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We suggest a Hamiltonian formulation on a momentum lattice using a physically motivated regularization
using the Breit frame which links the maximal parton number to the lattice size. This scheme restricts parton
momenta to positive values in each spatial direction. This leads to a drastic reduction in the number of degrees
of freedom as compared to a regularization in the rest frame~center at zero momentum!. We discuss the
computation of physical observables such as~i! the mass spectrum in the critical region,~ii ! structure and
distribution functions,~iii ! theS matrix, and~iv! finite temperature and finite density thermodynamics in the
Breit-frame regularization. For the scalar~311!-dimensionalf4 theory we present numerical results for the
mass spectrum in the critical region. We observe scaling behavior for the mass of the ground state and for some
higher-lying states. We compare our results with renormalization group results by Lu¨scher and Weisz. Using
the Breit frame we calculate, for QCD, the relation between theWmn tensor, structure functions~polarized and
unpolarized!, and quark distribution functions. We use the improved parton model with a scale dependence and
take into account a nonzero parton mass. In the Bjorken limit we find the standard relations betweenF1,
F2, g1, and the quark distribution functions. We discuss the role of helicity. We present numerical results for
parton distribution functions in the scalar model. For thef4 model we find no bound state with internal parton
structure.@S0556-2821~97!03015-4#

PACS number~s!: 11.15.Ha, 12.38.Gc, 13.60.Hb

I. INTRODUCTION

The standard model of strong interaction physics~QCD!
has been confirmed very successfully through comparison
between experiment with perturbative and nonperturbative
~mostly lattice! calculations. There are a number of observ-
ables, which need to be computed nonperturbatively. In
some cases nonperturbative computational progress seems
very hard to come by. Let us mention the following ex-
amples:~a! Smatrix for hadron-hadron scattering;~b! struc-
ture functions of the proton, in particular at small values of
the Bjorken variablexB ; ~c! excited states in the hadron
mass spectrum;~d! finite density thermodynamics of had-
ronic matter.

In deep-inelastic lepton-hadron scattering~DIS!, one is
interested in structure functions and their interpretation in
terms of distribution functions. In order to define distribution
functions, one has to specify a reference frame. Possible
choices are the rest frame, the infinite momentum frame,
light-cone coordinates, or the Breit frame. Conventionally,
the infinite momentum frame and light-cone coordinates
have been used. The Breit frame~characterized byq050) is
a particular frame in the sense thatQ5A2q2, the momen-
tum of the exchanged photon is the resolution ability of the
photon to resolve the proton structure. This does not hold in
any other frame withq0Þ0.

The Breit frame is not only conceptionally attractive, but
we suggest here that it is useful also for nonperturbative
numerical calculations. We have introduced a new regular-
ization scheme for a lattice Hamiltonian, based on the Breit
frame. Its construction is guided by the kinematical variables

which play a role in deep-inelastic scattering~DIS!. We have
introduced a momentum lattice based on the Breit frame. It is
centered around the proton momentum~in the case of DIS
proton scattering!. The scheme restricts parton momenta to
positive values in each spatial direction and links the maxi-
mal parton number to the lattice size. This leads to a drastic
reduction in the number of degrees of freedom as compared
to a regularization in the rest frame with the center at zero
momentum. We have applied the scheme to the scalar~3
11!-dimensionalf4 (f311

4 ) model. We have computed the
mass spectrum and extracted physics close to the critical line
~second order phase transition!. We have found very good
agreement with the predictions of the renormalization group
by Lüscher and Weisz@1#. To our knowledge, critical behav-
ior of a (311)-dimensional field theory has been extracted
for the first time from a Hamiltonian formulation.

The successfulness of this method with respect to the rela-
tively small numerical effort~diagonalization of matrices on
the order of 50! makes us cautiously optimistic that other
physical observables or other models could be treated as
well. In this work we want to elaborate on these ideas. In
Sec. II we present the Hamiltonian formulation in the Breit-
frame regularization. We explain physical and mathematical
reasons for the method working. The calculation of the mass
spectrum for thef311

4 model with numerical results near the
critical line are presented in Sec. III. In Sec. IV we discuss
the structure functions and distribution functions in the Breit
frame. For QCD we compute analytically the relation be-
tween the hadronic tensorWmn, the structure functionsF1,
F2, g1, g2, and the quark distribution functions. We present
numerical results for the parton distribution function for the
scalar modelf311

4 . The usefulness of this method eventually
depends on its potential in numerical calculations of gauge
theories. Thus the Breit-frame regularization for lattice gauge
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theories is given in Sec. V. In Sec. VI, we discuss advantages
of the Breit-frame regularization for the purpose to compute
the S matrix of a scattering reaction from a Hamiltonian
lattice formulation. Finally, the computation of thermody-
namical observables at finite temperatureand finite density
from the Breit frame is the topic of Sec. VII. A summary is
given in Sec. VIII.

II. FORMALISM

A. Hamiltonian formulation

Considering nonperturbative methods in many-body
physics, statistical mechanics, and field theory, most success-
ful techniques are sum-rule techniques and lattice field
theory in the Lagrangian formulation using Monte Carlo
methods to compute functional integrals. Although there is a
Hamiltonian formulation of lattice field theory, i.e., the
Kogut-Susskind Hamiltonian in lattice gauge theory@2#,
Hamiltonian methods have not been mainstream in the do-
main of nonperturbative methods. One of the basic reasons
was that in order to treat adequately the physical degrees of
freedom, very many virtual particles have to be taken into
account. As a function of particle number the dimension of
Hilbert space increases exponentially. Nevertheless~maybe
due to shortcomings or slow progress in Lagrangian lattice
field theory!, over recent years several workers have ex-
plored Hamiltonian methods, by trying to work with effec-
tive Hamiltonians having a small number of degrees of free-
dom. Examples are the work by Lu¨scher@3# and Koller and
van Baal@4#, the exp@S# method coming from nuclear phys-
ics @5#, applications of the Kogut-Susskind Hamiltonian to
compute glueball masses and string tension in QCD@6#, the
Hamiltonian approach in light-cone quantization@7#, and
quite recently a Hamiltonian renormalization group approach
@8#. These approaches have employed quite different strate-

gies to cope with the problem of a large number of degrees
of freedom: E.g., Wilson and co-workers have pursued the
idea of the renormalization group, i.e., thinning out degrees
of freedom and constructing a new~renormalized! Hamil-
tonian with a sufficiently small number of effective degrees
of freedom. Lüscher@3# and Koller and van Baal@4# have
discovered that much physics of the low-lying QCD spec-
trum can be described by zero-momentum dynamics plus a
suitable treatment of the remaining degrees of freedom. The
idea of the exp@S# method@5# is that the linked cluster struc-
ture underlying a ground state in a many-body theory can be
generated by a suitable operatorS, and it automatically guar-
antees the correct infinite volume singularity of the ground
state energy. In the applications of the Kogut-Susskind
Hamiltonian to QCD@2#, several groups have developed
clever ways to take into account the high number of
plaquettes and closed loop variables, e.g., via the
t-expansion method by Horn and co-worker@9#. Finally, an
advantage of the regularized~discretized! light-cone Hamil-
tonian method is that light-cone momentap1 of all partons
are positive and add up. Thus a total light-cone momentum
P1 drastically limits the number of degrees of freedom.
However, this does not hold for the perpendicular momen-
tum p' .

Herein, we pursue the following alternative. Let us con-
sider as an example the scalar model given by the Hamil-
tonian

H5E d3x
1

2S ]f

]t D
2

1
1

2
~¹W f!21

m0
2

2
f21

g0
4!

f4, ~1!

wherem0 andg0 are the bare mass and coupling constant,
respectively. We construct the corresponding Hamiltonian in
momentum space:
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1
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lW

1

v~ lW !
. ~2!

We did not do normal ordering, but we have subtracted the
vacuum energy. We have written the Hamiltonian in dis-
cretized form by introducing a lattice in momentum space
with a momentum resolutionDk and a momentum cutoff
L. Conventionally, one would choose a regular lattice, sym-
metrical with respect to zero momentum~rest frame!. This
would be suitable to compute the vacuum state with the
quantum numberP50. We propose the following alterna-
tive: We choose the same regularization, however, we retain
only those lattice momenta which correspond to fast moving
partons going in the same direction as the hadron~proton!.

This will be referred to as Breit-frame regularization in what
follows. As will be shown below, this yields a drastic reduc-
tion in the effective degrees of freedom as compared to the
rest frame.

B. Breit-frame regularization

The most important experiment in order to probe the
structure of hadrons is deep-inelastic scattering~DIS!. Its
simplest form involves inclusive scattering of an unpolarized
lepton off a hadronic target. Let us recall some basic notation
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@10#. The hadron in its ground state interacts with the prob-
ing lepton by the exchange of a virtual photon~or neutrino!.
The hadron~proton! carries momentumP before the colli-
sion and goes over to a hadronic stateX with momentum
PX . Correspondingly, the electron has momentak and k8.
The exchanged photon carries momentumq5k2k8. One
definesQ252q2. In Feynman’s parton model it is assumed
that the proton is made up of constituents, i.e., the partons.
They are weakly bound, i.e., the binding energy is small
compared to the resolution abilityQ:5A2qmq

m of the prob-
ing photon. Letp denote a parton momentum. Convention-
ally, one introduces the Bjorken variablexB :5Q2/
2Pmq

m5(q•p)/(q•P)5p(L)/P(L). The superscriptL de-
notes the longitudial direction, i.e., the direction ofPW . The
second equation results from the impulse approximation, i.e.,
the partons are on the mass shell. The last identity holds in
the Breit frame. TheBreit frameof the hadron is defined by
the requirements that the photon energyq0 be zero and that
the photon momentumqW be antiparallel to the hadron mo-
mentumPW . In this frame, the longitudinal component of the
parton momentum obeyspL5Q/2. The rationale for this par-
ticular choice of frame is that QCD structure functions
F(xB ,Q) can be interpreted as a linear combination of par-
ton momentum distribution functionsf (xB ,Q), which have a
more intuitive interpretation. This relation holds forleading
twist ~higher twists are suppressed for largeQ2). Structure
functions are another way of expressing scattering cross sec-
tions. The distribution function of a parton counts the num-
ber of those partons with a given momentum fractionxB in
the proton. For a precise definition see Ref.@10#.

If the hadron is in its ground state, then the longitudinal
momentumpL of the parton can be neither negative nor can
it be greater thanPL :

0<p~L !<P~L !. ~3!

Thus follows the well-known constraint 0<xB<1. Equation
~3! can be viewed as a regularization of the longitudinal par-
ton momenta. However, it does not restrict the transverse
components of parton momenta. In the Bjorken limit
(Q2→`, P•q→`, xB5const) combined with the Breit
frame, the hadron is a fast moving object. In momentum
space, an object which is spherical in the rest frame becomes
prolate in a fast moving frame. Hence, it is physically justi-
fied to restrict the transverse parton momenta to a finite re-
gion of ellipsoidal ~prolate! shape. In particular, we have
chosen a sphere centered at the midpoint of the interval
@0,P(L)# ~any prolate ellipsoid lies within this sphere!, given
by

~pW 2PW /2!2<~PW /2!2. ~4!

One should note that this constraint also follows directly
from 0<xB<1 and going into the ‘‘parton Breit frame’’
~defined byq050 and qW being antiparallel to theparton
momentumpW ) wherexB takes the formxB5(pW •pW )/(PW •pW ).

Because we are working in the Hamiltonian approach we
need to define a basis in Hilbert space. We construct the
Hilbert space as a Fock space of free particles and select
~parton! momentapW from a bounded domain corresponding

to DIS, as given by Eq.~4!. This is anassumptionbased on
the physical intuition that the experimentally observable par-
ton momenta are those which dominate the quantum dynam-
ics. This assumption has been tested by computing critical
behavior of renormalized masses and a good agreement with
analytical scaling behavior has been observed~see below!.

Now, we introduce a momentum lattice regularization: In
order to have a practically convenient lattice we further con-
strain the parton momenta from Eq.~4!, namely, by selecting
a regular cube centered atPW /2 and located inside the ball
given by Eq.~4!. I.e., the parton momentapW are restricted to
the domain

0<pi<L5
uPW u

A3
for i5x,y,z. ~5!

Inside this domain we define lattice momentapW :5nW Dp

wherenW is an integer vector andDp is the momentum lattice
resolution. One notices that all lattice momenta are nonnega-
tive. Contrary to regularization in the rest frame which does
not limit the particle number, our approach has the following
important property: The effective Hilbert space is built from
the Fock statesu(akW1

† )n1•••(akWN
† )nNu0&, with the conditions

that the total momentum ben1kW11•••1nNkWN5PW , which is
located on the surface of the Breit domain,and that each
parton momentumkW i be inside the Breit domain, as given by
Eq. ~5!. Thus, the regularized Hamiltonian is given by Eq.
~2!, restricted to the effective Hilbert space.

C. Reasons for reduction in the number of effective degrees
of freedom

Why does this regularization scheme lead to a Hamil-
tonian with a small number of effective degrees of freedom?
First, for any given state from the effective Hilbert space, the
Fock space particle numbers are bounded, if one considers
only nonzero parton momenta. This follows from
n1kW11•••1nNkWN5PW . Thus an upper bound on the total par-
ticle number isuPW u/Dp. This does, however, not limit the
zero-mode particle number. The zero mode has to be taken
into account explicitly. The zero mode only determines the
vacuum expectation value of the field^f&. In this work we
only consider the symmetric phase of the model^f&50. In
thef4 model the vacuum expectation value^f& is an order
parameter for symmetry breaking and thus the field has zero
fluctuation in the infinite volume limit. In this limit it be-
comes a classical variable. Thus, for sufficiently large vol-
ume it is justified to set the zero mode to zero. In addition, in
models where the zero mode cannot be dropped, the zero-
mode describes only one degree of freedom, which can be
treated like a quantum mechanical oscillator. In summary,
the ultraviolet cutoffL given by Eq.~5! implies a total par-
ticle number cutoff and thus drastically reduces the dimen-
sion of the Hilbert space.

Second, if one wishes to compute the mass spectrum of a
physical particle, but does not want to compute the vacuum,
one has the freedom to choose a reference frame boosted to a
momentumPÞ0. As is well known from many-body theory
and the exp@S# method, the vacuum state energy has a vol-

56 1457PHYSICS FROM BREIT-FRAME REGULARIZATION OF . . .



ume divergence, but the energy of a physical particle state
has no such divergence. Thus, choosing a sector withPÞ0
excludes the vacuum state, but may eventually allow more
easily to compute the mass of a physical particle, compared
to a computation in the rest frame where the vacuum is
present.

D. Role of zero modes and left movers

Our approach being based on equal-time quantization is
different from light-front quantization as well as from the
infinite momentum frame. However, there are conceptional
similarities between the different approaches: It is the goal to
describe high energy deep-inelastic scattering and, in par-
ticular, structure and distribution functions. In the context of
construction of the Hamiltonian it is very important to study
the dynamical role of zero modes and left movers. In light-
front physics, according to general folklore, the vacuum is
trivial and positive momentum states decouple from the
vacuum. There are examples in light-front physics, which
show that zero modes play a dynamical role. This is dis-
cussed in the recent review article by Burkardt@11#. In the
infinite momentum frame~IMF!, left-moving fermions~with
x,0, wherex denotes the longitudinal parton momentum
portion! are known to play a role, as has been discussed by
Drell et al. @12#. In particular, in the second order self-energy
IMF perturbation diagram left-moving fermions are essen-
tial, as has been shown by Brodskyet al. @13#. Another ex-
ample is QCD in 111 dimensions on a finite circle. Engel-
hardt and Schreiber@14# have shown that the gluon
background field represented by zero modes couples non-
trivially to the quarks, leading to an elimination of fermionic
nonsinglet states. The role of zero modes in quantization
using thee coordinates, which are ‘‘close’’ to the light-cone
coordinates, has been discussed by Lenz and Thies@15#.

All these examples serve as warning that in the Breit-
frame regularization a naive neglect of zero modes and left
movers is dangerous. In this article we have introduced
Breit-frame regularization at hand of the scalar model. Con-
cerning left movers and zero modes in the scalar model, we
can say the following.

~i! Zero modes. The following argument, in our opinion,
shows for the case of the scalar model with spontaneous
symmetry breaking that zero modes are better treated classi-
cally than by a Fock space expansion. In the scalarf4 model
spontaneous symmertry breaking occurs. In the broken phase
one has ^f&5f0Þ0, while in the symmetric phase
^f&50. In particular, the zero modef (0)51/V*d3xf(x) is
an order parameter. Spontaneous symmetry breaking implies
that the zero mode field is peaked around^f (0)&5fo

(0) . In
the thermodynamic limit the peak is infinitely sharp, i.e., the
fluctuation of the zero mode goes to zero. Thus, in the ther-
modynamic limit the behavior of the zero-mode degree of
freedom is adequately described by a classical solution,
which corresponds to fluctuation zero. In our calculation us-
ing a finite lattice volume we are not at the thermodynamic
limit. Nevertheless, we consider the classical treatment of the
zero mode physically more suitable and justified than a par-
ticle number truncation in the zero-mode sector. In this work
we have considered thef4 model only in the symmetric
phase, wherêf (0)&5fo

(0)50.

~ii ! Left movers. According to Brodskyet al. @13#, left
movers do not play a role in IMF perturbation theory for the
scalar model.

~iii ! Actually, we have taken into account left movers in
our model: The Hamiltonian, given by Eq.~2!, consists of
three terms, the noninteracting part~first term!, the interact-
ing term with four creation or annihilation operators~second
term!, and the contraction term with two creation or annihi-
lation operators~last term!. The Breit-frame regularization is
a quantum mechanical regularization which imposes all mo-
menta occurring in creation or annihilation operators to lie in
the Breit domain, Eq.~5!. Therefore, in the last term, the sum
( l1/v( l ) runs over all the momental from the symmetric
lattice (2L to 1L) rather than over the Breit domain. This
corresponds to taking into account tadpole terms. This has
been found essential in order to reproduce the critical behav-
ior of the mass spectrum.

We have presented our method for the explicit example of
the scalarf4 theory in 311 dimensions. However, we donot
claim that the treatment adequate for the scalar model would
be the same for any other model. In particular, the situation
is different when considering gauge theories such as QCD, as
there is no spontaneous symmetry breaking~Elitzur’s theo-
rem!. Therefore, zero modes have then to be treated quantum
mechanically. We are fully aware of the fact that application
of the Breit-frame regularization to any other model beyond
the scalar model requires a careful study of the dynamical
role of left movers and zero modes.

III. MASS SPECTRUM AND CRITICAL BEHAVIOR
OF f311

4 THEORY

First, we need to convince ourselves that the method al-
lows the correct computation of physical observables. We
have chosen the scalarf311

4 theory because it is a quite
well-understood theory which has a second order phase tran-
sition, thus allowing us to test this method near a critical
point. The Hamiltonian of thef4 theory is given by Eq.~2!,
constrained by the Breit condition~5!. It is expressed in
terms of free field creation and annihilation operators corre-
sponding to the lattice momenta in the Breit frame. Because
the Hamiltonian and the momentum operators commute, we
compute the energy spectrumEn in a Hilbert space sector of
a given momentumPW . Since we are not in the rest frame we

use the mass-shell conditionMn :5AEn
22PW 2 in order to ob-

tain the physical mass spectrum.
It is known @1# that the critical line between the symmet-

ric and the broken phase lies entirely in the region where the
bare parton mass squaredm0

2 is negative. Hence, we cannot
build the Fock space in terms of partons with those masses.
As a remedy, we have split the bare mass squared
m0
25mkin

2 1mint
2 into a positive kinetic partmkin

2 and an inter-
action partmint

2 . The Fock states are built from positive bare
massesmkin . In numerical calculations close to the critical
point shown in Fig. 1 we have chosen, for simplicity, a small
positive value. We found that the lower-lying physical mass
spectrum is not very sensitive to the value ofmkin ~this is not
the case for higher-lying masses!. A better choice ofmkin in
our view would be to take the renormalized massmR . Al-
thoughmR is unknown initially, it can be computed by mak-
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ing an initial guess and then iteratively improving the an-
swer.

We have diagonalized the Hamiltonian on two lattices:
L/Dp53 andL/Dp54. This would correspond to symmet-
ric lattices@2L, 1L# of size 73 and 93 nodes, respectively.
This results in a very small Hilbert space of only 6 and 21
states, respectively. We want to check that the renormaliza-
tion group predictions are reproduced correctly. Bre´zin et al.
@16# have computed those via perturbation theory. Lu¨scher
and Weisz@1# later have solved the renormalization group
equations analytically near the critical line starting from
boundary conditions~initial data for renormalization group
differential equations! which have been obtained from a hop-
ping parameter expansion to high order using the lattice ac-
tion. In order to compare our numerical results to those of
Lüscher and Weisz@1#, we express the bare parametersm0
andg0 in terms of the parametersl andk:

m0
25~122l!/k28, g056

l

k2 . ~6!

We define the renormalized mass bymR5M1. The equiva-
lence of our mass definition with that of Lu¨scher and Weisz
is discussed in the appendix. Figure 1 displays the renormal-
ized massmR versusk. One observes that our results, com-
puted on very small lattices, are quite close to the results of
Lüscher and Weisz@1#. MassesM computed on the lattice
must obeya,1/M,L, whereL is the length of the lattice
anda denotes the lattice spacing of a space-time lattice. It is

related toL by L5p/a. It can be shown from perturbation
theory @16,1# that the physical masses close to the critical
point obey the scaling law

M;Ct1/2u lntu21/6, ~7!

wheret:512k/kcrit andC is a constant~integration con-
stant of renormalization group equations!. Since the results
of Ref. @1# are based on the solution of the renormalization
group equations, this scaling law fits its results. One should
note, however, that two different regularizations~this work
and that of Ref.@1#! in general correspond to two different
critical lines corresponding in general to different values of
kcrit . In Table I we have displayed our results for the critical
pointskcrit as a function ofl and compared our results with
those of Ref.@1#. Again, our results are very close to those of
Lüscher and Weisz. These results cover a domain of the bare
parameter space extending quite far away from the Gaussian
fixed point atk51/8, l50.

Another way to test continuum physics is to look at the
mass ratiosMn /M1 from the spectrum on the lattice and
check whether they become independent of the cutoffL or
else independent of the coupling constantg0(L) ~i.e., they
scale!. These mass ratiosMn /M1 are shown in Fig. 2. As
can be seen, for a number of statesMn /M1→const in a wide
range ofk values, i.e., they scale. However, for some states
Mn /M1 diverge, i.e., there is no scaling. The physical reason
behind this is the following: Thef311

4 model describes a gas
of partons repelling each other@1#. The spectrum of Fig. 2
shows states dominated by the 1-, 2-, 3-, 4-particle Fock
space sectors plus a spectrum of excited~scattering! states.

FIG. 1. The ground state massmR in lattice units (a[1) versus

k for l50.003 457 39 (l̄ 50.01 in Ref.@1#!, l andk are given by
Eq. ~6!. The points correspond to the results of Ref.@1#. Our results
correspond toL/Dp53 ~dashed line! andL/Dp54 ~solid line!.

TABLE I. The critical pointskcrit versusl; l andk are given by Eq.~6!. kcrit
LW is taken from Ref.@1#.

a:5kcrit
KS/kcrit

LW denotes the ratio between the results of this work and Ref.@1#. In this work,kcrit has been
determined under the condition that the renormalized massmR becomes imaginary.L/Dp54.

l 0.0005 0.001 0.005 0.01 0.05 0.1

kcrit
LW 0.125101 0.125202 0.125991 0.126968 0.132368 0.13601

a 0.99997 0.99993 0.99972 0.9993 1.0073 1.0275

FIG. 2. The lowest lying mass spectrum versusk. The ground
state mass is set to one,l as in Fig. 1;l andk are given by Eq.~6!;
L/Dp54.

56 1459PHYSICS FROM BREIT-FRAME REGULARIZATION OF . . .



The picture of repulsive two-particle-exchange force is con-
firmed by observation that the mass of the lowest-lying
n-body state is larger thann times the mass of the one-body
state. The states which scale are just those lowest-lying
n-body states. The higher-lying part of the spectrum consists
of states with more nodes in the wave function than lattice
points, having also a wider range and contributions from
higher Fock-state sectors. Because of the fact that in the
calculation corresponding to Fig. 2, the parametersDp, L,
and the parton number cutoff are all kept fixed, we cannot
properly describe these higher-lying states. Consequently,
they do not show scaling. When we go to bigger lattices
(Dp→0) we then observe~not displayed here! more states
which show scaling.

IV. STRUCTURE FUNCTIONS

A. Why structure functions in the Breit frame?

Hadron structure is probed by deep-inelastic scattering
~DIS!. Over recent years a great deal of experimental data
has been gathered from high energy collider experiments.
While perturbative quantum chromodynamics~QCD! de-
scribes successfully the largeQ2 dependence of DIS struc-
ture functions, it cannot predict the correct dependence on
the Bjorken variablexB . Thus, much effort has been devoted
to compute quark or gluon distribution functions and proton
structure functions from QCD withnonperturbativemeth-
ods. E.g., Martinelli and Sachrajda@17# have computed the
first two moments of the pion structure function via Monte
Carlo lattice simulations. Schierholz and co-workers@18#
have recently computed moments of proton and neutron
structure functions. These calculations are notoriously diffi-
cult. A particular problem is the determination of smallxB
behavior from a few moments~see Ref.@19# for details on
the present status of lattice calculations of structure func-
tions!. This situation calls for alternative techniques.

Let us briefly outline the reasons for the choice of our
method: ~i! Structure functions are computed from wave
functions. Wave functions are defined in Minkowski space.
The Hamiltonian approach offers the advantage of allowing
direct computation of Minkowski space observables. E.g.,
scattering wave functions for glueball-like states in compact
QED211 have been computed in a Hamiltonian formulation
on a momentum lattice@20# ~for a review of Hamiltonian
lattice methods see@21,6,7#!. ~ii ! The usefulness of a mo-
mentum lattice to compute physics close to a critical point
has been demonstrated in Refs.@22–27#. ~iii ! The reason for
our choice of the Breit frame has been explained above.
However, Hamiltonian methods are known to lead to nu-
merical problems because of the huge number of degrees of
freedom involved@28#. To the best of the authors’ knowl-
edge nobody has succeeded before to observe scaling behav-
ior indicating continuum physics in a~311!-dimensional
Hamiltonian lattice formulation.

The Breit frame has a distinct property: Only in this frame
the photon momentum transferQ can be interpreted as reso-
lution ability of the photon. The quark and gluon distribution
functions of a proton or a neutron which are measured by
DIS show a peak for smallxB even for a moderate resolution
Q @29#. This indicates a huge number of partons in the pro-
ton, because a system ofn identical partons would be peaked

at xB51/n for symmetry reasons. The physical reason is that
the strong forces which bind the proton can easily create
gluons or quark-antiquark pairs. Contrary to a typical non-
relativistic problem, particle number is not conserved. Con-
sequently, because of the enormous number of degrees of
freedom which are usually associated with a relativistic
many-body system, it is almost impossible to calculate quark
or gluon distribution functions or mass spectra in a Hamil-
tonian QCD approach@30#. Our regularization, given by Eq.
~5!, however, enables us to treat a large number of partons
with a reasonablenumerical effort.

TheQ dependenceof the distribution functions is also a
many-particle effect. An intuitive explanation for this depen-
dence is that more partons can be seen inside the proton, if
the resolutionQ is increased. Partons, however, which are
heavy with respect to the forces between them, can be de-
scribed in a simple constituent model because many-particle
effects are negligible. Hence, their distribution functions are
neither peaked atxB50 nor do they depend considerably on
the resolutionQ. Examples are heavy quarkonia, electromag-
netically bound particles~such as atoms!, or thef311

4 theory
which we are investigating below. The renormalized cou-
pling constant off311

4 theory is weak everywhere in the
critical region and the forces between ‘‘partons’’ are even
repulsive@1#.

B. Relation between structure functions
and distribution functions in the Breit frame for QCD:

Unpolarized structure functions

In this section we compute analytically the relation be-
tween hadronic tensor, structure functions, and distribution
functions. Because we work in a fast moving frame andnot
in the infinite momentum frame, we can explicitly take into
account a nonzero parton mass. The cross section for deep-
inelastic lepton-hadron~electron-proton! scattering has the
form ~following Jaffe’s notation@31#!

d2s} lmnWmn , ~8!

wherelmn denotes the leptonic tensor andWmn stands for the
hadronic tensor. The hadronic tensor can be split into a sym-
metric part, which corresponds to unpolarized structure func-
tions and an antisymmetric part, corresponding to the polar-
ized structure functions. The symmetric part can be
parametrized in terms of the structure functionsF1 andF2:

Wsym
mn 5S 2gmn1

qmqn

q2 DF1

1F S Pm2
n

q2
qmD S Pn2

n

q2
qnD GF2

n
, ~9!

whereqm is the photon momentum,Pm is the proton momen-
tum, andn5q•P. Now, we choose the Breit frame as the
reference frame: In the Breit frame the proton momentum is
Pm5(E,0,0,P3) with E

25P3
21M2, M being the proton rest

mass. The photon momentum isqm5(0,0,0,2Q); Q is de-
fined to beq252Q2. As a result, we find that all compo-
nents ofWsym

mn vanish, except for
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Wsym
00 52F11

E2

P3Q
F2 ,

Wsym
11 5Wsym

22 5F1 . ~10!

The hadronic tensor is defined@31# as

4pWmn5(
X

~2p!4d~P1q2PX!^PSuJm~0!uX&

3^XuJn~0!uPS&, ~11!

whereX denotes the unobserved fragments of the proton and
P is the proton momentum. We have normalized the proton
state to^P8uP&52E(2p)3d3(P82P). S is the proton spin
~Pauli-Lubanski vector! normalized to S252M2;
Jm(x)5 c̄ (x)gmc(x) denotes the fermionic~quark! current.
The hadronic tensor can be expressed as a current commuta-
tor:

4pWmn5E d4yexp@2 iq•y#^Pu@Jm~y!,Jn~0!#uP&.

~12!

In deep-inelastic scattering it is customary to use the impulse
approximation in the axial gauge. The partons lie on the
mass shell; thus, one can expand the fieldc(x)

c~x!5(
s
E d3k

~2p!3/2
@2v~kW !#21/2@us~kW !e2 ik•xbs~kW !

1vs~kW !eik•xds
†~kW !#. ~13!

The spinors are normalized to ū sus852mds,s8,
v̄ svs8522mds,s8, wherem is the parton rest mass. The par-
ton spin is normalized tos252m2. The creation and anni-
hilation operators obey@bs(kW ),bs8

† (kW8)#15ds,s8d(k
W2kW8)

and @ds(kW ),ds8
† (kW8)#15ds,s8d(k

W2kW8).
In the computation of the matrix element of the current

commutator the following leptonic tensor occurs:

l ūu ūu
mn

~k,s,k8,s8!5 ū~k,s!gmu~k8,s8! ū~k8,s8!gnu~k,s!

5kmk8n1k8mkn1gmn~m22k•k8!

2 imemnab~k2k8!a~s1s8!b , ~14!

and summing overs8 yields

l ūu ūu
mn

~k,k8,s!52@kmk8n1k8mkn1gmn~m22k•k8!

2 imemnab~k2k8!asb#, ~15!

being the standard result@31#. Because of the current com-
mutator, there are four fermion fields involved, which gives
16 combinations of fermion and antifermion creation and
annihilation oprators. A straightforward but lengthy calcula-
tion gives the term~for other terms see below!

Wb†bb†b
mn

5
E

4E d3k
d~q01k02k80!

v~kW !v~kW1qW !

3(
s
l ūu ūu
mn

~k,k1q,s!Ps
b~P,kW !. ~16!

Here, we have switched to the following normalization of the
proton statê P8uP&5d3(P82P). The calculation includes
the matrix element̂PSubs

†(kW )bs8(k8
W )uPS& which allows one

to split off d(kW2kW8) due to the conservation of total three-
momentum as well as to split offds,s8 due to the conserva-
tion of spin quantum numbers in the helicity basis. Thus, we
have definedPs

b(PS,kW ) by

^PSubs8
†

~k8W !bs~kW !PS&5Ps
b~PS,kW !d~kW2k8W !ds,s8, ~17!

which is the the expectation value in the proton state of the
quark number operator corresponding to momentumkW and
spin s. Note thatPb has the same dimension as^PSuPS&.
We now go into the Breit frame. In particular, we employ the
Breit condition, Eqs.~4! and ~5!. In the Breit frame one has
q050, moreoverkW lies on the mass shell, (k0)25kW21m2,
due to the impulse approximation. AlsokW85kW1qW is on shell.
Thus, we obtain

Wb†bb†b
mn

5
E

4E d2k'(
s

l ūu ūu
mn

~kQ ,kQ8 ,s!

Qv~kWQ!
Ps

b~P,kWQ!,

~18!

where we have defined kWQ5(kW' ,Q/2,) and
k8WQ5(kW' ,2Q/2) ~parallel and perpendicular denotes the
orientation of components with respect to the space compo-
nent of the proton momentum!.

A second term, which contributes to theWmn tensor, is

Wdd†dd†
mn

5
E

4E d2k'(
s

l v̄ v v̄ v
mn

~kQ8 ,kQ ,s!

Qv~k8WQ!
Ps

d~P,kWQ!.

~19!

Ps
d(PS,kW ) is defined in analogy to Eq.~17!, but for the an-

tiquark number operator. The leptonic tensorl v̄ v v̄ v
mn , corre-

sponding to thev spinor, is defined by

l v̄ v v̄ v
mn

~k,s,k8,s8!5 v̄ ~k,s!gmv~k8,s8! v̄ ~k8,s8!gnv~k,s!,
~20!

yielding, after summation over the spins8

l v̄ v v̄ v
mn

~k,k8,s!52@kmk8n1k8mkn1gmn~m22k•k8!

1 imemnab~k2k8!asb#. ~21!

All other terms give vanishing contributions toWmn due to
the fact that all parton momenta lie in the Breit sphere.

Thus, the symmetric part ofWmn, corresponding to the
unpolarized structure functions, yields the following result in
the Breit frame. The only nonzero components are those with
m5n50,1,2:
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Wsym
mm 5

E

4E d2k'

l unpol
mm ~kQ ,kQ8 !

Qv~kWQ!
(
s

@Ps
b~P,kWQ!1Ps

d~P,kWQ!#,

~22!

wherel unpol
mn denotes the symmetric part ofl v̄ v v̄ v

mn and l v̄ v v̄ v
mn ,

l unpol
mn ~k,k8!52@kmk8n1k8mkn1gmn~m22k•k8!#. ~23!

In particular, one has

l unpol
00 ~kQ ,kQ8 !54@m21~kW'!2#,

l unpol
11 ~kQ ,kQ8 !54~k1!

21Q2,

l unpol
22 ~kQ ,kQ8 !54~k2!

21Q2. ~24!

Let us now consider the Bjorken limit of these expres-
sions. The Bjorken limit is defined byQ→` and
xB5const. In the Breit frame, this implies for the proton
momentumP3 that P3→` andQ/P352xB5const. Thus,
we compute the kinematical factorsE5AM21P3

2;Q/2xB
and

l unpol
00 ~kQ ,kQ8 !

Qv~kWQ!
5

4@m21~kW'!2#

QAQ2/41~kW'!21m2
;Q22→0. ~25!

This implies

Wsym
00 →0. ~26!

On the other hand, Eq.~10! yields in the Bjorken limit

W0052F11
EP
2

P3Q
F2→2F11

1

2xB
F2 . ~27!

Thus, the last two equations imply, in the Bjorken limit, that
the Callan-Gross relation holds

2xBF15F2 , ~28!

which is the standard result as in the parton model. Similarly,
we compute

l unpol
11 ~kQ ,kQ8 !

Qv~kWQ!
5

4~k1!
21Q2

QAQ2/41~kW'!21m2
→2,

l unpol
22 ~kQ ,kQ8 !

Qv~kWQ!
5→2. ~29!

Thus, we obtain the following result forWsym
00 , Wsym

11 , and
Wsym

22 , in the Bjorken limit

Wsym
00 50,

Wsym
11 5Wsym

22 →
P3

2 E d2k'(
s

@Ps
b~P,kWQ!1Ps

d~P,kWQ!#.

~30!

Our regularization scheme allows direct computation of
the parton distribution function. We define

f ~p3 ,P3 ,m!5E d2k'(
s

@Ps
b~P,kWQ!1Ps

d~P,kWQ!#,

~31!

where p3 is the longitudinal parton momentum,P3 is the
longitudinal proton momentum, andm is a fixed but arbitrary
scale parameter with dimension of mass~e.g., LQCD).
f (p3 ,P3 ,m) is the probability of finding a parton with lon-
gitudinal momentump3 in a bound state~proton! with lon-
gitudinal momentumP3, where momenta are measured in
terms of the scalem. TheWmn tensor is dimensionless. Thus,
we have

Wsym
22 5

P3

2
f . ~32!

Thus, G(p3 ,P3 ,m)5P3f (p3 ,P3 ,m) is a dimensionless
function which scales

G~lp3 ,lP3 ,lm!5G~p3 ,P3 ,m!. ~33!

We have shown in the Bjorken limit thatWsym
22 5F1, thus

F1~x,Q,m!5
P3

2
f ~p3 ,P3 ,m!. ~34!

Expressingp3 andP3 in terms ofQ andx yields p35Q/2
andP35Q/2x and hence

F1~x,Q,m!5
Q

4x
f ~Q/2,Q/2x,m!. ~35!

Making a scale transformation by multiplying all variables of
dimension mass byl, wherel is chosen to obeylP351,
yields

F1~x,Q,m!5 1
2 f ~x,1,2xm/Q!,

F2~x,Q,m!5x f~x,1,2xm/Q!. ~36!

Here, f (x,1,2xm/Q) denotes the probability of finding a par-
ton with a longitudinal momentum fractionx for a total lon-
gitudinal momentum51, where the scale is given by
2xm/Q. Note that in Eq.~30! the sum runs over all spin
values. For a spin 1/2 parton this is equivalent to a sum over
the helicity quantum numbers1 and 2. If we take into
accountei , the electric charge of a quark with flavori rela-
tive to the charge of the electron, and redefine Eq.~31! by
f5*d2k'(sPs

b and f̄ 5*d2k'(sPs
d we obtain, from Eq.

~36!,

F1~x,Q!5(
i
ei
2 1
2 @ f1

~ i !~x,1,2xm/Q!1 f2
~ i !~x,1,2xm/Q!

1 f̄ 1
~ i !~x,1,2xm/Q!1 f̄ 2

~ i !~x,1,2xm/Q!#,

F2~x,Q!5(
i
ei
2x@ f1

~ i !~x,1,2xm/Q!1 f2
~ i !~x,1,2xm/Q!

1 f̄ 1
~ i !~x,1,2xm/Q!1 f̄ 2

~ i !~x,1,2xm/Q!#. ~37!
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The standard expression from the parton model@10,31# is
given by

F1~x!5(
i
ei
2 1
2 @q1

~ i !~x!1q2
~ i !~x!1 q̄1

~ i !~x!1 q̄2
~ i !~x!#,

F2~x!5(
i
ei
2x@q1

~ i !~x!1q2
~ i !~x!1 q̄1

~ i !~x!1 q̄2
~ i !~x!#.

~38!

In the Bjorken limit our result, Eqs.~37!, agrees with the
standard result, Eqs.~38!. As can be seen, the quark distri-
bution functionq(x) occurring in Eqs.~38! does not have
anyQ dependence. It corresponds to the naive parton model,
which has noQ dependence. However, perturbative QCD
introduces aQ dependence via logarithmic corrections~vio-
lation of scaling!. Thus, one arrives atq(x,Q,m) which is a
quark distribution function from a ‘‘renormalization group-
improved parton model.’’q(x,Q,m) is interpreted as the
probability to find a parton with momentum fractionx in a
hadron with momentum5 `, where the resolution~by the
photon! Q is finite, and momenta are measured in terms of a
mass scale m. Note that our distribution function
f (x,1,2xm/Q) has a different interpretation thanq(x,Q,m):
f (x,1,2xm/Q) corresponds to the Breit frame where the had-
ron moves fast but withfinite momentum, whileq(x,Q,m)
corresponds to theinfinite momentum frame. However, in
the Bjorken limit both coincide.

C. Relation between structure functions
and distribution functions in the Breit frame for QCD:

Polarized structure functions

The antisymmetric part of theWmn tensor describing the
spin-dependent part can be parametrized in terms of the spin
structure functionsg1 andg2 @31#:

Was
mn52 i emnsrqsFSr

n
~g11g2!2

q•SPr

n2
g2G . ~39!

Here, S denotes the proton spin, withP•S50 and
S252M2. The proton spin can be polarized in two ways:
SW iPW ~longitudinal, helicity! or SW'PW ~transverse!. In order to
extract both spin structure functions from the tensorWas

mn one
needs both polarizations. Let us consider first longitudinal
polarization. Then we find, in the Breit frame,

Was
125 i Fg12S MP3

D 2g2G ,
Was

2152Was
12. ~40!

All other elements ofWas
mn vanish. Now, let us consider

transverse polarization. We then find, in the Breit frame,

Was
0252 i

M

P3
~g11g2!,

Was
2052Was

02. ~41!

Once again, all other elements ofWas
mn vanish.

In the following let us consider the case where the proton,
as well as the partons, are polarized longitudinally~helicity!.
We want to compute in the Breit frame the 12 component of
the hadronic tensorWas

mn . We obtain

Was
125

E

4E d2k'(
s

l pol
12 ~kQ ,kQ8 ,s!

Qv~kWQ!
@Ps

b~P,kWQ!1Ps
d~P,kWQ!#,

~42!

where we have defined

l pol
12 ~kQ ,kQ8 ,s!5 l ūu ūu

12
~kQ ,kq8 ,s!. ~43!

In the Breit frame the antisymmetric part of the leptonic
tensor l ūu ūu

mn (k,k8,s), Eq. ~15!, and of l v̄ v v̄ v
mn (k,k8,s), Eq.

~20!, are given by

l ūu ūu
12

~k,k8,s!5 i2Qs0 ,

l v̄ v v̄ v
12

~k,k8,s!52 i2Qs0 . ~44!

For the parton spins the following holds: s•k50,
s252m2. In the helicity basis, one hassWikW ; thus one defines
the parton helicityh by

hs5
sW•kW

ukW u•v~kW !
. ~45!

In the Bjorken limit one obtains

l pol
12

Qv~kQW !
→ i2hs , ~46!

and, hence,

Was
12→ i

P3

2 E d2k'(
s
hs@Ps

b~P,kWQ!1Ps
d~P,kWQ!#.

~47!

Equation~40! implies, in the Bjorken limit,

Was
12→ ig1 . ~48!

From this and Eq.~47!, after doing the same scale change as
in the unpolarized case, we arrive at

g1~x,Q!5
1

2(i ei
2@h1 f1

~ i !~x,1,2xm/Q!1h2 f2
~ i !~x,1,2xm/Q!

1h1 f̄ 1
~ i !~x,1,2xm/Q!1h2 f̄ 2

~ i !~x,1,2xm/Q!#.

~49!

This is in agreement with the standard result of the parton
model @31#:

g1~x!5
1

2(i ei
2@h1q1

~ i !~x!1h2q2
~ i !~x!1h1 q̄1

~ i !~x!

1h2 q̄2
~ i !~x!#. ~50!
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In summary of this section, we have computed analytically
using Breit-frame regularization the relation between the
hadronic tensor, structure functions, and parton distribution
functions. The main results are given by Eqs.~22! and ~23!
and Eqs.~42! and ~43!. The results are ‘‘renormalization
group improved’’ compared to the naive parton model, tak-
ing into account parton massm and scale parameterm.

D. Numerical results for distribution functions
of the scalar model

In this section we want to show how distribution func-
tions can be computed numerically using the Hamiltonian
approach and Breit-frame regularization. We apply the
method to the scalar model in 311 dimensions. This model
has been extensively studied and represents, for finite cutoff,
a nontrivial effective theory. We compute distribution func-
tions for thef4 model. Let us consider thef311

4 model. The
first excited state consists of only one parton~three-particle
contributions have been found to be extremely small, i.e.,
within the error margin!. This is because our particular
choice of regularization~Breit frame!, which makes all par-
ton momenta positive, implies that for the Hamiltonian the
terms which conserve particle number are dominant. Conse-
quently, the distribution function is peaked atxB51, as
shown in Fig. 3. We did not find a noticeable dependence on
the resolutionQ, i.e., many-particle effects are absent. We
have not made any effort to obtain a finerxB resolution be-
cause this state does not display the interesting structure of a
bound state. We have also observed that higher excited states
display a dominant 2-, 3-, 4-particle content~with very small
mixtures between different sectors!. One should note, how-
ever, that the simplicity of the first excited state is due to the
fact that the positivity of the longitudinal parton momenta
prevents the creation of partons directly from the vacuum.
Had we worked in the rest frame (PW 50), the ‘‘valence par-
ton’’ of the first excited state would be surrounded by a large
cloud of partons with opposite momentapW and even the
vacuum, lying in thePW 50 sector, would be made up of such
a cloud.

E. Scaling in the Bjorken limit

It is physically very important to study the scaling behav-
ior in the Bjorken limit of parton distribution functions. The

most interesting case to do this is QCD, where perturbative
QCD calculations based on asymptotic freedom predict loga-
rithmic deviations from Bjorken scaling. It would be most
important to have numerical results on this, and it is our goal
of future work to go in this direction. In this work we have
considered the scalar model, because it is a relatively simple
model, however, having a nontrivial critical behavior, and it
has been widely studied. This makes it a suitable benchmark
model to test a new method. Thus, the close agreement found
for the mass spectrum in the critical regime with lattice re-
sults is one of the most important results of this work.

Concerning the scaling behavior of distribution functions
in the scalar model, we would like to make the following
remarks.

~i! In order to test the scaling behavior, it would be nec-
essary to compare numerical results obtained from our
method with analytical perturbation calculations, based on
asymptotic freedom. One of the few models having
asymptotic freedom, except non-Abelian gauge theories, is
the scalarf3 theory in six dimensions@32#. However, it is
unbounded from below and does not give a physical mass
spectrum.

~ii ! Despite the defect of unboundedness from below, we
have done numerical studies of the scalarf3 theory in
311 dimensions. While thef4 theory has no bound states
@1#, the f3 theory has some bound states with nontrivial
distribution functions. In QCD the scale dependence occurs
in the running coupling constantas;1/ln(Q2/L2). In the
f3 theory, there is no critical line with a second order phase
transition, and there is no physical mass spectrum. Therefore,
we have looked at the distribution function as a function
xB and of the bare couplingg0. For g050 we have found a
one-particle distribution function which, for increasingg0,
smoothly goes over to a distribution function with many-
parton signature. In particular, it yields a substantial increase
for small xB , similar to the behavior seen in QCD.

~iii ! As mentioned above, thef4 theory has no bound
states. This property of the model has also been seen in par-
ton distribution functions, which shows the one-particle
structure~Fig. 3!. We have looked at its scaling behavior.
But instead of changing the momentap, P, andQ2, such that
Q2→` andxB5const, we have kept the momentum cutoff,
which corresponds toQ25const, but have varied the model
parametersl, k along the critical line, such that renormal-
ized massmren and renormalized coupling constantgren go to
zero. As a result one finds for the parton distribution function
that in addition to the dominant contribution from the one-
particle state, there are very small contributions from three-
particle states. The three-particle contribution relative to the
one-particle contribution is in the order of 1025, i.e., of the
size of the numerical error. We have chosen not to present
this in the figure.

V. APPLICATION TO GAUGE THEORIES

Given the fact that the most important physical models
are gauge theories, we want to discuss the treatment of gauge
theories in the Hamiltonian formulation with Breit-frame
regularization. In the previous sections we have given argu-
ments and numerical results showing the usefulness of a mo-
mentum lattice regularization in connection with the Breit

FIG. 3. The distribution functionf (xB) of f311
4 versus the mo-

mentum fractionxB . l50.003 457 39~as in Fig. 1!; L/Dp54.
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frame. The usefulness of a momentum lattice corresponding
to the rest frame has previously been investigated and dem-
onstrated by several workers: Kuti and co-workers@22# have
investigated the one-component scalarf4 model and the
O(4) symmetric scalar model and estimated a bound on the
Higgs boson mass. Kro¨ger and co-workers@23# have solved
the Langevin equation on a momentum lattice for the scalar
f311
4 model and extracted critical behavior. Glueball scatter-

ing in compact QED211 ~QCD-like model! has been com-
puted on a momentum lattice in Ref.@20#. Properties of
nuclear matter have been computed by Brockmann and
Frank @24#. Kogut and Lagae¨ @25# have studied the phase
diagram of quenched QED on a momentum lattice. Espriu
and Traresset@26# have studied the renormalization group
flow by use of a momentum lattice. Finally, Koutsoumbras
@27# has computed the gluon propagator of finite temperature
QCD from a momentum lattice. Thus, momentum lattice
regularization has proven to be useful when numerically
studying physics near a critical point.

When one treats gauge theories on a momentum lattice
the following problem occurs: If one takes the gauge fields
Am(ki) as variables~so-called noncompact formulation!,
whereki denotes a momentum lattice, then the gauge action
is not manifestly gauge invariant. As a consequence, one has
observed nonlocal counterterms when computing, from lat-
tice perturbation theory, the axial anomaly and the one-loop
vacuum polarization. This has been seen by Karsten and
Smit @33# by computing the triangle diagram using the SLAC
derivative in the action and by Kro¨ger and co-workers@34#
using an action defined on a momentum lattice with a mo-
mentum cutoffL. As Wilson has pointed out, it is desirable
to conserve gauge symmetry manifestly in a regularized
gauge theory. E.g., there is numerical evidence@35# that a
lattice action which is not manifestly gauge invariant yields
no area law for the Wilson loop in pure SU(2) gauge theory.

The space-time lattice Hamiltonian, corresponding to the
Wilson action and being manifestly gauge invariant, has
been constructed by Kogut and Susskind@36#. Here, we are
confronted with the following problem: How to introduce a
momentum lattice as a regulator while manifestly conserving
gauge invariance? We suggest doing this as follows: We take
closed Wilson loops as variables~for pure gauge theory
without color charges!. The Hilbert space is then built from
these loops. Gauge invariance corresponds to satisfying
Gauss’s law

Guf.50. ~51!

For a fixed lattice sitei , one hasGi5($ i , j %{ i l i j
a , i.e., the sum

over generators of gauge transformations~where the tempo-
ral gauge is fixed!. States corresponding to closed loops obey
this law, while states corresponding to open strings fail to
obey it. The physical states are color singlet states, and thus
open string states are unphysical. Nevertheless, we will make
use of them as an intermediate step in constructing a Hilbert
space of states obeying the Breit condition.

In order to introduce a regularization, we start from a
conventional space-time lattice~regular, hypercube! with lat-
tice spacinga. Next, closed loops as well as open strings are

defined as curves connecting adjacent lattice sites~straight
line between neighboring lattice sites!. E.g., a loop state is
given by

uf~x1!&5uUm~x1!Un~x11am̂ !•••Uv~xN!&, ~52!

wherexN1av̂5x1. In order to introduce a momentum lat-
tice we make a discrete Fourier transformation

uf̃~ki !&5a(
xi

exp@2 ix iki #uf~xi !&, ~53!

where each component ofki runs over the Brillouin zone
2p/a to 1p/a. One can define the lattice momentum op-
eratorPm via the lattice translationTm(a), which translates
each configuration on the lattice by an incrementa in the
directionm. It is given by

Tm~a!5exp@2 iaPm#. ~54!

The eigenvalues ofP are ki , which are the possible mo-
menta of the loop state.

In order to construct states with well-defined momentum,
obeying the Breit condition, as well as satisfying gauge in-
variance, we suggest to proceed as follows: We construct a
Hilbert space built from link states. Using discrete Fourier
transformation we associate a discrete lattice momentum to
each link, sayŨm(ki). Then we construct multiple link states

uc~k1 , . . . ,kN!&5uŨm~k1!Ũn~k2!•••Ũv~kN!&. ~55!

This state corresponds to momentumktot5k11•••1kN . We
then impose the Breit condition@see Eq.~4!#

~kW i2PW /2!2<~PW /2!2, ~56!

where the parton momenta are given by the lattice momenta
of the links. Thus, as in the scalar model, positivity of parton
momenta in all three components and a given total momen-
tum gives a bounduPW u/Dp to the total number of links and
thus gives a strong bound on the dimension of the effective
Hilbert space. Eventually, we implement gauge symmetry by
requiring Gauss’s law, Eq.~51!, to be respected. Hence the
Breit condition and Gauss’s law define our basis of Hilbert
states.

VI. S MATRIX

The Hamiltonian in the Breit-frame regularization has
been shown above to be a suitable tool in the scalar model
for computation of the mass spectrum and physics at the
critical line, as well as distribution functions. In this section
we want to suggest that it is also a valuable tool for scatter-
ing phenomena and in particular for the nonperturbative
computation of theS matrix. When considering the nonper-
turbative computation of scattering observables, standard Eu-
clidean lattice field theory is faced with the following prob-
lem: The scattering matrix elements are directly related to
Minkowski n-point functions. On the lattice one can com-
pute Euclideann-point functions. In principle, there is an
analytic continuation between these two types ofn-point
functions. However, when the Euclideann-point function is

56 1465PHYSICS FROM BREIT-FRAME REGULARIZATION OF . . .



only known at some lattice points within the uncertainty of
statistical errors, it is very difficult~almost impossible! to get
reliable numerical results from an analytic continuation. A
way out of this dilemma has been proposed by Lu¨scher@37#.
The idea is that continuum scattering phases can be extracted
from the finite-size behavior of a mass spectrum on a finite
lattice. This requires mass calculations via standard Euclid-
ean lattice techniques, but also requires quite precise data in
order to resolve finite-size effects.

An alternative way to compute nonperturbatively anS
matrix has been suggested by Kro¨ger @21#. The idea is the
following. TheSmatrix, as has been introduced by Heisen-
berg @38# and Mo” ller @39#, is defined as

S5^c~2 !uc~1 !&, ~57!

which is the probability amplitude to find an outgoing scat-
tering state in an incoming scattering state. The scattering
states are characterized by two conditions:~i! they are eigen-
states of the Hamiltonian, and~ii ! for t→6` they approach
an asymptotic state. The asymptotic state describes two non-
interacting particles~in the case of two-particle scattering!.
The so-called Mo” ller operator maps the asymptotic states
ufas& onto the scattering statesuf (6)&:

uf~6 !&5V~6 !ufas&5s2 lim
t→7`

exp@ iHt #exp@2 iH 0t#fas&.

~58!

These equations define scattering states and theS matrix.
They can be carried over to quantum field theory with some
care.

A. Asymptotic one- and two-particle states

One problem in constructing theSmatrix is the construc-
tion of asymptotic one-particle states, asymptotic two-
particle states, etc. In constructive quantum field theory this
is resolved by Haag-Ruelle theory@40#, which indicates how
to construct asymptotic one-particle states through the appli-
cation of suitable local field operators on the physical
vacuum:

u1&phys5a†~ f !u0&phys. ~59!

A two-particle state is given by

u2&phys5a†~ f 1!a
†~ f 2!u0&phys. ~60!

Herea† is the creation operator of a one-particle state with
wave functionf created from the physical vacuum. The ex-
istence of such an operator has been proven by Haag and
Ruelle@40#. An explicit form of this operator for the case of
glueball states in pure gauge theory has been given by Lu¨s-
cher @41#. However, Haag-Ruelle theory says nothing about
how to find the physical vacuum. In the Hamiltonian ap-
proach in connection with the Breit-frame regularization, as
advocated here, we avoid constructing the physical vacuum.
Thus we follow an alternate route to the Haag-Ruelle theory.
We directly construct a one-particle state with momentum
pW directly by calculating an eigenvector of the regularized
HamiltonianH,

HupW &5E~pW !upW &. ~61!

The property of being a one-particle state is verified by com-
puting its mass~see Sec. III!. If, e.g., its mass is the lowest
mass in the mass spectrum, the stateupW & is a one-particle
state. Letu f & denote such a one-particle state with a momen-
tum distribution given by a wave functionf . In the language
of Haag-Ruelle theory, the explicit construction of the state
u f & means that we have found a creation operatorA†( f ) with

u1&5A†~ f !u0& free. ~62!

I.e., it creates a one-particle state from the vacuum of the
regularized free Hamiltonian. There is a theorem by Haag
@42# which says that in the continuum limit of relativistic
quantum field theory, the physical Hilbert states of the inter-
acting field theory~Hamiltonian! have nothing to do with
those of the free field theory~free Hamiltonian!. In particu-
lar, there is no unitary transformation between the physical
vacuum to the free vacuum. However, this theorem does not
apply when we consider theregularizedfield theory~Hamil-
tonian!. Then there is a unitary transformationU, mapping
the ~regularized! free vacuum onto the~regularized! physical
vacuum,

u0&phys
reg 5Uu0& free

reg . ~63!

This relates the Haag-Ruelle creation operatora†( f ) ~of the
regularized field theory! to the creation operatorA†( f )
through

a†~ f !5UA†~ f !U21. ~64!

Finally, usingA†( f ) from Eq. ~42!, we can construct, in
analogy to Eq.~40!, asymptotic noninteracting two-particle
states given by

u2&5A†~ f 1!A
†~ f 2!u0& free. ~65!

B. Mo” ller wave operators andS matrix

Let us denote byufas(pW 1 ,pW 2)& the asymptotic two-particle
state, corresponding to two noninteracting particles with mo-
mentumpW 1 andpW 2, respectively. Then the Mo” ller wave op-
erator is given by

ufscatt
~6 ! ~T!&5V~6 !~T!ufas~pW 1 ,pW 2!&

5exp@7 iHT#exp$6 i @E~pW 1!1E~pW 2!#T%

3ufas~pW 1 ,pW 2!&. ~66!

Here,E(pW ) denotes the energy-momentum dispersion rela-
tion of the one-particle state of massm. H denotes the regu-
larized Hamiltonian. The time parametert, which goes to
infinity in the continuum limit, has to be chosen to take a
positive finite valueT in the regularized theory~see below!.
In a similar way, one can construct theSmatrix
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Sfi,in~T!5^ffi
asuexp$ i @E~p8W 1!1E~p8W 2!#T%

3exp@2 i2HT#exp$ i @E~pW 1!1E~pW 2!#T%uf in
as&.

~67!

From the numerical point of view, the computation of the
S-matrix element proceeds most simply by diagonalizing the
regularized Hamiltonian

Huhn&5enuhn&, n51,2, . . . ,

exp@ iHT#5(
n

uhn&exp@ i enT#^hnu. ~68!

How should one choose the scattering time parameterT?
When applying this time-dependent Hamiltonian method to
nonrelativistic quantum mechanics as well as to field theory
models @21#, the following general observations have
emerged from numerical calculations: The matrix element
Sfi,in(t) considered as a function oft has the following be-
havior. At t50 it takes the valuêffi

asuf in
as& ~in the case of

elastic scattering!. When increasingt it deviates from the
starting value and eventually reaches a plateau region. With
a further increase int, it leaves the plateau region and after a
while exhibits an~irregular! oscillatory behavior. The pla-
teau region is the region of physical interest. Its existence
can be shown analytically for nonrelativistic potential scat-
tering ~see Ref.@21# and references therein!. The location
and size of this plateau region depends on the model and
dimension. In particular, it depends on the dimension of the
regularized Hamiltonian. When increasing this dimension,
i.e., when exploring a larger Hilbert space, the size of the
plateau region becomes larger. In the continuum limit, when
the S matrix converges, the size of the plateau should be-
come infinitely large. The time parameterT should be cho-
sen from this plateau region, either by determining where the
matrix elementSfi,in(t) has the smallest variation with chang-
ing t, or by the following criterion of conservation of energy:
In the continuum limit, energy conservation in a scattering
reaction means that

^c~6 !uHuc~6 !&5Eas, ~69!

whereEas denotes the energy of the asymptotic noninteract-
ing two-particle state. Thus we define the function

DE~ t !5 z^V~6 !~ t !fas~pW 1 ,pW 2!uH

3uV~6 !~ t !fas~pW 1 ,pW 2!&2Easz/Eas, ~70!

whereV (6) is given by Eq.~58!. This function is a measure
of violation of energy conservation in a scattering reaction
computed with the regularized Hamiltonian at some finite
time t. In the continuum limit this should be zero. Thus we
can choose the time parameterT such thatDE(t) is mini-
mum. Numerical experience has shown that the value ofT
determined as the position of minimal variation of the
S-matrix element and its corresponding value, taken as the
position of the minimum ofDE, agree quite well. This is an
indication of consistency.

In order to get the physicalSmatrix one has to carry out
renormalization and take into account the vacuum structure.
Renormalization means that first one has to determine the
counterterms in the Hamiltonian. E.g., for the scalarf4

model, one has to renormalize the wave function, the mass,
and the coupling constant. Then one computes physical ob-
servables like, e.g., masses or scattering cross sections and
tunes the bare parameters of the model, such that the physi-
cal observables remain fixed. Finally, the vacuum structure
needs some careful treatment. The computation of theSma-
trix, as described above, yields the fullS matrix, which in-
cludes the connected part~which is the part observed in scat-
tering experiments! but also all disconnected parts. The
factorization of n-point Green’s functions into connected
pieces is known as vacuum structure@43#. This allows the
extraction of the connected part of theSmatrix.

The time-dependent Hamiltonian method, as described
above, but using of the rest-frame regularization instead of
the Breit-frame regularization, has been applied to glueball
scattering in compact U(1) gauge theory~compact QED! in
211 dimensions@20#. To conclude this section we wish to
address the question: What advantage does it bring to use the
Breit-frame regularization for scattering calculations in the
time-dependent Hamiltonian formulation? First, as men-
tioned above, the Breit-frame regularization avoids the cal-
culation of the vacuum state when constructing asymptotic
noninteracting two-particle states. Second, this regularization
reduces the number of effective degrees of freedom by the
same mechanism as was shown to be useful for the calcula-
tion of the mass spectrum. However, one must pay attention
to the following limitation: Because we take into account
parton momenta inside the sphere given by the Breit condi-
tion, Eq. ~4!, the momenta of the asymptotic particles, i.e.,
pW 18 ,pW 28 ,pW 1 ,pW 2 should lie well inside the Breit sphere. This
limits the scattering reactions which can be treated. E.g.,
head-on collisions are not included. However, this constraint
is not very stringent because a suitable Lorentz boost can be
applied to map the momenta into the Breit sphere.

VII. FINITE DENSITY THERMODYNAMICS

The computation of thermodynamic observables at finite
temperature and finite density is an important problem in the
physics of neutron stars, high energy heavy ion collisions, as
well as the question of phase transitions from the hadronic
phase to a quark-gluon plasma in QCD. However, when
treating finite temperature QCD in the standard Lagrangian
lattice approach, there is a well-known problem when a non-
zero chemical potential is included to describe finite density
effects. The fermionic determinant then becomes complex
yielding a complex lattice action. This has led to great diffi-
culties when solving the model numerically via Monte Carlo
methods@44#. In order to study the infrared dynamics of
Yang-Mills and Yang-Mills-Higgs theories at finite tempera-
ture, which cannot be addressed by Euclidean methods,
Moore @45# has suggested an improved Hamiltonian for
Minkowski Yang-Mills theory.

In this section we want to discuss how finite temperature
and finite density thermodynamics can be treated in a Hamil-
tonian formulation with the Breit frame regularization. The
point is that the Hamiltonian formulation also allows the

56 1467PHYSICS FROM BREIT-FRAME REGULARIZATION OF . . .



treatment of non-Hermitian Hamiltonians~complex actions!.
Consider the following partition function:

Z5TrexpF2
1

kBT
~H01mN!G , ~71!

whereH0 stands for a Hermitian Hamiltonian,m denotes the
chemical potential, andN stands for a particle number op-
erator. Let us suppose now, for the sake of argument, that the
term mN is non-Hermitian. What then is the advantage of
using a Hamiltonian formulation? In a Hamiltonian formula-
tion this partition function can be computed nonperturba-
tively via diagonalization ofH01mN in the same way as
exp@ iHt # has been computed in calculating theS matrix
~Sec. VI!.

What is the advantage of using the Breit-frame regular-
ization? Let us consider the following scenario: One wishes
to study hot nuclear matter, respectively a quark-gluon
plasma in a state with total momentumPW Þ0. In order to
investigate this experimentally, one can perform a high en-
ergy heavy ion collision experiment with large momentum
PW . However, it is still an open question whether thermody-
namical equilibrium can be reached during the short collision
time, before the decay into fragments, which would justify
the use of the Boltzmann-Gibbs partition function. Putting
aside, for the moment, the question of experimental realiza-
tion, it is nevertheless physically interesting to ask the fol-
lowing question: What are the properties of matter at finite
temperature and finite density at thermodynamical equilib-
rium in a sector of momentumPW Þ0? Thus we consider the
partition function at momentumPW :

Z~PW !5TrH expF2
1

kBT
~H01mN!G J U

PW
. ~72!

The evaluation of this function now can be done in the Breit-
frame regularization, which will reduce the effective number
of degrees of freedom, i.e., the dimension of the effective
Hilbert space for the same reason as it did in the computation
of structure functions.

VIII. SUMMARY

In conclusion, we have suggested a Hamiltonian method
and a momentum regularization corresponding to the Breit
frame. We have shown that this method allows one to extract
continuum physics by presenting numerical results for the
f311
4 theory in the symmetric phase close to the critical line.

We find a close agreement with the solution of the renormal-
ization group equations by Lu¨scher and Weisz. We have
seen scaling behavior of several low-lying masses near the
critical point. Using the Breit frame, we have computed ana-
lytically for DIS in QCD the relation between the hadronic
tensor, the structure functions, and the quark distribution
functions. In the Bjorken limit we find the conventional re-
lations betweenF1, F2, g1, and the quark distribution func-

tions. We have presented numerical results for parton distri-
bution functions for thef4 model. We have proposed how
the Breit-frame regularization can be applied to gauge theo-
ries, while keeping gauge symmetry manifestly conserved.
We have suggested that this regularization might be useful
also for the computation of scattering reactions (Smatrix!, as
well as finite temperature and finite density thermodynamics.
We are optimistic that the method can be applied to numeri-
cally compute structure functions in QCD; this work is in
progress.
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APPENDIX

We wish to show that the renormalized mass defined in
this work, in a Hamiltonian formulation, agrees with the
standard definition in Euclidean lattice field theoery and, in
particular, with the definition used by Lu¨scher and Weisz@1#.
We have defined the renormalized mass bymR5M1, which
is the lowest energy eigenvalue of the Hamiltonian at
pW 50. The mass is measured relative to the vacuum, i.e., the
vacuum energy is subtracted. This mass corresponds to the
mass as it is computed in Euclidean lattice field theory from
the exponential decay of the two-point function. Subtraction
of the vacuum energy corresponds, in the two-point function,
to consider the connected two-point function. The connected
Euclidean two-point function is given bŷf(x)f(0)&c ,
wherex denotes the lattice site. Letx[(xW ,t), wheret is the
Euclidean time. Then

f~xW ,t!5exp~Ht!f~xW ,0!exp~2Ht! ~A1!

and

^f~x!f~0!&c5(
n

u^0uf~xW ,t!un&u2e2Ent

;
t→`

u^0uf~xW ,t!u1&u2e2E1t. ~A2!

Here, u1& denotes the lowest lying state above the vacuum
andE1 its energy. In order to obtain the mass one projects
onto momentum zero:

(
xW

^f~xW ,t!f~0!&c;const3e2M1t. ~A3!

Thus the exponential fall-off behavior in Euclidean time of
the connected two-point function determines the massM1.
The connected two-point function is the inverse of the two-
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point vertex functionG (2,0), by which Lüscher and Weisz
define the mass. They define the renormalized massmR by

G~2,0!~p,2p!52ZR
21@mR

21p21O~p4!#, ~A4!

and the physical massm by the pole of the renormalized
propagator. The relation betweenmR andm is given by

m5mR@120.001 287~gR/16p
2!21O~gR

2 !#. ~A5!

Thus for the curve shown in Fig. 1, the relative difference
betweenmR andm is less than 531026, i.e., indistinguish-
able by eye.
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