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Nonrelativistic scattering problem by a global monopole
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We study the nonrelativistic quantum scattering problem of a charged or massive particle by the global
monopole background metric. In addition to the purely gravitational effects, we consider the electrostatic or
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I. INTRODUCTION placed in the space-time of a global monopole, becomes sub-
jected to a self-interaction potential given by
Global monopoles are heavy objects formed in the phase K
transition of a system composed of a self-coupling scalar U=—, 2
field triplet ®2 whose original global (8) symmetry is r

spontaneously broken to(l). The scalar matter field plays ) ) )

the role of an order parameter which outside the monopol&/herer is the distance from the particle to the monopole,
core acquires a nonvanishing value. Coupling this mattefonsidered as a point, and

field with the Einstein equations, Barriola and VilenKih| 02S( )

have shown that the effect produced by this object in the K=——>0 (3
geometry can be approximately represented by a solid angle

deficit in (3+1)-dimensional space-time. The metric of this ¢, the electrostatic effect or

manifold can be expressed by the line element

GM?S(a)
=——F <

2 dr2 2 2 H 2 2 O (4)
ds?=—dt 1 (d6?+ sirfde?), (1)

for the induced gravitational ong,andM being the charge
where the parameter?=1—87Guv? is smaller than 1 and and mass of the particle ar@ the Newton’s gravitational
depends on the energy scalevhere the global symmetry is constant. The numerical fact®(«) is shown to be a finite
spontaneously broken. The area of a sphere of unit radius ipositive number fore<<1 and a negative one fo>1.
this manifold is not 4r but 4wa?, and the surfac@=m/2  These self-interaction terms are a consequence of the distor-
presents the geometry of a cone with deficit angletion on the particle fields caused by the solid angle deficit in
A=8m2Gv?. this geometry.

Although this manifold presents no gravitational fields, This paper is organized as follows: In Sec. Il, we obtain
some global effects of this geometry can be measured, fagxact solutions for bound and scattering states in a nonrela-
example, by the scattering cross section for massless bosortigistic quantum-mechanical treatment. Using previous re-
[2] and fermionic[3] particles propagating in it. sults, in Sec. Il we return to the calculation of the scattering

Charged global monopoles were recently found in a sysamplitude, which was already estimated by Mazur and Pa-
tem containing the global @) scalar triplet coupled to a pavassiliou[2]. We extend their analysis by including the
local U(1) complex scalar field. For a given parameter rangecorrection on the phase shifts due to the new interaction po-
of the theory, the complex scalar field acquires a nonvanishtential. In Sec. IV we summarize our main results. Finally, in
ing value in the core of the global monopole, thus giving it athe Appendix we derive the self-interaction potentials.
charge. This implies that there appears an Abelian Coulomb
potential[4]. The interaction of the charged monopole with a Il. QUANTUM-MECHANICS ANALYSIS
charged particle, as far as we know, has not yet been studied.

In this present paper we shall consider the quantum mo- This section is devoted to the nonrelativistic quantum
tion of a charged or massive particle in the backgroundnalysis of bound and scattering states of a charged or mas-
space-time metric descibed by E@); however, we shall sive particle by a global monopole. In order to do that we
also take into account the effect of the self-interaction potenshall use the Schdinger equation in spherical polar coordi-
tial in our analysis. In the Appendix we show that similarly nates written in a covariant form in this geometry and in the
to what happens in the conical space-time produced by Rresence of the self-interaction term. Then, we have
cosmic string[5], a charged or massive test particle, when

h? aza( 2(9) S
r<—|+ L +T

“am o) T amre? Tn=E¥),
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where L is the usual orbital angular momentum operator. *

This equation is similar to the Schiimger one for a charged P (r)= 2 (21+2)i'R/(r)P,(cos 8). (12
particle interacting with a Coulomb potential; however, the 1=0
presence of the parametef in Eq. (5) makes the analysis a
little more complicated, as we shall see below.

We study first the bound states, which, of course, make
sense only for the attractiveK0) gravitational self-
Interaction. , _ R/(r)=rMexp(ikr);F1(\+1+i7,2(\+1); — 2ikr),

Our procedure to obtain bound states is the standard one. (13)
We shall assume for the eigenfunction the form

Again substituting Eq(12) into Eq. (5) and taking into
account the long distance behavior for the solutions, the ra-
Bial function can be expressed as

where

V(N =R(NY"(0,¢), (6) 2ME M
N7z KN gz 19

which substituting into Eq(5) results in

Following the standard procedufé] we can take the
1 d( 2dR|> IE2)) " :):;(E—? R=0. (77 asymptotic form of the confluent hypergeometric function

2" dr a’r? and give the long distance behavior for the radial function:
Defining A\(A+1)=I(1+1)a" 2 and choosing the positive T(2\,+2)exp w75/2)
solution \;= — 1/2+ \a?+41(1+1)/2a, we can obtain for Ri(r)= 2K)M[T (N +1+i7)]
R(r) solutions which obey appropriate boundary conditions
at the origin. They are given in terms of confluent hyper- XCOikf—Tf/Z()\ﬁl)— 7In(2kr) + ] 15
geomtric function by kr ’

R(r)=rMexp(— kr)Fi(—y+N+1,2N+1);2kr), (8  wherey=argl(\j+1+i7).
Before concluding this section we would like to empha-
where size that from Eq(15) it is possible to measure the effects of
the global monopole metric space on the wave function of
K= [_ ZM_E y=—K [_ M (9) the particle. It is also possible to detect the effects on the
hla®’ 2h2a’E’ energy of a bound state, E@L1). For both cases the effects
can be observed in two different way$) from the modifi-
In order to have bound states we shall asstwe), and  cation on the effective angular quantum numbgdue to the

choose appropriate parameters to terminate the series in Egeometry of the manifold itself an@) from the presence of
(8). Admitting for the hypergeometric function a polynomial a self-interaction term as another indirect consequence of this

of degreen, we must impose nontrivial topology.
In the next section we shall study the influence of the
y—N—1=n. (10 presence of both effects on the scattering wave function, par-

ticularly on the phase shift produced by this scatterer.
With this condition we get discrete values for the energy
given by Ill. SCATTERING AMPLITUDE

__ MK? 1 Recently Mazur and Papavassili2] and also Rerj3]
B =~ 25742 (n+\+1)% a itati i [
| ave calculated the gravitational scattering amplitdiglg)
for a massless bosonic and a massive fermionic particle, re-
From the expressions above we can see fhabecause spectively, by a global monopole. The approximation proce-
a#1, only for a few special values of this parameter,dure adopted if2] for small scattering angles, i.e., close to
n+\,+1 happens to be an integer number, and so this gedy=m(1—a 1), takes into account that the solid angle defi-
ometry reduces the degree of the degeneracy of thisit parametera? is close to 1. In fact, for a typical grand
Coulomb-like problem(ii) the energy depends linearly on unifed theory the parametar, associated with the scale
K2, and so it is proportional to the square of the Newton’swhere the global symmetry is spontaneously broken, is of the
gravitational constantG?, (iii) from the radial function order of 13° GeV, andA=1— a?=87Gv?=10">. As will
R/(r), we can infer a gravitational Bohr radius be explained below in the calculation 6f6), a series ex-
ag=2h2alGM3S(a) for this system[For thea>1 case, pansion in powers o is developed, and for small scattering
the electrostatic Bohr radius would beag=2%/2al angles only large polar quantum numbeér®r | +1/2) will
Mg?S(a).] be relevant. In this section we return to the calculation of the
The scattering state for this system can be obtained by thecattering amplitude for a nonrelativistic scattering problem
sum of partial wave functions assumirig>0. For our of a charged or massive particle by the global monopole,
spherically symmetric scatterer, onp=0 spherical har- taking into consideration the nontrivial topology of this
monic components will be important. If we consider the in- manifold as well as the self-interaction potential that should
cident propagating vectdt pointing along thez axis, the also be present. As we shall see, the latter contribution for
wave function will be given by f(#) is of the same order of magnitude as the others.
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From the asymptotic behavior of the scattering waveTaking now the asymptotic expansion of the psi function,
function it is possible to obtain the phase shiffs the most ¥ (z)=Inz—1/22>—37"_,B,,/2nZ*", B, being the Bernoulli
relevant parameter for our calculation. Using our result, Eqhumbers, we obtain, after some calculation,

(15), we can write
al_ L .o
al 247

52 = 7l In S| [voud). (29
|

n
5|:§(|_)\|)+7’|- (16)

Substituting Egqs(19) and(23) into Eq. (16), we get
[The extra term In(®r) in Eq. (15) is due to the long range of
the self-interaction term. As this asymptotic contribution _ Z 1
does not depend on the partial wave component and varies 5'=E In(;) N fzf +
slowly with r, it cannot be considered as a contribution for (24)
9 [71]
The scattering amplitude can be obtained knowing the In the expression above the leading ternziiiis the linear
phase shifts and is given by the standard relation one followed by the logarithmic and so on. Comparing our
. result with the similar one obtained in R¢£], one notices
1 ) the appearence of the extra logarithmic term. So our expres-
ﬂ;o (21+1)[exp2i6)) — 1]Pi(cos ). (17)  gjon for the scattering amplitude takes into account the con-
tributions from pure gravitational scattering plus a Coulomb
Moreover, from this amplitude the total elastic cross sectiorP€: s an indirect consequence of this manifold on the de-
can be obtained by formatlon of the glectncal or gra}wta}tmnal field Qf the test
particle. Considering the expansionZpnwe can write

2

1-a hH+ il
z(l-a 2az| "7

f(9)=

o= 4—77 Im f(0) (18 exp2is)=a"? nglinz(1=a" )]
K .
o] 17 | i iz 40 1” (25)
i 7lnz ||
Our above result for the phase shifts, ELp), is an exact 2az A zf

one, however, because it is not a simple functior .ofts o ]

direct substitution into Eq(17) will provide us only with a  Substituting Eq(29) into Eq. (17) we get

formal expression fof (8). An estimative value for the scat- £(0)=F(0)+fo(0), (26)

tering amplitude can be obtained if we consider small scat-
tering angles#=0(A). In this case, because only large an-yhere
gular quantum numbers are important, the scattering . —2iy

amplitude can be easily evaluated. It is useful to change the fo(6)= I—6(1—cos ), f(0)= a. FJ(0), (27
variablel to z;=1+1/2. Let us consider first k s ik ~ =77

) . with
§0=7(1-N)= 2l z(1~a Y+ 5= +0 a_sﬂ - i ma?
2 2 2az )| F.(0)= z, expliwz)| 1+ +2iglnz+- -
19 s(0) Zo | expliwz) 2az 7inz,
where a?=(1— a?)/4=A/4, which agrees with a previous X Py(cos o), 28)

expansior 2].

_ _ -1
The calculation of the self-interaction contribution fol- ando=m(1-a").

. The two first contributions to the scattering amplitude in
E'q. (28) have already been obtained in REf], and shown
to be singular for the scattering angle= w. However, there
is also an extra singular contribution f¢6) given by the
logarithmic term which comes from the self-interaction po-

Because the parameter depends on the factd®(«) [see
Egs.(14), (3), and(4)], which is small as shown in the Ap-
pendix, we also can develop a series in powersy of

tential:
5P=y=arg' (A +1+i7), 20 )
which admits the expansidi3] F_S( 6)=2i 772’0 2Inz€*1P(c0s ). @9
2 * 7 7 Using the identity [5dx(a sinbx—b sinax)/x*=abin(a/b),
AT =¥ M+ D+ 2 N+ien areanceoh we can obtain an integral representationfq( ) where the

(21) singularity is explicitly exhibited. After some straightfoward
calculation we get
where W(z));f"(z)/lf(z) is thg psi function. Taking = 27 sinw o
arctanx=x—x>/3+ - - - in the equation above we get (0)= [2(cosw—c0s 0|72 ol 8),

(30

87 =n¥ (N +1)+0(7°). (22)  where the facto® () is
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o and
®w(6)=f dxf,(x,0), (31
0 q2
. Uelec(ro):?GR(rO:rO) (A2)
with
1) (cosw—cos 6) where theGg(r,r') is the renormalized Green function de-
fo(X,0)= = sinX— ————— )
X sin w fined by
( COS w—COS f )1’2 GRr(r,r')=G,(r;r")—Gy(r,r’"), (A3)
cogx+w)—cosd G,(r.r') being a solution of the Poisson equation below,
cosw—cosf |12 which when written in a covariant form, in this geometry
— (32 reads
CogX—w)—Ccosf

, . _ V2G,(r,r")=—4m8(r—r’)
Unfortunately we could not obtain an explicit expression for

F4(6); however, as one can sek,(x,6) is well defined at 3 S(r—r')s(cosd—cos ') S(e—¢')

= . . . - _4’7Ta 2 .
x=0. In fact, near this pointf, ~ —3 sinw/4(cosw r
—cos#), and whenx—», f_~1/x2. Moreover, the factor

0,(0) is finite for 0+ w.

(A4)

The solution forG,(r,r’) can be obtained following the

IV. CONCLUDING REMARKS standard procedure, which leads the expression
Although a global monopole exerts no gravitational forces L1 Zo21+1 ri‘
on the matter, its effects at the quantum level can be detected Gu(r,r')= PN NER R Pi(cosy),  (A5)
>

by measuring important observables related with the move-

ment of a particle. Of particular interest in recent years Wagyhere y satisfies the well known relation between the origi-
the study of gravitational scattering of bosonic or fermionicna| angles ¢,¢) and (6',¢') and\, was given in Sec. II.
particles by this object. The metric space-time produced by The self-interaction potentials above depend on the evalu-

the mpnopole_ couples Wi_th the an_gu_lar momentum operatQgtion of Gr(r,rg at the coincidence limitr—r, whose
associated with the particle, modifying the effective polaryg,e is

guantum number, producing, in turn, a nonvanishing phase 1

shift. Gr(ro.fo)= —S(a), (A)
In this paper we returned to this subject considering at this lo

time the complete quantum treatment of the movement of &

charged or massive particle in the global monopole backf

ground metric. Besides the purely geometric effect of this

hich is finite forry#0, and S(«) is a finite numerical
actor given by the sum

manifold, we considered the effect produced by the electro- - 21+1
static or gravitational self-interaction potential on the move- S(ae)=|7 A \/ﬁ_ ] (AT)
ment of the test particle, showing how this term modifies the - @ ( )
self-energy and the scattering amplitude. Developing a series expansion in the parameter
A=1—a?, after some step®] we get
APPENDIX 125 (m2A) »
The self-interaction potentials, for a particle at rest out- S(a)= zgl W' Banl(1—-27%"), (A8)

side the monopole are given py]
where B,, are the Bernoulli numbers. The first term in the

UgafFo) = — GMZG (Fo.To) (A1) expression above i§(a)=m(1—a?)/16. We can see that
grat’ 0 2 TRU0TOM S(a) is positive fora<1 and negative for>1.
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