized
partons going in the same direction as the hadmmoton. lepton off a hadronic target. Let us recall some basic notation

B. Breit-frame regularization
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[10]. The hadron in its ground state interacts with the probto DIS, as given by Eq4). This is anassumptiorbased on
ing lepton by the exchange of a virtual phot@r neutring.  the physical intuition that the experimentally observable par-

The hadron(proton) carries momentuni® before the colli- ton momenta are those which dominate the quantum dynam-
sion and goes over to a hadronic statewith momentum ics. This assumption has been tested by computing critical
Py . Correspondingly, the electron has momektandk’.  behavior of renormalized masses and a good agreement with

The exchanged photon carries momentgmk—k’. One  analytical scaling behavior has been obserts=e below.
definesQ?= —q?. In Feynman'’s parton model it is assumed Now, we introduce a momentum lattice regularization: In
that the proton is made up of constituents, i.e., the partongirder to have a practically convenient lattice we further con-
They are weakly bound, i.e., the binding energy is smalistrain the parton momenta from Ed), namely, by selecting
compared to the resolution abiliQ: =\ —q,q* of the prob-  a regular cube centered BY2 and located inside the ball
ing photon. Letp denote a parton momentum. Convention-gi\,erl by Eq.(4). l.e., the parton momentaare restricted to
ally, one introduces the Bjorken variabls:=Q%  the domain

2P,0*=(q-p)/(q-P)=p®/PM). The superscriptL de-

notes the longitudial direction, i.e., the direction Bf The |P| _

second equation results from the impulse approximation, i.e., Osp=<A= NE for i=x,y,z. 5)
the partons are on the mass shell. The last identity holds in

the Breit frame. ThaBreit frameof the hadron is defined by ) . i : i .

the requirements that the photon energybe zero and that 'Nside this domain we define lattice momenga=nAp

the photon momenturﬁ be antiparallel to the hadron mo- Wheren is an intege_r vector andlp i_s the momentum lattice

resolution. One notices that all lattice momenta are nonnega-

parton momentum obeys = Q/2. The rationale for this par- tive._ Cpntrary tq regularization in the rest frame which dpes
: notlimit the particle number, our approach has the following

ticular choice of frame is that QCD structure functions. . ; ' .
. . o important property: The effective Hilbert space is built from
F(xg,Q) can be interpreted as a linear combination of par- b property P

ton momentum distribution functiorf§¢xg ,Q), which have a the Fock state$(a£l)”1- ' '(aEN)nN|O>’ with the conditions
more intuitive interpretation. This relation holds fie@ading  that the total momentum ek, + - - - +nyky= P, which is
twist (higher twists are suppressed for lar@é). Structure located on the surface of the Breit domaand that each
functions are another way of expressing scattering cross SeBarton momenturﬁi be inside the Breit domain, as given by
tions. The distribution function of a parton counts the NUM-Eq (5). Thus, the regularized Hamiltonian is given by Eq.

ber of those partons with a given momentum fractignin (2), restricted to the effective Hilbert space.
the proton. For a precise definition see HaD].

If the hadron is in its ground state, then the longitudinal
momentump, of the parton can be neither negative nor can
it be greater tharP, :

mentumP. In this frame, the longitudinal component of the

C. Reasons for reduction in the number of effective degrees
of freedom

Why does this regularization scheme lead to a Hamil-
o=<pH<p®), 3 tonian with a small number of effective degrees of freedom?
) ] First, for any given state from the effective Hilbert space, the
Thus follows the well-known constraintsOxg=<1. Equation  Fock space particle numbers are bounded, if one considers
ton momenta. However, it does not restrict the transver3ﬁ1E1+ ... +nyky=P. Thus an upper bound on the total par-

components of parton momenta. In the Bjorken limit L i o
P P : ticle number is|P|/Ap. This does, however, not limit the

(Q?—=», P.-q—x, xg=const) combined with the Breit ]
frame, the hadron is a fast moving object. In momenturr@€ro-mode particle number. The zero mode has to be taken

space, an object which is spherical in the rest frame becomdgto account epr.|C|tIy. The zero mode only Qetermmes the
prolate in a fast moving frame. Hence, it is physically justi- VAcUuum expectation value of the fied). In this work we

fied to restrict the transverse parton momenta to a finite re2ny ionsider the symmetric phase of the mogig}=0. In
gion of ellipsoidal (prolate shape. In particular, we have the#" model the vacuum expectation val() is an order
chosen a sphere centered at the midpoint of the intervdjarameter for symmetry breaking and thus the field has zero

0.P(1)7 (any prolate ellipsoid lies within this spheraiven fluctuation in the infinite volume limit. In this limit it be-
E)y 1(any p P phorg comes a classical variable. Thus, for sufficiently large vol-

ume it is justified to set the zero mode to zero. In addition, in
models where the zero mode cannot be dropped, the zero-
mode describes only one degree of freedom, which can be
treated like a quantum mechanical oscillator. In summary,
the ultraviolet cutoffA given by Eq.(5) implies a total par-

(p—P/2)2<(P/2)2. (4)

One should note that this constraint also follows directly

from ngng and going |.nto the. parton Breit frame ticle number cutoff and thus drastically reduces the dimen-

(defined byﬁq =0 andq being antlparalleléto% thqzar}on sion of the Hilbert space.

momentump) wherexg takes the formxg=(p-p)/(P-p). Second, if one wishes to compute the mass spectrum of a
Because we are working in the Hamiltonian approach weyhysical particle, but does not want to compute the vacuum,

need to define a basis in Hilbert space. We construct thene has the freedom to choose a reference frame boosted to a

Hilbert space as a Fock space of free particles and selegiomentumP+0. As is well known from many-body theory

(parton momentaﬁ from a bounded domain corresponding and the exf®S] method, the vacuum state energy has a vol-
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ume divergence, but the energy of a physical particle state (ii) Left movers. According to Brodskegt al. [13], left
has no such divergence. Thus, choosing a sector Rtt) movers do not play a role in IMF perturbation theory for the
excludes the vacuum state, but may eventually allow morecalar model.
easily to compute the mass of a physical particle, compared (iii) Actually, we have taken into account left movers in
to a computation in the rest frame where the vacuum iour model: The Hamiltonian, given by E), consists of
present. three terms, the noninteracting péftst term), the interact-
ing term with four creation or annihilation operatgsecond
D. Role of zero modes and left movers term), and the contraction term with two creation or annihi-

. . ... |ation operatorglast term). The Breit-frame regularization is
Our approach being based on equal-time quantization is : o L

. . o a quantum mechanical regularization which imposes all mo-
different from light-front quantization as well as from the

N . enta occurring in creation or annihilation operators to lie in
infinite momentum frame. However, there are conceptiona]

similarities between the different approaches: It is the goal t he Breit domain, Eq5). Therefore, in the last term, the sum

. : : ; : ; 1 Le(l) runs over all the momenth from the symmetric
describe high energy deep-inelastic scattering and, in paf- .. . . .
. o ; attice (— A to +A) rather than over the Breit domain. This
ticular, structure and distribution functions. In the context of

construction of the Hamiltonian it is very important to study corresponds to taking into account tadpole terms. This has

the dynamical role of zero modes and left movers. In Iight_been found essential in order to reproduce the critical behav-
front physics, according to general folklore, the vacuum i of the mass spectrum. -
trivial and positive momentum states decouple from the We have presented our method for the explicit example of

4 . . .
vacuum. There are examples in light-front physics, Whichthe scalag” theory in 31 dimensions. However, we dwt

show that zero modes play a dynamical role. This is dis claim that the treatment adequate for the scalar model would

cussed in the recent review article by Burkaftit]. In the .be t.he same for any c')the'r model. In partjcular, the situation
infinite momentum framélMF), left-moving fermiongwith IS d|ffe_rent when considering gauge theories _SUCh as QCD, as
x<0, wherex denotes the longitudinal parton momentumthere is no spontaneous symmetry breakflfjzur's theo-

portion) are known to play a role, as has been discussed b m). Therefore, zero modes have then to be treated quantum

Drell et al.[12]. In particular, in the second order self-energy echanically. We are fully aware of the fact that application

IMF perturbation diagram left-moving fermions are essen—Of the Breit-frame regularization to any other model beyond

tial, as has been shown by Brodskyal. [13]. Another ex- the scalar model requires a careful study of the dynamical
ample is QCD in X1 dimensions on a finite circle. Engel- role of left movers and zero modes.

hardt and Schreibef14] have shown that the gluon

background field represented by zero modes couples non- !l- MASS SPECTRUM AND CRITICAL BEHAVIOR

trivially to the quarks, leading to an elimination of fermionic OF ¢3,, THEORY

nonsinglet states. The role of zero modes in quantization First we need to convince ourselves that the method al-
using thee coordinates, which are “close” to the light-cone |o\s the correct computation of physical observables. We
coordinates, has been discussed by Lenz and Thigs have chosen the scala#3,, theory because it is a quite

All these examples serve as warning that in the Breity o) nderstood theory which has a second order phase tran-

frame reg“'gr'zat'on a nlalveh_negleptl of zer(;] mod_es agd lef ition, thus allowing us to test this method near a critical
movers is dangerous. In this article we have introduced) .+ The Hamiltonian of thes* theory is given by Eq(2),

Breit-frame regularization at hand of the scalar model. Con¢onstrained by the Breit conditiot5). It is expressed in

ceming legt rpo”verg; and zero modes in the scalar model, Weerms of free field creation and annihilation operators corre-
can sz;yt € OdOWIrjl_gH followi . .. sponding to the lattice momenta in the Breit frame. Because
(i) Zero modes. The following argument, in our opinion, 4, amiltonian and the momentum operators commute, we

shows for the case of the scalar model with spontaneou&Ompute the energy spectrU&y in a Hilbert space sector of

symmetry breaking that zero modes are better treated classi- . . .
cally than by a Fock space expansion. In the scafamodel & 9iVen momentun. Since we are not in the rest frame we
spontaneous symmertry breaking occurs. In the broken phagise the mass-shell conditidn, : = VEZ—P? in order to ob-

one has (¢)=po#0, while in the symmetric phase tain the physical mass spectrum.

{¢)=0. In particular, the zero modé®=1N[d3x¢(x) is It is known[1] that the critical line between the symmet-
an order parameter. Spontaneous symmetry breaking implig¥ and the broken phase lies entirely in the region where the
that the Zero mode f|e|d is peaked arOL(mﬂO)>z ¢§)O) . In bal’e parton mass Squarng iS negative. Hence, we cannot
the thermodynamic limit the peak is infinitely sharp, i.e., thebuild the Fock space in terms of partons with those masses.
fluctuation of the zero mode goes to zero. Thus, in the therAS a remedy, we have split the bare mass squared
modynamic limit the behavior of the zero-mode degree offg=mg,+mZ, into a positive kinetic panng;, and an inter-
freedom is adequately described by a classical solutiorgction partm?,. The Fock states are built from positive bare
which corresponds to fluctuation zero. In our calculation usimassean,;,. In numerical calculations close to the critical
ing a finite lattice volume we are not at the thermodynamicpoint shown in Fig. 1 we have chosen, for simplicity, a small
limit. Nevertheless, we consider the classical treatment of theositive value. We found that the lower-lying physical mass
zero mode physically more suitable and justified than a parspectrum is not very sensitive to the valuewg, (this is not
ticle number truncation in the zero-mode sector. In this workthe case for higher-lying masge# better choice ofny, in

we have considered the* model only in the symmetric our view would be to take the renormalized masg. Al-
phase, wher¢¢(®) = ¢f)°)=0. thoughmeg is unknown initially, it can be computed by mak-
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FIG. 1. The ground state masg in lattice units @=1) versus FIG. 2. The lowest lying mass spectrum versusThe ground

« for A=0.003 457 39 { =0.01 in Ref[1]),  and« are given by  giate mass is set to oneas in Fig. 1:x andx are given by Eq(6);
Eq. (6). The points correspond to the results of H&f. Our results A/Ap=4.

correspond ta\/Ap=3 (dashed linfand A/Ap=4 (solid line).

. o . _ _ _ related toA by A=/a. It can be shown from perturbation
ing an initial guess and then iteratively improving the an-theory[16,1] that the physical masses close to the critical

swer. point obey the scaling law
We have diagonalized the Hamiltonian on two lattices:
A/Ap=3 andA/Ap=4. This would correspond to symmet- M~C7rYIn| %6, (7)

ric lattices[ — A, + A] of size 7 and & nodes, respectively.
This results in a very small Hilbert space of only 6 and 21where 7:=1— «k/k; and C is a constan{integration con-
states, respectively. We want to check that the renormalizastant of renormalization group equatignSince the results
tion group predictions are reproduced correctly.Zteet al.  of Ref.[1] are based on the solution of the renormalization
[16] have computed those via perturbation theoryst¢her group equations, this scaling law fits its results. One should
and Weisz[1] later have solved the renormalization group note, however, that two different regularizatiofibis work
equations analytically near the critical line starting fromand that of Ref[1]) in general correspond to two different
boundary conditionginitial data for renormalization group critical lines corresponding in general to different values of
differential equationswhich have been obtained from a hop- «.;;. In Table | we have displayed our results for the critical
ping parameter expansion to high order using the lattice agpoints «;; as a function of\ and compared our results with
tion. In order to compare our numerical results to those othose of Ref[1]. Again, our results are very close to those of
Luscher and Weiskl], we express the bare parameterg  Luscher and Weisz. These results cover a domain of the bare
andgg in terms of the parameteps and «: parameter space extending quite far away from the Gaussian
fixed point atk=1/8, \=0.
N Another way to test continuum physics is to look at the
mi=(1—2\)/k—8, go=6—. (6)  mass ratiosM /M, from the spectrum on the lattice and
K check whether they become independent of the cutofir
else independent of the coupling constggfA) (i.e., they
We define the renormalized mass =M. The equiva- scalg. These mass ratiosl,/M, are shown in Fig. 2. As
lence of our mass definition with that of kcher and Weisz can be seen, for a number of stakég/M;— const in a wide
is discussed in the appendix. Figure 1 displays the renormatange ofx values, i.e., they scale. However, for some states
ized massng versusk. One observes that our results, com- M, /M, diverge, i.e., there is no scaling. The physical reason
puted on very small lattices, are quite close to the results dbehind this is the following: Theﬁg+l model describes a gas
Luscher and Weisfl]. MassesM computed on the lattice of partons repelling each othgt]. The spectrum of Fig. 2
must obeya<1/M <L, whereL is the length of the lattice shows states dominated by the 1-, 2-, 3-, 4-particle Fock
anda denotes the lattice spacing of a space-time lattice. It ispace sectors plus a spectrum of excitechttering states.

TABLE I. The critical pointsk.g versus\; A and x are given by Eq(6). Ktx‘t’ is taken from Ref[1].

a:= X5/ k5 denotes the ratio between the results of this work and Réf.In this work, k; has been

determined under the condition that the renormalized masbecomes imaginaryd/Ap=4.

A 0.0005 0.001 0.005 0.01 0.05 0.1

o 0.125101 0.125202 0.125991 0.126968 0.132368 0.13601
a 0.99997 0.99993 0.99972 0.9993 1.0073 1.0275
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The picture of repulsive two-particle-exchange force is con-atxg= 1/n for symmetry reasons. The physical reason is that
firmed by observation that the mass of the lowest-lyingthe strong forces which bind the proton can easily create
n-body state is larger tham times the mass of the one-body gluons or quark-antiquark pairs. Contrary to a typical non-
state. The states which scale are just those lowest-lyingelativistic problem, particle number is not conserved. Con-
n-body states. The higher-lying part of the spectrum consistsequently, because of the enormous number of degrees of
of states with more nodes in the wave function than lattic6freedom which are usually associated with a relativistic
points, having also a wider range and contributions frommany-body system, it is almost impossible to calculate quark
higher Fock-state sectors. Because of the fact that in ther gluon distribution functions or mass spectra in a Hamil-
calculation corresponding to Fig. 2, the parameteps A,  tonian QCD approacfB0]. Our regularization, given by Eq.
and the parton number cutoff are all kept fixed, we cannot5), however, enables us to treat a large number of partons
properly describe these higher-lying states. Consequentlyyith a reasonablenumerical effort.

they do not show scaling. When we go to bigger lattices The Q dependencef the distribution functions is also a
(Ap—0) we then observénot displayed hepemore states many-particle effect. An intuitive explanation for this depen-

which show scaling. dence is that more partons can be seen inside the proton, if
the resolutionQ is increased. Partons, however, which are

IV. STRUCTURE FUNCTIONS hea_\vy With respect to th_e forces between them, can be _de-

o _ scribed in a simple constituent model because many-particle
A. Why structure functions in the Breit frame? effects are negligible. Hence, their distribution functions are

Hadron structure is probed by deep-inelastic scattering€ither peaked atg=0 nor do they depend considerably on
(DIS). Over recent years a great deal of experimental date resolutiorQ. Examples are heavy quarkonia, electromag-
has been gathered from high energy collider experimentdl€tically bound particlegsuch as atomsor the ¢, ; theory
While perturbative quantum chromodynami¢®CD) de-  Which we are investigating below. The renormalized cou-
scribes successfully the larg@? dependence of DIS struc- pling constant ofgs,; theory is weak everywhere in the
ture functions, it cannot predict the correct dependence oaritical region and the forces between “partons” are even
the Bjorken variablexg . Thus, much effort has been devoted repulsive[1].
to compute quark or gluon distribution functions and proton

structure functions from QCD witmonperturbativemeth- B. Relation between structure functions
ods. E.g., Martinelli and Sachrajda7] have computed the and distribution functions in the Breit frame for QCD:
first two moments of the pion structure function via Monte Unpolarized structure functions

Carlo lattice simulations. Schierholz and co-workétsS . . . .
rave recrty compuned moment of proton an neurop, I 1 Secion v compute anaytaly e relaion be
structure functions. These calculations are notoriously diffi—functions Because we'work in a fast movir’lg frame aotl
E:E'aeo'ﬁrrgﬁlzr fg\r/f/)%eonrqn:asntt(;zedg:; E'%ag)orn d(élzas”r;x;éln in the infinite momentum frame, we can explicitly take into

h t status of lattice calculatibns of structure funCg:\ccount a nonzero parton mass. The cross section for deep-
:io(arls?r?rsht?g s;uation calls for alternative techniques inelastic lepton-hadrorelectron-protop scattering has the

Let us briefly outline the reasons for the choice of ourform (following Jaffe's notatior 31)
method: (i) Structure functions are computed from wave dz‘T“WVWMw (8)
functions. Wave functions are defined in Minkowski space.

The Hamiltonian approach offers the advantage of allowing .

direct computation of Minkowski space observables. E.g.Wherel,, denotes the leptonic tensor awd,, stands for the
scattering wave functions for glueball-like states in compach‘"‘drf)n'C tensor. The hadronic tensor can be split into a sym-
QED,, ; have been computed in a Hamiltonian formulation metric part, Whlc_h corresp_onds to unpolarlzec_i structure func-
on a momentum lattic20] (for a review of Hamiltonian fuons and an antlsymr_netrlc part, correspondmg to the polar-
lattice methods sef21,6,7). (i) The usefulness of a mo- ized strgcturg functions. The symmetrlq part can be
mentum lattice to compute physics close to a critical poinP@rametrized in terms of the structure functidhsandF:

has been demonstrated in Rdf22—27. (iii) The reason for

our choice of the Breit frame has been explained above.

However, Hamiltonian methods are known to lead to nu- Weim=
merical problems because of the huge number of degrees of

freedom involved 28]. To the best of the authors’ knowl-

edge nobody has succeeded before to observe scaling behav- +
ior indicating continuum physics in &+ 1)-dimensional

Hamiltonian lattice formulation.

The Breit frame has a distinct property: Only in this frame Whereg* is the photon momentun®* is the proton momen-
the photon momentum transfér can be interpreted as reso- tum, andv=q-P. Now, we choose the Breit frame as the
lution ability of the photon. The quark and gluon distribution reference frame: In the Breit frame the proton momentum is
functions of a proton or a neutron which are measured by?*=(E,0,0,P3) with E?=P3+M?2, M being the proton rest
DIS show a peak for smaXg even for a moderate resolution mass. The photon momentumdé=(0,0,0,—Q); Q is de-

Q [29]. This indicates a huge number of partons in the prodined to beg?=—Q?. As a result, we find that all compo-
ton, because a systemmidentical partons would be peaked nents ofWg vanish, except for

K~V
—gr'+ qqg )Fl

gzl
qzq qzq o 9
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2

E E 8(q°+Kk°—k'9)
WO ot g, PO L e ]
sym PsQ 2 Whtppto 4 d*k w(lZ)w(IZ+ a)
11 22 _ .
Wsym_Wsym Fi. (10 Xz |mm(k k+q,s)I1 E(P,k). (16)

The hadronic tensor is defingdl] as ) ] o
Here, we have switched to the following normalization of the

proton state{P’|P)=&%(P’'—P). The calculation includes

47TW’”=§ (2m)*8(P+q—Px)(PgJ#*(0)|X) the matrix elementP §b! (k)b (k’)|PS) which allows one
to split off 5(I2—IZ’) due to the conservation of total three-
X(X[3"(0)|PS), (1) momentum as well as to split off ; due to the conserva-

tion of spin quantum numbers in the helicity basis. Thus, we
whereX denotes the unobserved fragments of the proton angave defined1?(PS k) by
P is the proton momentum. We have normalized the proton
state to(P'|P)=2E(2m)35%(P'—P). Siis the proton spln (PSb! (Kb (KPS =TI’ (PSK)8(K—K) 8., (17)
(Pauli-Lubanski  vector normalized to S?= s S ’

J#(X) = (X) y*¥(x) denotes the fermioniéquark current. which is the the expectation value in the proton state of the

The hadronic tensor can be expressed as a current commuiggark number operator corresponding to momentuand
tor: spins. Note thatII® has the same dimension B8SPS).
We now go into the Breit frame. In particular, we employ the
Breit condition, Eqs(4) and (5). In the Breit frame one has

q°=0, moreoverk lies on the mass shellk)?=k2+m?,

due to the impulse approximation. Al&6=K+ g is on shell.

Thus, we obtain
In deep-inelastic scattering it is customary to use the impulse

approximation in the axial gauge. The partons lie on the
mass shell; thus, one can expand the fig{d) W = J' 42k LE uuuu

s Qu(ko)

AW = J d*yexd —iq-y}(PI[3*(y),3"(0)]|P).
(12)

kQ leS) .
(P ,Ko),

(18)
i00=3 [ o —m[zw(k)] 1 uy(R)e 7by(K) o
where  we have  defined ko=(k,,Q/2,) and
+US(IZ)e‘k'Xdl(IZ)]. (13) IZ7Q=(IZL ,—Q/2) (parallel and perpendicular denotes the
orientation of components with respect to the space compo-
nent of the proton momentum

T_he spinors  are  normalized 10 UsUy =2mJ;g, A second term, which contributes to tNe¢“” tensor, is

UsVy = —2Mds s, Wherem is the parton rest mass. The par-
ton spin is normalized te>= —m?. The creation and anni-

, _E loou(Ka kg S) .
hilation operators obey by(K),b!, (k") ], = 8. S(K—K") ngTdd‘r:ZJ dszES W 4P ko).
N w
and[dy(K),d},(K')]. = 8, S(K—K'). ¢ 19
In the computation of the matrix element of the current )
commutator the following leptonic tensor occurs: I1Y(PSK) is defined in analogy to Eq17), but for the an-

. o tiqguark number operator. The leptonic ten$§fu—v, corre-
27— (k,s,k’,s")=u(k,s)y*u(k’,s")u(k’,s")y"u(k,s) sponding to the spinor, is defined by

uuuu

127 ’ v v 2 '
=kMk'" KK+ g* (mT—k-k) 14— (k,s,k',s") =0 (k,S)y*v(K',s") v (K',s") y"v (K,S),

vvvv

—ime* B(k—k') (s+5") 5, (14 (20)

and summing oves’ yields yielding, after summation over the spi
I — (k,k',s)=2[kK“K" "+ k' #K"+ g**(m?—Kk-k’)
1 (kk',5)= 2[KHK' "+ K’ “Kk"+gr(m?—k-K') veee
+ime* *F(k—k’) Sz (21
—ime* *F(k—k’) S5, (15
All other terms give vanishing contributions W*” due to
being the standard resylB1]. Because of the current com- the fact that all parton momenta lie in the Breit sphere.
mutator, there are four fermion fields involved, which gives Thus, the symmetric part ofV*”, corresponding to the
16 combinations of fermion and antifermion creation andunpolarized structure functions, yields the following result in
annihilation oprators. A straightforward but lengthy calcula-the Breit frame. The only nonzero components are those with

tion gives the termfor other terms see belgw pn=v=0,1,2:
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MZ [I18(P,Kg) + IT4(P,Ko)1,

Weym=7 J d%k R
(22)
wherel {1, denotes the symmetric part Hﬁ— andlww
14r (kK ) =2[k#k' "+ K #kY+gH(m2—k-k')]. (23)
In particular, one has
| ool Ko ko) =4[m?+ (K, )21,
Lol Ko k) =4(kp)?+ Q2
|20l Ko ko) =4(ka) >+ Q2. (24

Let us now consider the Bjorken limit of these expres-

sions. The Bjorken Ilimit is defined byQ—«~ and
Xg=const. In the Breit frame, this implies for the proton
momentumP; that P;—o and Q/P3;=2xg=const. Thus,
we compute the kinematical factoBs=\M?+ P32~ Q/2xg
and

Iﬁﬂpo(kg,ké): 4[m2+(fi)2] ~Q2-.0. (25
Qu(kg)  QVQ4+ (K, )2+m?
This implies
W0, @

On the other hand, Eq10) yields in the Bjorken limit

2

Ep 1
WOOZ_F1+ F2.
2Xg

P QF2—> F1+

(27

Thus, the last two equations imply, in the Bjorken limit, that

the Callan-Gross relation holds

2XBF1:F2, (28)

H. KROGER AND N. SCHEU

(s, Po.p)= [ %, S (2P, Ko)+ 1P Ko,
@

where p3 is the longitudinal parton momentun®; is the
longitudinal proton momentum, andis a fixed but arbitrary
scale parameter with dimension of mags.g., Aqcp).
f(ps,P3,u) is the probability of finding a parton with lon-
gitudinal momentunp; in a bound statéproton with lon-
gitudinal momentumP;, where momenta are measured in
terms of the scalg. TheW*” tensor is dimensionless. Thus,
we have

Ps

W22 =2,

sym— 2 (32)

Thus, G(p3,P3,u)=P3f(p3,P3,4) is a dimensionless

function which scales

G(Ap3,AP3,A ) =G(p3,P3,u). (33
We have shown in the Bjorken limit thaZ7 =F, thus
Fi(x,Q,u)= (ps,Ps M) (34
Expressingp; and P; in terms ofQ and x yields p;=Q/2
and P;=Q/2x and hence
Q
Fa(x,Qu) = 4 1(Q/2,Q/2%, ). (35

Making a scale transformation by multiplying all variables of
dimension mass by, where\ is chosen to obeyxP;=1
yields

Fl(Xerl*'L): %f(x,l,Z(/.L/Q),

Fo(x,Q,u)=xf(x,1,2Xu/Q). (36)

which is the standard result as in the parton model. SimilarlyHere, f(x,1,2u/Q) denotes the probability of finding a par-

we compute

I ﬁ%po( kQ ' k,Q) _
Qu(ko)

Iﬁﬁpo( kQ vk’Q) _

Qw(kQ)
Thus, we obtain the following result fonvg),,
W22 in the Bjorken limit

sym>
w2 =0,

sym—

4(ky)%+Q?
QVQ4+ (K, )2+m?

—

(29

Wll

sym?

and

WAL —w22

sym sym

—3f dzklg [T18(P,Kg) + TT14(P,Ko)].
(30

Our regularization scheme allows direct computation of

the parton distribution function. We define

ton with a longitudinal momentum fractionfor a total lon-
gitudinal momentum=1, where the scale is given by
2xu/Q. Note that in Eq.(30) the sum runs over all spin
values. For a spin 1/2 parton this is equivalent to a sum over
the helicity quantum numbers- and —. If we take into
accounte;, the electric charge of a quark with flavorela-

tive to the charge of the electron, and redefine &4) by
f=/d%, 212 and f=[d%k, =I1¢ we obtain, from Eq.
(36),

F1(x,Q)=2 e?3[fP(x,1,2u/Q)+f(x,1,2u/Q)
+1D(x,1,2u/Q) + FU(x,1,2u/Q)],

Fo(x,Q)=2> ex[f1(x,1,xu/Q)+fV(x,1,2%u/Q)

+FU(x,1,2u/Q)+ f V(x,1,%u/Q)]. (37
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The standard expression from the parton mddé,31 is In the following let us consider the case where the proton,
given by as well as the partons, are polarized longitudingtiglicity).
We want to compute in the Breit frame the 12 component of
I

12 E 2 léfzﬂ(kQ’k,Q’S) b > d "
i i Was:_f d kJ. = [Hs(Ple)—‘r_Hs(PikQ)]y
F200=2 X000 +9V00+qP(x) + P (x)]. 4 s Qu(kg) w2
I
(38)
where we have defined
In the Bjorken limit our result, Eqs(37), agrees with the

standard result, Eq$38). As can be seen, the quark distri- légl(kQ’ké’s)zlﬁﬁ(kQ’ké ). (43
bution functionq(x) occurring in Egs.(38) does not have

any Q dependence. It corresponds to the naive parton modejp the Breit frame the antisymmetric part of the leptonic
which has noQ dependence. However, perturbative QCDtenSOHMi(k k',s), Eq. (15, and of I“Y—(k,k’,s), Eq.

introduces & dependence via logarithmic correctiofvo- il vouy

lation of scaling. Thus, one arrives aj(x,Q,ux) which is a (20), are given by

quark distribution function from a ‘“renormalization group- IE—(k k',s)=i2Qs,

improved parton model.”q(x,Q,u) is interpreted as the uuuut e ’

probability to find a parton with momentum fractionin a 12 , ,

hadron with momentum= o, where the resolutiotiby the oo (KiK',8)=—12Qs. (44)

photon Q is finite, and momenta are measured in terms of a . . )
mass scale u. Note that our distribution function For the parton spins the f°”°""'{‘% holds: s-k=0,
f(x,1,21/Q) has a different interpretation thar(x,Q,x):  S-=—m?. In the helicity basis, one hagk; thus one defines
f(x,1,2u/Q) corresponds to the Breit frame where the had-the parton helicityh by

ron moves fast but wittinite momentum, whileg(x,Q, ) N

corresponds to thénfinite momentum frame. However, in s-k

the Bjorken limit both coincide. hs:||2| (k) (45)
C. Relation between structure functions In the Bjorken limit one obtains
and distribution functions in the Breit frame for QCD:
Polarized structure functions éé .
_ i . — —i2hg, (46)
The antisymmetric part of th&/*” tensor describing the Qu(kg)
spin-dependent part can be parametrized in terms of the spin
structure functiong, andg, [31]: and, hence,
S -SP P . .
WEY= —ie# 7, 2 (g, + 05— Ty Pg . (39 Wi f d%k, 2 hJTIZ(P ko) +TTE(P ko).
S
: : (47
Here, S denotes the proton spin, witP-S=0 and
S?=—M2. The proton spin can be polarized in two ways: Equation(40) implies, in the Bjorken limit,
S|P (longitudinal, helicity or SL P (transversg In order to .
J Wi-ig;. @9

extract both spin structure functions from the tena#’ one
needs both polarizations. Let us consider first longitudina

polarization. Then we find, in the Breit frame, ‘:rom this and Eq(47), after doing the same scale change as

in the unpolarized case, we arrive at

M 2
12_; = 1 . .
Was™l| 0 (Pg) %/ 01(x,Q)= 52 efTh P (x1,2/Q)+h_FV(x,1,2u/Q)
I
21 \p/12
Was™ = Was. 40 +h TV L2/ Q)+h_ T (x,1,2/Q)].

All other elements ofW., vanish. Now, let us consider (49
transverse polarization. We then find, in the Breit frame, o ]
This is in agreement with the standard result of the parton
M model[31]:
ng: —I P_3(gl+ gZ)l

1 . _
W20 — w2, (a1) 910 =32, €Th.q(0 +h-a()+h. a0

Once again, all other elements \8#2 vanish. +h_q®(x)]. (50)
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i most interesting case to do this is QCD, where perturbative
t <S> QCD calculations based on asymptotic freedom predict loga-
rithmic deviations from Bjorken scaling. It would be most

important to have numerical results on this, and it is our goal

’:)Z 0.6 of future work to go in this direction. In this work we have
< considered the scalar model, because it is a relatively simple
Yo O-8 model, however, having a nontrivial critical behavior, and it

has been widely studied. This makes it a suitable benchmark
model to test a new method. Thus, the close agreement found
ol <> > > for the mass spectrum in the critical regime with lattice re-
sults is one of the most important results of this work.
Concerning the scaling behavior of distribution functions

X in the scalar model, we would like to make the following
o _ . remarks.
FIG. 3. The distribution functiori(xg) of ¢3.,, versus the mo- (i) In order to test the scaling behavior, it would be nec-

mentum fractionxg . A =0.003 457 39as in Fig. ; A/Ap=4. essary to compare numerical results obtained from our

In summary of this section, we have computed analyticall;l“ethOd v_vith analytical perturbation calculations, based. on
using Breit-frame regularization the relation between thedSymptotic freedom. One of the few models having
hadronic tensor, structure functions, and parton distributiof'Symptotic ;reedom,_ except non-Abelian gauge theories, is
functions. The main results are given by E(@2) and(23)  the scalar¢” theory in six dlmen5|on$32]. However, it is
and Egs.(42) and (43). The results are “renormalization unbounded from below and does not give a physical mass
group improved” compared to the naive parton model, tak-SPECtrum.

ing into account parton mass and scale parametey. (i) Despite the defect of unboundedness from below, we
have done numerical studies of the scaist theory in
D. Numerical results for distribution functions 3+1 dimensions. While the* theory has no bound states
of the scalar model [1], the ¢° theory has some bound states with nontrivial

distribution functions. In QCD the scale dependence occurs

In this section we want to show how distribution func- " o running coupling constant,~1/In(QYA?. In the

tions can be computed numerically using the Hamiltonian theory, there is no critical line with a second order phase

ap[;[]o%c? tind Brlelt-frar;el _;Je;gyl(;a_nzaﬂqn. W_?h_applyg tlh ransition, and there is no physical mass spectrum. Therefore,
Method to the scalar model | Imensions. This Model e have looked at the distribution function as a function

has beer! extensi\_/ely studied and represents, f_or fi_nite cuto - and of the bare coupling,. Forge=0 we have found a

a nontrivial erectwe theory. We clompute4d|str|but|on func- one-particle distribution function which, for increasiug,
tions for the¢™ model. Let us consider thes, , model. The g qh1y goes over to a distribution function with many-
first excited state consists of only one partthree-particle o signature. In particular, it yields a substantial increase
contributions have been found to be extremely small, I.€.for smallxg, similar to the behavior seen in QCD.

within the error margih This is because our particular (i) As rr’1entioned above, the* theory has no bound

choice of regulari;gtiorqsrei'g frame, which make;, aII'par- states. This property of the model has also been seen in par-
ton momenta positive, implies that for the Hamiltonian they,, qistribution functions, which shows the one-particle
terms which conserve particle number are dominant. Conses'tructure(Fig. 3. We have looked at its scaling behavior.

quently, the distribution function is peaked ag=1, as But instead of chanaina the mome andO2. such that
shown in Fig. 3. We did not find a noticeable dependence o o ding maP, andQ”, su

h luti . icle off b W '?Q —oo andXg=const, we have kept the momentum cutoff,
the resolutionQ, 1.e., many—pamc'e € QCtS are a .sent. €which corresponds t@?=const, but have varied the model
have not made any effort to obtain a fingy resolution be-

this state d t display the int ¥ ruct fparameterS\, x along the critical line, such that renormal-
cause this state does not dispiay the interesting structure ol g, 4 massn,., and renormalized coupling constant, go to

bpund state. We have also obse_rved that hl_gher excited Stat98ro. As a result one finds for the parton distribution function
display a dominant 2-, 3-, 4-particle contéwith very small - yo4 iy aqdition to the dominant contribution from the one-
mixtures betvvgen (_d|fferent seqtmrgng should n_ote, how- article state, there are very small contributions from three-
ever, that the S|m_p_I|(_:|ty of the first _eXC'_tGd state is due to th article states. The three-particle contribution relative to the
fact that the positivity of the longitudinal parton momenta one-particle contribution is in the order of 19 i.e., of the
prevents the creation of partonsﬁdirectly from the VacUuMy;ize of the numerical error. We have chosen not to present
Had we worked in the rest framé>€0), the “valence par-  thjs in the figure.

ton” of the first excited state would be surrounded by a large

cloud of partons with opposite momenfa and even the V. APPLICATION TO GAUGE THEORIES
vacuum, lying in the®=0 sector, would be made up of such . . :
a cloud ying P Given the fact that the most important physical models

are gauge theories, we want to discuss the treatment of gauge
theories in the Hamiltonian formulation with Breit-frame
regularization. In the previous sections we have given argu-
It is physically very important to study the scaling behav-ments and numerical results showing the usefulness of a mo-
ior in the Bjorken limit of parton distribution functions. The mentum lattice regularization in connection with the Breit

E. Scaling in the Bjorken limit
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frame. The usefulness of a momentum lattice correspondindefined as curves connecting adjacent lattice gg&might

to the rest frame has previously been investigated and denfine between neighboring lattice sije€.g., a loop state is

onstrated by several workers: Kuti and co-workgt8| have  given by

investigated the one-component scalt model and the R

O(4) symmetric scalar model and estimated a bound on the |p(x1)) =|U (X)) U (Xg+au)---Uy(xn)), (52

Higgs boson mass. Kger and co-workerg23] have solved ~

the Langevin equation on a momentum lattice for the scalawherexy+aw=x,. In order to introduce a momentum lat-

¢4, model and extracted critical behavior. Glueball scattertice we make a discrete Fourier transformation

ing in compact QED, ; (QCD-like mode) has been com-

puted on a momentum lattice in ReR20]. Properties of |B(kp))y=a, exd —ixiki]|#(x)), (53)

nuclear matter have been computed by Brockmann and Xi

Frank [24]. Kogut and Lagad?25] have studied the phase o

diagram of quenched QED on a momentum lattice. Espritvhere each component & runs over the Brillouin zone

and Traressef26] have studied the renormalization group — 7/@ to +m/a. One can define the lattice momentum op-

flow by use of a momentum lattice. Finally, Koutsoumbras€ratorP,, via the lattice translatior ,(a), which translates

[27] has computed the gluon propagator of finite temperatur€ach configuration on the lattice by an incremanin the

QCD from a momentum lattice. Thus, momentum latticedirection . Itis given by

regularization has proven to be useful when numericall .

studying physics negr a critical point. g T.(a)=exd —iaP,]. (54)
When one treats gauge theories on a momentum Iattioq;

the following problem occurs: If one takes the gauge fleldsmenta of the loop state.

A;ﬁ(ki)kaj variables(so-called Inopcomhpacthformulatlbn _In order to construct states with well-defined momentum,
wherek; denotes a momentum lattice, then the gauge actiopeying the Breit condition, as well as satisfying gauge in-
is not manifestly gauge invariant. As a consequence, one hag,jance we suggest to proceed as follows: We construct a
observed nonlocal counterterms when computing, from latgpert space built from link states. Using discrete Fourier

tice perturbation theory, the axial anomaly and the one-l00R,nsformation we associate a discrete lattice momentum to
vacuum polarization. This has been seen by Karsten and

Smit[33] by computing the triangle diagram using the SLAC each link, sayJ ,(k;). Then we construct multiple link states
derivative in the action and by Kger and co-worker§34] ~ ~ ~

using an action defined on aymogr:entum lattice with a mo- ke, - k) =[U (k) U (ko) - U (ky)). (89)
mentum cutoffA. As Wilson has pointed out, it is desirable
to conserve gauge symmetry manifestly in a regularize
gauge theory. E.g., there is numerical evidef@g| that a
lattice action which is not manifestly gauge invariant yields (ki — PI2)2< (P/[2)2 (56)
no area law for the Wilson loop in pure SU(2) gauge theory. ' ’

The space-time lattice Hamiltonian, corresponding to thevhere the parton momenta are given by the lattice momenta
Wilson action and being manifestly gauge invariant, hasf the links. Thus, as in the scalar model, positivity of parton
been constructed by Kogut and SusskiB6]. Here, we are  momenta in all three components and a given total momen-
confronted with the following problem: How to introduce a tum gives a boundjl5|/Ap to the total number of links and

momentum lattice as a regulator while manifestly conservingy,, ;s gives a strong bound on the dimension of the effective
gauge invariance? We suggest doing this as follows: We takgpart space. Eventually, we implement gauge symmetry by

closed Wilson loops as variable$or pure gauge theory roqiring Gauss's law, Eq51), to be respected. Hence the
without color charges The I-_||Ibert space Is then huilt fr_om_ Breit condition and Gauss’s law define our basis of Hilbert
these loops. Gauge invariance corresponds to satisfying ag.

Gauss’s law

he eigenvalues oP arek;, which are the possible mo-

his state corresponds to momentlygm=k;+ - - - +ky. We
hen impose the Breit conditigrsee Eq.(4)]

VI. S MATRIX

G|¢>=0. (51 The Hamiltonian in the Breit-frame regularization has
been shown above to be a suitable tool in the scalar model
for computation of the mass spectrum and physics at the

For a fixed lattice sité, one hasGi:E{i,j}ailf’} ,i.e., the sum critical line, as well as distribution functions. In this section
over generators of gauge transformatigwhere the tempo- we want to suggest that it is also a valuable tool for scatter-
ral gauge is fixel States corresponding to closed loops obeying phenomena and in particular for the nonperturbative
this law, while states corresponding to open strings fail tocomputation of theS matrix. When considering the nonper-
obey it. The physical states are color singlet states, and thugrbative computation of scattering observables, standard Eu-
open string states are unphysical. Nevertheless, we will makeidean lattice field theory is faced with the following prob-
use of them as an intermediate step in constructing a Hilbetem: The scattering matrix elements are directly related to
space of states obeying the Breit condition. Minkowski n-point functions. On the lattice one can com-
In order to introduce a regularization, we start from apute Euclideam-point functions. In principle, there is an
conventional space-time latti¢eegular, hypercubewith lat-  analytic continuation between these two typesnepoint
tice spacinga. Next, closed loops as well as open strings arefunctions. However, when the Euclidearpoint function is
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only k_nown at some Iattlce_ points W|th|r) the uncertainty of Hlp)=E(p)|p). (61)
statistical errors, it is very difficuialmost impossibleto get
reliable numerical results from an analytic continuation. A
way out of this dilemma has been proposed bgdther37]. - P . ;
The idea is that continuum scattering phases can be extract@yting Its masgsee Sec. I\ If, e.g., 't§ mass is the lowest
from the finite-size behavior of a mass spectrum on a finitenass in the mass spectrum, the stgdp is a one-particle
lattice. This requires mass calculations via standard Eucligstate. Letf) denote such a one-particle state with a momen-
ean lattice techniques, but also requires quite precise data fHm distribution given by a wave functidn In the language
order to resolve finite-size effects. of Haag-Ruelle theory, the explicit construction of the state
An alternative way to compute nonperturbatively &n |f) means that we have found a creation operati) with
matrix has been suggested by i§ev [21]. The idea is the
following. The S matrix, as has been introduced by Heisen- |1)=AT(£)]|0)free. (62
berg[38] and Mdler [39], is defined as

The property of being a one-particle state is verified by com-

) l.e., it creates a one-particle state from the vacuum of the
S=(y'|y'™)), (57) regularized free Hamiltonian. There is a theorem by Haag
o - . i . [42] which says that in the continuum limit of relativistic
which is the probability amplitude to find an outgoing scat-q,antum field theory, the physical Hilbert states of the inter-
tering state in an incoming scattering state. The scatteringcting field theory(Hamiltonian have nothing to do with
states are characterized by two conditidiisthey are €igen-  those of the free field theorfree Hamiltonian. In particu-
states of the Hamiltonian, arid) for t— * they approach |5 there is no unitary transformation between the physical
an asymptotic state. The asymptotic state describes two nofacyum to the free vacuum. However, this theorem does not
interacting particlegin the case of two-particle scattering apply when we consider thegularizedfield theory(Hamil-
The so-called Mbler operator maps the asymptotic Statestoniar). Then there is a unitary transformatiah mapping

|¢*% onto the scattering statég(*)): the (regularized free vacuum onto th&egularized physical
vacuum,
16N =0 p3=s— lim exgiHt]exd —iH t]¢%).
t—TFoo
(58) |0) prys= U0 e (63

These equations define scattering states andStieatrix.  This relates the Haag-Ruelle creation operatl{f) (of the
They can be carried over to quantum field theory with somgegularized field theoby to the creation operatoA’(f)
care. through

A. Asymptotic one- and two-particle states al(f)=UAT(f)u ™. (64)

One problem in constructing ti&matrix is the construc-
tion of asymptotic one-particle states, asymptotic two-Finally, using A'(f) from Eg. (42), we can construct, in
particle states, etc. In constructive quantum field theory thisnalogy to Eq.(40), asymptotic noninteracting two-particle
is resolved by Haag-Ruelle thed®0], which indicates how states given by
to construct asymptotic one-particle states through the appli-

cation of suitable local field operators on the physical 12)=AT(f1)AT(£)|0)ree. (65
vacuum:
| 1) phys=a’(£)]0) phys. (59 B. Mdller wave operators and S matrix
A two-particle state is given by Let us denote by*{p;,p,)) the asymptotic two-particle
state, corresponding to two noninteracting particles with mo-
12) pry=2aT(f1)a’(f2)[0)prys- (60) mentump, andp,, respectively. Then the Kier wave op-

erator is given by
Herea' is the creation operator of a one-particle state with

wave functionf created from the physical vacuum. The ex- | tead T))=Q(T)|¢*(p1,p2))

istence of such an operator has been proven by Haag and , , - -
Ruelle[40]. An explicit form of this operator for the case of =exp FiHT Jexp{ *i[E(p,) + E(p2)]T}
glueball states in pure gauge theory has been given'lsy Lu as s >

cher[41]. However, Haag-Ruelle theory says nothing about X|4*P1.,p2))- (66)

how to find the physical vacuum. In the Hamiltonian ap-

proach in connection with the Breit-frame regularization, asHere, E(f)) denotes the energy-momentum dispersion rela-
advocated here, we avoid constructing the physical vacuumion of the one-particle state of mass H denotes the regu-
Thus we follow an alternate route to the Haag-Ruelle theorylarized Hamiltonian. The time parameter which goes to
We directly construct a one-particle state with momentuninfinity in the continuum limit, has to be chosen to take a
p directly by calculating an eigenvector of the regularizedpositive finite valueT in the regularized theorgsee below.
HamiltonianH, In a similar way, one can construct tigematrix



56 PHYSICS FROM BREIT-FRAME REGULARIZATION @ . .. 1467

TV =( N exnli[E(D’ )+ E(D7)1T In order to get the physic&® matrix one has to carry out
Siin(T) = (¢rTexdilE(P"y) +E(p'2) 1T} renormalization and take into account the vacuum structure.
Xexq—iZHT]exp[i[E(ﬁl)JrE(ﬁz)]T}|¢ﬁ1 i Renormalization means that first one has to determine the

counterterms in the Hamiltonian. E.g., for the scaft
(67) model, one has to renormalize the wave function, the mass,

F h ical point of Vi h _ f th and the coupling constant. Then one computes physical ob-
rom the numerical point of view, the computation of the ;o\ 4pjes Jike, e.g., masses or scattering cross sections and

S-matrix element proceeds most simply by diagonalizing the,e the bare parameters of the model, such that the physi-

regularized Hamiltonian cal observables remain fixed. Finally, the vacuum structure
needs some careful treatment. The computation ofthea-
trix, as described above, yields the fd@Imatrix, which in-
cludes the connected pdvthich is the part observed in scat-

; _ ; tering experimenis but also all disconnected parts. The

SXHLIHT] Ey |7.)exilie, (). (68) factorization of n-point Green’s functions into connected
pieces is known as vacuum structlés]. This allows the

How should one choose the scattering time param€&fer extraction of the connected part of tBematrix.
When applying this time-dependent Hamiltonian method to The time-dependent Hamiltonian method, as described
nonrelativistic quantum mechanics as well as to field theoryabove, but using of the rest-frame regularization instead of
models [21], the following general observations have the Breit-frame regularization, has been applied to glueball
emerged from numerical calculations: The matrix elementcattering in compact U(1) gauge thegopmpact QED in
Siiin(t) considered as a function ofhas the following be- 2+1 dimensiong20]. To conclude this section we wish to
havior. Att=0 it takes the valud $3J¢>> (in the case of address the question: What advantage does it bring to use the
elastic scattering When increasing it deviates from the Breit-frame regularization for scattering calculations in the
starting value and eventually reaches a plateau region. Withme-dependent Hamiltonian formulation? First, as men-
a further increase in, it leaves the plateau region and after ationed above, the Breit-frame regularization avoids the cal-
while exhibits an(irregulan oscillatory behavior. The pla- culation of the vacuum state when constructing asymptotic
teau region is the region of physical interest. Its existencdoninteracting two-particle states. Second, this regularization
can be shown analytically for nonrelativistic potential scat-reduces the number of effective degrees of freedom by the
tering (see Ref[21] and references therginThe location ~Same mechanism as was shown to be useful for the calcula-
and size of this plateau region depends on the model anidon of the mass spectrum. However, one must pay attention
dimension. In particular, it depends on the dimension of théo the following limitation: Because we take into account
regularized Hamiltonian. When increasing this dimensionparton momenta inside the sphere given by the Breit condi-
i.e., when exploring a larger Hilbert space, the size of thelion, Eq.(4), the momenta of the asymptotic particles, i.e.,
plateau region becomes larger. In the continuum limit, whemp; ,pj,p;,p, should lie well inside the Breit sphere. This
the S matrix converges, the size of the plateau should betimits the scattering reactions which can be treated. E.g.,
come infinitely large. The time parametérshould be cho- head-on collisions are not included. However, this constraint
sen from this plateau region, either by determining where thés not very stringent because a suitable Lorentz boost can be
matrix element; (t) has the smallest variation with chang- applied to map the momenta into the Breit sphere.
ing t, or by the following criterion of conservation of energy:
In the continuum limit, energy conservation in a scattering
reaction means that

H|77V>:6V|7]V>! V:1121"'1

VII. FINITE DENSITY THERMODYNAMICS

The computation of thermodynamic observables at finite

(P H[Y ) =Eys, (690 temperature and finite density is an important problem in the

physics of neutron stars, high energy heavy ion collisions, as

whereE,; denotes the energy of the asymptotic noninteractwell as the question of phase transitions from the hadronic

ing two-particle state. Thus we define the function phase to a quark-gluon plasma in QCD. However, when
o treating finite temperature QCD in the standard Lagrangian
AE(t)=}Q)(t) $*(p1,p2)|H lattice approach, there is a well-known problem when a non-

.. zero chemical potential is included to describe finite density
X]QF) (1) $p*(p1,P2)) —EadlEass  (70)  effects. The fermionic determinant then becomes complex
yielding a complex lattice action. This has led to great diffi-
whereQ(*) is given by Eq.(58). This function is a measure culties when solving the model numerically via Monte Carlo
of violation of energy conservation in a scattering reactionmethods[44]. In order to study the infrared dynamics of
computed with the regularized Hamiltonian at some finiteYang-Mills and Yang-Mills-Higgs theories at finite tempera-
time t. In the continuum limit this should be zero. Thus we ture, which cannot be addressed by Euclidean methods,
can choose the time parametersuch thatAE(t) is mini-  Moore [45] has suggested an improved Hamiltonian for
mum. Numerical experience has shown that the valu& of Minkowski Yang-Mills theory.
determined as the position of minimal variation of the In this section we want to discuss how finite temperature
S-matrix element and its corresponding value, taken as thand finite density thermodynamics can be treated in a Hamil-
position of the minimum ofAE, agree quite well. This is an tonian formulation with the Breit frame regularization. The
indication of consistency. point is that the Hamiltonian formulation also allows the
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treatment of non-Hermitian Hamiltoniafisomplex actions  tions. We have presented numerical results for parton distri-
Consider the following partition function: bution functions for thep* model. We have proposed how
the Breit-frame regularization can be applied to gauge theo-
ries, while keeping gauge symmetry manifestly conserved.
1 We have suggested that this regularization might be useful
Z=Trexr{ - kB_T(H°+ “N)}’ (7)) aiso for the computation of scattering reactioBsiatrix), as
well as finite temperature and finite density thermodynamics.
We are optimistic that the method can be applied to numeri-
whereH,, stands for a Hermitian Hamiltoniap, denotes the cally compute structure functions in QCD; this work is in
chemical potential, antl stands for a particle number op- Progress.
erator. Let us suppose now, for the sake of argument, that the
term uN is non-Hermitian. What then is the advantage of ACKNOWLEDGMENTS
using a Hamiltonian formulation? In a Hamiltonian formula-
tion this partition function can be computed nonperturba-
tively via diagonalization oHq+ «N in the same way as
exdiHt] has been computed in calculating tBematrix
(Sec. V).
What is the advantage of using the Breit-frame regular-
ization? Let us consider the following scenario: One wishes
to study hot nuclear matter, respectively a quark-gluon

plasma in a state with total momentuRw 0. In order to We wish to show that the renormalized mass defined in
investigate this experimentally, one can perform a high enthis work, in a Hamiltonian formulation, agrees with the
ergy heavy ion collision experiment with large momentumstandard definition in Euclidean lattice field theoery and, in
P. However, it is still an open question whether thermody-particular, with the definition used by kuher and Weisf].
namical equilibrium can be reached during the short collisionVe have defined the renormalized massniyy= M, which
time, before the decay into fragments, which would justifyis the lowest energy eigenvalue of the Hamiltonian at
the use of the Boltzmann-Gibbs partition function. Puttingp=0. The mass is measured relative to the vacuum, i.e., the
aside, for the moment, the question of experimental realizavacuum energy is subtracted. This mass corresponds to the
tion, it is nevertheless physically interesting to ask the fol-mass as it is computed in Euclidean lattice field theory from
lowing question: What are the properties of matter at finitethe exponential decay of the two-point function. Subtraction
temperature and finite density at thermodynamical equilibof the vacuum energy corresponds, in the two-point function,
rium in a sector of momentur® £ 07? Thus we consider the to consider the connected two-point function. The connected
partition function at momenturi: Euclidean two-point function is givean byé(x) $(0))c,
wherex denotes the lattice site. Let=(x, 1), wherer is the
Euclidean time. Then

H.K. gratefully acknowledges support by NSERC
Canada. N.S. wants to express his appreciation for financial
support from the DAAD(Deutscher Akademischer Austaus-
chdienst which has made this project possible. The authors
are grateful for discussions with D. Stteu

APPENDIX

) (72
P H(X,7)=exp(H7)p(x,00exp —H 1) (A1)

- 1
Z(P)=Tr[ ex;{— kB_T(HOJF’“N)}

The evaluation of this function now can be done in the Breit-_ |
frame regularization, which will reduce the effective number
of degrees of freedom, i.e., the dimension of the effective

Hilbert space for the same reason as it did in the computation . A
of structure functions. <¢(X)¢(O)>c=§n: {0 p(x,7)[n)|“e™ En"

VIlIl. SUMMARY R
~ [{0|p(x,7)|1)|?eEr™. (A2)

T— 0

In conclusion, we have suggested a Hamiltonian method
and a momentum regularization corresponding to the Breit
frame. We have shown that this method allows one to extract
continuum physics by presenting numerical results for thedere,|1) denotes the lowest lying state above the vacuum
¢3+1 theory in the symmetric phase close to the critical line.and E, its energy. In order to obtain the mass one projects
We find a close agreement with the solution of the renormalonto momentum zero:
ization group equations by ‘lsesher and Weisz. We have
seen scaling behavior of several low-lying masses near the
critical point. Using the Breit frame, we have computed ana-
lytically for DIS in QCD the relation between the hadronic
tensor, the structure functions, and the quark distributionThus the exponential fall-off behavior in Euclidean time of
functions. In the Bjorken limit we find the conventional re- the connected two-point function determines the midss
lations betweerF,, F5,, g4, and the quark distribution func- The connected two-point function is the inverse of the two-

> (p(X,7)$(0)).~constx e M1, (A3)
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point vertex function'>?, by which Lischer and Weisz

define the mass. They define the renormalized masby
I?9(p,—p)=—-Zg Img+p*+0(p"],  (Ad)

and the physical mass by the pole of the renormalized
propagator. The relation betweeny andm is given by
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m=mg[1—0.001 287gx/167?)?+O(g3)]. (A5)

Thus for the curve shown in Fig. 1, the relative difference
betweenmg andm is less than % 108, i.e., indistinguish-
able by eye.
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