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We investigate an original domain-wall model in 411 dimensions numerically in the presence of U~1!
dynamical gauge field only in an extra dimension, corresponding to a weak coupling limit of four-dimensional
physical gauge coupling. Using a quenched approximation we carry out a numerical simulation for this model
at bs(51/gs

2)5 0.29 ~‘‘symmetric’’ phase! and 0.5~‘‘broken’’ phase!, wheregs is the gauge coupling con-
stant of the extra dimension. In the broken phase, we found that there exists a critical value of a domain-wall
massm0

c which separates a region with a fermionic zero mode on the domain wall from the one without it in
the same case of~211!-dimensional model. On the other hand, in the symmetric phase, our numerical data
suggest that the chiral zero modes disappear in the infinite limit of four-dimensional volume. From these
results it seems difficult to construct the U~1! lattice chiral gauge theory via an original domain-wall formu-
lation. @S0556-2821~97!04412-3#

PACS number~s!: 11.15.Ha, 11.10.Kk, 11.30.Rd

I. INTRODUCTION

Although perturbative aspects of electroweak interaction
are well described by the standard model, its nonperturbative
phenomenon has to be investigated beyond the perturbation
theory. At present, the most powerful nonperturbative tech-
nique is the lattice field theory. However, it is nontrivial to
define the standard model on a lattice since it is a type of
chiral gauge theories, construction of which is one of the
long-standing problems of lattice field theory: Because of the
fermion doubling problems, a naivelyD-dimensional dis-
cretized lattice fermion field yields 2D fermion particles, half
of one chirality and half of the other, so that the theory
becomes nonchiral@1#. Several lattice approaches have been
proposed, but so far none of them have been proven to work
successfully@2#.

Kaplan has proposed a new construction of lattice chiral
gauge theories via domain-wall models@3#. Starting from a
vectorlike gauge theory in 2k11 dimensions with a fermion
mass term being a shape of a domain wall in the~extra!
(2k11)th dimension, he showed in the weak gauge cou-
pling limit that a massless chiral state arises as a zero mode
bound to the 2k-dimensional domain wall while all the dou-
blers have large masses of the lattice cutoff scale. It has been
also shown that the model works well for smooth back-
ground gauge fields@4–7#.

Two simplified variants of the original Kaplan’s domain-
wall model have been proposed: an ‘‘overlap formula’’@8,9#
and a ‘‘waveguide model’’@10,11#. Gauge fields appearing
in these variants are 2k dimensional and are independent of
the extra (2k11)th coordinate, while those in the original
model are 2k11 dimensional and depend on the extra
(2k11)th coordinate. These variants work successfully for
smooth background gauge fields@12–18,21#, as the original
one does. Nonperturbative investigations for these variants
seem easier than that for the original model due to the sim-
pler structure of gauge fields. Indeed some positive results
are obtained for the vector Schwinger model by the overlap
formula @22#.

However, it has been reported@10,11# that the waveguide

model in the weak gauge coupling limit cannot produce chi-
ral zero modes needed to construct chiral gauge theories. In
this limit, if gauge invariance were maintained, pure gauge
field configurations equivalent to the unity by gauge trans-
formation would dominate and gauge fields would become
smooth. In the setup of the waveguide model, however,
2k-dimensional gauge fields are nonzero only in the layers
near domain wall~waveguide!, so that the gauge invariance
is broken in the edge of the waveguide. Therefore, even in
the weak gauge coupling limit, gauge fields are no more
smooth and become very ‘‘rough,’’ due to the gauge degrees
of freedom appearing to be dynamical in this edge. As a
result of the rough gauge dynamics, a new chiral zero mode
with the opposite chirality to the original zero mode on the
domain wall appears in the edge, so that the fermionic spec-
trum inside the waveguide becomes vectorlike. It has been
claimed@10,11# that this ‘‘rough gauge problem’’ also exists
in the overlap formula since the gauge invariance is broken
by the boundary condition at the infinity of the extra dimen-
sion@17,18#. Furthermore, an equivalence between the wave-
guide model and the overlap formula has been pointed out
for the special case@19#. Although the claimed equivalence
has been challenged in Refs.@20,21#, it is still crucial for the
success of the overlap formula to solve the ‘‘rough gauge
problem’’ and to show the existence of a chiral zero mode in
the weak gauge coupling limit. Recently, two results have
been obtained in this aspect, one is positive@23#, the other is
negative@24#, so more work may be necessary for the defi-
nite conclusion.

In the original model there are two inverse gauge cou-
plingsb51/g2 andbs51/gs

2 , whereg is the coupling con-
stant in ~physical! 2k dimensions andgs is the one in the
~extra! (2k11)th dimension. Very little is known about this
model exceptbs50 case@10,25,26# ~known as ‘‘the layered
phase’’! where the spectrum seems vectorlike and except the
case of~211!-dimensional U~1! model@27#. Since perturba-
tion theory for the physical gauge couplingg is expected to
hold, the fermion spectrum of the model can be determined
in the limit thatg→0. In this weak coupling limit, all gauge
fields in the physical dimensions can be gauged away, while
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the gauge field in the extra dimension is still dynamical and
its dynamics is controlled bybs . Instead of the gauge de-
grees of freedom in the edge of the waveguide, (2k11)th
component of gauge fields represents roughness of
2k-dimensional gauge fields. An important question is
whether the chiral zero mode on the domain wall survives in
the presence of this rough dynamics. The dynamics of the
gauge field in this limit is equivalent to 2k-dimensional sca-
lar model with 2Ls independent copies where 2Ls is the
number of sites in the extra dimension. In general at large
bs such a system is in a ‘‘broken’’ phase where some global
symmetry is spontaneously broken, while at smallbs the
system is in a ‘‘symmetric’’ phase. Therefore, there exists a
critical pointbs

c , and it is likely that the phase transition at
bs5bs

c is continuous~second or higher order!. The ‘‘gauge
field’’ becomes rougher and rougher at smallerbs . Indeed
we know that the zero mode disappears atbs50 @25,26#,
while the zero mode exists atbs5` ~free case!. So far we do
not know the fate of the chiral zero mode in the intermediate
range of the couplingbs . In the symmetric phase, if chiral
zero modes exist, these modes, one at the domain wall and
the other at the antidomain wall, decouple each other even in
the presence of the extra dimensional gauge fields. In the
broken phase, on the other hand, there are arguments that
massless gauge fields, whose couplings to zero modes are
vectorlike, always exist both in Abelian case@10# and in
non-Abelian case@27#. Although there is a possibility that
the broken phase leads to a~some! chiral gauge theory@27#
in the continuum limit (bs5bs

c), this depends on whether
the zero modes exist or not in the symmetric phase. Then
there are the following three possibilities:~a! The chiral zero
mode always exists exceptbs50. In this case we may likely
construct a lattice chiral gauge theory in both symmetric
(;bs,bs

c) and broken (bs↘bs
c) phases. This is the best

case for the domain-wall model.~b! The chiral zero mode
exists only in the broken phase (bs.bs

c). It is likely, how-
ever, that the continuum limit taken atbs5bs

c from above
leads to a vector gauge theory.~c! No chiral zero mode sur-
vives exceptbs5`. The original model cannot describe lat-
tice chiral gauge theories at all. Therefore, it is very impor-
tant to determine which possibility is indeed realized in the
domain-wall model.

Instead of~411!-dimensional models, we have recently
investigated a~211!-dimensional U~1! model @27#. Using a
quenched approximation we have carried out a numerical
simulation to see whether chiral zero modes exist or not in
this model. In the weak coupling limit of the physical gauge
coupling the~211!-dimensional U~1! gauge system is re-
duced to the two-dimensional U~1! spin system.1 Strictly
speaking, there is no order parameter in the two-dimensional
U~1! spin system. On a large but finite lattice, however, the
behavior of the model is similar to the one of a four-
dimensional scalar model: On a finite lattice we regard the
Kosterlitz-Thouless phase as the ‘‘symmetric’’ phase and the
spin-wave phase as the ‘‘broken’’ phase. In the ‘‘broken’’
phase we have numerically found that there exists a critical
value of a domain-wall massm0

c which separates a region

with a fermionic zero mode on the domain wall from one
without it. In the ‘‘symmetric’’ phase the critical values of
the domain-wall mass seem to also exist but are very close to
its upper boundm051, so that the region with a fermionic
zero mode is very narrow. Because of the difficulty observed
in the numerical simulation nearm051 we cannot exclude a
possibility that the existence of the zero mode is an artifact
of finite lattice size effects. Further simulation we have made
on larger lattice sizes cannot give a definite conclusion.
Since, as mentioned before, the phases of the model in the
infinite volume limit is different from the ones of the four-
dimensional model, we did not attempt to increase lattice
sizes further, for example, 1002 to see the fate of zero mode
in the symmetric phase. Instead, we have decided to investi-
gate the~411!-dimensional U~1! model directly, to obtain
the definite conclusion on the existence of zero modes in the
symmetric phase.

In this paper, in order to know the fate of the chiral zero
mode, we have carried out a numerical simulation of a
domain-wall model in 411 dimensions with a quenched
U~1! gauge field in theb5` limit. In Sec. II, we have de-
fined our domain-wall model with dynamical gauge fields.
We have calculated a fermion propagator by using a kind of
mean-field approximation, to show that there is a critical
value of the domain-wall mass parameter above which the
zero mode exists. The value of the critical mass may depend
on bs , which controls the dynamics of the gauge field. In
Sec. III, we have calculated the fermion spectrum numeri-
cally using quenched approximation atbs50.29,0.5, and at
various values of domain-wall masses. We have found that
in the broken phase (bs50.5) there exists the range of a
domain-wall mass parameter in which the chiral zero mode
survives on the domain wall. In the symmetric phase
(bs50.29), however, from data on several lattice sizes we
have found a numerical evidence that the chiral zero mode
disappears in the infinite volume limit of four-dimensional
Euclidean space-time. Our conclusions and some discussions
are given in Sec. IV.

II. DOMAIN-WALL MODEL

A. Definition of the model

We consider a vector gauge theory inD52k11 dimen-
sions with a domain-wall mass term, which has a kinklike
mass term in the coordinate of an extra dimension. This
domain-wall model is originally proposed by Kaplan@3#, and
a fermionic part of the action is reformulated by Narayanan-
Neuberger@8#, in terms of a 2k-dimensional theory. The
model is defined by the action

S5SG1SF , ~1!

whereSG is the action of a dynamical gauge field andSF is
the fermionic action.SG is given by

SG5b (
n,m.n

(
s

$12Re Tr@Umn~n,s!#% ~2!

1bs(
n,m

(
s

$12Re Tr@UmD~n,s!#%,1This is explained in the next section.
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wherem,n run from 1 to 2k, n is a 2k-dimensional lattice
point, and s is a coordinate of an extra dimension.
Umn(n,s) is a 2k-dimensional plaquette andUmD(n,s) is a
plaquette containing two link variables in the extra direction.

b is the inverse gauge coupling for the plaquetteUmn and
bs is the one for the plaquetteUmD . In general,bÞbs . The
fermion actionSF on the Euclidean lattice, in terms of the
2k-dimensional notation, is given by

SF5
1

2(nm
(
s

c̄ s~n!gm@Us,m~n!cs~n1m!2Us,m
† ~n2m!cs~n2m!#1(

n
(
s,t

c̄ s~n!@M0PR1M0
†PL#c t~n!

1
1

2(nm
(
s

c̄ s~n!@Us,m~n!cs~n1m!1Us,m
† ~n2m!cs~n2m!22cs~n!#, ~3!

wheres,t are extra coordinates,PR/L5 1
2(16g2k11),

~M0!s,t5Us,D~n!ds11,t2a~s!ds,t ,

~M0
†!s,t5Us21,D

† ~n!ds21,t2a~s!ds,t . ~4!

HereUs,m(n),Us,D(n) (D52k11) are link variables con-
necting a site (n,s) to (n1m,s) or (n,s11), respectively.
Because of a periodic boundary condition in the extra dimen-
sion,s,t run from2Ls to Ls21, anda(s) is given by

a~s!512m0 sgn@~s1 1
2 ! sgn~Ls2s2 1

2 !#

5H 12m0 S 2
1

2
,s,Ls2

1

2D
11m0 S 2Ls2

1

2
,s,2

1

2D ,
~5!

wherem0 is the height of the domain-wall mass. It is easy to
check that the above fermionic action is identical to the one
in 2k11 dimensions, proposed by Kaplan@3,8#.

In weak coupling limit of bothb and bs , it has been
shown2 that at 0,m0,1 a desired chiral zero mode appears
on a domain wall (s50 plane! without unwanted doublers.
Because of the periodic boundary condition in the extra di-
mension, however, a zero mode of the opposite chirality to
the one on the domain wall appears on the antidomain wall
(s5Ls21). Overlap between two zero modes decreases ex-
ponentially at largeLs . A free fermion propagator is easily
calculated and an effective action of a~211!- and ~411!-
dimensional model including the gauge anomaly and the
Chern-Simons term can be obtained for smooth background
gauge fields@4,5,7#.

The original Kaplan’s domain-wall models in the 411
dimensions, however, have not been investigated yetnonper-
turbatively, exceptbs50 @10,25,26# and~211!-dimensional

case@27#. The main question is whether the chiral zero mode
survives in the presence of rough gauge fields mentioned in
the Introduction. To answer this question we will analyze the
fate of the chiral zero mode in the weak coupling limit for
b. In this limit, the gauge field actionSG is reduced to

SG5bs(
s

(
n,m

$12Re Tr@V~n,s!V†~n1m,s!#%, ~6!

where the link variableUs,D(n) in the extra direction is re-
garded as a site variableV(n,s)@5Us,D(n)#. This action is
identical to the one of a 2k-dimensional spin model ands is
regarded as an independent flavor. The action equation~6! is
invariant under

V~n,s!→g~s!V~n,s!g†~s11! @g~s!PG#, ~7!

whereG is the gauge group of the original model. Therefore,
the total symmetry of the model isG2Ls, where 2Ls , the size
of the extra dimension, is regarded as the number of inde-
pendent flavors. We use this~reduced! model for our numeri-
cal investigation.

B. Mean-field approximation for fermion propagators

When the dynamical gauge fields are added even on the
extra dimension only, it is difficult to calculate the fermion
propagator analytically. Instead of calculating the fermion
propagatorexactly, we use a mean-field approximation to see
an effect of the dynamical gauge field qualitatively. The
mean-field approximation we adopt is that the link variables
are replaced as

V~n,s!@5Us,D~n!#→z, ~8!

wherez is a (n,s)-independent constant. From Eq.~3! the
fermion action in a 2k-dimensional momentum space be-
comes

SF→(
s,t,p

c̄ s~2p!S (
m

igmsin~pm!ds,t

1@M ~z!PR1M†~z!PL#s,tDc t~p!, ~9!

2In fact, the solutions of a chiral zero mode exist at 0,m0,2 in
the free case. A smoothly damping solution is obtained at
0,m0,1, while an oscillating damping one is obtained at
1,m0,2. Since the two solutions are transformed to each other by
simple oscillation factor, one may restrict the region ofm0 to
0,m0,1 without loss of a generality. Atm051, a solution be-
comes singular.
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„M ~z!…s,t5„M0~z!…s,t1
¹~p!

2
ds,t ,

„M†~z!…s,t5„M0
†~z!…s,t1

¹~p!

2
ds,t ,

¹~p![ (
m51

D21

2~cospm21!, ~10!

„M0~z!…s,t5zds11,t2a~s!ds,t ,

„M0
†~z!…s,t5zds21,t2a~s!ds,t . ~11!

Following Refs.@4,5,8#, especially Ref.@5#, it is easy to ob-

tain a mean-field fermion propagator on a finite lattice with
the periodic boundary condition

G~p!s,t5F H S 2 i(
m

gm p̄m1M ~z! DGL~p!J
s,t

PL

1H S 2 i(
m

gm p̄m1M†~z! DGR~p!J
s,t

PRG ,
~12!

GL~p!5
1

p̄21M†~z!M ~z!
, GR~p!5

1

p̄21M ~z!M†~z!
,

~13!

with p̄m[sin(pm). For largeLs where we neglect terms ofO(e2cLs) with c.0, GL andGR are given by

@GL~p!#s,t55
Be2a1us2tu1~AL2B!e2a1~s1t !1~AR2B!e2a1~2Ls2s2t ! ~s,t>0!,

ALe
2a1s1a2t1ARe

2a1~Ls2s!2a2~Ls1t ! ~s>0,t<0!,

ALe
a2s2a1t1ARe

2a2~Ls1s!2a1~Ls2t ! ~s<0,t>0!,

Ce2a2us2tu1~AL2C!ea2~s1t !1~AR2C!e2a2~2Ls1s1t ! ~s,t<0!,

~14!

@GR~p!#s,t55
Be2a1us2tu1~AR2B!e2a1~s1t12!1~AL2B!e2a1~2Ls2s2t22! ~s,t>21!,

ARe
2a1~s11!1a2~ t11!1ALe

2a1~Ls2s21!2a2~Ls1t11! ~s>21,t<21!,

ARe
a2~s11!2a1~ t11!1ALe

2a2~Ls1s11!2a1~Ls2t21! ~s<21,t>21!,

Ce2a2us2tu1~AR2C!ea2~s1t12!1~AL2C!e2a2~2Ls1s1t12! ~s,t<21!,

~15!

where

a65zS 12
¹~p!

2
7m0D5zb6 , ~16!

a65arccoshF p̄21z21b6
2

2zb6
G , ~17!

AL5
1

a1e
a12a2e

2a2
, AR5

1

a2e
a22a1e

2a1
,

~18!

B5
1

2a1sinha1
, C5

1

2a2sinha2
. ~19!

Like a free fermion theory, the terms ofAR ,B, andC have
no singularity for allz’s asp→0. A behavior ofAL is, how-
ever, different. Asp→0, AL behaves as

AL→5
1

@~12m0!
22z2#1O~p2!

~0,m0,12z!,

4m0
22@~z221!2m0

2#2

4m0z
2p2

~12z,m0,1!.

~20!

A critical value of the domain-wall mass that separates a
region with a zero mode and a region without any zero

modes is m0
c512z. Since AL term dominates3 for

12z,m0,1 in the GL @Eq. ~14!# and GR @Eq. ~15!#, a
right-handed zero mode appears in thes50 plane, and a
left-handed zero mode in thes5Ls21 plane. For
0,m0,12z the right- and left-handed fermions are mas-
sive in alls planes. Since the terms ofAL(AR) andB(C) are
almost of the same values in this region ofm0, a translational
invariant term dominates inGL andGR in the positive~nega-
tive! s layer, so that the spectrum becomes vectorlike.

If z→1, the model becomes a free theory. The propagator
obtained in this section agrees with the one obtained in Ref.
@4#. In the opposite limit thatz→0, since there is no hopping
term to the neighboring layers, this model becomes the one
analyzed in Ref.@25# in the case of the strong coupling limit
bs50, and in Ref.@26#, in the case thatz is identified to the
vacuum expectation value of the link variables. This consid-
eration suggests that the region where the zero modes exist
becomes smaller and smaller asz(12z,m0,1) approaches
zero.

What corresponds toz? Boundary conditions whichz sat-
isfies arez51 at bs5` and z50 at bs50. As explained

3To be exact, the zero mode exists for 12z,m0,11z when the
domain-wall mass height is 0,m0,2 in which doublers decouple
from the fermion spectrum. As mentioned in the footnote 2, how-
ever, since one can restrict the region ofm0 to 0,m0,1 without
loss of a generality, it is sufficient that the range ofm0 with a zero
mode is 12z,m0,1.

1124 56S. AOKI AND K. NAGAI



before, the gauge field action of our model is identical to that
of the U~1! spin system in four-dimensions. So the most
naive candidate@26# is

z5^V~n,s!&, ~21!

which is not invariant under the symmetry~7!. In our simu-
lations onL33L432Ls lattices, as an order parameter, we
take a vacuum expectation value of link variable calculated
with rotational technique:

v5K 1

2Ls
(
s

U 1

L4L
3(

n
V~n,s!U L . ~22!

Although v defined in Eq.~22! is always nonzero on finite
lattices, it becomes zero in the symmetric phase but stays
nonzero in the broken phase in the infinite volume limit.
Figure 1~a! shows that, even on finite lattices,v behaves as if
it was an order parameter: it is very small and decreases as
the volume increases in the would-be symmetric phase. If the
identification thatz5v is true, zero modes disappear in the
symmetric phase, wherev50. The other choice, which is
invariant under Eq.~7!, is the vacuum expectation value of
plaquette:

z25^TrRe$V~n,s!V†~n1m,s!%&. ~23!

In this identification the zero modes always exist in both
phases, sincêTr Re$V(n,s)V†(n1m,s)%& is nonzero for all
bs exceptbs50 and is insensitive to which phase we are in,
as shown in Fig. 1~b!.

III. NUMERICAL STUDY OF „411…-DIMENSIONAL
U„1… MODEL

A. Method of numerical calculations

In this section we numerically study the domain-wall
model in 411 dimensions with a U~1! dynamical gauge field
in the extra dimension. As seen from Eq.~6!, the gauge field
action can be identified with a four-dimensional U~1! spin
model ~with 2Ls copies!.

Our numerical simulation has been carried out by the
quenched approximation. Configurations of U~1! dynamical
gauge field are generated and fermion propagators are calcu-
lated on these configurations. The obtained fermion propaga-
tors are gauge noninvariant in general under the symmetry
~7!. The fermion propagatorG(p)s,t becomes ‘‘invariant’’ if
and only if s5t. Thus, we take thes-s layer as propagating
plane (' ‘‘physical space’’!, and investigate the behavior of
the fermion propagator in this layer.

To study the fermion spectrum, we first extractGL and
GR , defined in Eq.~12!, from the fermion propagator. As-
suming Eq.~13!, we then obtain corresponding ‘‘fermion
masses’’ fromGL

21(p) andGR
21(p) by fitting them linearly

in p̄2 as follows:

GL
215 p̄21M†M→mf

2~right! ~p→0!, ~24!

GR
215 p̄21MM†→mf

2~ left! ~p→0!. ~25!

We take the following setup for four-dimensional momenta.
A periodic boundary condition is taken for the first-, second-,
and third-directions and the momenta in these directions are
fixed on p1 ,p2 ,p350. An antiperiodic boundary condition
is taken for the fourth direction and the momentum in
this direction is variable, p45(2n11)p/L4 ,
n52L4 /2, . . . ,L4 /221, whereL4 is the number of site of
fourth direction.~Our numerical simulations have been per-
formed always forL4532.!

B. Simulation parameters

From Fig. 1~a! it is inferred that the system is in the
symmetric phase atbs50.29 and in the broken phase at
bs50.5. Our simulation is performed in the quenched ap-
proximation onL333232Ls lattices with L54, 6, 8 and
Ls58 at bs5 0.29 ~symmetric phase! and 0.5 ~broken
phase!, whereL is a lattice size of first, second, and third

FIG. 1. ~a! Vacuum expectation value of link variablesv on
L3332316 lattices withL54 ~circles!, 6 ~diamonds!, 8 ~triangles!
as a function ofbs . ~b! Vacuum expectation value of plaquettew
on L3332316 lattices withL54 ~circles!, 6 ~diamonds!, 8 ~tri-
angles! as a function ofbs .
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directions. The coordinates in the extra dimension runs
28<s<7. Gauge configurations are generated by the five-
hit Metropolis algorithm. For the thermalization first 5000
sweeps are discarded.

The fermion propagators are calculated by the conjugate
gradient method on 50 configurations separated by 100
sweeps. We take the domain-wall massm05 0.7, 0.8, 0.9,
0.95, 0.99 atbs5 0.29 andm05 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.9 atbs5 0.5. As mentioned before, the boundary condi-
tions in first, second, third, and fifth directions are periodic
and the one in fourth direction is antiperiodic. Wilson param-
eter r has been set tor51. The fermion propagators have
been investigated mainly ats50, 21. Theses’s are the
layers where we put sources. The layer ats50 is the domain
wall. Errors are all estimated by the jackknife method with
unit bin size.

C. Fermion spectrum in the broken phase

The system is in broken phase atbs5 0.5. We first con-
sider the fermion spectrum on the layer ats50. Let us show
Fig. 2, which is a plot of theGL

21 andGR
21 as a function of

p̄4
2[sin2(p4) at m0 50.1 and 0.6.~Note we always set

p1 ,p2 ,p350.! In the limit p4→0, GR
21 remains nonzero at

bothm0’s, while GL
21 vanishes atm050.6. We obtain the

value ofmf
2 , which can be regarded as the mass square in

four-dimensional world, by the linear fit inp̄4
2 near p̄4

250,
and plotmf as a function ofm0 in Fig. 3. The mass of

FIG. 2. ~a! @GR#0,0
21 as a function of sin2(p4) with p1 ,p2 ,p350

at bs50.5 on a 43332316 lattice, atm050.1 ~open circles! and
0.6 ~open triangles!. ~b! @GL#0,0

21 as a function of sin2(p4) with
p1 ,p2 ,p350 atbs50.5 on a 43332316 lattice, atm050.1 ~solid
circles! and 0.6~solid triangles!. Solid lines of both figures stand for
the ones obtained from the mean-field propagator with the fitted
parameterz.

FIG. 3. mf vs m0 at bs50.5 on aL3332316 lattices with
L54 ~circles!, 6 ~up triangles!, and 8~down triangles! in the case of
putting a source on the domain wall ats50, for the right-handed
fermion ~solid symbols! and the left-handed fermion~open sym-
bols!.

FIG. 4. mf vs m0 at bs50.29 on L3332316 lattices with
L54 ~circles!, 6 ~up triangles!, and 8~down triangles! in the case of
putting a source on the domain wall ats50, for the right-handed
fermion ~solid symbols! and the left-handed fermion~open sym-
bols!. Solid line corresponds to 12m0.
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right-handed fermion, obtained fromGL
21 , becomes very

small (, 0.1! atm0 larger than 0.35, so we conclude that the
critical value ism0

c;0.35. Whenever the domain-wall mass
is larger than this value, this model produces the right-
handed chiral zero mode on the domain wall ats50. From
the results above we conclude that the domain-wall model
with the dynamical gauge field on the extra dimension~i.e.,
the weak coupling limit of the original model! can maintain
the chiral zero mode on the domain wall, at least deep in the
broken phase.

Also in Fig. 2, solid lines stand for the inverse propaga-
tors obtained from the mean-field propagator with appropri-
ately tuned parameterz, and the lines show that the behavior
of the fermion propagator is well described by the mean-field
propagator.

An important question here is what a fermion spectrum is
in the scaling limit. If the fermion spectrum stays chiral in

the limit, it should stay chiral also in the symmetric phase,
since the phase transition is continuous. This means that, in
order to determine the fermion spectrum in the scaling limit
even from the broken phase, we have to know the spectrum
in the symmetric phase. Therefore, from the knowledge of
the fermion spectrum obtained in the broken phase so far, we
cannot draw any conclusions on the fermion spectrum, chiral
or vectorlike, in the scaling limit.

D. Fermion spectrum in symmetric phase

The system is in the symmetric phase atbs50.29. The
fermion propagator is analyzed in the same way as in the
broken phase.

FIG. 5. ~a! @GR#0,0
21 as a function of sin2(p4) with p1 ,p2 ,p350

at bs50.29 on a 43332316 lattice, atm050.7. ~b! @GL#0,0
21 as a

function of sin2(p4) with p1 ,p2 ,p350 at bs50.29 on a
43332316 lattice, atm050.7. Solid lines of both figures stand for
the ones obtained from the mean-field propagator with the fitted
parameterz.

FIG. 6. ~a! z ~right handed! and v vs 1/L at bs50.29 on
L3332316 lattices withL54, 6, and 8 atm050.7 ~up triangles!,
0.95~diamonds!, and 0.99~down triangles!, in the case of putting a
source on the domain wall ats50. ~b! z ~left handed! and v vs
1/L at bs50.29 on L3332316 lattices withL54, 6, and 8 at
m050.7 ~up triangles!, 0.95~diamonds!, and 0.99~down triangles!,
in the case of putting a source on the domain wall ats50. Solid
circles stand for the vacuum expectation value of link variable~the
order parameter!.
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In Fig. 4, we have plotted massmf of the right- and left-
handed modes ats50 as a function ofm0. On a
43332316 lattice, it seems that the right-handed fermion
becomes massless atm0.0.95, while the left-handed fer-
mion stays massive at allm0, so that the fermion spectrum
on the domain wall is chiral. However, as the lattice sizes
become larger, for example 63332316 and 83332316,
mass differences between the right- and the left-handed
modes become smaller. This suggests that the fermion spec-
trum becomes vectorlike in the infinite volume limit. From
this data alone, however, we cannot exclude a possibility that
the critical massm0

c is very close to 1.0, since the fermion
mass nearm051.0 is very small. In order to make a definite
conclusion on the absence of chiral zero modes in the sym-
metric phase, we try to fitGL

21 andGR
21 at givenm0 using

the form of mean-field propagator, Eqs.~14! and ~15!, with
the fitting parameterz. We show the quality of this fit in
Figs. 5~a! and 5~b!. These figures show that the fermion
propagator is well described by the mean-field propagator if
the fitting parameterz is chosen such thatx2 is minimized.
We then have plottedz obtained by the fit as a function of
1/L in Figs. 6~a! and 6~b!, whereL ’s take 4, 6, 8 on the
L3332316 lattices. The values ofz’s are almost indepen-
dent ofm0 at each 1/L except the right-handed modes at
m050.99. The solid circles represent the order parameterv
defined in Eq.~22!. The behaviors ofz’s at differentm0’s are
almost identical to one another and are very similar to that of
v except the right-handed ones atm050.99. We think that
the observed deviation ofz ~right handed! atm050.99 from
those at otherm0’s is not a real effect but a statistical fluc-
tuation, since thex2 for the fit atm050.99 is almost flat in
the region betweenz50 and z;0.3. Ignoring this data at
m050.99 we see thatz can be identified withv and, there-
fore, z becomes zero as the lattice size goes to infinity since
the order parameterv defined in Eq.~22! becomes zero in
the infinite volume limit. This analysis leads us to a conclu-

sion that the fermion spectrum in the symmetric phase is
vectorlike.

Figure 4 also shows that the fermion masses tend to ap-
proach the linemf512m0, which is the value of the mass
for free Wilson fermion at a positives layer, as the lattice
volume increases. Furthermore, in Fig. 7 as a function of
m0, we have also plottedmf at s521 ~a negatives layer!.
As the volume increases the mass difference between right-
handed and left-handed fermions becomes smaller and both
masses seem to approach to the linemf511m0, the value of
the mass for free Wilson fermion at a negatives layer. Since
the Dirac and Wilson terms in the extra direction of the fer-
mion action~3! are absent in the case ofbs50 or, equiva-
lently, the case of the mean-field parameterz being zero

FIG. 7. mf vs m0 at bs50.29 on L3332316 lattices with
L54 ~circles!, 6 ~up triangles!, and 8~down triangles! in the case of
putting a source ats521, for the right-handed fermion~solid sym-
bols! and the left-handed fermion~open symbols!. Solid line corre-
sponds to 11m0.

FIG. 8. ~a! z ~right handed! and v vs 1/L at bs50.5 in the
symmetric phase onL2332 lattices with L524 and 32 at
m050.7 ~squares!, 0.8 ~up triangles!, 0.9 ~diamonds!, and 0.99
~down triangles!, in the case of putting a source on the domain wall
at s50. ~b! z ~left handed! andv vs 1/L at bs50.5 in the symmet-
ric phase onL2332 lattices with L524 and 32 atm050.7
~squares!, 0.8 ~up triangles!, 0.9 ~diamonds!, and 0.99~down tri-
angles!, in the case of putting a source on the domain wall at
s50. Solid circles stand for the vacuum expectation value of link
variable~the order parameter!.
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effectively, the fermion action is equivalent to the four-
dimensional ones with the copies of the number of sites in
the extra dimension and then two lines ofmf ’s at a positive
and a negative layer represent a free Wilson fermion mass at
each layer. The phase where this phenomenon occurs is
known as the layered phase@26# and in this phase the chiral
zero modes disappear because of the no-go theorem at each
layer. Therefore, this data also supports our conclusion on
the absence of chiral zero modes in the symmetric phase.

In summary our results ofmf at both positives and nega-
tive s layer suggest that chiral zero modes in the symmetric
phase disappear in the infinite volume limit. We conclude
that the original Kaplan’s model fails to describe lattice chi-
ral gauge theories in the symmetric phase.

IV. CONCLUSIONS AND DISCUSSIONS

Using the quenched approximation, we have performed
the numerical study of the domain-wall model in 411 di-
mensions with the U~1! dynamical gauge field on the extra
dimension. From this study we obtain the following results.
In the broken phase of the gauge field, there exists the critical
value of the domain-wall mass separating the region with a
chiral zero mode and the region without it in the same case
of ~211!-dimensional model. At the domain-wall mass
larger than its critical value, a zero mode with one chirality
exists on the domain wall. In the symmetric phase, on the
other hand, our data onL3332316 with L54, 6, 8 lattices
suggest the absence of chiral zero modes in the infinite vol-
ume limit, though the chiral zero mode seems to exist on
finite lattices. We also found that fermion propagators ob-
tained through numerical simulations on finite lattices are
well described by the mean-field propagator withz.v.
Since the existence of chiral zero modes in the symmetric
phase is essential for the success of the original domain-wall
model, our results for the~411!-dimensional model indicate

that the original domain-wall model cannot work as lattice
chiral gauge theories.

In 211 dimensions we could not conclude whether or not
the fermionic zero mode exists because of the difficulty for
the simulation nearm051 and the absence of the order pa-
rameter in the infinite volume limit for the two-dimensional
U~1! model. We try here to extract the parameterz of the
~211!-dimensional model, by the method used for the~4
11!-dimensional model. In Figs. 8~a! and 8~b!, the param-
eter z is plotted as a function of 1/L. The behavior ofz is
almost identical to that of order parameterv in Eq. ~22! but
not to the square root of plaquette in Eq.~23!. This new
analysis shows that zero modes are absent in the symmetric
phase in the~211!-dimensional U~1! model as well as in the
~411!-dimensional model. Therefore, we conclude that U~1!
chiral gauge theories cannot be constructed via an original
domain-wall model, regardless of its dimensionality.

One of the remaining questions is whether the above
negative conclusion also holds for other gauge groups such
as SU~2!. The answer is not so straightforward: For example,
the two-dimensional SU~2! spin model has a symmetric
phase only. We wonder whether chiral zero modes are absent
in the symmetric phase even if the gauge field of the~211!-
dimensional domain-wall model becomes ‘‘smooth’’ for
large but finitebs . To answer this question we are currently
investigating the ~211!-dimensional SU~2! domain-wall
model.
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