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We present a large set of new self-dualN51 SUSY gauge theories. Examples include SU(N) theories with
tensors and SO(N) theories with spinors. Using these dualities as starting points, new nontrivial duals can be
derived by breaking the gauge group through the Higgs mechanism or by integrating out matter. General
lessons that can be learned from these duals are that ‘‘accidental’’ infrared symmetries play an important role
in duality, many theories have more than one ‘‘dual,’’ and there seems to be no simple organizing pattern
which relates duals of theories with different number of flavors.@S0556-2821~97!03014-2#
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I. INTRODUCTION

Following the pioneering work by Seiberg on duality for
supersymmetric QCD~SQCD! @1#, a number of examples of
duality in non-AbelianN51 supersymmetric gauge theories
have been found@2–13#. The well-known examples are for
theories with matter in the fundamental representation of the
gauge group@1–4#, but there are also examples for theories
with spinor representations@5#.

Generalizing these dualities to theories with more general
matter representations has proven to be very difficult. For
theories with a tensor representation, much progress has been
made by adding suitable superpotential terms which give a
mass to the tensor away from the origin of moduli space@6#.
Then out in moduli space the theories reduce to theories with
fundamentals only, to which dual descriptions are known.
Continuing these duals to the origin of moduli space, duals
for the theory with the tensor and the superpotential terms
were found. One might be tempted to try to obtain the theory
without a superpotential by taking the coupling of the super-
potential term to zero. However, it is clear that this limit is
singular, since now there are components of the tensor which
become massless even on generic points of moduli space. A
weakly coupled low-energy description which includes all
massless modes still has not been found.

In this letter we propose a number of new dualities for SU
theories with tensor matter and SO theories with spinors,
both with no tree-level superpotential. Our proposed duals
have the interesting feature that they are self-duals. The elec-
tric theory and its magnetic dual have identical gauge groups
and gauge-variant matter fields. In addition to the dual gauge
degrees of freedom the magnetic theories also contain some
number of fundamental gauge-invariant ‘‘meson’’ fields
which are coupled to the gauge-variant fields in the superpo-
tential.

Self-duals have been known to exist for theories with
matter only in fundamental representations@1–3,7,8#. For
example, consider SQCD withN colors and the special num-
ber of flavorsF52N. The field content and symmetry prop-
erties of this theory are summarized in the following table:

SU(N) SU(2N) SU(2N) U~1! U(1)R

Q 1 1 1/2

Q̄ 1 21 1/2

~1!

The dual for this theory is just a special case of Seiberg’s
dual for SQCD. It is also an SU(N) gauge theory with dual
quarksq and q̄ and a fundamental ‘‘meson’’ gauge singlet
field M coupled in the superpotential with the termW
5Mqq̄:

SU(N) SU(2N) SU(2N) U~1! U(1)R

q 1 1 1/2
q̄ 1 21 1/2
M 1 0 1

~2!

Note that the standard consistency checks are rather trivial
for this self-dual. For example, the anomaly-matching con-
ditions are almost all trivially satisfied. All anomalies involv-
ing U~1! and U(1)R charges are matched because the fer-
mion component ofM is uncharged under the U~1!’s and the
contributions of the dual quarks are identical to the contribu-
tions of the electric quarks. The only nontrivially matched
anomalies are the SU(2N)3 non-Abelian flavor anomalies.
The operator maps of the gauge-invariant ‘‘mesons’’ and
‘‘baryons’’ are also very simple:

QQ̄↔M ,

QN↔qN,

Q̄N↔q̄N. ~3!

The dual theory has an additional gauge-invariantqq̄
which is set to zero by the equations of motion derived from
the superpotential. Since these operators parametrize the
moduli spaces of the two theories, this operator map is nec-
essary to show the equivalence of the moduli spaces. Note
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that one can obtain the dualities for all other numbers of
flavors by integrating out flavors from one of the two theo-
ries.

Similar self-duals exist for theories with ‘‘quarks’’ trans-
forming as fundamentals of Sp@3#, SO@2#, and some excep-
tional gauge groups@7,8#. Theories with matter in tensor
representations and certain simplifying tree-level superpoten-
tials have also been found to have self-duals@6#. More re-
cently, a self-dual has been proposed for a theory with a
tensor field and no tree-level superpotential@9#. Here, we
present similar duals for a number of theories with matter in
tensor and spinor representations.

In the following section we review Seiberg’s proposed
dual of SU~2! SQCD, which requires the existence of acci-
dental infrared symmetries. We then describe three different
duals of this theory. In Sec. III we list a number of new
self-duals and other duals which can be derived via flows
from the self-duals. For some of the presented dualities we
also give detailed consistency checks. While the number of
self-duals that we present is quite large, it is clear that this
list is not exhaustive and it should be possible to generate
more examples with similar properties. We present our con-
clusions in the final section.

II. MULTIPLE SELF-DUALS AND ACCIDENTAL
SYMMETRIES

In this section we review two apparently common but not
very well-known features of duality. One is the occurrence of
accidental infrared symmetries@8,10#, and the other is the
existence of multiple ‘‘duals’’ for a single theory@12,13#.

Frequently, the ultraviolet description of one~or several!
of these duals does not manifestly have the full global sym-
metry of the infrared. Only in the far infrared, below the
intrinsic scale of the strong gauge interactions, does the full
global symmetry become manifest. Let us illustrate this with
the example of SU~2! SQCD for which the fundamental and
antifundamental representations are equivalent. Thus, the full
non-Abelian flavor symmetry is SU(2F) rather than just
SU(F)3SU(F)3U(1), and thespectrum of the theory falls
into SU(2F) representations for all numbers of flavorsF.
The independent gauge-invariant chiral operators which pa-
rametrize the moduli space and correspond to infrared de-
grees of freedom are contained in the matrixA5QQ which
transforms in the antisymmetric two-index tensor representa-
tion of SU(2F).

In Seiberg’s dual description, discussed in the previous
section, the full flavor symmetry is not manifest, and one
might be worried that the duality is not valid for SU~2!.
Seiberg’s proposed dual and its ultraviolet symmetry for ar-
bitrary F are

SU(F22) SU(F) SU(F) U~1! U(1)R

q 1 2/(F22) 2/F
q̄ 1 22/(F22) 2/F
M 1 0 224/F

~4!

Thus the ultraviolet global symmetries of this description
contain only SU(F)3SU(F)3U(1),SU(2F). In order for

the infrared spectrum to respect the full SU(2F) flavor sym-
metry the ‘‘meson’’M has to be complemented by bound
states of the dynamical dual quarksq and q̄. Together these
degrees of freedom transform as a full SU(2F) representa-
tion. Thus, the SU(2F) symmetry generators mix fundamen-
tal fields with composites. In order for this to make any
sense, the fields which are to form a complete irreducible
SU(2F) representation have to have identical quantum num-
bers under the other symmetries. Here, these extra quantum
numbers are the U(1)R charges. The chiral gauge invariants
of the dual with their global transformation properties are

SU(F) SU(F) U~1! U(1)R

M 0 224/F
b5qF22 1 2 224/F

b̄5q̄F22 1 22 224/F

~5!

The composite operatorqq̄ is set to zero by theM equa-
tion of motion. Note that the U(1)R charges of the all the
nonvanishing chiral operators are identical, thus it is possible
to unifyM , b, andb̄ into the antisymmetric tensor represen-
tation of SU(2F).

Another necessary condition for the emergence of the full
SU(2F) global symmetry is that the scaling dimensions of
the three operatorsM , b, and b̄ have to agree. In the range
of F where this theory has an infrared fixed point, the theory
is superconformal, and the scaling dimensions are given by
3/2 times the superconformalR charges of the fields. Since
the R charges commute with SU(2F), the dimensions re-
spect the full flavor symmetry as well. Note that the SU~2!
theory and its dual can be reached via flows from the more
general SU(N) theory and its SU(F2N) dual, thus all the
usual consistency checks also apply to this dual.

There is an additional dual of the SU~2! theory which has
a manifest SU(2F) symmetry. The field content of this Sp
dual is

Sp(2F26) SU(2F) U(1)R

q 2/F
A 1 224/F

~6!

In this dual the whole antisymmetric tensorA5QQ is fun-
damental.

An interesting special case is the theory withF54. This
theory is self-dual, and both the SU dual and the Sp dual
have an SU~2! gauge group. The two duals differ in the
ultraviolet by their ‘‘meson’’ content. While the Sp dual has
a ‘‘meson’’ A5QQ which transforms as an antisymmetric
tensor of the full SU~8! flavor symmetry, the SU dual only
has an SU~4!3SU~4! symmetry and the ‘‘meson’’ trans-
forms asM5( , ). Again, in the infrared, the full flavor
symmetry is restored and the ‘‘meson’’M is unified into an
SU~8! multiplet together with the compositesb5qq and b̄
5q̄q̄. There is a third possible dual which also has an SU~2!
gauge symmetry, and where the only fundamental ‘‘meson’’
fields are the ‘‘baryons’’B5( ,1) andB̄5(1, ).
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We summarize the field content of the self-dual theory
with its three duals in the following table:

SU~2! SU~4! SU~4! U~1! U(1)R

Q 1 1 1/2

Q̄ 1 21 1/2

SU(2)D1 SU~4! SU~4! U~1! U(1)R

q 1 1 1/2
q̄ 1 21 1/2
M 1 0 1

SU(2)D2 SU~4! SU~4! U~1! U(1)R

q 1 21 1/2
q̄ 1 1 1/2
M 1 0 1
B 1 1 2 1

B̄ 1 1 22 1

SU(2)D3 SU~4! SU~4! U~1! U(1)R

q 1 21 1/2
q̄ 1 1 1/2
B 1 1 2 1

B̄ 1 1 22 1

~7!

The original theory and dual number 2 in this table have a
manifest SU(2F) flavor symmetry. For purpose of compari-
son between the three duals we listed only the transformation
properties under the SU(F)3SU(F)3U(1) subgroup. Note
that the charges and representations of the dual quarksq and
q̄ are different in the three duals. Also, these duals have
differing superpotentials:

WD1
5Mqq̄,

WD2
5Mqq̄1Bq21B̄q̄2,

WD3
5Bq21B̄q̄2. ~8!

As we will demonstrate in the following section, these
phenomena are quite common for self-dual theories. We will
present several new examples of self-dual theories with more
than one dual, and duals which only have a subset of the full
flavor symmetry manifest in the ultraviolet.

III. NEW EXAMPLES OF SELF-DUALS

A. SU„8… with two antisymmetric tensors and eight
antifundamentals

The first new example of self-dual theories that we
present is based on an SU~8! gauge group with matter con-
tent 2 18 . The field content and the global symmetries
of this theory and its dual are summarized in the table below:

SU~8! SU~2! SU~8! U~1! U(1)R

A 1 2 0

Q̄ 1 23 1
2

SU~8! SU~2! SU~8! U~1! U(1)R

a 1 2 0

q̄ 1 23 1
2

H5(AQ̄Q̄) 1 24 1

K5(A5Q̄Q̄) 1 4 1

~9!

The tree-level superpotential in the dual theory is1

W5Ha5q̄q̄1Kaq̄q̄. ~10!

The ’t Hooft anomaly-matching conditions are almost
trivially satisfied, since the extra gauge singlets do not con-
tribute to any anomaly involving U(1)R while the U~1!
charges of the gauge singlets come in charge conjugate pairs.
Thus the only nontrivial anomaly that is left to check is
SU~8!3 which matches between the electric and magnetic
descriptions.

The correspondence of flat directions of the electric and
magnetic theories is straightforward as well:

A4↔a4,

Q̄8↔q̄8,

AQ̄2↔H,

A5Q̄2↔K.

The additional gauge invariants of the magnetic theoryaq̄2

anda5q̄2, are set to zero by theH andK equations of mo-
tion.

Further consistency checks of this proposed duality in-
clude breaking the gauge group through the Higgs mecha-
nism by going out in different directions on the moduli
space.2 First we consider giving a vacuum expectation value
~VEV! to one of the antisymmetric tensor fields:

A15vS is2

is2

is2

is2

D . ~11!

This breaks the gauge group to Sp~8!, and the unabsorbed
fields transforming under Sp~8! are 18 , with no super-
potential. The operator map determines that in the dual this
corresponds to giving a VEV to

1In this paper we absorb the numerical coefficients of the different
superpotential terms into field redefinitions.
2Since this SU~8! theory is completely chiral, one cannot add

mass terms for any of the operators.
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a15wS is2

is2

is2

is2

D , ~12!

which breaks the gauge group to Sp~8! as well. The particle
content of the magnetic description is

Sp~8! SU~8!

a 1

q
M0[H1 1

M1[H2 1

M2[K1 1

M3[K2 1

~13!

where we have decomposedH and K under the explicitly
broken SU~2! global symmetry. The superpotential of Eq.
~10! becomes

W5M0qa
3q1M1qa

2q1M2qaq1M3qq, ~14!

after substituting the VEV ofa1 from Eq. ~12!. Thus we
recover the self-dual of Sp~8! with 18 of Ref. @9#.

Another possible way to use the Higgs mechanism on the
electric theory is by giving a VEV toA1Q̄7Q̄8 . This breaks
the gauge group to SU~6! and the remaining matter content
transforming under SU~6! is 2 12 16 . On the mag-
netic side this corresponds to a giving a VEV to the~7,8!
component ofH1 , which explicitly breaks some of the glo-
bal symmetries, but not the SU~8! gauge symmetry. Thus,
we obtain a nontrivial dual of SU~6! with 2 12 16 ,
where the dual description is in terms of an SU~8! gauge
group with 2 18 1 ‘‘mesons,’’ and a complicated tree-
level superpotential. Similar nontrivial dualities derived from
self-duals will be described in detail in the next section.

B. SU„6… with a three-index antisymmetric tensor

In this section we present a self-dual description for an
SU~6! gauge theory with a three-index tensor and six flavors,

16( 1 ). Starting from this duality we derive several

other nontrivial dualities by either breaking the electric
gauge group through the Higgs mechanism or integrating out
flavors. We will present these dualities in detail. An impor-
tant lesson to be learned from this set of dualities is that in
general dual theories do not follow any simple pattern. As
we will see, the tensor representations of the electric and
magnetic descriptions can be very different. Furthermore,
theories with identical gauge group and gauge degrees of
freedom but with slightly differing ‘‘meson’’ content and
superpotential are dual to very different electric theories.

The field content and symmetries of the electric and mag-
netic theories are

SU~6! SU(6)Q SU(6)Q̄ U(1)1 U(1)2 U(1)R

A 1 1 0 22 0

Q 1 1 1 1
2

Q̄ 1 21 1 1
2

SU(6)D SU(6)Q SU(6)Q̄ U(1)1 U(1)2 U(1)R

a 1 1 0 22 0

q 1 1 1 1
2

q̄ 1 21 1 1
2

M0 1 0 2 1
M2 1 0 22 1

~15!

The dual theory has the tree-level superpotential

W5M0qa
2q̄1M2qq̄. ~16!

The global anomalies in the two descriptions again match
almost trivially. Flat directions in the two theories are also in
one-to-one correspondence. The mapping of the flat direc-
tions is given in the list below:

AQ3↔aq3, Q6↔q6,

AQ̄3↔aq̄3, Q̄6↔q̄6,

A3Q3↔a3q3, QQ̄↔M0 ,

A3Q̄3↔a3q̄3, QA2Q̄↔M2 ,

A4↔a4. ~17!

The extraqa2q̄ andqq̄ directions in the magnetic theory are
lifted by theM0 andM2 equations of motion.

Starting from the above presented dual for SU~6! with

16( 1 ) one can obtain new dualities by integrating

out a flavor or by breaking SU~6! to SU~5! or SU~4! through
the Higgs mechanism. First, we consider integrating out one

flavor. The electric theory will be SU~6! with 15(

1 ). In the dual description the quark mass term maps onto
the superpotential termm(M0)66. Thus

W5M0qa
2q̄1M2qq̄1m~M0!66. ~18!
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TheM0 andM2 equations of motion force a VEV for the
fields (q6)65(q̄6)65a1235a1455v and zero VEV’s for all
other components. This breaks the SU~6! gauge group to
Sp~4!. The resulting pair of dual theories is given in the table
below:

SU~6! SU(5)Q SU(5)Q̄ U(1)1 U(1)2 U(1)R

A 1 1 0 25 21

Q 1 1 3 1

Q̄ 1 21 3 1

Sp~4! SU(5)Q SU(5)Q̄ U(1)1 U(1)2 U(1)R

a 1 1 0 210 22

q 1 3/2 2 1
q̄ 1 23/2 2 1
M0 1 0 6 2
M2 1 0 24 0

~19!

The new superpotential for the magnetic Sp~4! theory is

W5M0qaq̄1M2qq̄. ~20!

As a consistency check on the presented dual description
we integrate out one more flavor in the SU~6! theory with a

15( 1 ). This theory with four flavors is known to be

confining@11#, and we should reproduce its spectrum and the
confining superpotential from the dual description. The
SU~6! theory with four flavors has the following confined
infrared spectrum:M05QQ̄, M25QA2Q̄, B15AQ3, B̄1

5AQ̄3, B35A3Q3, B̄35A3Q̄3, andT5A4. The confining
superpotential in terms of these fields is given by

WF545
1

L11 ~M0B1B̄1T1B3B̄3M01M2
3M01TM2M0

3

1B̄1B3M21B1B̄3M2!. ~21!

In the dual Sp~4! description, the mass term forces non-
zero VEV’s fora andq5 , q̄5 , which completely breaks the
Sp~4! gauge group. The fields (M0)55, (M0)5i , (M0) i5 ,
(M2)55, (M0)5i , (M2) i5 , and two components ofqi ,q̄i as
well as two uneaten singlet components ofa get masses from
the tree-level superpotential. The remaining components of
qi ,q̄i are identified withB1 , B̄1 , B3 , andB̄3 , the remaining
singlet with T, and the remaining components ofM0 and
M2 with the correspondingM0 andM2 in the SU~6! theory.
The tree-level superpotential reproduces the terms
M0B1B̄1T, B3B̄3M0 , B̄1B3M2 , andB1B̄3M2 of the confin-
ing superpotential of Eq.~21!, while the missingM2

3M0 and
TM2M0

3 terms are presumably generated by instanton effects
in the completely broken Sp~4!.

Using the dual pair of the table in Eq.~19! one can obtain
a dual description for Sp~4! with an antisymmetric tensor and
ten fundamentals. We add conjugate ‘‘meson’’ fieldsM̄0 and
M̄2 with mass termsW5M0M̄01M2M̄2 to both theories.

Integrating out these massive ‘‘mesons’’ in the Sp~4! theory
will set the superpotential to zero. In the SU~6! theory these
mass terms correspond to nontrivial interaction terms. The
resulting dual of the Sp~4! theory with an antisymmetric ten-
sor and ten fundamentals is given in the following table:

Sp~4! SU(5)Q SU(5)Q̄ U(1)1 U(1)2 U(1)R

a 1 1 0 210 22

q 1 3/2 2 1
q̄ 1 23/2 2 1

SU~6! SU(5)Q SU(5)Q̄ U(1)1 U(1)2 U(1)R

A 1 1 0 25 21

Q 1 1 3 1

Q̄ 1 21 3 1

M̄0 1 0 26 0

M̄2 1 0 4 2

~22!

The dual has the tree-level superpotential

W5M̄0QQ̄1M̄2QA
2Q̄ ~23!

in the magnetic SU~6! theory. Note that the electric Sp~4! has
an SU~10! flavor symmetry, while naı¨vely the magnetic
SU~6! theory has only SU~5!3SU~5!3U~1!. This is another
example of accidental symmetries analogous to the SU(F
22) dual of SU~2! described in detail in Sec. II.

Next, we obtain dual descriptions of SU~5! with matter
content 1 1F( 1 ) with F54 or 5 by breaking
through the Higgs mechanism the SU~6! theory with a three-
index tensor and six flavors, which was described above. We
give a VEV to one flavor thus breaking SU~6! to SU~5!. The
three-index antisymmetric tensor decomposes intoand
and there are five SU~5! flavors that remain uneaten. There

remain also SU~5! singlets which can be eliminated by add-
ing conjugate singlets and terms

W5Si~qiq̄6!1S̄i~q6q̄i !, i51,...,5 ~24!

to the superpotential. This extra term makes the unwanted
fields massive afterq6 and q̄6 get a VEV. In the dual de-
scription these terms correspond to mass termsSi(M0) i6 and
S̄i(M0)6i , which after integrating out these fields set all su-
perpotential terms involving (M0) i6 and (M0)6i to zero. The
VEV of (M0)66 explicitly breaks the SU~6!3SU~6! global
symmetry to SU~5!3SU~5!. There are three nonanomalous
U~1! symmetries preserved by the tree-level superpotential
and the VEV ofM0 . Thus, the resulting dual pair is
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SU~5! SU(5)Q SU(5)Q̄ U(1)1 U(1)2 U(1)3 U(1)R

A 1 1 0 25 23
5 0

Ā 1 1 0 25 3
5 0

Q 1 1 3 1
5

3
5

Q̄ 1 21 3 21
5

3
5

SU~6! SU(5)Q SU(5)Q̄ U(1)1 U(1)2 U(1)3 U(1)R

a 1 1 0 25 0 0

q 1 2
3 2 1

3
2
5

q̄ 1 22
3 2 21

3
2
5

q6 1 1 5
3 5 22

3 1
q̄6 1 1 2 5

3 5 2
3 1

M0 1 0 6 0 6
5

M2 1 0 24 0 6
5

(M2)6i 1 1 21 27 1 3
5

(M2) i6 1 1 1 27 21 3
5

(M2)66 1 1 1 0 210 0 0

~25!

with a superpotential in the magnetic SU~6! theory

W5M0qa
2q̄1M2qq̄1~M2!6iq6q̄i

1~M2! i6qiq̄61~M2!66q6q̄61q6a
2q̄6 . ~26!

FIG. 1. The chain of theories obtained from the self-dual of an
SU~6! theory with the three-index antisymmetric tensor and six fla-
vors. The gauge group and the tensor field content of the electric
theories are indicated in the top row. The first column gives the
number of flavors. The confining theories are identified as such in
the table, for the others we give the dual gauge group and tensor
field content. The arrows depict possible flows between these theo-
ries either by breaking the gauge group through the Higgs mecha-
nism or by adding mass terms.

TABLE I. The multiple self-duals of SU~4! with 2 14( 1 ).

SU~4! SU~2! SU~4! SU~4! U(1)1 U(1)2 U(1)R

A 1 1 0 2 0

Q 1 1 1 21 1
2

Q̄ 1 1 21 21 1
2

SU(4)D1
SU~2! SU~4! SU~4! U(1)1 U(1)2 U(1)R

a 1 1 0 2 0

q 1 1 21 21 1
2

q̄ 1 1 1 21 1
2

M0 1 1 0 22 1
M2 1 1 0 2 1
B 1 1 2 0 1

B̄ 1 1 22 0 1

SU(4)D2
SU~2! SU~4! SU~4! U(1)1 U(1)2 U(1)R

a 1 1 0 2 0

q 1 1 1 21 1
2

q̄ 1 1 21 21 1
2

M0 1 1 0 22 1
M2 1 1 0 2 1

SU(4)D3
SU~2! SU~4! SU~4! U(1)1 U(1)2 U(1)R

a 1 1 0 2 0

q 1 1 21 21 1
2

q̄ 1 1 1 21 1
2

B 1 1 2 0 1

B̄ 1 1 22 0 1
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Next, we construct a dual description for SU~5! with F
54. This dual can be obtained in two different ways: either
by breaking through the Higgs mechanism the SU~6! theory

with 15( 1 ) or by integrating out a flavor from SU~5!

with F55. Here, we consider the latter possibility. Adding a
mass termmq5q̄5 corresponds to adding a termm(M0)55 to
the superpotential of Eq.~26!. This gives VEV’s toq5 ,
q̄5 , anda in analogy to the case of integrating out a flavor

from SU~6! with 16( 1 ). These VEV’s break SU~6!

to Sp~4! and the resulting dual pair is given in the table
below:

SU~5! SU(4)QSU(4)Q̄ U(1)1 U(1)2 U(1)3 U(1)R

A 1 1 1 0 24 0

Ā 1 1 21 0 24 0

Q 1 0 1 3 1
2

Q̄ 1 0 21 3 1
2

Sp~4! SU(4)QSU(4)Q̄ U(1)1 U(1)2 U(1)3 U(1)R

a 1 1 0 0 28 0

q 1 21
2 1 1 1

2

q̄ 1 1
2 21 1 1

2

q6 1 1 3
2 2 4 1

q̄6 1 1 23
2 22 4 1

M0 1 0 0 6 1
M2 1 0 0 22 1
(M2)6i 1 1 22 21 25 1

2

(M2) i6 1 1 2 1 25 1
2

(M2)66 1 1 1 0 0 28 0

~27!

The superpotential for the magnetic Sp~4! theory is

W5M0qaq̄1M2qq̄1~M2!6iq6q̄i1~M2! i6qiq̄6

1~M2!66q6q̄61q6aq̄6 . ~28!

Integrating out one more flavor in the electric SU~5!
theory withF54 completely breaks the gauge group of the
dual theory. This is in complete analogy to integrating out

one flavor from the SU~6! theory with 15( 1 ): one

obtains the correct confining spectrum and several terms in
the confining superpotential.

There are several other nontrivial dualities which can be
derived from these duals by either breaking the gauge group
through the Higgs mechanism or adding mass terms for
quark-antiquark pairs. Some of these duals are summarized
in Fig. 1. The figure elucidates one of the main lessons of
this section: theories with the same gauge group and gauge
degrees of freedom can have very different duals, depending
on the ‘‘meson’’ content and the tree-level superpotential.

For example, SU~6! with 16( 1 ) is self-dual, it is also

dual to SU~5! with 1 15( 1 ) and dual to SU~4!
with 2 15( 1 ), depending on the ‘‘meson’’ content.

We see in these examples that magnetic theories with
very similar ‘‘meson’’ fields can be dual to electric theories
with radically different gauge groups and/or matter content.
This suggests that finding the field content of a dual for a
theory with tensors is quite difficult in general. The potential
presence of accidental symmetries complicates finding duals
even more, since one of the main tools for identifying duali-
ties is to require that global symmetries and their anomalies
match in the electric and magnetic theories. When two theo-
ries have differing ultraviolet symmetries, it is difficult to
decide whether there is a duality connecting the two theories,
with some symmetries being accidental, or whether there is
no duality at all.

C. Multiple self-duals

In this section we present another example of multiple
dualities, similar to the SU~2! theory presented in Sec. II. We
consider SU~4! with 2 14( 1 ). An Sp~4! dual for this
theory can be obtained by using the Higgs mechanism and

integrating out a flavor from the self-dual of SU~6! with .

This SU~4! theory has, however, several self-dual descrip-
tions as well. These are described in Table I.

Note that the representations and charges of the dual
quarks differ in the three duals. The ’t Hooft anomaly match-
ing and the operator map is again straightforward if one in-
cludes the appropriate superpotentials for the different duals:

WD1
5M0qa

2q̄1M2qq̄1Baq21B̄aq̄2,

WD2
5M0qa

2q̄1M2qq̄,

WD3
5Baq21B̄aq̄2. ~29!

As a consistency check on this duality we consider giving
a VEV to one of the antisymmetric tensors. This breaks both
the electric and the magnetic SU~4! gauge group to Sp~4!,
leaving one antisymmetric tensor and eight flavors of Sp~4!.
A self-dual of this Sp~4! theory has been described in Ref.
@9#. OurD1 self-dual exactly reproduces the dual of@9#. Our
other two duals lead to new dualities for the Sp~4! theory.
Note that in the latter case the fundamental fields of the dual
Sp~4! theory do not combine into complete representations
of the global SU~8! group, only an SU~4!3SU~4!3U~1! sub-
group is manifest in the dual. The full SU~8! global symme-
try arises as an accidental symmetry of the infrared.

As a consistency check, one can further break the Sp~4!
gauge group through the Higgs mechanism to
SU~2!3SU~2!, by giving a VEV to the remaining antisym-
metric tensor. One finds that the three duals flow to two
copies of the three self-duals of SU~2! with eight doublets
described in Sec. II, providing another consistency check on
these dualities.

D. SU„2N… with 1 14„ 1 …

In this section we describe the generalization of one of the
SU~4! self-duals presented in the previous section to
SU(2N) with 1 14( 1 ). The pair of dual theories
is given in the table below.
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SU(2N) SU(4)Q SU(4)Q̄ U(1)1 U(1)2 U(1)3 U(1)R

A 1 1 1 0 24 0

Ā 1 1 21 0 24 0

Q 1 0 1 2N22 1
2

Q̄ 1 0 21 2N22 1
2

SU(2N)D SU(4)Q SU(4)Q̄ U(1)1 U(1)2 U(1)3 U(1)R

a 1 1 1 0 24 0

ā 1 1 21 0 24 0

q 1 0 1 2N22 1
2

q̄ 1 0 21 2N22 1
2

Mk 1 0 0 4N2428k 1 ~30!

wherek50,...,N21, and with the superpotential in the dual
magnetic theory given by

W5(
k

Mkqq̄~aā!N212k. ~31!

The ’t Hooft anomaly-matching conditions are again
straightforward to check, while the mapping of flat directions
is given by

QQ̄~AĀ!k↔Mk ,

Q2Ā~AĀ!k↔q2ā~aā!k,

Q̄2A~AĀ!k↔q̄2a~aā!k,
AN↔aN,

ĀN↔āN,

AN21Q2↔aN21q2,

ĀN21Q̄2↔āN21q̄2,

~AĀ!k↔~aā!k,
AN22Q4↔aN22q4,

ĀN22Q̄4↔āN22q̄4.

Note that a similarly constructed candidate for a self-dual

to SU(2N11) with 1 14( 1 ) fails to match the
global anomalies.

As a consistency check on the above duality for
SU(2N) we consider breaking SU(2N) to SU(2)N by giving
a VEV to the fieldsA and Ā. The result isN copies of the
SU~2! self-dual with eight doublets presented in Sec. II. An-
other check is to integrate out one flavor from the electric
theory. On the magnetic side this corresponds to completely
breaking the gauge group through the Higgs mechanism
since the operatorq(aā)N21q̄ is forced to have an expecta-
tion value by theM0 equation of motion. The massless fields
exactly correspond to the confining spectrum of SU(2N)
with 1 13( 1 ) described in Ref.@11#. Again, part
of the confining superpotential is reproduced by the tree-
level superpotential of Eq.~31! while the rest is presumably
generated by instanton effects.

While there is no self-dual for SU(2N11) with 1

14( 1 ), one can derive a nontrivial dual for this theory
by breaking the SU(2N12) gauge group of this self-dual to
SU(2N11) with an expectation value for one flavor of
quarks. The electric theory becomes SU(2N11) with

1 14( 1 ), while the dual magnetic theory is still
SU(2N12) with 1 14( 1 ), but with a different
combination of singlets and tree-level superpotential. Just

like in the derived dualities of Sec. III B, the SU~4!3SU~4!
global symmetry is not explicit in the magnetic theory, but
only restored in the infrared.

E. SO„N… with spinors and N24 vectors

In this section, we present a series of self-dual theories, all
of which have multiple self-duals. The theories we examine
have SO(N) gauge groups withN24 vectors as well as
some spinor representations. The duals of these theories con-
tain the same gauge degrees of freedom as the electric
theory, and some additional gauge singlets. The gauge sin-
glet ‘‘meson’’ fields correspond to composite operators of
the electric theory made up of two spinors and varying num-
bers of vectors. In the simplest self-dual, the SO(N) vectors
remain fundamentals of the SU(N24) global symmetry,
while the dual spinors become antifundamentals under their
global symmetry. Thus, in some sense only the spinors are
being ‘‘dualized’’ in these duals.

As an explicit example we describe in detail an SO~8!
theory with four spinors and four vectors. This theory is
particularly interesting because SO~8! has a group automor-
phism. With this choice of matter content the automorphism
implies aZ2 symmetry which exchanges spinors and vectors.
The duality is

SO~8! SU~4! SU~4! U~1! U(1)R

S 8s 1 1 1
4

V 8v 1 21 1
4

SO(8)D1 SU~4! SU~4! U~1! U(1)R

s 8s 1 1 1
4

v 8v 1 21 1
4

M0 1 hh 1 2 1
2

M2 1 0 1

M4 1 hh 1 22 3
2

~32!

with a dual superpotential
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Wmagn5M0s
2v41M2s

2v21M4s
2. ~33!

Note that the ‘‘meson’’ content of this dual does not have a
manifestZ2 symmetry, thus the exchange symmetry is an
accidental infrared symmetry in the dual description, in anal-
ogy to the symmetries of the SU~2! theory discussed in Sec.
II. Again, there are a number of other self-duals, which are
summarized in Table II.

The operator mapping is

S2↔M0 ,

V2↔M̄0 ,

S2V2↔M2 ,

S2V4↔M4 ,

S4V2↔M̄4 . ~34!

It is interesting to examine the possibility that this theory
is in an interacting non-Abelian Coulomb phase, i.e., the
gauge coupling runs to a nontrivial fixed point in the infra-
red. Then, due to theZ2 symmetry, the anomalous dimen-
sions of the spinor and vector quarks must be the same. This
uniquely identifies the superconformalR symmetry~which is
related to the scaling dimensions@4#! as theR symmetry
whose charges we indicated in the tables above. Recalling
the relation that the scaling dimension is 3/2Rsc for fields in
the superconformal algebra and the fact that gauge-invariant
chiral superfields cannot have a dimension less than 1~chiral
superfields withRsc less than 2/3 are necessarily free-fields
and decouple from the superconformal theory!, we find that
the chiral superfieldsM0 and M̄0 are free in the infrared,
while the remaining degrees of freedom are interacting with
scaling dimensions given by 3/2Rsc. Thus this theory may
provide a realization of the exotic phenomena suggested in
Ref. @12#.

Similar self-duals can be found for numerous other
SO(N) theories with spinors andN24 vectors. The proper-
ties of these duals are summarized in Table III. We use the
following notation for the matter content:~NS , NC , NV!,
which denotesNS spinors,NC conjugate spinors, andNV
vectors. For SO(N) groups withN odd only two numbers are
given, the first for spinors, the second for vectors. The matter
content of the self-dual theories is determined by assigning
the vectorsR-charge 0, and adding as many spinors as re-
quired for the spinors to haveR-charge 1/2.

Note that these self-duals flow to one another when giving
a VEV to one vector. Both the electric and magnetic gauge
groups break to SO(N21). One vector is eaten, whileN
25 vectors remain in the theory. It is straightforward to
check that the resulting theory is exactly the corresponding
self-dual of SO(N21) in our table.

As a consistency check, one can give VEV’s to all
SO(N) vectors, breaking SO(N) to SO~4!;SU~2!3SU~2!. It
is easy to check that all self-duals of Table III reduce to two
copies of one of the three SU~2! self-duals discussed in Sec.
II.

Another check on these dualities consists of integrating
out vectors from the theory. After integrating out one vector

the electric theory confines without chiral symmetry break-
ing and with a confining superpotential~s confines! @11#. The
magnetic theory also confines, and it is straightforward to
check that the confined degrees of freedom are correctly re-
produced. However, just like in the duality of@9#, the origin
of some of the terms in the confining superpotential on the
magnetic side is unknown, but may be due to instantons.

Finally, we consider giving masses to spinors in those
theories where the spinors are in real representations. When
integrating out all spinors the electric theory becomes
SO(N) with N24 vectors, which has two branches of vacua
@2#. One branch has a dynamically generated superpotential
while the other branch is confining with no superpotential.
To check how this arises in the magnetic theories we con-
sider the example of SO~6! with ~4,4,2! which is equivalent
to SU~4! with 2 14( 1 ). Integrating out the spinors in
SO~6! amounts to integrating out the SU~4! flavors, which
we do one at a time. Adding a mass term for one flavor gives
nonzero VEV’s to fields in the magnetic theory by the ‘‘me-
son’’ equation of motion which breaks the magnetic SU~4!
gauge group completely. After identifying the uneaten light
degrees of freedom we obtain the confined spectrum and part
of the confining superpotential of SU~4! with 2 13(
1 ), described in Ref.@11#. The remaining part of the con-
fining superpotential is presumably generated by instanton
effects in the completely broken SU~4! gauge group. Thus

TABLE II. Multiple self-duals of SO~8! with four spinors and
four vectors.

SO(8)D2 SU~4! SU~4! U~1! U(1)R

s 8s 1 1 1
4

v 8v 1 21 1
4

M0 1 hh 1 2 1
2

M4 1 hh 1 22 3
2

SO(8)D3 SU~4! SU~4! U~1! U(1)R

s 8s 1 1 1
4

v 8v 1 21 1
4

M2 1 0 1

SO(8)D4 SU~4! SU~4! U~1! U(1)R

s 8s 1 1 1
4

v 8v 1 21 1
4

M̄0 1 1 hh 22 1
2

M2 1 0 1

M̄4 1 1 hh 2 3
2

SO(8)D5 SU~4! SU~4! U~1! U(1)R

s 8s 1 1 1
4

v 8v 1 21 1
4

M0 1 hh 1 2 1
2

M̄0 1 1 hh 22 1
2

M2 1 0 1

M4 1 hh 1 22 3
2

M̄4 1 1 hh 2 3
2
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after integrating out one flavor the magnetic theory repro-
duces the confining theory with three flavors. It has been
shown in Ref.@11# that integrating out the remaining three
flavors does result in the correct description of the theory in
both branches of vacua.

IV. CONCLUSIONS

We have presented a large set of new self-dualN51,
SUSY gauge theories. Starting from these self-duals one can
obtain many new nontrivial dualities by integrating out fla-
vors or by breaking the gauge group through the Higgs
mechanism. In addition to the derived dualities discussed
here, a large class of duals for SU(N) theories with antisym-
metric tensors can be derived by giving expectation values to
the spinor representations of our SO(N) self-duals. A com-
mon feature of many of these derived dualities is that they
have some accidental global symmetries, which emerge only
in the infrared and are not explicit in the ultraviolet descrip-
tion. These accidental symmetries can make finding new du-
alities very difficult. Usually, one is looking for dual pairs by
requiring that the global symmetries and their anomalies in
the two theories match. When some of the global symmetries
are accidental symmetries, present only in the infrared, we
lose our most powerful tool for identifying dualities.

Another interesting feature of the presented dualities is
that they do not seem to follow any obvious pattern. For

example, SU~5! with 2 15( 1 ) is dual to SU~6! with

16( 1 ), while SU~5! with 2 14( 1 ) is dual to

Sp~4! with 110 . Just by changing the number of flavors,
the gauge group and the matter content of the dual theory
change completely. Furthermore, theories with identical
gauge groups and gauge degrees of freedom but with differ-
ent ‘‘meson’’ content and superpotentials can be dual to very

different theories. For example, SU~6! with 16( 1 ) is

self-dual, dual to SU~5! with 1 15( 1 ) or dual to
SU~4! with 2 15( 1 ), depending on the gauge singlet
‘‘meson’’ content and the tree-level superpotential.

These features of duality suggest that developing a sys-
tematic approach to findingN51 duals for theories with
arbitrary matter content might be a very difficult task, which
will likely require more insight into the dynamics of super-
symmetric gauge theories than is presently available.
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Lett. B 388, 561 ~1996!; C. Csáki, L. Randall, and W. Skiba,
Nucl. Phys.B479, 65 ~1996!; C. Csáki, L. Randall, W. Skiba,
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