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We study the nonrelativistic quantum scattering problem of a charged or massive particle by the global
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I. INTRODUCTION

Global monopoles are heavy objects formed in the phase
transition of a system composed of a self-coupling scalar
field triplet Fa whose original global O~3! symmetry is
spontaneously broken to U~1!. The scalar matter field plays
the role of an order parameter which outside the monopole
core acquires a nonvanishing value. Coupling this matter
field with the Einstein equations, Barriola and Vilenkin@1#
have shown that the effect produced by this object in the
geometry can be approximately represented by a solid angle
deficit in (311)-dimensional space-time. The metric of this
manifold can be expressed by the line element

ds252dt21
dr2

a2 1r 2~du21 sin2udw2!, ~1!

where the parametera25128pGv2 is smaller than 1 and
depends on the energy scalev where the global symmetry is
spontaneously broken. The area of a sphere of unit radius in
this manifold is not 4p but 4pa2, and the surfaceu5p/2
presents the geometry of a cone with deficit angle
D58p2Gv2.

Although this manifold presents no gravitational fields,
some global effects of this geometry can be measured, for
example, by the scattering cross section for massless bosonic
@2# and fermionic@3# particles propagating in it.

Charged global monopoles were recently found in a sys-
tem containing the global O~3! scalar triplet coupled to a
local U~1! complex scalar field. For a given parameter range
of the theory, the complex scalar field acquires a nonvanish-
ing value in the core of the global monopole, thus giving it a
charge. This implies that there appears an Abelian Coulomb
potential@4#. The interaction of the charged monopole with a
charged particle, as far as we know, has not yet been studied.

In this present paper we shall consider the quantum mo-
tion of a charged or massive particle in the background
space-time metric descibed by Eq.~1!; however, we shall
also take into account the effect of the self-interaction poten-
tial in our analysis. In the Appendix we show that similarly
to what happens in the conical space-time produced by a
cosmic string@5#, a charged or massive test particle, when

placed in the space-time of a global monopole, becomes sub-
jected to a self-interaction potential given by

U5
K

r
, ~2!

where r is the distance from the particle to the monopole,
considered as a point, and

K5
q2S~a!

2
.0 ~3!

for the electrostatic effect or

K52
GM2S~a!

2
,0 ~4!

for the induced gravitational one,q andM being the charge
and mass of the particle andG the Newton’s gravitational
constant. The numerical factorS(a) is shown to be a finite
positive number fora,1 and a negative one fora.1.
These self-interaction terms are a consequence of the distor-
tion on the particle fields caused by the solid angle deficit in
this geometry.

This paper is organized as follows: In Sec. II, we obtain
exact solutions for bound and scattering states in a nonrela-
tivistic quantum-mechanical treatment. Using previous re-
sults, in Sec. III we return to the calculation of the scattering
amplitude, which was already estimated by Mazur and Pa-
pavassiliou@2#. We extend their analysis by including the
correction on the phase shifts due to the new interaction po-
tential. In Sec. IV we summarize our main results. Finally, in
the Appendix we derive the self-interaction potentials.

II. QUANTUM-MECHANICS ANALYSIS

This section is devoted to the nonrelativistic quantum
analysis of bound and scattering states of a charged or mas-
sive particle by a global monopole. In order to do that we
shall use the Schro¨dinger equation in spherical polar coordi-
nates written in a covariant form in this geometry and in the
presence of the self-interaction term. Then, we have

F2
\2

2M

a2

r 2
]

]r S r 2 ]

]r D1
\2

2Mr 2
L21

K

r GC~r !5EC~r !,
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where L is the usual orbital angular momentum operator.
This equation is similar to the Schro¨dinger one for a charged
particle interacting with a Coulomb potential; however, the
presence of the parametera2 in Eq. ~5! makes the analysis a
little more complicated, as we shall see below.

We study first the bound states, which, of course, makes
sense only for the attractive (K,0) gravitational self-
interaction.

Our procedure to obtain bound states is the standard one.
We shall assume for the eigenfunction the form

C~r !5Rl~r !Yl
m~u,w!, ~6!

which substituting into Eq.~5! results in

1

r 2
d

drS r 2dRldr D2
l ~ l11!

a2r 2
Rl1

2M

\2a2SE2
K

r DRl50. ~7!

Defining l(l11)5 l ( l11)a22 and choosing the positive
solution l l521/21Aa214l ( l11)/2a, we can obtain for
Rl(r ) solutions which obey appropriate boundary conditions
at the origin. They are given in terms of confluent hyper-
geomtric function by

Rl~r !5r l lexp~2kr !1F1„2g1l l11,2~l l11!;2kr …, ~8!

where

k5A2
2ME

\2a2 , g52KA2
M

2\2a2E
. ~9!

In order to have bound states we shall assumeE,0, and
choose appropriate parameters to terminate the series in Eq.
~8!. Admitting for the hypergeometric function a polynomial
of degreen, we must impose

g2l l215n. ~10!

With this condition we get discrete values for the energy
given by

En,l52
MK2

2\2a2

1

~n1l l11!2
. ~11!

From the expressions above we can see that~i! because
aÞ1, only for a few special values of this parameter,
n1l l11 happens to be an integer number, and so this ge-
ometry reduces the degree of the degeneracy of this
Coulomb-like problem,~ii ! the energy depends linearly on
K2, and so it is proportional to the square of the Newton’s
gravitational constantG2, ~iii ! from the radial function
Rl(r ), we can infer a gravitational Bohr radius
aB52\2a/GM3S(a) for this system.@For thea.1 case,
the electrostatic Bohr radius would beaB52\2a/
Mq2S(a).#

The scattering state for this system can be obtained by the
sum of partial wave functions assumingE.0. For our
spherically symmetric scatterer, onlym50 spherical har-
monic components will be important. If we consider the in-
cident propagating vectork pointing along thez axis, the
wave function will be given by

C~r !5(
l50

`

~2l11!i lRl~r !Pl~cosu!. ~12!

Again substituting Eq.~12! into Eq. ~5! and taking into
account the long distance behavior for the solutions, the ra-
dial function can be expressed as

Rl~r !5r l lexp~ ikr !1F1„l l111 ih,2~l l11!;22ikr …,
~13!

where

k5A2ME

\2a2, h5KA M

2E\2a2. ~14!

Following the standard procedure@6# we can take the
asymptotic form of the confluent hypergeometric function
and give the long distance behavior for the radial function:

Rl~r !.
G~2l l12!exp~ph/2!

~2k!l luG~l l111 ih!u

3
cos@kr2p/2~l l11!2h ln~2kr !1g l #

kr
, ~15!

whereg l5argG(l l111 ih).
Before concluding this section we would like to empha-

size that from Eq.~15! it is possible to measure the effects of
the global monopole metric space on the wave function of
the particle. It is also possible to detect the effects on the
energy of a bound state, Eq.~11!. For both cases the effects
can be observed in two different ways:~i! from the modifi-
cation on the effective angular quantum numberl l due to the
geometry of the manifold itself and~ii ! from the presence of
a self-interaction term as another indirect consequence of this
nontrivial topology.

In the next section we shall study the influence of the
presence of both effects on the scattering wave function, par-
ticularly on the phase shift produced by this scatterer.

III. SCATTERING AMPLITUDE

Recently Mazur and Papavassiliou@2# and also Ren@3#
have calculated the gravitational scattering amplitudef (u)
for a massless bosonic and a massive fermionic particle, re-
spectively, by a global monopole. The approximation proce-
dure adopted in@2# for small scattering angles, i.e., close to
u05p(12a21), takes into account that the solid angle defi-
cit parametera2 is close to 1. In fact, for a typical grand
unifed theory the parameterv, associated with the scale
where the global symmetry is spontaneously broken, is of the
order of 1016 GeV, andD512a258pGv2.1025. As will
be explained below in the calculation off (u), a series ex-
pansion in powers ofD is developed, and for small scattering
angles only large polar quantum numbersl ~or l11/2) will
be relevant. In this section we return to the calculation of the
scattering amplitude for a nonrelativistic scattering problem
of a charged or massive particle by the global monopole,
taking into consideration the nontrivial topology of this
manifold as well as the self-interaction potential that should
also be present. As we shall see, the latter contribution for
f (u) is of the same order of magnitude as the others.
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From the asymptotic behavior of the scattering wave
function it is possible to obtain the phase shiftsd l , the most
relevant parameter for our calculation. Using our result, Eq.
~15!, we can write

d l5
p

2
~ l2l l !1g l . ~16!

@The extra term ln(2kr) in Eq. ~15! is due to the long range of
the self-interaction term. As this asymptotic contribution
does not depend on the partial wave component and varies
slowly with r , it cannot be considered as a contribution for
d l @7#.#

The scattering amplitude can be obtained knowing the
phase shifts and is given by the standard relation

f ~u!5
1

2ik (
l50

`

~2l11!@exp~2id l !21#Pl~cosu!. ~17!

Moreover, from this amplitude the total elastic cross section
can be obtained by

s5
4p

k
Im f ~0!. ~18!

Our above result for the phase shifts, Eq.~16!, is an exact
one, however, because it is not a simple function ofl . Its
direct substitution into Eq.~17! will provide us only with a
formal expression forf (u). An estimative value for the scat-
tering amplitude can be obtained if we consider small scat-
tering anglesu5O(D). In this case, because only large an-
gular quantum numbers are important, the scattering
amplitude can be easily evaluated. It is useful to change the
variablel to zl5 l11/2. Let us consider first

d l
~1!5

p

2
~ l2l l !.

p

2Fzl~12a21!1
a2

2azl
1OS a4zl3 D G ,

~19!

wherea25(12a2)/45D/4, which agrees with a previous
expansion@2#.

The calculation of the self-interaction contribution fol-
lows the same procedure; however, there is an extra analysis.
Because the parameterh depends on the factorS(a) @see
Eqs.~14!, ~3!, and~4!#, which is small as shown in the Ap-
pendix, we also can develop a series in powers ofh,

d l
~2!5g l5argG~l l111 ih!, ~20!

which admits the expansion@8#

d l
~2!5hC~l l11!1 (

n50

` F h

l l111n
2arctan

h

l l111nG ,
~21!

where C(z)5G8(z)/G(z) is the psi function. Taking
arctanx>x2x3/31••• in the equation above we get

d l
~2!>hC~l l11!1O~h3!. ~22!

Taking now the asymptotic expansion of the psi function,
C(z)5 lnz21/2z22(n51

` B2n/2nz
2n, Bn being the Bernoulli

numbers, we obtain, after some calculation,

d l
~2!>hF lnS zla D2

1

24zl
2 1OS 1zl4D G1O~h3!. ~23!

Substituting Eqs.~19! and ~23! into Eq. ~16!, we get

d l>
p

2 Fzl~12a21!1
a2

2azl
G1hF lnS zla D2

1

24zl
2G1•••.

~24!

In the expression above the leading term inzl is the linear
one followed by the logarithmic and so on. Comparing our
result with the similar one obtained in Ref.@2#, one notices
the appearence of the extra logarithmic term. So our expres-
sion for the scattering amplitude takes into account the con-
tributions from pure gravitational scattering plus a Coulomb
one, as an indirect consequence of this manifold on the de-
formation of the electrical or gravitational field of the test
particle. Considering the expansion inzl we can write

exp~2id l !>a22ihe[ ipzl ~12a21!]

3F11
ipa2

2azl
12ih lnzl1OS 1zl2D G . ~25!

Substituting Eq.~25! into Eq. ~17! we get

f ~u!5 f s~u!1 f 0~u!, ~26!

where

f 0~u!5
i

k
d~12cosu!, f s~u!5

a22ih

ik
Fs~u!, ~27!

with

Fs~u!5(
l50

`

zl exp~ ivzl !F11
ipa2

2azl
12ih lnzl1••• G

3Pl~cosu!, ~28!

andv5p(12a21).
The two first contributions to the scattering amplitude in

Eq. ~28! have already been obtained in Ref.@2#, and shown
to be singular for the scattering angleu5v. However, there
is also an extra singular contribution tof (u) given by the
logarithmic term which comes from the self-interaction po-
tential:

F̄ s~u!52ih(
l50

`

zl lnze
ivzlPl~cosu!. ~29!

Using the identity *0
`dx(a sinbx2b sinax)/x25abln(a/b),

we can obtain an integral representation forF̄ s(u) where the
singularity is explicitly exhibited. After some straightfoward
calculation we get

F̄ s~u!5
2h sin v

@2~cosv2cosu!#3/2
Qv~u!, ~30!

where the factorQv(u) is

56 1347BRIEF REPORTS



Qv~u!5E
0

`

dx fv~x,u!, ~31!

with

f v~x,u!5
1

x2H sin x2
~cosv2cosu!

sin v

3F S cosv2cosu

cos~x1v!2cosu D 1/2
2S cosv2cosu

cos~x2v!2cosu D 1/2G J . ~32!

Unfortunately we could not obtain an explicit expression for
F̄ s(u); however, as one can see,f v(x,u) is well defined at
x50. In fact, near this point f v;23 sinv/4(cosv
2cosu), and whenx→`, f v;1/x2. Moreover, the factor
Qv(u) is finite for uÞv.

IV. CONCLUDING REMARKS

Although a global monopole exerts no gravitational forces
on the matter, its effects at the quantum level can be detected
by measuring important observables related with the move-
ment of a particle. Of particular interest in recent years was
the study of gravitational scattering of bosonic or fermionic
particles by this object. The metric space-time produced by
the monopole couples with the angular momentum operator
associated with the particle, modifying the effective polar
quantum number, producing, in turn, a nonvanishing phase
shift.

In this paper we returned to this subject considering at this
time the complete quantum treatment of the movement of a
charged or massive particle in the global monopole back-
ground metric. Besides the purely geometric effect of this
manifold, we considered the effect produced by the electro-
static or gravitational self-interaction potential on the move-
ment of the test particle, showing how this term modifies the
self-energy and the scattering amplitude.

APPENDIX

The self-interaction potentials, for a particle at rest out-
side the monopole are given by@5#

Ugrav~r 0!52
GM2

2
GR~r 0 ,r 0!, ~A1!

and

Uelec~r 0!5
q2

2
GR~r 0 ,r 0! ~A2!

where theGR(r ,r 8) is the renormalized Green function de-
fined by

GR~r ,r 8!5Ga~r,r 8!2G1~r,r 8!, ~A3!

Ga(r ,r 8) being a solution of the Poisson equation below,
which when written in a covariant form, in this geometry
reads

¹2Ga~r ,r 8!524pd~r2r 8!

524pa
d~r2r 8!d~cosu2cosu8!d~w2w8!

r 2
.

~A4!

The solution forGa(r ,r 8) can be obtained following the
standard procedure, which leads the expression

Ga~r ,r 8!5
1

a (
l50

`
2l11

2l l11

r
,

l l

r
.

l l11Pl~cosg!, ~A5!

whereg satisfies the well known relation between the origi-
nal angles (u,w) and (u8,w8) andl l was given in Sec. II.

The self-interaction potentials above depend on the evalu-
ation of GR(r ,r 0) at the coincidence limitr→r 0, whose
value is

GR~r 0 ,r 0!5
1

r 0
S~a!, ~A6!

which is finite for r 0Þ0, andS(a) is a finite numerical
factor given by the sum

S~a!5(
l50

` F 2l11

Aa214l ~ l11!
21G . ~A7!

Developing a series expansion in the parameter
D512a2, after some steps@9# we get

S~a!5
1

2 (
n51

`
~p2D!n

~n! !2
uB2nu~12222n!, ~A8!

whereBn are the Bernoulli numbers. The first term in the
expression above isS(a)5p(12a2)/16. We can see that
S(a) is positive fora,1 and negative fora.1.
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