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The cross section forZZ→ZZ with arbitrarily polarizedZ bosons is calculated within the electroweak
standard model including the completeO(a) corrections. We show the numerical importance of the radiative
corrections and elaborate its characteristic features. The treatment of the Higgs-boson resonance is discussed in
different schemes including theS-matrix-motivated pole scheme and the background-field method. The nu-
merical accuracy of the equivalence theorem is investigated by comparing the cross sections for purely longi-
tudinalZ bosons obtained from the equivalence theorem and from the complete calculation. In this context the
full O(a) corrections are also confronted with the enhanced corrections ofO(aMH

2 /sW
2 MW

2 ), which were
frequently used in the literature.@S0556-2821~97!00513-4#

PACS number~s!: 12.15.Lk, 11.15.Bt, 14.70.Hp

I. INTRODUCTION

Gauge-boson scattering provides a window into the heart
of spontaneously broken gauge theories: the gauge-boson
self-interactions and the scalar sector, which drives sponta-
neous symmetry breaking. Therefore, such processes found
continuous interest in the literature@1–8# since the very first
years of spontaneously broken gauge theories. Since lowest-
order predictions for all gauge-boson scattering amplitudes
involve only interactions between gauge and scalar bosons,
the corresponding cross sections depend very sensitively on
the non-Abelian and scalar sector of the underlying theory.
This sensitivity is even enhanced for high-energetic, longitu-
dinally polarized massive gauge bosons, due to the presence
of gauge cancellations. A longitudinal polarization vector
contains a factork0/M , wherekm andM are the momentum
and mass of the corresponding gauge boson, respectively,
and induces contributions to the matrix element that grow
with energy. In spontaneously broken gauge theories such
contributions cancel in the high-energy limit, as required by
unitarity. For ’t Hooft gauge-fixing conditions these so-
called unitarity cancellations are quantitatively expressed by
the Goldstone-boson equivalence theorem~ET! @9–13#
which relates amplitudes for longitudinal gauge bosons to
those of the corresponding Goldstone bosons and thus re-
flects the connection between gauge and scalar sector of the
theory.

In the minimal SU(2)3U(1) electroweak standard model
~SM! only one physical scalar field remains after spontane-
ous symmetry breaking, viz., the Higgs boson, which plays a
central role in the discussion of massive gauge-boson scat-
tering. Virtual Higgs-boson exchange is needed to prevent
the 2→2 scattering amplitudes of longitudinal gauge bosons
from violating the~perturbative! unitarity bound at high en-
ergies. In turn, the requirement of unitarity can be used to
derive bounds on the Higgs-boson mass below which the SM

remains weakly interacting and treatable in low-order pertur-
bation theory@1,2#. These bounds are of the order of 1 TeV
and are slightly strengthened by including the
O(aMH

2 /sW
2 MW

2 ) radiative corrections~RC’s! to gauge-
boson scattering@4#. As already pointed out in Ref.@3#, all
these bounds are only qualitative, since they are obtained by
applying perturbation theory in a region where it breaks
down. The bounds onMH can be related to a scale of new
physics, which is necessary to avoid the Landau pole in the
scalar self-interaction@5#. If these bounds are not satisfied
the Higgs sector becomes strongly interacting. In this case
large effects of new physics should arise in gauge-boson
scattering and these processes would be particularly suited to
study the electroweak symmetry breaking sector of the SM
@2,10,14#.

Gauge-boson scattering reactions can be studied at all
high-energy colliders, i.e.,pp colliders such as the CERN
Large Hadron Collider~LHC!, e1e2 colliders such as the
Next Linear Collider~NLC!, orm1m2 colliders, where these
reactions naturally appear as subprocesses. At high energies
(E@MW) the incoming particles radiate plenty of gauge
bosons. Similar to the well-known Weizsa¨cker-Williams ap-
proximation for photonic reactions also massive vector-
boson scattering at high energies can be approximated by
convoluting the vector-boson cross section with the corre-
sponding flux of gauge bosons. This approximation is known
as equivalent vector-boson method~see, e.g., Ref.@15#, and
references therein!.

At high energies, where the investigation of gauge-boson
scattering is most interesting, the RC’s are typically large
and need to be taken into account. In this paper we investi-
gate the effects of RC’s on on-shell massive gauge-boson
scattering processes. We have chosen the simplest represen-
tative, the processZZ→ZZ. It contains all interesting fea-
tures that are typical for massive gauge-boson scattering such
as the occurrence of a Higgs-boson resonance or enhanced
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RC’s associated with a heavy Higgs boson. On the other
hand, complications by bremsstrahlung corrections, which
occur forW bosons, are absent.

We calculate the completeO(a) RC’s to ZZ→ZZ and
present a detailed numerical discussion of the
O(a)-corrected cross sections both for the unpolarized case
and the most interesting individual polarizations. Once RC’s
are taken into account, the introduction of a finite decay
width of the Higgs boson, which is necessary for a sensible
description of the resonance, is nontrivial owing to problems
with gauge invariance. We compare different treatments such
as the naive introduction of a finite width, Laurent expan-
sions about the complex pole, as well as Dyson summations
of self-energy corrections. The latter procedure is, in particu-
lar, applied within the framework of the background-field
method~BFM! ~see Ref.@16#, and references therein!, where
Dyson summation does not disturb the underlying Ward
identities@13# which guarantee gauge cancellations and uni-
tarity.

For longitudinal gauge-boson scattering the radiative cor-
rections ofO(aMH

2 /sW
2 MW

2 ), which dominate for a heavy
Higgs boson, have been calculated in the literature using the
ET. We test the accuracy of such an approach by comparing
these results with the fullO(a) corrections. Moreover, we
have calculated theO(a) corrections as predicted via the
ET, which possess a very simple analytical form.

This paper is organized as follows. After some prelimi-
nary remarks in Sec. II about kinematics, conventions, and
discrete symmetries, we discuss the lowest-order cross sec-
tions in Sec. III. In Sec. IV we describe the explicit calcula-
tion and the structure of theO(a) corrections. The different
methods for introducing a finite Higgs-boson width are pre-
sented in Sec. V. A brief description of the application of the
ET to ZLZL→ZLZL and the heavy-Higgs-boson effects in
Sec. VI concludes our presentation of the calculational
framework. Numerical results are discussed in Sec. VII, and
Sec. VIII contains our conclusions. Appendix A provides a
further discussion of the Landau singularity that appears in
some box diagrams. In Appendix B we present the full ana-
lytical results for theO(a) corrections obtained via the ET.

II. PRELIMINARIES

A. Kinematics and conventions

We consider the reaction

Z~k1 ,l1!1Z~k2 ,l2!→Z~k3 ,l3!1Z~k4 ,l4!, ~1!

where ki and l i denote the momenta and helicities of the
incoming and outgoingZ bosons, respectively. We use the
indicesL, T, andU to indicate longitudinal (l50), trans-
verse (l56), and unpolarizedZ bosons, respectively, and
characterize definite polarization combinations by a se-
quence of four letters, e.g.,LTLT stands forZLZT→ZLZT .

The incoming particles travel along thez axis and are
scattered into thex-z plane. In the center-of-mass system
~c.m.s.! the momenta and polarization vectors« i(l i) read

k1
m5~E,0,0,2p!, k3

m5~E,2p sinu,0,2p cosu!,

«1
m~0!5~2p,0,0,E!/MZ ,

«3
m,* ~0!5~p,2E sinu,0,2E cosu!/MZ ,

«1
m~6 !5~0,21,6 i ,0!/&,

«3
m,* ~6 !5~0,2cosu,7 i ,sinu!/&,

k2
m5~E,0,0,p!, k4

m5~E,p sinu,0,p cosu!,

«2
m~0!5~2p,0,0,2E!/MZ ,

«4
m,* ~0!5~p,E sinu,0,E cosu!/MZ ,

«2
m~6 !5~0,1,6 i ,0!/&,

«4
m,* ~6 !5~0,cosu,7 i ,2sinu!/&, ~2!

in terms of the energyE of the Z bosons, their momentum
p5AE22MZ

2, and the scattering angleu. The Mandelstam
variables are defined as

s5~k11k2!
254E2,

t5~k12k3!
2524p2 sin2u/2,

u5~k12k4!
2524p2 cos2u/2. ~3!

Following the treatment of Ref.@17# for gg→WW, we
introduce the 83 standard matrix elements~SME’s! Mi jkl
which contain the complete information about the boson
polarizations.1 The invariant matrix elementM is decom-
posed into a linear combination of the SME’s with invariant
functionsFi jkl (s,t) as coefficients. Exploiting discrete sym-
metries, the number of independent SME’s can be reduced.

In terms of the invariant matrix elementM the differen-
tial cross section is expressed as

S ds

dV D
l1l2l3l4

5
1

64p2s
uMl1l2l3l4

u2. ~4!

The unpolarized cross section results from an average over
the initial states and a sum over the final states:

S ds

dV D
unpol

5
1

9 (
l1 ,l2

(
l3 ,l4

S ds

dV D
l1l2l3l4

. ~5!

More generally, the correct average is obtained by multiply-
ing with 1/3 for each unpolarizedZ boson and by 1/2 for
each transverseZ boson in the initial state.

The integrated cross section is obtained by

s tot5
1

2 E
0°

360°

dwE
ucut

180°2ucut
du sinu

ds

dV
, ~6!

1Only 81 SME’s are linearly independent, the other two are kept
for convenience.
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whereucut denotes an angular cut which is set to 10° in our
numerical evaluations. The symmetry factor 1/2 results from
the presence of two identical particles in the final state.

B. Discrete symmetries

As a consequence of Bose symmetry the amplitudeM is
invariant under the interchange (k1 ,«1)↔(k2 ,«2) and/or
(k3 ,«3* )↔(k4 ,«4* ): i.e.,

Ml1l2l3l4
~E,u!5Ml2l1l4l3

~E,u!

5Ml1l2l4l3
~E,180°1u!

5Ml2l1l3l4
~E,180°1u!. ~7!

This implies, for the cross sections,

S ds

dV D
l1l2l3l4

~s,t !5S ds

dV D
l2l1l4l3

~s,t !

5S ds

dV D
l2l1l3l4

~s,u!

5S ds

dV D
l1l2l4l3

~s,u!. ~8!

In particular, all cross sections with equally polarized incom-
ing and/or outgoingZ bosons are forward-backward sym-
metric.

CPT symmetry entails

Ml1l2l3l4
5Ml3l4l1l2

~9!

and the analogous relation for the cross sections.
Because quark mixing is completely negligible for this

process, we use a unit quark-mixing matrix, and thus also
CP is an exact symmetry.2 As a consequence, the helicity
amplitudes are related as follows:

Ml1l2l3l4
5M2l12l22l32l4

, ~10!

and the cross sections do not change if all helicities are re-
versed.

Owing toCP invariance all SME’s involving the totally
antisymmetric Levi-Civita tensor drop out, and only 43
SME’s can appear. As a consequence of Bose and CPT sym-
metry only the sum of each SME and the ones obtained from
the interchanges («1 ,k1 ,«3* ,k3)↔(«2 ,k2 ,«4* ,k4) and
(«1 ,k1 ,«2 ,k2)↔(«3* ,k3 ,«4* ,k4) occur. This leaves 19
SME’s, among which 17 are independent.

III. LOWEST-ORDER CROSS SECTION

To lowest order, only the three diagrams in Fig. 1 con-
tribute and yield the following amplitude:

MBorn52
e2MZ

2

cW
2 sW

2 S M00
~s!

s2MH
2 1

M00
~ t !

t2MH
2 1

M00
~u!

u2MH
2 D , ~11!

wherecW5cosuW5MW/MZ , sW5sinuW5A12cW
2 , and the

relevant SME’sM00
(r ) are given by

M00
~s!5~«1•«2!~«3* •«4* !, M00

~ t !5~«1•«3* !~«2•«4* !,

M00
~u!5~«1•«4* !~«2•«3* !. ~12!

Explicit formulas forMBorn for the 81 polarization combi-
nations are listed in Table I. The dimensionfulZZH coupling
leads to a suppression of the Born matrix element by a factor
MZ

2/us2MH
2 u for us2MH

2 u@MZ
2. As a consequence, the

lowest-order matrix element for purely transverseZ bosons
is suppressed for high energies,s@MH

2 , by a factorMZ
2/s.

Each longitudinalZ boson introduces a factorAs/MZ via its
polarization vector. For helicity amplitudes with more than
two external longitudinalZ bosons unitarity cancellations
take place such that the Born matrix element with purely
longitudinalZ bosons approaches a constant and those with
three longitudinalZ bosons behave asMZ /As at high ener-
gies. As a remnant of the unitarity cancellations the matrix
elements involving four and three longitudinalZ bosons are
enhanced by a factorMH

2 /MZ
2 if MZ

2!MH
2 !s.

The analytical results for the asymptotic behavior of the
integrated cross sections at high energies (s@MZ

2,MH
2 ) are

listed in Table II. The cross section for purely longitudinal
Z bosons (LLLL) and the ones with two transverse and two
longitudinalZ bosons (LLTT,LTLT) behave as 1/s for high
energies. The cross sections with one or three longitudinal
gauge bosons (LTTT,LLLT) are proportional to 1/s2, and
the cross section for purely transverseZ bosons (TTTT)
vanishes as 1/s3 at high energies forucut.0. When inte-
grated over the full scattering angle theTTTT cross section
behaves as 1/s2 owing to the t- and u-channel poles. The
cross sections not shown in Table II are obtained from the
symmetry relations ~8! and ~9!, e.g., sLLLT5sLLTL
52sTLLL , where the factor 2 originates from the different
spin average.

Figure 2 illustrates the~exactly calculated! polarized
lowest-order cross sections integrated overucut,u,180°
2ucut for ucut510° and a low Higgs-boson mass ofMH
5100 GeV. In Fig. 3 we show the same cross sections for
MH5700 GeV using a naive constant finite width to de-
scribe the Higgs-boson resonance, as discussed in Sec. V
below. The enhancement of theLLLL andLLLT cross sec-
tions caused by the factorMH

2 /MZ
2 can be seen by comparing

Figs. 2 and 3. The Higgs-boson resonance occurs only for
equally polarizedZ bosons in the initial and final state,l1
5l2 , l35l4 . At lowest order, theLLLL cross section
dominates independently of the Higgs-boson mass.

2Even for a general quark-mixing matrix,CP would be violated
in the considered process only beyond the one-loop level.

FIG. 1. Lowest-order diagrams forZZ→ZZ.
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IV. RADIATIVE CORRECTIONS

A. Calculational framework

We have performed the calculation of the radiative cor-
rections~RC’s! in ’t Hooft–Feynman gauge both in the con-
ventional formalism and in the background-field formalism,
applying the on-shell renormalization scheme in both cases.
We follow the conventions of Ref.@18# for the conventional
formalism and of Ref.@16# for the background-field formal-
ism. In the conventional formalism the field renormalization
is fixed such that no external wave-function renormalization
is needed. In the renormalization scheme introduced in Ref.
@16# for the background-field method the field renormaliza-
tion is determined by gauge invariance, and a nontrivial ex-
ternal wave-function renormalization is required, as explic-
itly described in Ref.@13#.

The Feynman graphs have been generated and drawn with
FEYNARTS @19#. Both in the conventional formalism and in

the background-field method we have performed two inde-
pendent calculations.

One evaluation is based on the calculational method de-
scribed in Ref.@18#. With the help ofMATHEMATICA @20# the
amplitudes are decomposed into SME’s and invariant func-
tions, and the one-loop contributions to the invariant func-
tions are expressed in terms of standard tensor integrals. The
tensor integrals are reduced to the standard scalar one-loop
integrals, as described in Ref.@21#. The scalar one-loop in-
tegrals are evaluated using the methods and general results of
Ref. @22#. The last two steps are performed numerically us-
ing own FORTRAN routines.

In the other calculation the algebra is performed with
MATHEMATICA and FORM @23# and has been partially
checked withFEYNCALC @24#. The resulting symbolic ampli-
tudes are automatically converted into aFORTRAN program.
Instead of using SME’s, all scalar products of four-vectors
are grouped together and calculated at run time by inserting

TABLE I. Polarized lowest-order matrix elements~S5s2MH
2 , T5t2MH

2 , U5u2MH
2 , and s̃5s24MZ

2!.

Polarization
MBorn52

e2

cw
2sw

2 3~entry!
Polarization

MBorn52
e2

cw
2sw

2 3~entry!

LLLL 1

4MZ
2 F~s22MZ

2!2

S 1
@s~u2t !1 s̃ 2#2

4s̃ 2T 1
@s~ t2u!1 s̃ 2#2

4s̃ 2U G
6LLL
L6LL
LL6L
LLL6

1

4&MZ

Astu
s̃ 2 Fs~u2t !1 s̃ 2

T 2
s~ t2u!1 s̃ 2

U G
LL66
66LL

s22MZ
2

2S 1
stu

2s̃ 2 F1T1
1

UG LL67
67LL

stu

2s̃2 F1T1
1

UG
6L6L
L6L6

u

4s̃2 F2 s~u2t!1s̃2

T 1
2st

U G 6L7L
L6L7

t

4s̃2 Fs~u2t!1s̃2

T 1
2su

U G
6LL6
L66L

t

4s̃2 F2suT 2
s~ t2u!1 s̃ 2

U G 6LL7
L67L

u

4s̃2 F2stT 1
s~ t2u!1 s̃ 2

U G
L666
6L66
66L6
666L

2
MZ

&

Astu
s̃ 2 FuT2 t

UG
L766
7L66
66L7
667L

MZ

&

Astu
s̃ 2 F tT2 u

UG
L676
6L67
76L6
676L

2
MZ

&

uAstu
s̃ 2 F1T1

1

UG
L667
6L76
67L6
766L

MZ

&

tAstu
s̃ 2 F1T1

1

UG
6667
6676
6766
6777

2MZ
2
tu

s̃ 2 F1T1
1

UG
6767

MZ
2
u2

s̃ 2 F1T1
1

UG 6776
MZ

2
t2

s̃ 2 F1T1
1

UG
6666

MZ
2F1S1

u2

s̃ 2T1
t2

s̃ 2UG 6677
MZ

2F1S1
t2

s̃ 2T1
u2

s̃ 2UG
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the explicit representations~2! for the polarization vectors.
The tensor integrals are numerically reduced to scalar inte-
grals, which are evaluated using theFF package@25#. The
code thus obtained executes favorably fast and numerically
stable.

Because of the length of the results we do not list the
analytical expressions but give only an inventory of the
O(a) RC’s and discuss some important features.

B. Inventory of O„a… corrections

Both in the conventional formalism and in the
background-field formalism about 550 Feynman diagrams
contribute toZZ→ZZ at one-loop order. The one-loop cor-
rections can be classified into self-energy corrections,
vertex corrections, box corrections, and wave-function-
renormalization corrections. All of them can be divided into
s-, t-, and u-channel contributions, which are related by
simple transformations. In the following we list only the
s-channel Feynman graphs for the conventional formalism in
’t Hooft–Feynman gauge.

The diagrams contributing to the self-energy corrections
in the s channel are shown in Fig. 4. The diagram with a
virtualW andf field actually represents two diagrams with
opposite charge flow. After renormalization the diagrams of
Fig. 4 yield together with the correspondingt- and
u-channel diagrams the following contribution to the invari-
ant matrix element:

dMself5
e2MZ

2

cW
2 sW

2 S M00
~s!

~s2MH
2 !2

SH~s!1
M00

~ t !

~ t2MH
2 !2

SH~ t !

1
M00

~u!

~u2MH
2 !2

SH~u! D , ~13!

whereSH is the renormalized Higgs-boson self-energy.
For each of the six vertices appearing in the Born dia-

grams~Fig. 1! there is a set of vertex corrections. In Fig. 5
we show the diagrams that constitute the corrections to the
final-state vertex in thes-channel diagram of Fig. 1. Note
that each graph with three charged fields or two different
charged fields in the loop represents two diagrams with op-
posite orientation of the charge flow. Owing to the simple
tensor structure of theZZH vertex, the vertex corrections
have the relatively simple form

dMvertex52
e2MZ

2

cW
2 sW

2 (
r5s,t,u

1

r2MH
2 @2M00

~r !F0
ZZH~r !

1~M10
~r !1M01

~r !!F1
ZZH~r !# ~14!

with the two renormalized form factorsF0
ZZH(r ) and

F1
ZZH(r ) for each channel, the corresponding SME’sM00

(r )

from Eq. ~12!, and

FIG. 2. Integrated lowest-order cross sections for various polar-
izations atMH5100 GeV.

FIG. 3. Integrated lowest-order cross sections for various polar-
izations atMH5700 GeV.

TABLE II. Polarized lowest-order cross sections at high energies (s@MZ
2,MH

2 ) integrated overucut,u,180°2ucut.

Polarization
sBorn52p

1

64p2s

e4

cW
4 sW

4 3~entry!

LLLL 9MH
4

16MZ
4 cosucut

LLTT cosucut
2

LTLT cosucut
4

LLLT ~MH
212MZ

2!2

2MZ
2s Hln s~11cosucut!

2MH
2 1s~12cosucut!

2
2cosucut~6MH

2 1s sin2ucut!

4MH
2 1s sin2ucut

J
LTTT MZ

2

s H2 ln s~11cosucut!

2MH
2 1s~12cosucut!

2
cosucut~20MH

2 13s sin2ucut!

4MH
2 1s sin2 ucut

J
TTTT MZ

4

s2 H28 ln
s~11cosucut!

2MH
2 1s~12cosucut!

1
cosucuts~8111 sin2ucut!

4MH
2 1s sin2ucut

J
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M01
~s!5~«1•«2!~«3* •k4!~«4* •k3!/s,

M10
~s!5~«3* •«4* !~«1•k2!~«2•k1!/s,

M01
~ t !5~«1•«3* !~«2•k4!~«4* •k2!/s,

M10
~ t !5~«2•«4* !~«1•k3!~«3* •k1!/s,

M01
~u!5~«1•«4* !~«2•k3!~«3* •k2!/s,

M10
~u!5~«2•«3* !~«1•k4!~«4* •k1!/s. ~15!

The factors 1/s in Eq. ~15! have been introduced to render
the matrix elements dimensionless.

Thes-channel box diagrams~i.e., those with natural vari-
abless andt! are shown in Fig. 6. Note that again all graphs
with three or four charged fields in the loop represent two
Feynman diagrams with opposite orientation of the charge
flow. The analytical expressions for the box diagrams are
rather involved and require allCP-conserving SME’s. It
turns out that the results for the bosonic box diagrams are
shorter by a factor of about 3/2 in the background-field for-
malism as compared to the conventional formalism. Because
of the involved structure of the fermion-Z-boson couplings,
the most complicated expressions are those for the fermionic
box diagrams, which are identical in both formalisms.

Following the complete on-shell renormalization scheme
of Ref. @18# for the conventional formalism the field renor-
malization is chosen such that no extra wave-function renor-
malization is necessary. However, in the on-shell renormal-
ization scheme of Ref.@16# for the background-field
formalism a nonvanishing wave-function renormalization for

external particles is required. In a strictO(a) calculation the
wave-function renormalization corrections are given by

dMwf52dRZMBorn, ~16!

where

dRZ52Re$ST8
ZZ~MZ

2!% ~17!

is theO(a) contribution to the wave-function renormaliza-
tion constant RZ511dRZ . The function ST8

ZZ(s)
5dST

ZZ(s)/dsdenotes the derivative of the transverse part of
the renormalizedZ-boson self-energy.

Thus, the full one-loop matrix element reads

dMone loop5dMself1dMvertex1dMbox1dMwf . ~18!

C. Corrected cross section

It turns out that theO(a) corrections are comparable or
even larger than the lowest-order contributions for various
important configurations. In order to obtain meaningful pre-
dictions, it is therefore necessary to consider not only the
interference between the lowest-order and the one-loop ma-
trix element but to take into account the complete square of
the matrix element and to define the corrected cross section
as

ds

dV
5

1

64p2s
uMBorn1dMone loopu2 ~19!

including the terms involvingudMone loopu2.

FIG. 4. s-channel self-energy diagrams.

FIG. 5. s-channel final-state vertex diagrams.

FIG. 6. s-channel box diagrams.
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In this way we end up withO(a) accuracy where
MBorn dominates andO(1) accuracy otherwise~relative
to the leading loop order!. To obtain O(a) accuracy
everywhere theO(a2) corrections would be required. Note
that the interference betweendM2 loop andMBorn is sup-
pressed with respect toudMone loopu2 if the importance of
dMone loopresults from a suppression ofMBorn and not from
the presence of an effective large loop-expansion parameter.

In Figs. 7 and 8 we show the corrected polarized cross
sections as defined in Eq.~19!. The Higgs-boson resonance
in Fig. 8 is treated by Dyson summation within the BFM@cf.
Section V B, Eq.~36!#. In the case of purely transverseZ
bosons (TTTT) the cross section is drastically enhanced
compared to the lowest order and behaves as 1/s at high
energies~without cutoff it even would not go down with
energy!. For a small Higgs-boson mass this cross section
becomes the dominating one. Apart from theLTTT case, the
corrections reach the size of the lowest-order cross sections
for all polarizations. This is probably due to corrections of
the form3 (a/p)@ ln(s/MZ

2)#2'0.2 that are further enhanced
by numerical factors andt- andu-channel poles. The relative
corrections depend only weakly on the Higgs-boson mass
apart from the polarizationsLLLL and LLLT, where the
corrections involve extra factorsMH /MZ . As a consequence
the LLLL cross section dominates for a large Higgs-boson
mass. As for the lowest-order cross sections, the Higgs-
boson resonance only contributes forl15l2 and l35l4 .
For theTTTT channel the resonance is proportional to the
corresponding strongly suppressed Born cross section and
thus not visible. Because the lowest-order cross sections are
not dominating, the universal corrections associated with the
running ofa and ther parameter, which are related to the
lowest order, are not leading.

D. Landau singularities in four-point functions

The four-point function@22#

D0~MZ
2,MZ

2,MZ
2,MZ

2,t,u,m2,m2,m2,m2!, ~20!

exhibits a Landau singularity@27# of the form

D05D0
reg2

p2

AD2 i«
~21!

for t,0, u,0, andMZ.2m, whereD0
reg is regular and

D5
tu

16
@~ t24m2!~u24m2!2~2MZ

224m2!2#. ~22!

With b5MZ
42m2s andp25E22MZ

2 this becomes

D5~p4 sin2u2b!p4 sin2u. ~23!

Squaring the matrix element promotes the root singularity at
p2 sinu56Ab to a pole which is not integrable and thus
leads to a formally divergent cross section.

This singularity should disappear from physical observ-
ables. The conditionMZ.2m suggests that it is related to
the instability of theZ bosons. In fact, as illustrated in Ap-
pendix A, it is canceled by diagrams that contribute to the
inclusive processZZ→4 f , which cannot be separated from
ZZ→ZZ once the decay of theZ bosons is taken into ac-
count. Moreover, one should notice that collidingZ bosons
which are radiated off from incoming particles possess an
invariant massq2,0 so that the conditionq2.4m2 is never
fulfilled in the physical region of phase space. The use of
on-shellZ bosons (q25MZ

2) is just part of the equivalent
vector-boson approximation.

The Landau singularity appears in practice for box dia-
grams involving light fermions, i.e., withm5mf!MZ . The
location of the singularity in phase space form50 is shown
in Fig. 9. It appears atu590° for p25MZ

2, i.e., As
52&MZ'258 GeV, and moves fast towards the forward
and backward directions with increasing energy. Its effect is
most prominent at low energies and becomes small at high
energies. Moreover, it is located outside the angular region
10°,u,170° forAs*500 GeV for all fermions. In the fol-
lowing we always consider the cross section in regions
where this singularity is absent or negligible.

V. HIGGS-BOSON RESONANCE

Diagrams that involve a Higgs-boson propagator in the
s channel have a pole ats5MH

2 . The double pole in the
self-energy diagrams of Fig. 4 is reduced to a single pole
after Dyson summation.

If MH.2MZ a proper treatment of the resonance is nec-

3At high energies vertex and box corrections typically yield con-
tributions of this kind, as, e.g., explicitly calculated for
e1e2→W1W2 in Ref. @26#.

FIG. 7. Integrated corrected cross sections for various polariza-
tions atMH5100 GeV.

FIG. 8. Integrated corrected cross sections for various polariza-
tions atMH5700 GeV.
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essary to render the cross section finite and meaningful. The
naive introduction of a finite Higgs-boson width via the sub-
stitution

1

s2MH
2 →

1

s2MH
2 1 iM HGH

~24!

or naive Dyson summation

1

s2MH
2 →

1

s2MH
2 1SH~s!

~25!

amounts to an inclusion of an incomplete set of higher-order
corrections such that the resulting matrix element becomes
gauge dependent and does not respect the gauge cancella-
tions, which guarantee a decent high-energy behavior neces-
sary for unitarity.

It is perhaps useful to explain the last point in more detail.
The validity of Ward identities is crucial to guarantee the
unitarity of theS matrix in gauge theories. While the Ward
identities relate Green functions, they nevertheless have a
direct impact on physical amplitudes. Since the longitudinal

polarization vector of a massive gauge boson~with mass
M and momentumk! behaves likekm/M at high energies, in
the absence of gauge invariance, amplitudes involving longi-
tudinal gauge bosons usually grow with energy and violate
the unitarity bounds. In gauge theories, the Ward identities
imply the Goldstone-boson equivalence theorem~ET! which
ensures that the amplitudes involving longitudinal gauge
bosons are well behaved at high energies. A violation of the
relevant Ward identities, even by higher-order terms, leads to
a violation of the ET and thus to amplitudes that violate
unitarity. For the processZZ→ZZ the unitarity-violating ef-
fects involve factorsE/MZ and overcome any constant sup-
pression at sufficiently high energies.

A. Pole expansion

Since the poles of theSmatrix are gauge independent, it
has been proposed@28# to perform a Laurent expansion
about the complex pole. An approximation to this Laurent
expansion can be obtained by decomposing the contributions
of the resonant diagrams into resonant and nonresonant parts
and introducing the finite width only in the former. For ver-
tex corrections this leads to the substitution

dMvertex
~s! 52

e2MZ
2

cW
2 sW

2 (
i50,1

~Mi0
~s!1M0i

~s!!
Fi
ZZH~s!

s2MH
2

→2
e2MZ

2

cW
2 sW

2 (
i50,1

~Mi0
~s!1M0i

~s!!F Fi
ZZH~MH

2 !

s2MH
2 1 iM HGH

1
Fi
ZZH~s!2Fi

ZZH~MH
2 !

s2MH
2 G , ~26!

where@to O(a) accuracy#

GH5Im SH~MH
2 !/MH ~27!

is the decay width of the Higgs boson. For the lowest-order
and self-energy contributions we write

MBorn
~s! 1dMself

~s! 52
e2MZ

2

cW
2 sW

2 M00
~s!

1

s2MH
2 F12

SH~s!

s2MH
2 G

52
e2MZ

2

cW
2 sW

2 M00
~s!

1

s2MH
2 F12

SH~MH
2 !

s2MH
2 2S8H~MH

2 !2
SH~s!2SH~MH

2 !2~s2MH
2 !S8H~MH

2 !

s2MH
2 G

→2
e2MZ

2

cW
2 sW

2 M00
~s!F 1

s2MH
2 1 iM HGH

@12S8H~MH
2 !#2

SH~s!2SH~MH
2 !2~s2MH

2 !S8H~MH
2 !

~s2MH
2 !2 G ~28!

with S8H(s)5dSH(s)/ds. We have used the fact that the
renormalized Higgs-boson self-energy fulfills ReSH(MH

2 )50
and that ImSH(MH

2 )5MHGH is accounted for by the re-
summed terms. As the inclusion of a finite width corresponds
just to the inclusion of higher-order terms, all expressions are
equivalent at the one-loop level.

According to Eq.~27!, GH is a tree-level quantity ifSH is
calculated at one-loop order. Consequently, in a one-loop

calculation one ends up withO(1) accuracy on resonance
and different treatments of the finite Higgs-boson width dif-
fer relatively inO(a). An improvement toO(a) accuracy
on resonance would require to use the fullyO(a)-corrected
Higgs-boson width in the resonant denominators.

The above procedure is gauge independent because we
modify the amplitude by terms that depend only on the
gauge-independent residue of the pole and the physical mass

FIG. 9. The location of the Landau singularities in theD0 func-
tion ~20! for m50. The dashed lines atucut510° and 180°2ucut

5170° indicate the integration interval.
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and width. However, the actual application of the pole ex-
pansion deserves some care. First, the above treatment is not
uniquely determined by the resonance pole, because the Lau-
rent expansion is only applied to the form factors but not to
the SME’s and the split up between these two is not unique.
On the other hand, the terms introduced by the modification
of the amplitude in general violate the Ward identities and
thus eventually unitarity. This problem could be avoided and
the pole scheme could be uniquely defined by including the
complete matrix elements into the Laurent expansion. This,
however, leads to problems in defining the residues, i.e., in
particular, the corresponding momenta and wave functions,
for more general processes in certain kinematical regions
~see Ref.@29#!. In the following we show how one can ex-
ploit the above-mentioned freedom in the pole expansion in
order to eliminate unitarity-violating terms.

We first illustrate the procedure at tree level. A general
pole expansion is obtained by absorbing some arbitrary func-
tion f (s) with f (MH

2 )51 into the SMEM00
(s) and performing

the Laurent expansion for the resulting modified form factor.
After resubstituting the original SME this amounts to the
replacement

MBorn
~s! →2

e2MZ
2

cW
2 sW

2 M00
~s!F f ~s!

s2MH
2 1 iM HGH

1
12 f ~s!

s2MH
2 G .

~29!

The added terms are proportional tof (s)M00
(s)GH /(s

2MH
2 )/(s2MH

2 1 iM HGH). If the matrix elementf (s)M00
(s)

grows too fast with energy these terms violate unitarity at
high energies. In the high-energy limit the ratio between the
Born cross sections for longitudinalZ bosons (LLLL) cal-
culated for GHÞ0 and GH50 behaves as 1
1 f (s)2GH

2 /9MH
2 for real f (s), i.e., f (s)51 yields a result

that is off by a constant factor, but for instancef (s)
5MH

2 /s reproduces the correct high-energy limit. While dif-
ferent choices off (s) by construction do not modify the
resonant contribution they differ evidently in the nonresonant
terms. This indefiniteness of the nonresonant lowest-order
contributions gives rise to ambiguities of relativeO(a) in
the resonance region.

At the one-loop level the generalized pole expansion is
obtained by absorbing arbitrary functionsf i j (s) with
f i j (MH

2 )51 into the SME’sMi j
(s) before performing the

Laurent expansion of the form factors. Besides the appear-
ance of several functionsf i j such a general pole expansion
even includes terms involving their derivativesf i j8 . For our
purposes it is sufficient to consider the modified pole expan-
sion

dMvertex
~s! →2

e2MZ
2

cW
2 sW

2 (
i50,1

~Mi0
~s!1M0i

~s!!F Fi
ZZH~MH

2 ! f ~s!

s2MH
2 1 iM HGH

1
Fi
ZZH~s!2Fi

ZZH~MH
2 ! f ~s!

s2MH
2 G ,

MBorn
~s! 1dMself

~s!→2
e2MZ

2

cW
2 sW

2 M00
~s!F 1

s2MH
2 1 iM HGH

@12S8H~MH
2 ! f ~s!#2

SH~s!2SH~MH
2 !2~s2MH

2 !S8H~MH
2 ! f ~s!

~s2MH
2 !2 G ,

~30!

which differs from a consistent expansion withf i j (s)5 f (s) only by terms of the order ofGH
2 , i.e.,O(a2). If we introduce the

finite width as in Eqs.~26! and ~28!, i.e., with f (s)51, we modify the cross section for longitudinal gauge bosons at high
energies by a constant contribution ofO(aGH /MH). In the modified version of the pole scheme the high-energy behavior can
be improved by choosing a suitable functionf (s) that vanishes sufficiently fast at high energies. With our definition of the
SME’s ~15! it is sufficient to choosef (s)5MH

2 /s. Note that if we did not include factorsMH
2 /s to render the SME’s

dimensionless we would obtain a contribution to the matrix element that grows withs for f (s)51, i.e., that violates unitarity.
The freedom parameterized byf (s) in Eq. ~30! affects the nonresonant contributions inO(a). On resonance this introduces
ambiguities inO(a2) relative to the leading resonant terms.

The above recipe for the usual on-shell renormalization scheme is directly connected with an expansion of the transition
matrix element about its complex pole. In Ref.@28# such an expansion was explicitly described for angular-independent
resonances, where the complications@29# in defining wave functions and momenta on resonance are absent. The procedure of
Ref. @28# can be directly transferred toZZ→ZZ. In this respect only the angular-independent, i.e., the~one-particle-reducible!
lowest-order, self-energy, and vertex contributions in thes channelM1PR

(s) , are relevant. After Dyson summation these can be
written ~assuming no truncation of the perturbation series! as:

M1PR
~s! 52

e2MZ
2

cW
2 sW

2 t (
i , j50,1

Mi j
~s!

@d0i1Fi
ZZH~s!#@d0 j1F j

ZZH~s!#

s2MH
2 1SH~s!

, ~31!

i.e., as a product of full vertex functions and the full propagator. The additional SMEM11
(s) is defined as

M11
~s!5~«1•k2!~«2•k1!~«3* •k4!~«4* •k3!/s

2. ~32!

The complex polesp of Eq. ~31! is obtained as the solution of

sp2MH
2 1SH~sp!50. ~33!
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SinceM1PR
(s) is analytical ins, it can be continued to complexs and expanded aboutsp . The leading term in this expansion

is given by the resonant part

Mreso52
e2MZ

2

cW
2 sW

2 (
i , j50,1

Mi j
~s!us5sp

@d0i1Fi
ZZH~sp!#@d0 j1F j

ZZH~sp!#

~s2sp!@11S8H~sp!#
. ~34!

The residue ofMresoat the pole 1/(s2sp) can be interpreted as the product of two physical amplitudesMH→ZZ for the decay
H→ZZ. To one-loop accuracyM1PR

(s) can be replaced by

M1PR
~s! →2

e2MZ
2

cW
2 sW

2 (
i50,1

~Mi0
~s!1M0i

~s!!FFi
ZZH~sp!

s2sp
1
Fi
ZZH~s!2Fi

ZZH~sp!

s2sp
G

2
e2MZ

2

cW
2 sW

2 M00
~s!

1

s2sp
F12S8H~sp!2

SH~s!2SH~sp!2~s2sp!S8H~sp!

s2sp
G . ~35!

Owing to sp5MH
2 2 iM HGH1O(a2), the right-hand side of

Eq. ~35! differs from Eqs.~26! and~28! only by higher-order
contributions.

Note that the freedom in splitting the matrix element into
SME’s and form factors is also present in this approach, i.e.,
in Eq. ~35! we could also introduce functionsf i j (s), as de-
scribed in the first part of this section. In the considered case
one could avoid this ambiguity by expanding also the SME’s
occuring inM(s) aboutsp . However, in more complicated
situations it is not always possible to include the wave func-
tions in the pole expansion. If one then excludes the SME’s
from the pole expansion, as for instance advocated in Ref.
@30#, one is again confronted with the problem of violating
Ward identities.

B. Dyson summation within the background-field method

A different approach to introduce a finite width near reso-
nances is to Dyson sum the self-energy corrections. It is a
well-known fact that in the conventional formalism Ward
identities, which in particular rule the gauge cancellations,
are violated if Dyson summation is applied. However, in
Ref. @13# it has been shown that Dyson summation within the
background-field method~BFM! ~see Ref.@16#, and refer-
ences therein! does not violate the Ward identities if all one-
particle-irreducible corrections are taken into account in the
same loop order. Dyson summation naturally arranges the
reducible parts of amplitudes in a way that results from
forming trees with vertex functions joined by full propaga-
tors~inverse two-point functions!. For the process under con-
sideration this simply amounts to writing the~one-particle-
reducible! lowest-order, self-energy, and vertex contributions
in the following way:

MBorn1dMself1dMvertex

→M1PR52
e2MZ

2

cW
2 sW

2 (
i , j50,1

(
r5s,t,u

Mi j
~r !

3
@d0i1Fi

ZZH~r !#@d0 j1F j
ZZH~r !#

r2MH
2 1SH~r !

, ~36!

whereSH andFi
ZZH denote the renormalized self-energy and

form factors, respectively, in the BFM and

M11
~ t !5~«1•k3!~«2•k4!~«3* •k1!~«4* •k2!/s

2,

M11
~u!5~«1•k4!~«2•k3!~«3* •k2!~«4* •k1!/s

2. ~37!

The s-channel part of Eq.~36! is formally identical to Eq.
~31!. Note, however, that we use Eq.~36! in the following
with form factors and self-energy in finite, i.e., one-loop,
order of perturbation theory.

The complete one-loop matrix element is obtained by
adding the~one-particle-irreducible! box contributions and
multiplying everything with the~UV-finite! wave-function
renormalization factorARZ for each externalZ boson:

MBFM5~M1PR1Mbox!~RZ!2. ~38!

Since the wave-function renormalization factorRZ multiplies
the complete matrix element, we can simply use itsO(a)
approximation

~RZ!25122 ReST8
ZZ~MZ

2!. ~39!

The matrix element~38! satisfies all relevant Ward iden-
tities and, in particular, does not violate unitarity at high
energies. However, it depends on a gauge parameter~the
quantum gauge parameterjQ! via higher-order~at least two-
loop! corrections which are not completely taken into ac-
count. The on-resonance self-energy is unique and equal to
the physical quantityiM HGH . As a consequence, the gauge
dependence is genuinely of higher order. It is crucial that in
the BFM this gauge dependence cannot be enhanced by the
violation of gauge cancellations because the Ward identities
hold exactly even in finite orders. This is in clear contrast to
the conventional formalism where tiny gauge-dependent
terms can be enhanced in certain kinematical configurations.
Therefore, the BFM yields at least a practical solution for the
description of resonances in gauge theories as long as one
avoids pathological gauges such as the unitary gauge
(jQ→`), which may lead to an enhancement of the gauge-
parameter-dependent terms by the artificially introduced
large scalejQ . The higher-order gauge dependence is noth-
ing but a result of the fact that a Dyson summation is always
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arbitrary to some extent. For gauge parameters of order one
it merely gives rise to higher-order uncertainties which are
anyhow present in every finite-order calculation.

In the conventional formalism the matrix element after
Dyson summation depends not only on the gauge but in ad-
dition on the choice of the field renormalization. In the BFM
the matrix element is actually independent of the field renor-
malization. This can be seen as follows. The field renormal-
ization is fixed by background field gauge invariance up to a
UV-finite linear transformation of the renormalized fields.
Such a linear transformation turns the linear Ward identities
for the background-field vertex functions into Ward identi-
ties for transformed vertex functions with the same structure.
These modified Ward identities are still exactly valid even

for full, i.e., Dyson-summed, propagators. However, the ef-
fects of the linear transformation cancel inS-matrix ele-
ments, thus giving a unique answer.

The resonant part of the Dyson-summed one-loop matrix
element~36! in the BFM reads, fors5MH

2 ,

MBFMus5M
H
2'2

e2MZ
2

cW
2 sW

2 ~RZ!2 (
i , j50,1

Mi j
~s!

3
@d0i1Fi

ZZH~MH
2 !#@d0 j1F j

ZZH~MH
2 !#

iM HGH
. ~40!

This differs from the resonant part of the pole-scheme am-
plitude ~30!:

Mpoleus5M
H
2'2

e2MZ
2

cW
2 sW

2

M00
~s!@12S8H~MH

2 !#1S i50,1~Mi0
~s!1M0i

~s!!Fi
ZZH~MH

2 !

iM HGH
, ~41!

in O(a) in relative terms, in accordance with the discussion
after Eq.~27!. Moreover, Eq.~40! is even gauge dependent
in this order on resonance, whereas Eq.~41! is manifestly
gauge independent. The bulk of these effects can be attrib-
uted to the contribution ofS8H(MH

2 ) and thus to the different
wave-function renormalization in the BFM.

In order to obtain the cross section on resonance also in
O(a) accuracy the imaginary part of the Higgs-boson self-
energy has to be included in two-loop order. In the pole
scheme this is equivalent to the introduction of the
O(a)-corrected Higgs-boson width in the propagator. How-
ever, in the BFM approach all two-loop corrections are re-
quired in order to preserve the Ward identities.

VI. CROSS SECTION FOR LONGITUDINAL Z BOSONS
FROM THE EQUIVALENCE THEOREM

The corrections ofO(aMH
2 /sW

2 MW
2 ) to longitudinal

gauge-boson scattering processes have been calculated in the
literature@3,4,7,8# using the ET@9–13#, which relates ampli-
tudes involving longitudinal gauge bosons with those involv-
ing the associated would-be Goldstone bosons in the high-
energy limit. Because the latter amplitudes are much easier
to be calculated, the ET was frequently used to obtain cross
sections in the high-energy limit.

A. Equivalence theorem within the background-field method

When using the ET in higher-order calculations one has to
be careful to include all correction factors that result from
renormalization and amputation@11#. It has been found in
Ref. @13# that this is particularly easy within the BFM. In this
formalism the matrix elements for external longitudinal vec-
tor bosons are directly obtained from the amputated Green
functions with the corresponding would-be Goldstone boson
fields multiplied with the wave-function renormalization
constants of the gauge bosons. Moreover, in contrast to the
conventional formalism, in the BFM the ET is valid with and
without Dyson summation.

B. Results for ZLZL˜ZLZL

We want to apply the ET to the processZLZL→ZLZL in
the framework of the BFM and investigate the accuracy of
the corresponding predictions.

To this end we have to consider the processxx→xx,
wherex is the would-be Goldstone boson associated with the
Z boson. In lowest order the four diagrams of Fig. 10 yield

MBorn
xx→xx52

e2MH
2

4sW
2 cW

2 MZ
2 F31

MH
2

s2MH
2 1

MH
2

t2MH
2 1

MH
2

u2MH
2 G .
~42!

For s@MZ
2 the matrix element forZLZL→ZLZL approaches

the one forxx→xx for any value ofMH @12#. We note that
this agreement is destroyed if one includes the finite Higgs-
boson width in the way discussed in Sec. V A without ex-
panding also the SME’s or appropriately adjusting the func-
tion f (s) in Eq. ~29!.

Following the treatment of Sec. V B, the matrix element
for xx→xx includingO(a) corrections is given similarly to
Eq. ~38! by

Mxx→xx5SM1PR
xx→xx23

e2MH
2

4sW
2 cW

2 MZ
2 1Mbox

xx→xxD ~RZ!2

~43!

with

FIG. 10. Lowest-order diagrams forxx→xx.
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M1PR
xx→xx52

e2MH
4

4cW
2 sW

2 MZ
2

3 (
r5s,t,u

@11FxxH~r !#@11FxxH~r !#

r2MH
2 1SH~r !

.

~44!

BecauseM1PR
xx→xx vanishes fors@MH

2 asMH
2 /s, the boxes

dominate the matrix element forxx→xx at high energies.
The matrix elements forxx→xx are calculated in exactly
the same way as forZZ→ZZ. In contrast toZZ→ZZ the
one-loop corrections toxx→xx possess a transparent form;
they are explicitly presented in Appendix B. We recall that
the usage of the BFM is crucial for the ET to work for
Dyson-summed amplitudes. Because the would-be Gold-
stone bosons are scalars, no polarization vectors and no
SME’s occur, and no unitarity cancellations between indi-
vidual contributions take place. This simplifies the calcula-
tion considerably.

The Higgs-boson resonance can be treated exactly as for
ZZ→ZZ. Since the wave functions are trivial constants, and
thus no split into SME’s and invariant functions is necessary,
the ambiguity in applying the pole expansion is absent.

In order to improve the accuracy of a calculation via the
ET one can combine the full lowest-order matrix element
with theO(a) corrections fromxx→xx resulting in

Mmixed5MBorn
ZLZL→ZLZL1dMone loop

xx→xx . ~45!

This treatment is, however, not possible if one uses Dyson
summation, because in this case the lowest-order matrix el-
ement cannot be linearly separated from the one-loop correc-
tions.

C. Heavy-Higgs-boson effects

In the literature an approximation for the matrix element
Mxx→xx by the leading contributions fors, MH

2 @MZ
2 was

frequently used@3–8#. In this approximation the building
blocks of Eqs.~43! and~44! take a particularly simple form.
In the BFM we find, in this limit,

SH~r !5
a

4p

MH
2

8sW
2 MW

2 $3MH
2 @3B0~r ,MH ,MH!1B0~r ,0,0!

23B0~MH
2 ,MH ,MH!2Re$B0~MH

2 ,0,0!%#%

1dZĤ~r2MH
2 !,

FxxH~r !52
a

4p

MH
2

8sW
2 MW

2 H 2MH
2 @3C0~r ,0,0,MH ,MH,0!

1C0~r ,0,0,0,0,MH!#13B0~r ,MH ,MH!

15B0~r ,0,0!14B0~0,0,MH!

29B0~MH
2 ,MH ,MH!23 Re$B0~MH

2 ,0,0!%2
1

2J
1
1

2
dZĤ1dZx̂ ,

Mbox
xx→xx5a2

MH
4

32sW
4 MW

4 $2MH
4 @D0~0,0,0,0,s,t,MH,0,MH,0!

1D0~0,0,0,0,s,t,0,MH,0,MH!#

14MH
2 @C0~s,0,0,MH ,MH,0!

13C0~s,0,0,0,0,MH!#1B0~s,MH ,MH!

111B0~s,0,0!29B0~MH
2 ,MH ,MH!

23 Re$B0~MH
2 ,0,0!%211~s→t,t→u!

1~s→u,t→s!%12dZx̂ ,

RZ51, ~46!

whereB0 , C0 , andD0 are scalar one-loop functions@18,22#.
The wave-function renormalization constants read, in the
BFM,

dZĤ5dZx̂52
a

4p

MH
2

8sW
2 MW

2 . ~47!

The above results are in agreement with those of Ref.@6#.
Since the approximation~46! merely involves corrections of
O(aMH

2 /sW
2 MW

2 ), it follows from power counting~see Ref.
@12#, and references therein! that only diagrams with internal
scalar lines contribute. We note in passing that the terms of
O(aMH

2 /sW
2 MW

2 ) originate entirely from the SU~2! sector of
the SM, i.e., they could also be obtained from the corre-
sponding reactionW3W3→W3W3 in the pure SU~2! gauge
theory.

We have checked that in the limitMZ
2!s!MH

2 the am-
plitudeMxx→xx reduces to

Mxx→xx5 (
r5s,t,u

a2r 2

16sW
4 MW

4 F lnS MH
2

2r2 i« D 1
3)p

2
2
26

3 G ,
~48!

as already given in Refs.@3, 4#. In this context we remark
that the result~48! can be most easily obtained from the
general structure of the heavy-Higgs-boson limit of the SM.
The matrix elementMxx→xx ~48! gets contributions only
from L4 and L5 of the effective Lagrangian of Ref.@31#,
which quantifies the heavy Higgs-boson effects, and from the
~three! irreducible graphs in the gauged nonlinears model
which contain only quartic scalar couplings.

VII. DISCUSSION OF NUMERICAL RESULTS

A. Computational details

For the calculations we use the following parameter set
@32#:

a215137.035 989 5, MZ591.188 GeV,

MW580.26 GeV, me50.510 999 06 MeV,

mu547.0 MeV, md547.0 MeV,

mm5105.658 389 MeV, mc51.55 GeV,
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ms5150 MeV, mT51771.1 MeV,

mt5180 GeV, mb54.5 GeV. ~49!

The masses of the light quarks are adjusted such that the
experimentally measured hadronic vacuum polarization is re-
produced @33#. For a Higgs-boson with a mass ofMH
5700 GeV these parameters yield the lowest-order decay
width GH'175.29 GeV, i.e., about one fourth of the mass.

The various independent calculations described in Sec.
IV A agree numerically typically to;10 digits apart from
the regions close to the boundaries of phase space. At these
boundaries the reduction of tensor integrals to scalar inte-
grals breaks down. We avoid these regions by using the an-
gular cutucut510°, which also removes the Landau singu-
larities in the fermionic boxes for energies above about 500
GeV.

B. Corrected cross sections

The integrated cross sections for unpolarized, purely
transverse, and purely longitudinalZ bosons in lowest order
and including the one-loop corrections are shown in Figs. 11
and 12 forMH5100 GeV andMH5700 GeV, respectively
~repeating information from Figs. 2, 3, 7, and 8!. In the case
of MH5100 GeV no finite Higgs-boson width is introduced;
for MH5700 GeV we apply Dyson summation within the
BFM using the renormalization scheme of Ref.@16#. The
Higgs-boson-mass dependence of the cross section for purely
transverseZ bosons is below 10% including the Higgs-

boson-resonance effects. The corresponding lowest-order
cross section is very small at high energies and not visible in
Fig. 12.

The differential cross sections for various energies are
shown in Figs. 13 and 14. For small energies the angular
variation of the cross sections stays within one order of mag-
nitude. For high energies and a small Higgs-boson mass the
corrected cross sections are strongly peaked in the forward
and backward directions, while the lowest-order cross sec-
tions are relatively flat in the considered angular region. The
cross section for purely longitudinal gauge bosons has kine-
matical zeros ifMH&A11)MZ'150 GeV, which move
towards the forward and backward directions with increasing
energy. For a large Higgs-boson mass the cross section for
purely longitudinalZ bosons, which dominates in this re-
gime, becomes flat and therefore also the unpolarized cross
section.

C. Higgs-boson resonance

In Figs. 15 and 16 we compare several different treat-
ments of the Higgs-boson resonance usingMH5700 GeV.
We include the lowest-order~Born, GH50! and the cor-
rected ~full, GH50! cross sections for vanishing Higgs-
boson width for reference. We show the lowest-order~Born,
pole scheme! and the corrected~full, pole scheme! cross sec-
tion in the pole-scheme treatment given in Eqs.~26! and~28!
as well as the corrected cross section in the modified pole
scheme~full, mod. pole scheme! according to Eq.~30! with
f (s)5MH

2 /s. In addition we give the cross sections resulting
from Dyson summation according to Eqs.~36! and ~38! in
the BFM ~BFM, Dyson! and the corresponding one in the
conventional formalism~conv., Dyson!. Apart from the
Dyson-summed cross sections all others are identical in the
BFM and in the conventional formalism. Since the unpolar-
ized cross section is dominated by the one for purely longi-
tudinalZ bosons for a large Higgs-boson mass, Fig. 15 holds
essentially also for the latter cross section after multiplying
by a factor 9.

The crucial differences between the various treatments
can already be seen in Fig. 15, which shows the integrated
cross section. Owing to the crude resolution the pole-scheme
cross sections with or withoutO(a) corrections cannot be
separated from the corresponding cross sections forGH50 at
high energies. The deviation of the Dyson-summed BFM
cross section is due to higher-order corrections that become
increasingly important with energy. The Dyson-summed
conventional cross section deviates more for energies above
a few TeV and becomes completely wrong for energies
higher than 10 TeV. This results from the violation of the
Ward identities which leads to unitarity violation at high
energies.

The differences between the various treatments of the
Higgs-boson resonance can be seen more clearly in Fig. 16,
where the corrected cross sections are shown normalized to
the one in the modified pole scheme. The difference between
the pole scheme and the modified pole scheme is below 2%
and becomes small at high energies. Note, however, that by
using dimensionful SME’s the pole-scheme cross sections
could become completely wrong at high energies owing to
spurious unitarity-violating terms.

FIG. 11. Lowest-order and corrected integrated cross sections
for various polarizations atMH5100 GeV.

FIG. 12. Lowest-order and corrected integrated cross sections
for various polarizations atMH5700 GeV. ~The lowest-order
TTTT cross section is not visible.!
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In the resonance region the Dyson-summed cross sections
deviate from the cross sections in the modified pole scheme
by up to 19 and 7 % in the BFM and the conventional for-
malism, respectively. This difference is due to the fact that
our calculation near the resonance is only ofO(1) accuracy
since the lowest-order contribution in the resonance denomi-
nator vanishes on resonance~see Sec. V A!. The size of these
differences and the correction of 24% of the pole scheme
calculation on resonance set the typical scale for the missing
O(a) corrections in the resonance region.

D. The cross section forZLZL˜ZLZL

and the equivalence theorem

Finally, we want to investigate the numerical accuracy of
the ET. We distinguish the cases without and with a Higgs-
boson resonance. In Fig. 17 we consider the case of no
Higgs-boson resonance (MH5100 GeV). We show the
lowest-order cross section~Born! calculated from the ET
normalized to the lowest-order cross section for
ZLZL→ZLZL , the fully corrected cross section~full ! calcu-
lated from the ET and the cross section obtained from the
matrix element~45! ~mixed! both normalized to the fully
corrected cross section forZLZL→ZLZL . The quality of the
ET at Ec.m.s.51 TeV ~2 TeV! is about 17%~5%! for the
lowest order, 24%~10%! for one-loop, and 6%~4%! for
one-loop mixed. As expected, the one-loop mixed approxi-
mation is substantially better than the simple ET cross sec-
tion.

In Fig. 18 we investigate the accuracy of the ET in the

presence of a Higgs-boson resonance atMH5700 GeV. We
show again the ratios of the lowest-order and corrected cross
sections obtained using the ET and from the direct calcula-
tion. In the lowest-order cross section we include the finite
width naively~Born! and in the modified pole scheme~mod.
Born! ~29!. The lowest-order cross section from the ET ap-
proaches that of the modified pole scheme at high energies.
Including the finite width naively leads to a cross section that
deviates at high energies from these two cross sections by a
factor 11GH

2 /9MH
2'1.007 for MH5700 GeV ~see Sec.

V A !. For the corrected cross sections we have applied
Dyson summation within the BFM. Because of the Dyson
summation the mixed case does not make sense anymore.
Instead we show the cross section resulting from the
O(aMH

2 /sW
2 MW

2 ) approximation of the RC’s~46! normalized
to the fully corrected cross section forZLZL→ZLZL . The ET
works much better for a heavy Higgs boson. AtEc.m.s.

51 TeV ~2 TeV! we now find a deviation of 8%~2%! for the
lowest order@using the modified Born according to Eq.~29!#
and 6%~2%! for the corrected cross section. For energies
above 2 TeV the deviation between the corrected cross sec-
tions is practically equal to the deviation between the lowest-
order cross sections. TheO(aMH

2 /sW
2 MW

2 ) approximation
~46! works well in the regimeMZ

2!MH
2 !s!MH

4 /MZ
2, where

the upper limit for the energy results from the neglect of
corrections proportional tos/MZ

2 with respect to the ones
proportional toMH

4 /MZ
4. ForMH5700 GeV this restricts the

energy toAs;123 TeV, which is nicely reflected in the
figure.

FIG. 13. Lowest-order and corrected differen-
tial cross sections for various polarizations and
c.m.s. energies atMH5100 GeV.

FIG. 14. Lowest-order and corrected differen-
tial cross sections for various polarizations~as in-
dicated in Fig. 13! and c.m.s. energies atMH

5700 GeV.
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VIII. CONCLUSIONS

Owing to the strong sensitivity to the gauge-boson and
scalar self-interactions, scattering of massive gauge bosons
found continuous interest in the literature, where the empha-
sis was directed to strong-coupling effects for longitudinally
polarized gauge bosons. We have supplemented the existing
results for the enhanced radiative corrections of order
O(aMH

2 /sW
2 MW

2 ) by the completeO(a) corrections to
ZZ→ZZ for arbitrarily polarizedZ bosons.

At high energies the radiative corrections are found to be
large, at several TeV they are typically of the order of the
lowest-order cross sections. Whereas the cross section for
purely transverseZ bosons at high energies is totally negli-
gible in lowest order, the corrections enhance this cross sec-
tion such that it becomes one of the dominating channels.

The introduction of a finite Higgs-boson width in order to
describe the resonance well is a nontrivial task. We have
compared different approaches, viz., different variants of the
Laurent expansion about the complex pole and the Dyson
summation of self-energies, where the latter has been per-
formed both in the conventional formalism as well as in the
background-field formalism. From a theoretical point of
view, the background-field approach is the most convincing
one, since it naturally guarantees a reasonable cross section
also far above the resonance, where the validity of Ward
identities is crucial to imply the necessary gauge cancella-
tions. However, in order to obtain a relative precision of
O(a) on resonance one would have to perform a complete
two-loop calculation. In order to obtain the same precision
on resonance in the pole scheme only the imaginary part of

the self-energy has to be evaluated at two loops. However, as
the pole scheme and the other mentioned methods do not
care about the Ward identities, theoretical uncertainties may
get out of control in the presence of gauge cancellations.
Using the pole scheme carelessly can lead to unitarity-
violating terms at high energies, and Dyson summation
within the conventional formalism in fact yields a totally
wrong cross section in the high-energy limit.

We have investigated longitudinalZ-boson scattering
ZLZL→ZLZL in more detail and performed a complete
O(a) calculation using the Goldstone-boson equivalence
theorem. For a center-of-mass energy of 1 TeV~2 TeV! the
deviation of the equivalence theorem from the exactO(a)
result is about 24%~10%! and 6%~2%! for a Higgs-boson
massMH of 100 GeV and 700 GeV, respectively, with an
asymptotic approach in the high-energy limit. The frequently
used approximation by the enhanced corrections of
O(aMH

2 /sW
2 MW

2 ) for a heavy Higgs boson is good for ener-
gies of a few TeV but gets worse with increasing energy.

AlthoughZ-boson scattering is the simplest representative
of massive gauge-boson scattering, it contains the typical
features such as the Higgs-boson resonance and enhanced
heavy-Higgs-boson corrections. In contrast to other gauge-
boson scattering processes, the lowest-order cross sections
for transverseZ-boson scattering are suppressed and no real
photon radiation needs to be considered inZZ→ZZ. Never-
theless, we expect that our results at least qualitatively carry
over to the other massive gauge-boson scattering reactions.

We thank R. Scharf for discussions concerning the Lan-
dau singularity. This work was partially supported by the EC

FIG. 15. Integrated unpolarized cross section atMH

5700 GeV for various treatments of the Higgs-boson resonance.

FIG. 16. Relative deviation of various treatments of the Higgs-
boson resonance from the modified pole-scheme result for the inte-
grated unpolarized cross section atMH5700 GeV.

FIG. 17. Relative deviations of the ET predictions for
ZLZL→ZLZL atMH5100 GeV.

FIG. 18. Relative deviations of the ET predictions for
ZLZL→ZLZL atMH5700 GeV.
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network ‘‘Human Capital and Mobility’’ under Contract No.
CHRX-CT94-0579 and by the Bundesministerium fu¨r Bil-
dung, Wissenschaft, Forschung und Technologie~BMBF!
under Contract No. 05 7WZ91P~0!.

APPENDIX A: DISCUSSION OF THE LANDAU
SINGULARITY IN BOX DIAGRAMS

In Sec. IV D we briefly discussed the Landau singularity
which occurs in some fermionic box diagrams if the fermion
massm fulfills m,MZ/2. Although we have argued that this
singularity is unphysical and only caused by the use of the
equivalent vector-boson approximation forpp or ee colli-
sions, it is nevertheless interesting to investigate some formal
properties of the singularity.

From general considerations~e.g., about unitarity! one ex-
pects that the singularity drops out in the fully inclusive
cross section, i.e., if all possible final states are taken into
account. We have verified this compensation by explicitly
calculating the singular contributions of Fig. 19 to the inclu-
sive cross sectionZZ→4 f . The shaded circle in Fig. 19
represents any regular graph forZZ→ZZ, i.e., only the cuts
that are explicitly shown in Fig. 19 are relevant for the sin-
gular contributions. If the shaded circle also contains the
singularity more cuts have to be considered. We restrict our-
selves to the case where the producedZ bosons are on their
mass shell,k3

25k4
25MZ

2.
The singularity in the loop integral of the upper graph of

Fig. 19 stems from integration momentaq1;q̂ with

q̂m52
1

2
~k12k3!

m1
t22MZ

2

2s
~k31k4!

m, q̂25
4MZ

42tu

4s
,

~A1!

and occurs forq̂2→m2, which follows from the Landau
equations for the integral. Thus, the singular contribution of
the virtual graph is simply obtained by settingq1→q̂ in the
numerator such that the remaining integral is proportional to
theD0 function, the singular contribution of which is given
in Eq. ~21!.

The singular contributions in the lower graphs of Fig. 19
occur in the phase-space integrals of the produced fermion-
antifermion pair and can be obtained from the corresponding
scalar integrals analogously to the loop integral. For instance
the relevant scalar integral for the lower left graph is given
by

I5E d3k

~2p!32k0 E d3k8

~2p!32k80
~2p!4d~4!~k32k2k8!

3
1

~q1
22m21 i«!~q4

22m21 i«!
, ~A2!

where

q15k2k1 , q45k2k11k45k22k8, k25k825m2.
~A3!

Inspection of the Landau equations forI reveals that the
singularity inI originates from a point in phase space where
the fermion momentak andk8 are coplanar with the scatter-
ing plane spanned by thek l . Explicit calculation yields

I using52
i

16p2 D0using, ~A4!

which is also valid for the corresponding scalar integral for
the lower right graph of Fig. 19.

The relation between the singular contributions ofD0 and
I guarantees the cancellation of the singularity in the sum of
the graphs of Fig. 19 if the producedZ bosons are on shell.
However, the cancellation in general is incomplete if indi-
vidual flavors or spins in the fermionic final state are ob-
served or if phase-space cuts are applied.

Therefore, we conclude that a careful analysis of the ac-
tual physical realization of the underlying process is manda-
tory if such singularities appear for physical situations. For
the subprocessZZ→ZZ this means that one has to go one
step back and to consider the full reaction including the pro-
duction mechanism of the incomingZ bosons in more detail.

APPENDIX B: ONE-LOOP CORRECTIONS TO xx˜xx

In Sec. VI C we explicitly gave the leading corrections to longitudinalZ-boson scattering in the limits, MH
2 @MZ

2. More
generally, the complete corrections toxx→xx also take a relatively simple form in contrast with the formulas for
ZLZL→ZLZL :

SH~r !5
a

4p

1

8sW
2 MW

2 H 9MH
4B0~r ,MH ,MH!12~MH

4 14MH
2MW

2 112MW
4 28rMW

2 !B0~r ,MW ,MW!1~MH
4 14MH

2MZ
2112MZ

4

28rM Z
2!B0~r ,MZ ,MZ!13MH

4B0~0,0,MH!12MW
2 ~MH

2 16MW
2 !B0~0,0,MW!1MZ

2~MH
2 16MZ

2!B0~0,0,MZ!

224MW
4 212MZ

41(
f
4Nf

cmf
2@~r24mf

2!B0~r ,mf ,mf !22mf
2B0~0,0,mf !#J 2dMH

2 1dZĤ~r2MH
2 !,

FIG. 19. Generic form of some singular contributions to
ZZ→Z f f̄ , which are related by cutting rules.
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FxxH~r !52
a

4p

1

8sW
2 MH

2MW
2 H 6MH

2 @~MH
2 2MZ

2!212MZ
2~r22MZ

2!#C0~r ,MZ
2,MZ

2,MH ,MH ,MZ!

12~MH
6 23MH

2MZ
426MZ

614rM H
2MZ

2!C0~r ,MZ
2,MZ

2,MZ ,MZ ,MH!18MW
2 ~MH

2 14MW
2 !~r22MZ

2!

3C0~r ,MZ
2,MZ

2,MW ,MW ,MW!13MH
2 ~MH

2 12MZ
2!B0~r ,MH ,MH!12~MH

4 14MH
2MW

2 112MW
4 !B0~r ,MW ,MW!

1~3MH
4 16MH

2MZ
218MZ

4!B0~r ,MZ ,MZ!14~MH
2 2MZ

2!2B0~MZ
2,MH ,MZ!216MW

4 28MZ
4

1(
f
8Nf

cmf
4@~2MZ

22r !C0~r ,MZ
2,MZ

2,mf ,mf ,mf !22B0~r ,mf ,mf !#J
1dZe2

dsW
2

2sW
2 2

dMW
2

2MW
2 1

dMH
2

MH
2 1

e

2sW

dt

MWMH
2 1

1

2
dZĤ1dZx̂ ,

Mbox
xx→xx5a2

1

32sW
4 MW

4 H 2@~MH
2 2MZ

2!212MZ
2~s22MZ

2!#2D0~MZ
2,MZ

2,MZ
2,MZ

2,s,t,MH ,MZ ,MH ,MZ!12@~MH
2 2MZ

2!2

12MZ
2~ t22MZ

2!#2D0~MZ
2,MZ

2,MZ
2,MZ

2,t,s,MH ,MZ ,MH ,MZ!116MW
4 @~s22MZ

2!21~ t22MZ
2!2#

3D0~MZ
2,MZ

2,MZ
2,MZ

2,s,t,MW ,MW ,MW ,MW!14~MH
2 12MZ

2!@~MH
2 2MZ

2!212MZ
2~s22MZ

2!#

3C0~s,MZ
2,MZ

2,MH ,MH ,MZ!14@3MH
2 ~MH

2 2MZ
2!214MZ

4~s22MZ
2!#C0~s,MZ

2,MZ
2,MZ ,MZ ,MH!

116MW
2 ~MH

2 14MW
2 !~s22MZ

2!C0~s,MZ
2,MZ

2,MW ,MW ,MW!1~MH
2 12MZ

2!2B0~s,MH ,MH!

12~MH
4 14MH

2MW
2 112MW

4 !B0~s,MW ,MW!1~9MH
4 18MZ

4!B0~s,MZ ,MZ!216MW
4 28MZ

4

1(
f
4Nf

cmf
4@~st22MZ

4!D0~MZ
2,MZ

2,MZ
2,MZ

2,s,t,mf ,mf ,mf ,mf !14~2MZ
22s!C0~s,MZ

2,MZ
2,mf ,mf ,mf !

24B0~s,mf ,mf !#1~s→t,t→u!1~s→u,t→s!J 12dZe2
dsW

2

sW
2 2

dMW
2

MW
2 1

dMH
2

MH
2 1

e

2sW

dt

MWMH
2 12dZx̂ , ~B1!

where the sum overf extends over all fermion flavors, andNf
c denotes the color factor for the fermionf . The scalar four-point

function is defined as (p11p21p31p450)

D0@p1
2,p2

2,p3
2,p4

2,~p11p2!
2,~p21p3!

2,m1 ,m2 ,m3 ,m4#

5E d4q

ip2

1

~q22m1
2!@~q1p1!

22m2
2#@~q1p11p2!

22m2
2#@~q2p4!

22m2
2#
. ~B2!

Note that these results are derived within the BFM and include the heavy-Higgs-boson corrections of Eq.~46! as special case.
For the sake of simplicity the explicit expressions for the counterterms are left open; they are easily calculated in the
renormalization scheme of Ref.@16#.
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