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Svetitsky-Yaffe conjecture for the plaquette operator
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According to the Svetitsky-Yaffe conjecture, d« 1)-dimensional pure gauge theory undergoing a con-

tinuous deconfinement transition is in the same universality classladimensional statistical model with the

order parameter taking values in the center of the gauge group. We show that the plaquette operator of the
gauge theory is mapped into the energy operator of the statistical model=F&yrthis identification allows us

to use conformal field theory techniques to evaluate exactly the correlation functions of the plaquette operator
at the critical point. In particular, we can evaluate exactly the plaquette expectation value in the presence of
static sources, which gives some new insight into the structure of the color flux tube in mesons and baryons.
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PACS numbgs): 11.15.Ha, 11.25.Hf

[. INTRODUCTION mapping is equivalent to solving the gauge theory at the
deconfinement temperature.

Consider a d+ 1)-dimensional pure gauge theory under- The correspondence between the Polyakov line and order
going a continuous deconfinement transition at the criticaparameter of the effective model is the first entry in this
temperaturd .. The effective model describing the behavior mapping and is intrinsically contained in the Svetitsky-Yaffe
of Polyakov lines at finite temperaturd will be a  conjecture. It is natural to ask what operator in the
d-dimensional statistical model with a global symmetryd-dimensional model corresponds to the plaquette operator
group coinciding with the center of the gauge group.of the gauge theory: symmetry considerations suggest the
Svetitsky and Yaffg 1] were able to show that this effective energy operator as a natural candidate. In this paper we show
model has only short-range interactions. If also thethat this is actually the case, and we describe some conse-
d-dimensional effective model displays a continuous phasguences of this identification.
transition then it follows from universality arguments that it ~ The correctness of the identification plaquette-energy is
belongs to the same universality class of the original gaugghown in Sec. Il by studying the finite-size behavior of the
model. plaguette operator if2+1)D Z, gauge theory at critical tem-

Therefore all the universal properties of the deconfineperature. We show that it coincides with tkisighly non-
ment transition can be predicted to coincide with the ones offivial) finite-size behavior of the energy operator in the 2D
the dimensionally reduced effective model. These includdsing model at criticality.
the values of the critical indices, the finite-size scaling be- In Sec. Ill we compute correlation functions of the
havior, and the correlation functions at criticality. The con-plaquette operator by using conformal field theory tech-
jecture has passed several numerical tests, which becamiégues. In particular, the expectation value of the plaquette in
more and more stringent in the last years due to the increassticuum modified by static sources can be computedZor
precision reachable with Monte Carlo simulatiofsee[2],  +1)D SU(2) and SU3) gauge theories at the deconfinement
and references thergin temperature, providing physical insight into the structure of

It is clear that the Svetitsky-Yaffe conjecture becomesthe color flux tube in mesons and baryons.
very predictive ford=2, where, using the methods of con-
formal field theory, the critical behavior can be determined
exactly. For example, the critical properties @+1)-
dimensional (2+1)D] SU(2) gauge theory at the deconfine-
ment temperature coincide with those of the two-dimensional Finite-size effects at criticality are typically rather strong,
Ising model. This allows us not only to predict the exactdue to scale invariance, and nontrivial. Therefore they are
values of the critical indices, but also to write down all theideally suited to compare theoretical predictions with, for
multipoint correlation functions of the Polyakov loop at criti- example, results of Monte Carlo simulations. In particular,
cality [3]. for two-dimensional statistical systems, the critical behavior,

What is needed to fully exploit the predictive power of the including finite-size effects, is completely understood with
Svetitsky-Yaffe conjecture is a mapping relating the physicathe methods of conformal field theofCFT). We want to
observables of the gauge theory to the operators of the dexploit this fact to establish the correspondence between the
mensionally reduced model. k=2 the knowledge of this plaquette operator in ad@ 1)-dimensional lattice gauge

theory at the deconfinement transition and the energy opera-

tor of the corresponding-dimensional statistical model.
*Electronic address: gliozzi@to.infn.it Consider for example the 2D Ising model on a rectangle
"Electronic address: provero@to.infn.it of sidesL,, L,, and periodic boundary conditions in both

II. FINITE-SIZE BEHAVIOR OF THE PLAQUETTE
EXPECTATION VALUE

0556-2821/97/5@)/1131(4)/$10.00 56 1131 © 1997 The American Physical Society



1132 F. GLIOZZI AND P. PROVERO 56

directions, i.e., on a torus. The shape and size dependence at
criticality of the expectation value of the internal energy are
given by[4-6]

aim7| p(7)|? °
(e)=—F—>— (1)
VAZyof 7)
where A=L,L, and r=iL,/L, are, respectively, the area 8
and the modular parameter of the torus, @ng is the Ising E
partition function at the critical point: g,
4 %
1 0,(0,7)
Zip=7% —. 2
1/2 21}22 7]( T) ( )

Here 6, are the Jacobi theta functions ands the Dedekind

function (for notations and conventions see Réf).
Comparing Eq.(1) with the finite-size behavior of the

plaquette operator in a 3D lattice gauge the@¢T) such . v

that the center of the gauge groupZig provides a stringent 000 0'051/\/X o

test of our identification. The simplest choice is the Zp

gauge model, for which it is possible to achieve very high FIG. 1. Size and shape dependence of the plaquette expectation

precision in the Monte Carlo evaluation of physical quanti-value. Black dots correspond to square lattices7@#). White

ties, and accurate estimates of the deconfinement temperatufets and squares correspond to rectangular lattices withk-2nand

are available. Imr=4, respectively. Both timelike and spacelike plaquettes are
Therefore we considered tti2+1)D Z, gauge model on shown, the latter having lower expectation values. The lines corre-

lattices of sizel; X L,XL,, whereL,<L,,L, with periodic ~ Spond to the best it to Eq4).

boundary conditions on all directions, and we studied it at

the critical couplingB.(L,), which is known to high accu- Bc(L{=6)=0.746 035. (6)

racy for several values df; [2]. By performing Monte Carlo ) )

simulations at different values af;,L,, we can compare the We measured the plaguette expectation value for lattices of

finite-size behavior of the plaquette expectation value witherea 106<A<6400 and asymmetry ratio w1,2,4. The

Eq. (1). spacelike and timelike plaguettes have different expectation
More precisely, we will show that the plaquette operatorvalues, therefore must be fitted separately with @g. The

iS a mixture Of the |dent|ty and energy Operators Of the ZDMonte C.a.rlo SimulatiO.nS Were aCtUa"y performed in the 3D

CFT: on the one hand, both these operators transform d§ing (spin model, which is exactly equivalent through du-

singlets underZ,, and therefore can contribute to the ality to theZ, gauge model. This choice allowed us to use a

plaquette operator; on the other hand, we know that th&onlocal cluster simulation algorithm.

plaquette expectation value does not vanish in infinite vol- The agreement is very good, givingsq=0.7 for space-

ume, unlike the energy operator of the 2D Ising mddele  like plaquettes ang%,=0.9 for timelike plaquettesThese

Eq. (1)]. Therefore, a nonvanishing contribution of the iden-data are plotted in Fig. 1.

tity operator must be expected in the plaquette expectation

value. Hence our conjecture is Ill. CORRELATION FUNCTIONS
OF THE PLAQUETTE OPERATOR
(O)y=c(D)+cLe), 3
) ] . In this section we will exploit the new entry we added to
where the expectation value in the left-hand sitlelS) is  the Svetitsky-Yaffe mapping to compute correlation func-

taken in the LGT, while the ones in the RHS refer to thetions of the plaquette operator at the deconfinement tempera-
CFT. The prediction for the finite-size behavior of the tyre. This will provide some new insight into the structure of

0.895

plaquette expectation value is, therefore, color flux tubes in mesons and baryons.
5 Consider for exampl€2+1)D SU(2) LGT at deconfine-
_ T ment temperature. To study the flux tube structure in a
(D),_l,_z—cﬁce Fle +O(IL4Lo), “) “static meson” we can consider the plaquette expectation

value in the vacuum modified by the presence of two static
whereF is a function of the modular paramete=ilL,/L,  sources, i.e., the correlation function of the plagquette opera-
only: tor with two Polyakov loops:

m\ima| (7)|?
7)= ZyA7) ’ 1t must be noted that the expectation values of spacelike and
timelike plaquettes for a given lattice are not statistically uncorre-
We performed our Monte Carlo simulationslat=6 with lated, since they were extracted from the same sample of configu-
critical coupling rations.

(5
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FIG. 2. Structure of the flux tube in a “static meson” at the  F|G. 3. The structure of the flux tube in a “static baryon,” Eq.
deconfinement temperature, E§). (12).

G(X,X1,%X2) =(O(X)P(X1) P(X2)) = (O)(P(x1) P(X2)), where, introducing a complex coordinaén 2D spacey is
the conformally invariant cross ratio

wherex, X ,X, are points in the 2D space. This will be given (2—2,)(2o—25)

by the correlation of the energy operator with 2 spin opera- = (13
tors in the 2D critical Ising model: (2-2)(22—271)
G(X,X1,X2) % ( €(X) 7(X1) 0(X2) ) ising- (8) andf; andf, are hypergeometric functions:
The RHS is easily computed in CFT and we find f,(y)=F(4/5,7/5;8/5y), (14)
=™ fo(y) =y~ (1/5,4/5;2/ 1
(.?J(X,X]_,Xz)oc (9) Z(y) y ( 51 51 5y) ( 5)

([x=Xq[]x—x5]) 1"

G(x,X1,X2,X3) Is plotted in Fig. 3, for the case in which
the three static sources form an equilateral triangle. Notice
that this calculation brings strong support to the “Y” struc-
ture of the flux tube in baryonsee, e.g.[8] and references
therein, as opposed to theA” structure [9].

We have plotted this function in Fig. 2.

More interesting is the case (#+1)D SU(3) LGT, where
we can consider a “static baryon” by modifying the vacuum
with three static sources and compute

G(X,X1,X2,X3) =((X)P(X1) P(X2) P(X3))

—(OXP(x1)P(x2)P(X3)).  (10)

In this paper we have added a new entry to the Svetitsky-
Our identification gives Yaffe mapping betweend 1)-dimensional LGT’s at de-
confinement temperature amddimensional critical statisti-
cal models, namely, we have shown that the plaquette
operator of the LGT is mapped into the energy operator of
where the correlation function on the RHS must be computede statistical model. Fad=2, this identification allows in
in the c=4/5 CFT describing the three-state Potts model aPrinciple the exact evaluation of all correlations of the
criticality. This is done using the methods introduced in Ref.plaquette operator at the deconfinement point, providing a

IV. CONCLUSIONS

G(X,X1,X2,X3) < €(X) 0(X1) 0(X2) 0(X3))3-state Potts

[7] (see alsd6]) and gives useful tool for the study of the color flux tube in mesons and
baryons.
(X1 = Xa| X1 — X3| [ — X5]) /15 For d>2, the critical behavior of statistical models is not
G(X,X1,Xz,X3)* (TX— Xq|[X— Xo|[X— Xg] ) 755 completely understood, therefore our conjecture does not

hold all the predictive power we have shown in tle 2
case. However, many useful predictions can still be made.
Consider for example S@) in d+ 1 dimensions: ifd is such
3 that the deconfinement transition of the gauge model is of
+g I*(3/5I'(1/5) 1£,(y)|2 (12) second order, as it is in the realistic cabe 3, we can pre-

4 T3(2/5)T(4/5 "' 2 ' dict the following finite-size scaling behavior of the

XIy(l—y>|7’15{|f1<y>|2
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