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The cross section foEZ—ZZ with arbitrarily polarizedZ bosons is calculated within the electroweak
standard model including the compléd «) corrections. We show the numerical importance of the radiative
corrections and elaborate its characteristic features. The treatment of the Higgs-boson resonance is discussed in
different schemes including th®&matrix-motivated pole scheme and the background-field method. The nu-
merical accuracy of the equivalence theorem is investigated by comparing the cross sections for purely longi-
tudinal Z bosons obtained from the equivalence theorem and from the complete calculation. In this context the
full O(«) corrections are also confronted with the enhanced correctior@(aﬁ\/la/sa,M\z,\,), which were
frequently used in the literaturS0556-282097)00513-4

PACS numbgs): 12.15.Lk, 11.15.Bt, 14.70.Hp

I. INTRODUCTION remains weakly interacting and treatable in low-order pertur-
bation theory[1,2]. These bounds are of the order of 1 TeV
Gauge-boson scattering provides a window into the headnd are slightly strengthened by including the
of spontaneously broken gauge theories: the gauge-bos@(aMﬁ/s\zNM\zN) radiative corrections(RC’s) to gauge-
self-interactions and the scalar sector, which drives spontdboson scatterin§i4]. As already pointed out in Ref3], all
neous symmetry breaking. Therefore, such processes fourtdese bounds are only qualitative, since they are obtained by
continuous interest in the literatuf@—8| since the very first applying perturbation theory in a region where it breaks
years of spontaneously broken gauge theories. Since lowestown. The bounds oM can be related to a scale of new
order predictions for all gauge-boson scattering amplitudephysics, which is necessary to avoid the Landau pole in the
involve only interactions between gauge and scalar bosonscalar self-interactio5]. If these bounds are not satisfied
the corresponding cross sections depend very sensitively dhe Higgs sector becomes strongly interacting. In this case
the non-Abelian and scalar sector of the underlying theorylarge effects of new physics should arise in gauge-boson
This sensitivity is even enhanced for high-energetic, longituscattering and these processes would be particularly suited to
dinally polarized massive gauge bosons, due to the presenstudy the electroweak symmetry breaking sector of the SM
of gauge cancellations. A longitudinal polarization vector[2,10,14.
contains a factok’/M, wherek* andM are the momentum Gauge-boson scattering reactions can be studied at all
and mass of the corresponding gauge boson, respectivelligh-energy colliders, i.epp colliders such as the CERN
and induces contributions to the matrix element that growLarge Hadron CollidefLHC), e"e™ colliders such as the
with energy. In spontaneously broken gauge theories sucNext Linear CollidefNLC), or u* u~ colliders, where these
contributions cancel in the high-energy limit, as required byreactions naturally appear as subprocesses. At high energies
unitarity. For 't Hooft gauge-fixing conditions these so- (E>M,,) the incoming particles radiate plenty of gauge
called unitarity cancellations are quantitatively expressed byosons. Similar to the well-known Weizdar-Williams ap-
the Goldstone-boson equivalence theord&T) [9-13 proximation for photonic reactions also massive vector-
which relates amplitudes for longitudinal gauge bosons tdoson scattering at high energies can be approximated by
those of the corresponding Goldstone bosons and thus reenvoluting the vector-boson cross section with the corre-
flects the connection between gauge and scalar sector of tisponding flux of gauge bosons. This approximation is known
theory. as equivalent vector-boson meth@te, e.g., Ref.15], and
In the minimal SU(2X U(1) electroweak standard model references therejin
(SM) only one physical scalar field remains after spontane- At high energies, where the investigation of gauge-boson
ous symmetry breaking, viz., the Higgs boson, which plays acattering is most interesting, the RC’s are typically large
central role in the discussion of massive gauge-boson scaénd need to be taken into account. In this paper we investi-
tering. Virtual Higgs-boson exchange is needed to prevengate the effects of RC’s on on-shell massive gauge-boson
the 2—2 scattering amplitudes of longitudinal gauge bosonsscattering processes. We have chosen the simplest represen-
from violating the(perturbative unitarity bound at high en- tative, the proces2Z—ZZ. It contains all interesting fea-
ergies. In turn, the requirement of unitarity can be used tdures that are typical for massive gauge-boson scattering such
derive bounds on the Higgs-boson mass below which the SMs the occurrence of a Higgs-boson resonance or enhanced
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RC’s associated with a heavy Higgs boson. On the other ké=(E,0,0,—p), k&=(E,—p sind,0,—p cos),
hand, complications by bremsstrahlung corrections, which

occur forW bosons, are absent. g%(0)=(—p,0,0E)/ M,

We calculate the complet®(a) RC's to ZZ—ZZ and
present a detailed numerical discussion of the e4*(0)=(p,—E sind,0,— E cosd)/M,
O(a)-corrected cross sections both for the unpolarized case
and the most interesting individual polarizations. Once RC's ef(+x)=(0,—1,%i,0)/v2,
are taken into account, the introduction of a finite decay
width of the Higgs boson, which is necessary for a sensible e4*(+)=(0,—cos, ¥i,sing)/v2,
description of the resonance, is nontrivial owing to problems
with gauge invariance. We compare different treatments such k5=(E,0,0p), Kkj=(E,p sing,0,p cosd),
as the naive introduction of a finite width, Laurent expan-
sions about the complex pole, as well as Dyson summations e5(0)=(-p,0,0,—E)/Mz,
of self-energy corrections. The latter procedure is, in particu-
lar, applied within the framework of the background-field 4" (0)=(p,E sind,0,E cosh)/M,
method(BFM) (see Ref[16], and references thergjrwhere
Dyson summation does not disturb the underlying Ward e5(£)=(0,1,%i,0)/v2,
identities[13] which guarantee gauge cancellations and uni- ) )
tarity. ey (x)=(0,co¥,+i,—sing)/v2, 2

For longitudinal gauge-boson scattering the radiative cor- .

A PN . . in terms of the energ¥§ of the Z bosons, their momentum

rections of O(aMp/syMy,), which dominate for a heavy z\/ﬁ? and the scattering anake The Mandelstam
Higgs boson, have been calculated in the literature using th z g ang

ET. We test the accuracy of such an approach by comparin\gljarlables are defined as

these results with the fulD(«) corrections. Moreover, we s=(k;+k,)2=4E2,
have calculated th®(«a) corrections as predicted via the
ET, which possess a very simple analytical form. t=(k,—kz)?=—4p? sirf6/2,
This paper is organized as follows. After some prelimi-
nary remarks in Sec. Il about kinematics, conventions, and u=(k;—kg)%2=—4p? cos /2. ©)
discrete symmetries, we discuss the lowest-order cross sec-
tions in Sec. lIl. In Sec. IV we describe the explicit calcula- ~ Following the treatment of Ref17] for yy—WW, we

tion and the structure of th®(«) corrections. The different introduce the 83 standard matrix elemef®VE's) M
methods for introducing a finite Higgs-boson width are pre_WhiCh contain the complete information about the boson
sented in Sec. V. A brief description of the application of thepolarizations. The invariant matrix element is decom-

ET to Z,Z,—Z,Z, and the heavy-Higgs-boson effects in posed into a linear combination of the SME'’s with invariant
Sec. VI concludes our presentation of the calculationafunctionsFi;(s,t) as coefficients. Exploiting discrete sym-
framework. Numerical results are discussed in Sec. VI, andnetries, the number of independent SME’s can be reduced.
Sec. VIII contains our conclusions. Appendix A provides a In terms of the invariant matrix element! the differen-
further discussion of the Landau singularity that appears iriial cross section is expressed as

some box diagrams. In Appendix B we present the full ana-

lytical results for theO(«) corrections obtained via the ET. do _ IM 2 ()
dQ 64mr2s |7 Mhahahal
AAphghy
Il. PRELIMINARIES The unpolarized cross section results from an average over

. . . the initial states and a sum over the final states:
A. Kinematics and conventions

do

aQ 5

We consider the reaction d_a 1
dQ
unpol

EESURERY )"1"2"3}‘4

Z(ky N +Z(Ky N\ Z(Kkg N3)+Z(kg,Nyg), 1 . . .
(kiAo +2Z(ka ho) = 2(ks Ag) + Z(kaka), (D0 generally, the correct average is obtained by multiply-
ing with 1/3 for each unpolarized boson and by 1/2 for
each transversg boson in the initial state.

wherek; and \; denote the momenta and helicities of the The integrated cross section is obtained by

incoming and outgoin@ bosons, respectively. We use the

indicesL, T, andU to indicate longitudinal X=0), trans- 1 (360° 180° O do
verse {==*), and unpolarized bosons, respectively, and Tior=7 f d(pj do sing aq’ (6)
characterize definite polarization combinations by a se- feut

quence of four letters, e.d,TLT stands forZ, Z+— 2, Z+.

The incoming particles travel along tteaxis and are
scattered into thex-z plane. In the center-of-mass system !Only 81 SME'’s are linearly independent, the other two are kept
(c.m.s) the momenta and polarization vectaerg\;) read for convenience.
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where 6 denotes an angular cut which is set to 10° in our 2 Mg
numerical evaluations. The symmetry factor 1/2 results from  z ___ z al Z0 N
the presence of two identical particles in the final state. oA 4 AL

zZ ¥4

B. Discrete symmetries FIG. 1. Lowest-order diagrams f@Z—ZZ.
As a consequence of Bose symmetry the amplitddes
invariant under the interchangek,(e,)« (k,,e,) and/or e2M2 [ M M MW
(ko 6%) o (Kp ) e Me = — z( 0o 0 00 ) (11)
3:€3 4:€4)- 1.E., Born C\ZNS\ZN S_ME' t_M|2_| U_Ma )
M E,0)=M E,0
Mgl ) E : wherecy,=cos6y=My/Mz, sy=Sin = \/1—cW2 , and the
=My xn,(E,180°+ 6) relevant SME'sM{J are given by
"M (BIB0THO D e (e edeh), M= (o183 (e0ee]),
This implies, for the cross sections, " . .
Mog=(e1-€4)(e2-€3). (12
do
(E))\ N (S’t):(m)k A (s.) Explicit formulas _forMBom for the_ 81 p(_)larization combi-
1727574 271747 nations are listed in Table |. The dimensionfit H coupling
do leads to a suppression of the Born matrix element by a factor
:(d_ﬂ (s,u) M2/|s—M?2| for |s—M2Z|>M3. As a consequence, the
Aahghahg lowest-order matrix element for purely transve&dosons
do is suppressed for high energies; M2, by a factorM2/s.
= (E) (s,u). (8)  Each longitudinaZ boson introduces a factafs/M, via its
MAohghg polarization vector. For helicity amplitudes with more than

_ _ _ _ _ two external longitudinalZ bosons unitarity cancellations
In particular, all cross sections with equally polarized incom-take place such that the Born matrix element with purely
ing and/or outgoingZ bosons are forward-backward sym- |ongitudinal Z bosons approaches a constant and those with

metric. three longitudinalZ bosons behave a4 /+/s at high ener-
CPT symmetry entails gies. As a remnant of the unitarity cancellations the matrix
elements involving four and three longitudiralbosons are
M)‘l)‘z)‘aMzM}‘sMM)‘z ©) enhanced by a faCt(MEi/Mg if M%<M|2_1<S.
) ) The analytical results for the asymptotic behavior of the
and the analogous relation for the cross sections. integrated cross sections at high energigs 12,M2) are

Because quark mixing is completely negligible for this |isteq in Table Il. The cross section for purely longitudinal
process, we use a unit quark-mixing matrix, and thus alsg po5ons (LLL) and the ones with two transverse and two
CP is an exact symmetr§yAs a consequence, the helicity longitudinalZ bosons LLTT,LTLT) behave as /for high

amplitudes are related as follows: energies. The cross sections with one or three longitudinal
B 10 gauge bosonsU(TTT,LLLT) are proportional to &%, and
MMMMM_M—M—M—M—M’ (10 the cross section for purely transvergebosons TTTT)

vanishes as & at high energies fo.,>0. When inte-
versed. o _ _ behaves as 47 owing to thet- and u-channel poles. The
Owing to CP invariance all SME’s involving the totally cross sections not shown in Table Il are obtained from the
antisymmetric Levi-Civita tensor drop out, and only 43 symmetry relations (8) and (9), e.g., oL 1=0LLTL

SME's can appear. As a consequence of Bose and CPT sym-p,_ | * where the factor 2 originates from the different
metry only the sum of each SME and the ones obtained frompin average.

the interchanges e ki e3 ks)« (e2,ky 23 k) and Figure 2 illustrates the(exactly calculated polarized
(e1,k1,82,K) = (&3 k3,83 ,kg) occur. This leaves 19 |owest-order cross sections integrated ovep< < 180°
SME'’s, among which 17 are independent. — Oy for 6.,=10° and a low Higgs-boson mass bfy
=100 GeV. In Fig. 3 we show the same cross sections for
. LOWEST-ORDER CROSS SECTION My=700 GeV using a naive constant finite width to de-

scribe the Higgs-boson resonance, as discussed in Sec. V
_To lowest order, only the three diagrams in Fig. 1 con-pe|ow. The enhancement of thé LL andLLLT cross sec-
tribute and yield the following amplitude: tions caused by the factdd2/M2 can be seen by comparing
Figs. 2 and 3. The Higgs-boson resonance occurs only for
equally polarizedZ bosons in the initial and final stat&;
%Even for a general quark-mixing matri€,P would be violated =\, A3=M\4. At lowest order, theLLLL cross section
in the considered process only beyond the one-loop level. dominates independently of the Higgs-boson mass.
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TABLE I. Polarized lowest-order matrix elementS=s—M3, 7=t—M?2, U=u—M3, andS=s—4M2).

2 2
(S (S
Meom= — —5—3 X (entry) Mpom= — —— X (entry)
Polarization Born Csy Polarization Born CaSu
LLLL 1 (s—2M§)2+ [s(u—t)+32]2 . [s(t—u)+352]2
IVER 4s°T 45U
Iil:tll: 1  stu[s(u—t)+52 s(t—u)+52
- =2
LL+L 42Nz S 7 u
LLL=*
LL++ s=2MZ stu[1 1 LL*= stul1 1
==Lt 25 BT U =FLL =T u
*L*L u [ su-t)+s? 2st TL¥L t [s(u—t)+32 2su
L=l & T U L=Ls &1 U
*LL* t [2su s(t—u)+3? *LL= u [2st s(t—u)+3?
Lx=L £ U Lx+L 27 u
Lzxx M, y/stufu t} L=x M, ystult u
L+ o FL++ — e |
R vz T T U LT va 8T T U
Tl ++FL
LxF=+ s L+ r
L7 —M—Z—ru~3tu l+1} +L¥+ M—Z—rt~5tu 1+1
FrL+ vz st T U +TL+ va 8T T U
¥l FrxL
T+ 2tu 1 1
I3+ 72357 ?Jra
+F++
+IFF
g 2u2 1 1 gy 2t2 1 1
Mgz |74y Mzzz |7t 7
o+t J1 w2 R J1
Mz‘s+~2¢+~2u} M5+ 577t s
IV. RADIATIVE CORRECTIONS the background-field method we have performed two inde-

pendent calculations.

One evaluation is based on the calculational method de-

We have performed the calculation of the radiative cor-scriped in Ref[18]. With the help ofuATHEMATICA [20] the
rections(RC’s) in 't Hooft—Feynman gauge both in the con- gmplitudes are decomposed into SME’s and invariant func-
ventional formalism and in the background—field fOI’ma'ism,tions, and the One-|00p contributions to the invariant func-
applying the on-shell renormalization scheme in both casesions are expressed in terms of standard tensor integrals. The
We follow the conventions of Ref18] for the conventional tensor integrals are reduced to the standard scalar one-loop
formalism and of Ref[16] for the background-field formal- integrals, as described in R¢21]. The scalar one-loop in-
ism. In the conventional formalism the field renormalizationtegrals are evaluated using the methods and general results of
is fixed such that no external wave-function renormalizationRef. [22]. The last two steps are performed numerically us-
is needed. In the renormalization scheme introduced in Refng own FORTRAN routines.
[16] for the background-field method the field renormaliza- In the other calculation the algebra is performed with
tion is determined by gauge invariance, and a nontrivial exMATHEMATICA and FORM [23] and has been partially
ternal wave-function renormalization is required, as explicchecked withFEYNCALC [24]. The resulting symbolic ampli-
itly described in Ref[13]. tudes are automatically converted int&@RTRAN program.

The Feynman graphs have been generated and drawn withstead of using SME’s, all scalar products of four-vectors
FEYNARTS [19]. Both in the conventional formalism and in are grouped together and calculated at run time by inserting

A. Calculational framework
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TABLE II. Polarized lowest-order cross sections at high energsesh2,M3) integrated ovel,<#<180°— 6.

2 1 e X (entry)
(o =Z2T 7 >5- 4 4 entr
Polarization sor 64m°s cy sty
LLLL oM s LLTT COFt LTLT COFt
16M£Z‘r cut 2 4

LLLT (M2+2M32)? . S(1+C0H,,,) 2C0S0g(6ME+S SiMPOgy)

2M3s 2MZ+s(1— coHyyy) AMZ +s Sifl,
LTTT M_% - SL+CoF) C0S 6, 20MZ + 3 SiINPhyy,)

s 2MZ+s(1— coHyy) AMZ+s Sir? Oy,
TTTT M_‘é - S(1+CoSHyyy) COS g S(8+ 11 sirfhg,)

s 2MZ+s(1— coHyy) AMZ +s sifl,
the explicit representation®) for the polarization vectors. e2M?2 M (1)

. . . _ z 00 H 00 H
The tensor integrals are numerically reduced to scalar inte- SMgei=—5— “MZ)2 2"(s)+ TEIVIAY: 37(t)
grals, which are evaluated using th€& package[25]. The Cwsw | (s—Mj ( H
code thus obtained executes favorably fast and numerically MW
00 H
stable. + T=MD2 2 (U)) , (13
Because of the length of the results we do not list the (u=Mp)
analytical expressions but give only an inventory of the
O(a) RC'’s and discuss some important features. whereXH is the renormalized Higgs-boson self-energy.
For each of the six vertices appearing in the Born dia-
B. Inventory of O(a) corrections grams(Fig. 1) there is a set of vertex corrections. In Fig. 5

Both in the conventional formalism and in the We show the diagrams that constitute the corrections to the

background-field formalism about 550 Feynman diagramdinal-state vertex in the-channel diagram of Fig. 1. Note
contribute toZZ—ZZ at one-loop order. The one-loop cor- that each graph with three charged fields or two different

rections can be classified into self-energy correctionscharged fields in the loop represents two diagrams with op-

vertex corrections, box corrections, and wave-functionPOSite orientation of the charge flow. Owing to the simple
renormalization corrections. All of them can be divided into {ENSOF structure of th&ZH vertex, the vertex corrections
s-, t-, and u-channel contributions, which are related by Nave the relatively simple form

simple transformations. In the following we list only the

s-channel Feynman graphs for the conventional formalism in e2M§

't Hooft—Feynman gauge. OMuyene= ~ Z > —vE [2MJF§%H(r)
The diagrams contributing to the self-energy corrections WSW r=s.tu H

in the s channel are shown in Fig. 4. The diagram with a +(MB+MEFZH()] (14)

virtual W and ¢ field actually represents two diagrams with

opposite charge flow. After renormalization the diagrams of

Fig. 4 vield together with the corresponding and With the two renormalized form factor&§*"(r) and
u-channel diagrams the following contribution to the invari- F5%"(r) for each channel, the corresponding SME4{)
ant matrix element: from Eq.(12), and

= 104
10°

Ttot.
b 0-1

Ctot

pb  10°

10-2 10°

10-3
1072 k.
104

10-*
10-%

10-6 10-¢

10-7 1 ! Il N 10-¢ 1 1 1 e
500 1000 2000 5000 10000 v/3/GeV 500 1000 2000 5000 10000 v/3/GeV

FIG. 2. Integrated lowest-order cross sections for various polar- FIG. 3. Integrated lowest-order cross sections for various polar-
izations atM ;=100 GeV. izations atM =700 GeV.
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> { > < }H < } XH‘P % Z T\I\I,x,w 7 7 hHe g zhw z 7 w oz
h Hel O : > !
z z z z
zw zw "Z_[Yf* z Hy, Z Z Z z
Z>£OH<Z “yi E{Z >E‘:._.§'E{Z z :/V’,T:;; z Iiyﬁ/ aw G |e It
zZ  xe W Z uzux ZH,;;%\ W 5 z Z z

FIG. 4. s-channel self-energy diagrams.

Z Z Z Z
A P . N Y E 0w
M) =(e1-€5)(e5 kg (e5 k)/s SO s T e Bl lg
o1 = (€1-82)(€3 -Kyg)(E4 - K3)/IS, I SRy SES ¥ e N
z f H,x,¢ z Z,w
S)__ (% *
Mig=(e3-23) (e ko) (22 ko), B oy B Do ey &
z z zZ
H,‘pi zZ,W iH"p %EE:E H,p i X9 H,¢i W iH"P %ZZVEE H,¢ Zw
t) _ * * o- — o2 o Z : o Z ___¢Z
MGl=(e1-85)(s2-ka) (2] - Ky)ls, R RET AT A PR T 20 Al 1
M(t)_ * k * k.)/ zZ z z z
10=(&2-€7)(e1-k3)(e3-ka)/s, - PR Py Trease
v w v w w | @ w 54
() * x ' S e -z N
_ - >
Moy =(e1-e5)(e2-Ka)(e3 - ka)/s, 7w 3 7w 5
Z Z Z Z
(u) — * * ¥ e —- >
Mlo—(82'83)(81'k4)(84'kl)/s. (15) v; LA™ W ® w w W iy w i‘p
. zZ VA el Z |z
w z w Z @ z W

The factors 14 in Eqg. (15) have been introduced to render
the matrix elements dimensionless. 2 w

The s-channel box diagram@.e., those with natural vari- fv w o LM >‘ < M
abless andt) are shown in Fig. 6. Note that again all graphs e M--a;--- € 7o
with three or four charged fields in the loop represent two

Feynman diagrams with opposite orientation of the charge
flow. The analytical expressions for the box diagrams are

rather involved and require alCP-conserving SME's. It external particles is required. In a strid{«) calculation the

turns out that the results for the bosonic box diagrams argave-function renormalization corrections are given by
shorter by a factor of about 3/2 in the background-field for-

malism as compared to the conventional formalism. Because OMy=26R; Mpomn, (16)

of the involved structure of the fermiai-boson couplings,

the most complicated expressions are those for the fermioniwhere

box diagrams, which are identical in both formalisms.
Following the complete on-shell renormalization scheme

of Ref.[18] for the conventional formalism the field renor- s the O(«) contribution to the wave-function renormaliza-

malization is chosen such that no extra wave-function renor,uon constant R,=1+6R,. The function EIZZ(S)

malization is necessary. However, in the on-shell renormal- 77

ization scheme of Ref[16] for the background-field =dX77(s)/ds denotes the derivative of the transverse part of

formalism a nonvanishing wave-function renormalization forthe renormallzeti boson self- energy.
Thus, the full one-loop matrix element reads

X H»v r’J L34 r’f 5Mone Ioop: 5Mself+ 5Mvertex+ 5Mbox+ 5wa . (18)
|wa | H, o
zZ X H 3 *\_\q 'z Z‘P_V\\O;\‘
C. Corrected cross section
o sw o2 o 2 w 2 It turns out that theD(«) corrections are comparable or
f} ./frz:; épﬂqifia ipi.{g ?ﬁq even larger than the lowest-order contributions for various
2 evhE Jrozwez o weZ 2 e important configurations. In order to obtain meaningful pre-

dictions, it is therefore necessary to consider not only the
interference between the lowest-order and the one-loop ma-

u, w
’2} { f} f .f XA < ?g,(}i trix element but to take into account the complete square of
\ Z . . .
xHe z W the matrix element and to define the corrected cross section
as

2 o, d 1
Zn, -7 \Hy Bé o
}Z’WC; \/\Z‘?\F‘Q\é’w a0 = 64m2s |MBorn+ OMone Ioo;l2 (19

FIG. 5. s-channel final-state vertex diagrams. including the terms involvingdM e 1008

FIG. 6. s-channel box diagrams.

SR;=—Re[X174(M2)} (17)
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LLLL —
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TTTT -
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1075 |
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FIG. 7. Integrated corrected cross sections for various polariza- FIG. 8. Integrated corrected cross sections for various polariza-

tions atM ;=100 GeV. tions atM =700 GeV.
In this way we end up withO(«) accuracy where e w2
Mgom dominates andO(1) accuracy otherwisdrelative Do=Dg - N (21)
—le

to the leading loop ordgr To obtain O(a) accuracy
everywhere théD(«?) corrections would be required. Note
that the interference betweaiM,; oo, and Mpgqm is Sup-
pressed with respect taSM e ,00,12 if the importance of tu
M ne 1oopresults from a suppression 8flg,, and not from A= 16 [(t—4m?)(u—4m?)— (2M2—4m?)?]. (22
the presence of an effective large loop-expansion parameter.

In_ Figs. 7 and 8 we show the cqrrected polarized crossyith szﬁ—mzs andp?=E2— M% this becomes
sections as defined in E¢L9). The Higgs-boson resonance
in Fig. 8 is treated by Dyson summation within the BF&A. A=(p* sirf6—b)p* sirfe. (23
Section V B, Eq.(36)]. In the case of purely transverge
bosons TTTT) the cross section is drastically enhancedSquaring the matrix element promotes the root singularity at
compared to the lowest order and behaves asal/high  p? sin 6==b to a pole which is not integrable and thus
energies(without cutoff it even would not go down with leads to a formally divergent cross section.
energy. For a small Higgs-boson mass this cross section This singularity should disappear from physical observ-
becomes the dominating one. Apart from thETT case, the ables. The conditiotM ,>2m suggests that it is related to
corrections reach the size of the lowest-order cross sectionbe instability of theZ bosons. In fact, as illustrated in Ap-
for all polarizations. This is probably due to corrections of pendix A, it is canceled by diagrams that contribute to the
the forn? (a/w)[ln(s/M%)]2~O.2 that are further enhanced inclusive proces¥ Z— 4f, which cannot be separated from
by numerical factors angd andu-channel poles. The relative ZZ—ZZ once the decay of th& bosons is taken into ac-
corrections depend only weakly on the Higgs-boson massount. Moreover, one should notice that collididgbosons
apart from the polarizationsLLL and LLLT, where the which are radiated off from incoming particles possess an
corrections involve extra factol /M. As a consequence invariant mass?<0 so that the conditioq?>4m? is never
the LLLL cross section dominates for a large Higgs-bosorfulfilled in the physical region of phase space. The use of
mass. As for the lowest-order cross sections, the Higgsen-shellZ bosons q2:M§) is just part of the equivalent
boson resonance only contributes foy=X\, and A3=Xx,. vector-boson approximation.
For theTTTT channel the resonance is proportional to the The Landau singularity appears in practice for box dia-
corresponding strongly suppressed Born cross section argfams involving light fermions, i.e., witmh=m;<M,. The
thus not visible. Because the lowest-order cross sections atecation of the singularity in phase space fo=0 is shown
not dominating, the universal corrections associated with thé¢n Fig. 9. It appears at§=90° for p2=M§, ie., \/§
running of a and thep parameter, which are related to the =2y2M,~258 GeV, and moves fast towards the forward

for t<0, u<0, andM,>2m, whereDg? is regular and

lowest order, are not leading. and backward directions with increasing energy. Its effect is
most prominent at low energies and becomes small at high
D. Landau singularities in four-point functions energies. Moreover, it is located outside the angular region

The f int f — 10°< 9<170° for/s=500 GeV for all fermions. In the fol-
e four-point functior{22] lowing we always consider the cross section in regions
Do(M2,M2,M2,M2,t,u,m2,m2 m2m?) (20) where this singularity is absent or negligible.

exhibits a Landau singulariy27] of the form V. HIGGS-BOSON RESONANCE

Diagrams that involve a Higgs-boson propagator in the
s channel have a pole a1=Mﬁ,. The double pole in the
3At high energies vertex and box corrections typically yield con-Self-energy diagrams of Fig. 4 is reduced to a single pole

tributions of this kind, as, e.g., explicity calculated for after Dyson summation.
ete"—=W*"W~ in Ref.[26]. If My>2M, a proper treatment of the resonance is nec-
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V/3/GeV
1200

900

600

300

0° 90° 180°

FIG. 9. The location of the Landau singularities in thg func-
tion (20) for m=0. The dashed lines a.,~=10° and 180% 6
=170° indicate the integration interval.

polarization vector of a massive gauge bodwith mass

M and momentunk) behaves lik&k”/M at high energies, in
the absence of gauge invariance, amplitudes involving longi-
tudinal gauge bosons usually grow with energy and violate
the unitarity bounds. In gauge theories, the Ward identities
imply the Goldstone-boson equivalence theor@&m) which
ensures that the amplitudes involving longitudinal gauge
bosons are well behaved at high energies. A violation of the
relevant Ward identities, even by higher-order terms, leads to
a violation of the ET and thus to amplitudes that violate
unitarity. For the proces8Z— ZZ the unitarity-violating ef-
fects involve factoree/M; and overcome any constant sup-
pression at sufficiently high energies.

A. Pole expansion

Since the poles of th& matrix are gauge independent, it

essary to render the cross section finite and meaningful. Theas peen proposef?8] to perform a Laurent expansion
naive introduction of a finite Higgs-boson width via the sub- apoyt the complex pole. An approximation to this Laurent

stitution

1 1

expansion can be obtained by decomposing the contributions
of the resonant diagrams into resonant and nonresonant parts

> — — (24)  and introducing the finite width only in the former. For ver-
s—My  s—Mp+iMyly tex corrections this leads to the substitution
or naive Dyson summation e2M?2 FZZH g
5M\(/Z>rtex: - Z—ZZ 2 (MES)'FME)?)) I (2)
1 1 CwSw 1501 s—M§
25
s—MZ s—MZ+3F(s) @9 e?M2 FZZHm2)
—= g 2 (ME+ M)
amounts to an inclusion of an incomplete set of higher-order CwSw i=0.1 s—Mg+iMyl'y
corrections such that the resulting matrix element becomes FZZH(s)— FZZH(\m2)
gauge dependent and does not respect the gauge cancella- Nl iz H } (26)
tions, which guarantee a decent high-energy behavior neces- s—Mj
sary for unitarity.
It is perhaps useful to explain the last point in more detail.Where[tO O(a) accuracy
The validity of Ward identities is crucial to guarantee the Ty=Im SH(M2)/My 27)

unitarity of theS matrix in gauge theories. While the Ward
identities relate Green functions, they nevertheless have ia the decay width of the Higgs boson. For the lowest-order
direct impact on physical amplitudes. Since the longitudinaland self-energy contributions we write

e’M3 1 SH(s)
Mot M= — ey M s—MZ [1_ s—MZ
:_eZMiM(S) 1 1_EH(Mﬁ)_E,H(MZ)_EH(S)—EH(Mﬁ)—(s—Mﬁ)E’H(Mﬁ)
case 0 s—M3 s—Mj H s—Mj
o0 2 H H/pg2 2\5 rH( N2
&Mz [1—2’H(M2)]—2 () =27 (M) —(s—M{HZ'"(My) 28
casy - % s—MZ+iM Iy H (s—M32)?

with 3'H(s)=d3"(s)/ds. We have used the fact that the calculation one ends up wit®(1) accuracy on resonance

renormalized Higgs-boson self-energy fulfills §M2)=0  and different treatments of the finite Higgs-boson width dif-

and that Im2"(MZ)=MyI'; is accounted for by the re- fer relatively inO(@). An improvement toO(«) accuracy

summed terms. As the inclusion of a finite width correspond®n resonance would require to use the fullf«)-corrected

just to the inclusion of higher-order terms, all expressions aréliggs-boson width in the resonant denominators.

equivalent at the one-loop level. The above procedure is gauge independent because we
According to Eq.(27), I'y is a tree-level quantity iE" is  modify the amplitude by terms that depend only on the

calculated at one-loop order. Consequently, in a one-loogauge-independent residue of the pole and the physical mass
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and width. However, the actual application of the pole ex-grows too fast with energy these terms violate unitarity at
pansion deserves some care. First, the above treatment is rgh energies. In the high-energy limit the ratio between the
uniquely determined by the resonance pole, because the LaBorn cross sections for longitudindl bosons [LLL) cal-
rent expansion is only applied to the form factors but not toculated for I'y#0 and T'y=0 behaves as 1
the SME’s and the split up between these two is not unique+f(s)21~a/9|v|a for real f(s), i.e., f(s)=1 yields a result
On the other hand, the terms introduced by the modification o+ is off by a constant factor, but for instand¢s)

of the amplitude in general violate the Ward identities and_ MZ/s reproduces the correct high-energy limit. While dif-
thus eventually unitarity. This problem could be avoided an . : .

the pole scheme could be uniquely defined by including th erent choices off(s) by construction do not modify the

complete matrix elements into the Laurent expansion. Thi r,esonant contribution they differ evidently in the nonresonant

however, leads to problems in defining the residues, i.e iﬁerms. This indefiniteness of the nonresonant lowest-order

particular, the corresponding momenta and wave function&entributions gives rise to ambiguities of relatiG{«) in

for more general processes in certain kinematical regiong1e resonance region.

(see Ref[29)). In the following we show how one can ex- At the one-loop level the generalized pole expansion is

ploit the above-mentioned freedom in the pole expansion ifPbtained by absorbing arbitrary functionf;(s) with

order to eliminate unitarity-violating terms. fij(Mﬁ)zl into the SME’sMi(jS) before performing the
We first illustrate the procedure at tree level. A generalLaurent expansion of the form factors. Besides the appear-

pole expansion is obtained by absorbing some arbitrary funcance of several functionf; such a general pole expansion

tion f(s) with f(Mﬁ)z 1 into the SMFJVIB%) and performing  even includes terms involving their derivative’;;. For our

the Laurent expansion for the resulting modified form factor.purposes it is sufficient to consider the modified pole expan-
After resubstituting the original SME this amounts to thegjgon

replacement

2M2 f(s) 1—f(s)

s VIO : _ e’M3 FZ2H(M2)f(s)
W — Ny HL H — Ny vertex 7 2 <2 . i0 0i _I 2
MBorn CZSSV 0l s M2+iMual s—M?2 5./\/1(5) 2 (M(S)+M(S))
(29 CySw iZ01 s—Mg+iMyI'y

ZZH _£ZZH 2
The added terms are proportional t&(s)MIT /(s n F(s)—Fi Z(MH)f(S)
—M32)/(s—MZ+iMyTy). If the matrix element (s) M) s—My

[1-3'H(MB)f(s)]—

. -V 3M(5) =2 (M) — (s—MZ)S"(MP)f(s)
Mfg(;m"' 5M(se)lf_)_ c2 2Z MBO){ — H(S_ M|2_|)2H a )
(30

which differs from a consistent expansion withi(s) = f(s) only by terms of the order df2, i.e.,0(a?). If we introduce the
finite width as in Eqs(26) and(28), i.e., with f(s)=1, we modify the cross section for longitudinal gauge bosons at high
energies by a constant contribution@f«I" /My,). In the modified version of the pole scheme the high-energy behavior can
be improved by choosing a suitable functibfs) that vanishes sufficiently fast at high energies. With our definition of the
SME’s (15) it is sufficient to choosef(s)=M2/s. Note that if we did not include factors1%/s to render the SME'’s
dimensionless we would obtain a contribution to the matrix element that growsvigthf (s) =1, i.e., that violates unitarity.
The freedom parameterized bys) in Eq. (30) affects the nonresonant contributions@fa). On resonance this introduces
ambiguities inO(«?) relative to the leading resonant terms.

The above recipe for the usual on-shell renormalization scheme is directly connected with an expansion of the transition
matrix element about its complex pole. In RE28] such an expansion was explicitly described for angular-independent
resonances, where the complicati¢28] in defining wave functions and momenta on resonance are absent. The procedure of
Ref.[28] can be directly transferred #Z— ZZ. In this respect only the angular-independent, i.e.(tme-particle-reducible
lowest-order, self-energy, and vertex contributions ingteaannelM {3y, are relevant. After Dyson summation these can be
written (assuming no truncation of the perturbation se¢rees

o EME s [t S 1oy +FE)] o
PR 28ty 1 ha s—MZ+3F(s) ’
i.e., as a product of full vertex functions and the full propagator. The additional S## is defined as
M= (21-K)(e5-Ke) (85 - Ky) (e - ka)/S2. 32)

The complex poles,, of Eq. (31) is obtained as the solution of

so—ME+3M(sy)=0. (33
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Since/\/l(fgR is analytical ins, it can be continued to complexand expanded abos},. The leading term in this expansion
is given by the resonant part

MM ) [S0i+ FF#"(sp) 1 80+ F7*"(sp)] 24
reso CWZ S\Nz i 1501 i S=Sp (S_Sp)[l‘i‘E,H(Sp)]

The residue ofM s, at the pole 1/6—s,) can be interpreted as the product of two physical amplituds~ 2% for the decay
H—ZZ. To one-loop accuracy{; can be replaced by

2n 2
Z
M+ M
C\ZNS\ZN 2{;1( i0 Oi )

FE2(sp) | FEN(s)—FE2(sy)

M(S) L
1PR s—s, s—sp

EH(S)_EH(Sp)_(S_Sp)EIH(Sp)
S—Sp

1-3"(sp) — : (35

Owing tos,=M{—iMyI'y+0(a?), the right-hand side of whereS" andF{*" denote the renormalized self-energy and
Eq. (35) differs from Eqs(26) and(28) only by higher-order form factors, respectively, in the BFM and
contributions.

Note that the freedom in splitting the matrix element into M= (e1-Ks)(82-Kg)(£5 ki) (e} -ky)/S?,
SME's and form factors is also present in this approach, i.e.,
in Eq. (35 we could also introduce functiorfs;(s), as de- MY =(e1-ky)(82-k3) (&% ko) (g% k)2 (37)

scribed in the first part of this section. In the considered case ) ) ]

one could avoid this ambiguity by expanding also the SME'sThe s-channel part of Eq(36) is formally identical to Eq.

occuring in M abouts,. However, in more complicated (31). Note, however, that we use E€6) in the following

situations it is not always possible to include the wave funcWith form factors and self-energy in finite, i.e., one-loop,

tions in the pole expansion. If one then excludes the SME'®rder of perturbation theory. _ _

from the pole expansion, as for instance advocated in Ref. The complete one-loop matrix element is obtained by

[30], one is again confronted with the problem of violating adding the(one-particle-irreduciblebox contributions and

Ward identities. multiplying everything with the(UV-finite) wave-function
renormalization factox/R, for each externaZ boson:

B. Dyson summation within the background-field method Meem= (Miprt Mo (Rz)2. (38

A different approach to introduce a finite width near reso-
nances is to Dyson sum the self-energy corrections. It is : ;
well-known fact that in the conventional formalism Ward the cor.nple'te matrix element, we can simply useCi)
. . T . .~ approximation
identities, which in particular rule the gauge cancellations,

Since the wave-function renormalization facRy multiplies

are violated if Dyson summation is applied. However, in (Ry)2=1-2 ReE}ZZ(Mﬁ). (39)
Ref.[13] it has been shown that Dyson summation within the
background-field methodBFM) (see Ref[16], and refer- The matrix element38) satisfies all relevant Ward iden-

ences thereindoes not violate the Ward identities if all one- tities and, in particular, does not violate unitarity at high
particle-irreducible corrections are taken into account in thesnergies. However, it depends on a gauge parantéter
Same. |00p order. Dyson Summatlon natura”y al’ranges tthantum gauge paramer&p via higher-orde(at least two-
reducible parts of amplitudes in a way that results fromigop) corrections which are not completely taken into ac-
forming trees with vertex functions joined by full propaga- count. The on-resonance self-energy is unique and equal to
tors(inverse two-point functionsFor the process under con- the physical quantityM 'y, . As a consequence, the gauge
sideration this simply amounts to writing thiene-particle-  dependence is genuinely of higher order. It is crucial that in
in the following way: violation of gauge cancellations because the Ward identities
hold exactly even in finite orders. This is in clear contrast to
Meomt OMseirt 0 Muerex the conventional formalism where tiny gauge-dependent
terms can be enhanced in certain kinematical configurations.

2M 2 Therefore, the BFM yields at least a practical solution for the

€ z (r) .. . .

— Mpr=— zZ E 2 M;; desprlptmn of resonances in gauge theories as_long as one
wew Lj=01r=stu avoids pathological gauges such as the unitary gauge

(ég— ), which may lead to an enhancement of the gauge-

4 pZZH 1 £ZZH parameter-dependent terms by the artificially introduced
X[5°'+F' (r;][5°L+ Fim ] ' (36)  large scaletg. The higher-order gauge dependence is noth-
r=Mg+27(r) ing but a result of the fact that a Dyson summation is always
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arbitrary to some extent. For gauge parameters of order orfer full, i.e., Dyson-summed, propagators. However, the ef-
it merely gives rise to higher-order uncertainties which arefects of the linear transformation cancel $&matrix ele-
anyhow present in every finite-order calculation. ments, thus giving a unique answer.

In the conventional formalism the matrix element after The resonant part of the Dyson-summed one-loop matrix
Dyson summation depends not only on the gauge but in acelement(36) in the BFM reads, fos=M?2,
dition on the choice of the field renormalization. In the BFM
the matrix element is actually independent of the field renor- o z 2 E (s)
malization. This can be seen as follows. The field renormal- BFM'S:ME.N c2s2, (Rz) i 501 Mij
ization is fixed by background field gauge invariance up to a c
UV-finite linear transformation of the renormalized fields. [ Soi+FF2 Y (MA) 1L 80+ FFA(ME)]
Such a linear transformation turns the linear Ward identities X iMpT - (40
for the background-field vertex functions into Ward identi-
ties for transformed vertex functions with the same structureThis differs from the resonant part of the pole-scheme am-
These modified Ward identities are still exactly valid evenplitude (30):

2612

M2 MEI1-3"H(MZ) ]+ 3o M(§+ MEHFEFH(ME)

MpOk—Z‘IS:M'Z_'%_ C\ZNS\ZN iMHFH ’ (41)
|
in O(«) in relative terms, in accordance with the discussion B. Results forZ, 72, —7,7,
after Eq.(27). Moreover, Eq.(40) is even gauge dependent
in this order on resonance, whereas E4l) is manifestly We want to apply the ET to the procedsZ, —Z, 7 in

gauge independent. The bulk of these effects can be attrithe framework of the BFM and investigate the accuracy of
uted to the contribution af 'H(M2) and thus to the different the corresponding predictions.
wave-function renormalization in the BFM. To this end we have to consider the procass— xx.

In order to obtain the cross section on resonance also iwherey is the would-be Goldstone boson associated with the
O(a) accuracy the imaginary part of the Higgs-boson self-Z boson. In lowest order the four diagrams of Fig. 10 yield
energy has to be included in two-loop order. In the pole
scheme this is equivalent to the introduction of the e’M? M2 M2 M2

O(a)-corrected Higgs-boson width in the propagator. How- Mg, "= — A2 2 M2 3+ M2 + M2 + vz
ever, in the BFM approach all two-loop corrections are re- WEWHZ H H H
quired in order to preserve the Ward identities. (42

VI. CROSS SECTION FOR LONGITUDINAL Z BOSONS Fors>M§ the matrix element fo#Z, Z, —Z, Z, approaches
FROM THE EQUIVALENCE THEOREM the one fory y— xx for any value ofM [12]. We note that
The corrections of O(aM?2/s23M2,) to longitudinal this agreement is destroyed if one includes the finite Higgs-

gauge-boson scattering processes have been calculated in ##son width in the way discussed in Sec. V A without ex-
literature[3,4,7,9 using the ET[9—13), which relates ampli- pandmg glso the SME’s or appropriately adjusting the func-
tudes involving longitudinal gauge bosons with those involv-tion f(s) in Eq. (29). _

ing the associated would-be Goldstone bosons in the high- Following the treatment of Sec. V B, the matrix element
energy limit. Because the latter amplitudes are much easidP’ xx— xx includingO(«) corrections is given similarly to
to be calculated, the ET was frequently used to obtain cros§d- (38) by

sections in the high-energy limit.

e’M?3

A. Equivalence theorem within the background-field method MXX=XX = | MIXZXX— 3 n
AT

Mzg:“)mz)Z
When using the ET in higher-order calculations one has to

be careful to include all correction factors that result from (43)
renormalization and amputatidid.1]. It has been found in
Ref.[13] that this is particularly easy within the BFM. In this
formalism the matrix elements for external longitudinal vec-V
tor bosons are directly obtained from the amputated Green

functions with the corresponding would-be Goldstone boson - X PN

. T . . . . X’ Y S X
fields multiplied with the wave-function renormalization *\,.__,~ .y S er
> . | 1 >¢ >

constants of the gauge bosons. Moreover, in contrast to the % By e . -~
conventional formalism, in the BFM the ET is valid with and
without Dyson summation. FIG. 10. Lowest-order diagrams faty— xx.

ith

,/x
\
-
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e2M4 4
Mg X = — EW—SWQHW My =a? gray M4 {2M{[D(0,0,0,08,t,M,;,0,M;,0)
" [1+FH () [ 1+FxH(r)] +D,(0,0,0,0s,t,0,M4,0,M )]
M2 H :
St r—Mg+27(r) +4M2[Cy(s,0,0M, ,M,,0)

49 +3Co(50,0,0,0M )]+ Bo(S. My, M)
BecauseM {3z ** vanishes fors>M3 as Mﬁ,/;, the boxes +11B4(5,0,0 — 9Bo(M2, M4y, My)
dominate the matrix element fary— xx at high energies.
The matrix elements fofx xy— xx are calculated in exactly —3RgBy(MZ,0,0} —1+(s—t,t—u)

the same way as fatZ—ZZ. In contrast toZZ—ZZ the
one-loop corrections tg y— x x possess a transparent form;
they are explicitly presented in Appendix B. We recall that
the usage of the BFM is crucial for the ET to work for
Dyson-summed amplitudes. Because the would-be Gold-
stone bosons are scalars, no polarization vectors and
SME’s occur, and no unitarity cancellations between indi-
vidual contributions take place. This simplifies the calcula-

+(s—u,t—s)}+267;,
R,=1, (46)
hereBg, Cy, andD are scalar one-loop functiof$8,22,.

e wave-function renormalization constants read, in the
BFM,

tion considerably. M2
The Higgs-boson resonance can be treated exactly as for 8Z;=06Z;=— l _H2 (47)
Z7—Z7Z. Since the wave functions are trivial constants, and X 4m BsyMy

thus no spllt |nto SMFE’ s and invariant functlons iS necessary,

ET one can combine the full lowest-order matrix eIementO(OI’VI &4/syM§), it follows from power countingsee Ref.

with the O(a) corrections fromy y— yx resulting in [12], and references thergithat only diagrams with internal
scalar lines contribute. We note in passing that the terms of
Mopixed= MEEELT 2204 SAMEXT XX (45) O(aMﬁ/s\z,\,M\zN) originate entirely from the S(2) sector of
the SM, i.e., they could also be obtained from the corre-

This treatment is, however, not possible if one uses DysofPonding react|orW3W3—>W3W3 in the pure SU2) gauge
summation, because in this case the lowest-order matrix efheory.

ement cannot be linearly separated from the one-loop correc- We have checked that in the limii2<s<M the am-
tions. plitude MXX~XX reduces to

C. Heavy-Higgs-boson effects MXX=XX =

s a?r? {I ( M3 ) 33w 26}
a4 | Il —/— =

In the literature an approximation for the matrix element restu 165yMy e 2 3(48)

MXX=xX by the leading contributions fas, MZ4>M3 was

frequently used3-8]. In this approximation the building a5 already given in Ref$3, 4]. In this context we remark

blocks of Egs(43) and(44) take a particularly simple form. that the result(48) can be most easily obtained from the

In the BFM we find, in this limit, general structure of the heavy-Higgs-boson limit of the SM.
2 The matrix elementMXX—XX (48) gets contributions only

> {3M2[3By(r,My,Myy) +Bo(r,0,0 from £, and L5 of the effective Lagrangian of Ref31],

which quantifies the heavy Higgs-boson effects, and from the
(three irreducible graphs in the gauged nonlineamodel
which contain only quartic scalar couplings.

" (r)_4 82 M2, WMW

~3Bo(M7, My, Myy) —Re{Bo(M7,0,0}1}
+8Z[(r—=M3),

VIl. DISCUSSION OF NUMERICAL RESULTS

2 . .
A. Computational details

FxxH(ry=— 2MZ[3Cq(r,0,0My,M};,0)
4m 8SWMW For the calculations we use the following parameter set
+Co(r,0,0,0,0M )]+ 3Bo(F, My ;M) [32]
+580(r 0 0)+4BO(0 0 MH) 0.’71: 137.035 989 5, MZ:91188 GeV,

) , Mw=80.26 GeV, m,=0.510 999 06 MeV,
~9Bo(M{,Mu M)~ 3 RABo(ME,0,0} — 5

m,=47.0 MeV, my=47.0 MeV,

1
5 02t oZy, m,=105.658 389 MeV, m,=1.55 GeV,
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100 . . . L Born — boson-resonance effects. The corresponding lowest-order
full - cross section is very small at high energies and not visible in

TTTT: Born ---- .

3 Fig. 12.

The differential cross sections for various energies are
shown in Figs. 13 and 14. For small energies the angular
variation of the cross sections stays within one order of mag-
nitude. For high energies and a small Higgs-boson mass the
corrected cross sections are strongly peaked in the forward
: and backward directions, while the lowest-order cross sec-
104 . ! tions are relatively flat in the considered angular region. The

500 1o 2000 500010000 V/GeV cross section for purely longitudinal gauge bosons has kine-
FIG. 11. Lowest-order and corrected integrated cross sectionrsnauc":1I zeros itMy = y1+v3Mz~ 150 GeV, WhICh. move
for various polarizations avl,=100 GeV. towards the forward apd backward directions with increasing
energy. For a large Higgs-boson mass the cross section for
purely longitudinalZ bosons, which dominates in this re-
gime, becomes flat and therefore also the unpolarized cross
section.

10-2

1073 | -

mg=150 MeV, my=1771.1 MeV,

m,=180 GeV, m,=4.5 GeV. (49

. ) C. Higgs-boson resonance
The masses of the light quarks are adjusted such that the 9

experimentally measured hadronic vacuum polarization is re- In Figs. 15 and 16 we compare several different treat-
produced[33]. For a Higgs-boson with a mass ofl ments of the Higgs-boson resonance usiig=700 GeV.
=700 GeV these parameters yield the lowest-order decayVe include the lowest-ordefBorn, I'y=0) and the cor-
width [',~175.29 GeV, i.e., about one fourth of the mass. rected (full, I';=0) cross sections for vanishing Higgs-
The various independent calculations described in Sed0son width for reference. We show the lowest-ordorn,
IV A agree numerically typically to~10 digits apart from Pole schemeand the correctetfull, pole schemgcross sec-
the regions close to the boundaries of phase space. At the§en in the pole-scheme treatment given in E@$6) and(28)
boundaries the reduction of tensor integrals to scalar inteds Well as the corrected cross section in the modified pole
grals breaks down. We avoid these regions by using the aricheme(full, mod. pole schemeaccording to Eq(30) with
gular cutf.,=10°, which also removes the Landau singu-f(s)= Ma/s. In addition we give the cross sections resulting

larities in the fermionic boxes for energies above about 506rom Dyson summation according to Eq86) and (38) in
GeV. the BFM (BFM, Dyson and the corresponding one in the

conventional formalism(conv., Dysop. Apart from the
Dyson-summed cross sections all others are identical in the
BFM and in the conventional formalism. Since the unpolar-
The integrated cross sections for unpolarized, purelyzed cross section is dominated by the one for purely longi-
transverse, and purely longitudinalbosons in lowest order tudinalZ bosons for a large Higgs-boson mass, Fig. 15 holds
and including the one-loop corrections are shown in Figs. 1ssentially also for the latter cross section after multiplying
and 12 forMy =100 GeV andM =700 GeV, respectively by a factor 9.
(repeating information from Figs. 2, 3, 7, ang & the case The crucial differences between the various treatments
of My;=100 GeV no finite Higgs-boson width is introduced; can already be seen in Fig. 15, which shows the integrated
for M;=700 GeV we apply Dyson summation within the cross section. Owing to the crude resolution the pole-scheme
BFM using the renormalization scheme of REE6]. The  cross sections with or withoud(«) corrections cannot be
Higgs-boson-mass dependence of the cross section for purebgparated from the corresponding cross sectionE fer 0 at
transverseZ bosons is below 10% including the Higgs- high energies. The deviation of the Dyson-summed BFM
cross section is due to higher-order corrections that become
increasingly important with energy. The Dyson-summed

B. Corrected cross sections

2 LLLL: Bor — conventional cross section deviates more for energies above
. ] T Bem - a few TeV and becomes completely wrong for energies
Uy Bom - higher than 10 TeV. This results from the violation of the
10 Ward identities which leads to unitarity violation at high
energies.

The differences between the various treatments of the
Higgs-boson resonance can be seen more clearly in Fig. 16,
where the corrected cross sections are shown normalized to
the one in the modified pole scheme. The difference between

O 0 om o 10000 VE/GeV the pole scheme and the modified pole scheme is below 2%
and becomes small at high energies. Note, however, that by

FIG. 12. Lowest-order and corrected integrated cross sectiongsing dimensionful SME'’s the pole-scheme cross sections
for various polarizations atM,=700 GeV. (The lowest-order could become completely wrong at high energies owing to
TTTT cross section is not visible. spurious unitarity-violating terms.

10!

10°
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FIG. 13. Lowest-order and corrected differen-
tial cross sections for various polarizations and
c.m.s. energies d,=100 GeV.
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In the resonance region the Dyson-summed cross sectiofgesence of a Higgs-boson resonanc#lat= 700 GeV. We
deviate from the cross sections in the modified pole schemghow again the ratios of the lowest-order and corrected cross
by up to 19 and 7 % in the BFM and the conventional for-sections obtained using the ET and from the direct calcula-
malism, respectively. This difference is due to the fact thation. In the lowest-order cross section we include the finite
our calculation near the resonance is onlyQgfl) accuracy  width naively(Born) and in the modified pole schenieod.
since the lowest-order contribution in the resonance denomBorn) (29). The lowest-order cross section from the ET ap-
nator vanishes on resonarisee Sec. V A The size of these proaches that of the modified pole scheme at high energies.
differences and the correction of 24% of the pole schemegncluding the finite width naively leads to a cross section that
calculation on resonance set the typical scale for the missingeviates at high energies from these two cross sections by a

O(a) corrections in the resonance region. factor 1+T3/9M3~1.007 for M=700 GeV (see Sec.
V A). For the corrected cross sections we have applied
D. The cross section forZ, 2| —2,Z, Dyson summation within the BFM. Because of the Dyson
and the equivalence theorem summation the mixed case does not make sense anymore.

Finally, we want to investigate the numerical accuracy of'”Steag we ZShOW the cross section resulting from the
the ET. We distinguish the cases without and with a Higgs O(@M/syMy,) approximation of the RC'¢46) normalized
boson resonance. In Fig. 17 we consider the case of nt® the fully corrected cross section f8fZ, —Z,Z, . The ET
Higgs-boson resonanceM(y=100 GeV). We show the Works much better for a heavy Higgs boson. Btp
lowest-order cross sectiofBorn) calculated from the ET =1 TeV (2 TeV) we now find a deviation of 8%2%) for the
normalized to the lowest-order cross section forlowest ordefusing the modified Born according to EQ9)]
Z,Z,—Z,Z, , the fully corrected cross sectidfull) calcu- and 6%(2%) for the corrected cross section. For energies
lated from the ET and the cross section obtained from thé&bove 2 TeV the deviation between the corrected cross sec-
matrix element(45) (mixed) both normalized to the fully tions is practically equal to the deviation between the lowest-
corrected cross section @ Z,—Z,Z, . The quality of the ~Order cross sections. Th®(aM/sjM{,) approximation
ET atE,,.=1TeV (2 TeV) is about 17%(5%) for the  (46) works well in the regima12<M} <s<M{{/M3, where
lowest order, 24%(10%) for one-loop, and 6%4%) for the upper limit for the energy results from the neglect of
one-loop mixed. As expected, the one-loop mixed approxicorrections proportional ttslMi with respect to the ones
mation is substantially better than the simple ET cross sedproportional toM}/M3. ForM =700 GeV this restricts the
tion. energy to\s~1—3TeV, which is nicely reflected in the

In Fig. 18 we investigate the accuracy of the ET in thefigure.

o /5 = 200 GeV 0 Vs =1TeV o /s =10 TeV

do F ] 102 £ 3
dQ/pb : : :::‘_—.;.—_".::':.;T:. ‘‘‘‘ :

10" E
’ . FIG. 14. Lowest-order and corrected differen-

100 B e
’ tial cross sections for various polarizatio@as in-

10 [ ] dicated in Fig. 1B and c.m.s. energies afly
0 E E i3 =700 GeV.
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FIG. 15. Integrated unpolarized cross section &ty

=700 GeV for various treatments of the Higgs-boson resonance. ~ FIG. 17. Relative deviations of the ET predictions for
2,72, —2Z Z atMy=100 GeV.
VIIl. CONCLUSIONS
the self-energy has to be evaluated at two loops. However, as

Owing to the strong sensitivity to the gauge-boson andhe pole scheme and the other mentioned methods do not
scalar self-interactions, scattering of massive gauge bosorgre about the Ward identities, theoretical uncertainties may
found continuous interest in the literature, where the emphaget out of control in the presence of gauge cancellations.
sis was directed to Strong-coupling effects for IongitudinaIIyUSing the pole scheme carelessly can lead to unitarity-
polarized gauge bosons. We have supplemented the existiRgplating terms at high energies, and Dyson summation
results for the enhanced radiative corrections of ordewithin the conventional formalism in fact yields a totally
O(aM{/siM§) by the completeO(e) corrections to  wrong cross section in the high-energy limit.
ZZ—ZZ for arbitrarily polarizedZ bosons. We have investigated longitudinaZ-boson scattering

At high energies the radiative corrections are found to bez, 7, —7,7, in more detail and performed a complete
large, at several TeV they are typically of the order of theO(a) calculation using the Goldstone-boson equivalence
lowest-order cross sections. Whereas the cross section f@fieorem. For a center-of-mass energy of 1 Té&VreV) the
purely transvers& bosons at high energies is totally negli- deviation of the equivalence theorem from the exa¢tr)
gible in lowest order, the corrections enhance this cross segesult is about 24%10%) and 6%(2%) for a Higgs-boson
tion such that it becomes one of the dominating channels. massM, of 100 GeV and 700 GeV, respectively, with an

The introduction of a finite Higgs-boson width in order to asymptotic approach in the high-energy limit. The frequently
describe the resonance well is a nontrivial task. We havesed approximation by the enhanced corrections of
compared different approaches, viz., different variants of they(aM2/s3,M3) for a heavy Higgs boson is good for ener-
Laurent expansion about the complex pole and the Dysogjes of a few TeV but gets worse with increasing energy.
summation of self-energies, where the latter has been per- AlthoughZz-boson scattering is the simplest representative
formed both in the conventional formalism as well as in thegf massive gauge-boson scattering, it contains the typical
background-field formalism. From a theoretical point offeatures such as the Higgs-boson resonance and enhanced
view, the background-field approach is the most convincingheayy-Higgs-boson corrections. In contrast to other gauge-
one, since it naturally guarantees a reasonable Cross sectigBson scattering processes, the lowest-order cross sections
also far above the resonance, where the validity of Wardor transversez-boson scattering are suppressed and no real
identities is crucial to imply the necessary gauge cancellaphoton radiation needs to be considere@if—2ZZ. Never-
tions. However, in order to obtain a relative precision Oftheless, we expect that our results at least qualitatively carry

O(a) on resonance one would have to perform a completgyer to the other massive gauge-boson scattering reactions.
two-loop calculation. In order to obtain the same precision

on resonance in the pole scheme only the imaginary part of We thank R. Scharf for discussions concerning the Lan-
dau singularity. This work was partially supported by the EC
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1 s t—2M2 a2 AM%—tu
q“=—5 (ki—ks) +2—S( 3tky)#, ¢ T

(A1)

and occurs forg?>—m?, which follows from the Landau
equations for the integral. Thus, the singular contribution of
the virtual graph is simply obtained by setting— g in the
numerator such that the remaining integral is proportional to
the D, function, the singular contribution of which is given
in Eq. (21).

The singular contributions in the lower graphs of Fig. 19
occur in the phase-space integrals of the produced fermion-
antifermion pair and can be obtained from the corresponding
scalar integrals analogously to the loop integral. For instance
the relevant scalar integral for the lower left graph is given

by
FIG. 19. Generic form of some singular contributions to d3k d3k’ "
ZZ—Zff, which are related by cutting rules. |=f (2m)%2K0 f (2m)%2K' (2m) (kg—k—=k")
network “Human Capital and Mobility” under Contract No. 1
CHRX-CT94-0579 and by the Bundesministeriufr il- Xy, (A2)
. —m?+ —m?+
dung, Wissenschaft, Forschung und Technolo@®&IBF) (ar—m+ie)(qa—m+ie)
under Contract No. 05 7WZ91@®). where
L P _ L’ 2_112_ 2
APPENDIX A: DISCUSSION OF THE LANDAU Gi=k—ki, da=k—kitky=k,—k', K=k _m(A3)

SINGULARITY IN BOX DIAGRAMS
Inspection of the Landau equations fbrreveals that the
singularity inl originates from a point in phase space where
the fermion moment& andk’ are coplanar with the scatter-
éng plane spanned by thg . Explicit calculation yields

In Sec. IV D we briefly discussed the Landau singularity
which occurs in some fermionic box diagrams if the fermion
massm fulfills m<<M /2. Although we have argued that this
singularity is unphysical and only caused by the use of th
equivalent vector-boson approximation fop or ee colli- i
sions, it is nevertheless interesting to investigate some formal  sing=— 1672 Dolsings (Ad)
properties of the singularity.

From general consideratiofs.g., about unitarityone ex-  which is also valid for the corresponding scalar integral for
pects that the singularity drops out in the fully inclusive the lower right graph of Fig. 19.
cross section, i.e., if all possible final states are taken into The relation between the singular contributiongfand
account. We have verified this compensation by explicitlyl guarantees the cancellation of the singularity in the sum of
calculating the singular contributions of Fig. 19 to the inclu-the graphs of Fig. 19 if the produc&lbosons are on shell.
sive cross sectioZ Z—4f. The shaded circle in Fig. 19 However, the cancellation in general is incomplete if indi-
represents any regular graph 02— ZZ, i.e., only the cuts  vidual flavors or spins in the fermionic final state are ob-
that are explicitly shown in Fig. 19 are relevant for the sin-served or if phase-space cuts are applied.
gular contributions. If the shaded circle also contains the Therefore, we conclude that a careful analysis of the ac-
singularity more cuts have to be considered. We restrict ourtual physical realization of the underlying process is manda-
selves to the case where the produgebosons are on their tory if such singularities appear for physical situations. For

mass shellk3=k3=M2. the subprocesZZ—ZZ this means that one has to go one
The singularity in the loop integral of the upper graph of step back and to consider the full reaction including the pro-
Fig. 19 stems from integration momerda~q with duction mechanism of the incomingjbosons in more detail.

APPENDIX B: ONE-LOOP CORRECTIONS TO xx— XX

In Sec. VI C we explicitly gave the leading corrections to longitudiidloson scattering in the limi, Mﬁ>M§. More
generally, the complete corrections jgy— xx also take a relatively simple form in contrast with the formulas for
Z|_Z|_—>Z|_Z|_ .

o
AT 8s5,MG,

SH(n)= IM{Bo(r, My , M) +2(M{+4MZAMG+ 12M,— 8rM 3)Bo(r, My, M) + (M{, + 4MZAM 3+ 12M7
—8rM2)By(r,Mz,Mz)+3M{Bo(0,0,My)+2MZ(MZ+6MZ)Bo(0,0My) + M3(MZ+6M32)By(0,0M5)

—24M%— 124+ Ef) ANSMZ[ (r —4m?)Bo(r,m¢ ,m;) — 2m2Bo(0,0my) 1} — SMZ + 8Z5(r—M?2),
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a
FxxHipy=— —
(r) 4 8$Wz MZHMW2

BMEL(ME—M2)?+2M3(r —2M3)]Co(r,MZ,MZ, My, My, M)
+2(M&—3MZM3Z—6MS+4rMZM2)Co(r,M3,M2, M7, M7, M) +8MZ(MZ+4M3)(r—2M32)
X Co(r,M2, M2, My, My, M) +3MZ(MZ+2M2)Bo(r,Myy ,Mp) + 2(M& +4MZM2 4 12M& ) Bo(r, My, M)

+(BMY+BMZMZ+8M3)B(r,Mz,Mz) +4(MZ—M2)?Bo(M2,My, ,M5)— 16M},— 8M 3
+Z 8N?m?[(2M§—r)Co(r,Mi,Mi,mf /Mg, Mg) —2Bo(r,mg,my) ]

+6Z ar 5M\2N+5Ma+ S +152"+5z
© 283, 2M3  MZ  2syMyMZ 2 TTHTTTxe

1

MXXTXX = P —
325y, My,

box

2[(ME—M2)*+2MZ(s—2M2)I’Do(MZ,MZ,M2,MZ,5,t, My Mz My, M) + 2[(M{—M2)?

+2M2(t—2M2)]2Do(M3,M3,M2,M2,t,5,My;,Mz, M ,M5)+ 16M [ (5— 2M2)2+ (t—2M2)?]
XDo(M2,M2,M2,M2,5,t, My,My,My,My)+4(MZ+2M3)[(MZ—M2)2+2M2(s—2M32)]

X Co(8,M2,M2,My;,My ,Mz)+4[3MZ(MZ—M2)2+4M3(s—2M32)]Co(s,M2,M2, M2, M7, M)
+16MS(MZ+4M3)(s—2M2)Co(s,M2, M2, My, My,My) + (MZ+2M2)?Bo(s,M 4, M)
+2(M},+4MEME+ 12M)Bo(s, My, Myy) + (9M},+ 8M3)Bo(s,M 2, M) — 16M{,— 8M 4

+Ef ANSM{[ (st—2M3)Do(M3,MZ,M3,M2,s,t,m¢,m; ,m¢,my) +4(2M5—S)Co(s,M2,MZ,m¢,m; ,my)

8s3, M3, SMZ e
—4Bg(s,m;,my) [+ (s—t,t—u)+(s—u,t—s) +26Z,— ——

—t—5+-———5+26Z;, (Bl
sy M& M7 2sy MyM3 v B

where the sum ovelr extends over all fermion flavors, alnf denotes the color factor for the fermiénThe scalar four-point
function is defined asp;+p,+ps+p,=0)

Dol pZ,p3,p3,p3 (P1+P2) 2, (P2t P3)?,my, My, Mg, my]

_f d'q 1 (B2)
) im (@P-mD(g+py)2—m3l[(a+ Pyt pa)2—m3l[(g—pg)i—m3]

Note that these results are derived within the BFM and include the heavy-Higgs-boson correction&46f &s|special case.
For the sake of simplicity the explicit expressions for the counterterms are left open; they are easily calculated in the
renormalization scheme of R€fL6].
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