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Chiral zero modes on the domain-wall model in 41 dimensions
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We investigate an original domain-wall model in-4 dimensions numerically in the presence oflJ
dynamical gauge field only in an extra dimension, corresponding to a weak coupling limit of four-dimensional
physical gauge coupling. Using a quenched approximation we carry out a numerical simulation for this model
at ﬂs(=1/g§)= 0.29 (“symmetric” phase and 0.5(broken” phase, wheregs is the gauge coupling con-
stant of the extra dimension. In the broken phase, we found that there exists a critical value of a domain-wall
massmg which separates a region with a fermionic zero mode on the domain wall from the one without it in
the same case d2+1)-dimensional model. On the other hand, in the symmetric phase, our numerical data
suggest that the chiral zero modes disappear in the infinite limit of four-dimensional volume. From these
results it seems difficult to construct th€Q) lattice chiral gauge theory via an original domain-wall formu-
lation. [S0556-282(97)04412-3

PACS numbgs): 11.15.Ha, 11.10.Kk, 11.30.Rd

I. INTRODUCTION model in the weak gauge coupling limit cannot produce chi-
ral zero modes needed to construct chiral gauge theories. In
Although perturbative aspects of electroweak interactiorthis limit, if gauge invariance were maintained, pure gauge
are well described by the standard model, its nonperturbativéield configurations equivalent to the unity by gauge trans-
phenomenon has to be investigated beyond the perturbatidarmation would dominate and gauge fields would become
theory. At present, the most powerful nonperturbative techsmooth. In the setup of the waveguide model, however,
nigue is the lattice field theory. However, it is nontrivial to 2k-dimensional gauge fields are nonzero only in the layers
define the standard model on a lattice since it is a type ofear domain wallwaveguidg, so that the gauge invariance
chiral gauge theories, construction of which is one of theis broken in the edge of the waveguide. Therefore, even in
long-standing problems of lattice field theory: Because of théhe weak gauge coupling limit, gauge fields are no more
fermion doubling problems, a naivelR-dimensional dis- smooth and become very “rough,” due to the gauge degrees
cretized lattice fermion field yields®2fermion particles, half of freedom appearing to be dynamical in this edge. As a
of one chirality and half of the other, so that the theoryresult of the rough gauge dynamics, a new chiral zero mode
becomes nonchirdll]. Several lattice approaches have beenwith the opposite chirality to the original zero mode on the
proposed, but so far none of them have been proven to wortomain wall appears in the edge, so that the fermionic spec-
successfullyf2]. trum inside the waveguide becomes vectorlike. It has been
Kaplan has proposed a new construction of lattice chiraflaimed[10,11] that this “rough gauge problem” also exists
gauge theories via domain-wall mod¢Bj. Starting from a  in the overlap formula since the gauge invariance is broken
vectorlike gauge theory ink2+ 1 dimensions with a fermion by the boundary condition at the infinity of the extra dimen-
mass term being a shape of a domain wall in teetrg  sion[17,18. Furthermore, an equivalence between the wave-
(2k+1)th dimension, he showed in the weak gauge couguide model and the overlap formula has been pointed out
pling limit that a massless chiral state arises as a zero moder the special casgl9]. Although the claimed equivalence
bound to the R-dimensional domain wall while all the dou- has been challenged in Ref20,21], it is still crucial for the
blers have large masses of the lattice cutoff scale. It has beéticcess of the overlap formula to solve the “rough gauge
also shown that the model works well for smooth back-problem” and to show the existence of a chiral zero mode in
ground gauge fieldg4—7]. the weak gauge coupling limit. Recently, two results have
Two simplified variants of the original Kaplan’s domain- been obtained in this aspect, one is posifi8], the other is
wall model have been proposed: an “overlap formu[&8;9]  negative[24], so more work may be necessary for the defi-
and a “waveguide model’[10,11]. Gauge fields appearing nite conclusion.
in these variants arek2dimensional and are independent of  In the original model there are two inverse gauge cou-
the extra (X+1)th coordinate, while those in the original plings 8= 1/g? and 8s=1/g%, whereg is the coupling con-
model are R+1 dimensional and depend on the extrastant in(physica) 2k dimensions ands is the one in the
(2k+1)th coordinate. These variants work successfully for(extra (2k+ 1)th dimension. Very little is known about this
smooth background gauge fielfi2—18,2], as the original model excepBs=0 casd10,25,26 (known as “the layered
one does. Nonperturbative investigations for these variantghase’) where the spectrum seems vectorlike and except the
seem easier than that for the original model due to the simease of(2+1)-dimensional Y1) model[27]. Since perturba-
pler structure of gauge fields. Indeed some positive result§on theory for the physical gauge coupliggis expected to
are obtained for the vector Schwinger model by the overlagold, the fermion spectrum of the model can be determined
formula[22]. in the limit thatg— 0. In this weak coupling limit, all gauge
However, it has been report¢tio,11] that the waveguide fields in the physical dimensions can be gauged away, while
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the gauge field in the extra dimension is still dynamical andwith a fermionic zero mode on the domain wall from one
its dynamics is controlled by, . Instead of the gauge de- without it. In the “symmetric” phase the critical values of
grees of freedom in the edge of the waveguidek{2)th  the domain-wall mass seem to also exist but are very close to
component of gauge fields represents roughness dfs upper boundn,=1, so that the region with a fermionic
2k-dimensional gauge fields. An important question isZ€ro mode is very narrow. Because of the difficulty observed
whether the chiral zero mode on the domain wall survives i the numerical simulation nean,=1 we cannot exclude a
the presence of this rough dynamics. The dynamics of th@ossibility that the existence of the zero mode is an artifact
gauge field in this limit is equivalent tokadimensional sca- of finite lattice size effects. Further simulation we have made

lar model with 4, independent copies wherel 2 is the on larger lattice sizes cannot give a definite conclusion.
S . . .
number of sites in the extra dimension. In general at Iarges'r.lc.e’ as mentlpngq be_fore, the phases of the model in the
B. such a system is in a “broken” phase where some globa|nf|n|te volume limit is different from the ones of the four-
S

symmetry is spontaneously broken, while at smajlthe dimensional model, we did not attempt to increase lattice
y y P y ' sizes further, for example, 18@o see the fate of zero mode

system is in a “symmetric” phase. Therefore, there exists g, yo symmetric phase. Instead, we have decided to investi-
critical point S, and it is likely that the phase transition at gate the(4+1)-dimensional W1) model directly, to obtain
Bs= Bs is continuous(second or higher orderThe “gauge  the definite conclusion on the existence of zero modes in the
field” becomes rougher and rougher at smalgr. Indeed  symmetric phase.
we know that the zero mode disappearsgat=0 [25,26], In this paper, in order to know the fate of the chiral zero
while the zero mode exists gt = (free casg Sofarwe do  mode, we have carried out a numerical simulation of a
not know the fate of the chiral zero mode in the intermediatejomain-wall model in 41 dimensions with a quenched
range of the couplings. In the symmetric phase, if chiral U(1) gauge field in thg8=o limit. In Sec. Il, we have de-
zero modes exist, these modes, one at the domain wall arfthed our domain-wall model with dynamical gauge fields.
the other at the antidomain wall, decouple each other even ie have calculated a fermion propagator by using a kind of
the presence of the extra dimensional gauge fields. In theean-field approximation, to show that there is a critical
broken phase, on the other hand, there are arguments thadlue of the domain-wall mass parameter above which the
massless gauge fields, whose couplings to zero modes afero mode exists. The value of the critical mass may depend
vectorlike, always exist both in Abelian ca$t0] and in  on B, which controls the dynamics of the gauge field. In
non-Abelian casg¢27]. Although there is a possibility that Sec. IIl, we have calculated the fermion spectrum numeri-
the broken phase leads tolgome chiral gauge theory27]  cally using quenched approximation 8§=0.29,0.5, and at
in the continuum limit Bs=B¢), this depends on whether various values of domain-wall masses. We have found that
the zero modes exist or not in the symmetric phase. Thein the broken phase8d,=0.5) there exists the range of a
there are the following three possibilitigs) The chiral zero  domain-wall mass parameter in which the chiral zero mode
mode always exists except=_0. In this case we may likely survives on the domain wall. In the symmetric phase
construct a lattice chiral gauge theory in both symmetric(3,=0.29), however, from data on several lattice sizes we
(VBs<B3) and broken Bs\ BS) phases. This is the best have found a numerical evidence that the chiral zero mode
case for the domain-wall modelb) The chiral zero mode disappears in the infinite volume limit of four-dimensional
exists only in the broken phas@{> ;). It is likely, how-  Euclidean space-time. Our conclusions and some discussions
ever, that the continuum limit taken @ =85 from above are given in Sec. IV.
leads to a vector gauge theofg) No chiral zero mode sur-
vives excepiBs=. The original model cannot describe lat- II. DOMAIN-WALL MODEL
tice chiral gauge theories at all. Therefore, it is very impor-
tant to determine which possibility is indeed realized in the
domain-wall model. We consider a vector gauge theoryDn=2k+ 1 dimen-
Instead of(4+1)-dimensional models, we have recently sions with a domain-wall mass term, which has a kinklike
investigated &2+1)-dimensional W1) model[27]. Using @ mass term in the coordinate of an extra dimension. This
guenched approximation we have carried out a numericalomain-wall model is originally proposed by Kaplgi, and
simulation to see whether chiral zero modes exist or not ity fermionic part of the action is reformulated by Narayanan-
this model. In the weak coupling limit of the physical gauge Neuberger[8], in terms of a X-dimensional theory. The
coupling the(2+1)-dimensional W1) gauge system is re- model is defined by the action
duced to the two-dimensional (1) spin systent. Strictly
speaking, there is no order parameter in the two-dimensional S=Sg+ S¢, 1)
U(1) spin system. On a large but finite lattice, however, the
behavior of the model is similar to the one of a four- whereS; is the action of a dynamical gauge field aBdis
dimensional scalar model: On a finite lattice we regard thehe fermionic actionSg is given by
Kosterlitz-Thouless phase as the “symmetric” phase and the
spin-wave phase as the “broken” phase. In the “broken”
phase we have numerically found that there exists a critical Se=8 2 2 {1-ReT{U,,(n,s)]} 2
value of a domain-wall mass§ which separates a region s

A. Definition of the model

+Bs§ g {1-Re T{U ,p(n,s)1},

This is explained in the next section.
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where u,v run from 1 to X, n is a X-dimensional lattice g is the inverse gauge coupling for the plaqudtte, and
point, and s is a coordinate of an extra dimension. B is the one for the plaquettd ;. In general 3+ Bs. The
U,.(n,s) is a Z-dimensional plaquette anld ,n(n,s) is a  fermion actionSg on the Euclidean lattice, in terms of the
plaquette containing two link variables in the extra direction.2k-dimensional notation, is given by

1 — —
=32 2 UM VulUs (Mt 1) = US,(N= i) = )1+ 2 2, ds(IMoPrr+ MoPL1vA(m)

1 o t
52 2 (MU (Mt )+ U3, (0= w)ihe(n—p) = 2y(m)], ®
o
|
wheres,t are extra coordinate®g;, = 3(1* Yor4 1), cas€[27]. The main question is whether the chiral zero mode
survives in the presence of rough gauge fields mentioned in
(Mo)st=Usp(N)dst11—a(S) st the Introduction. To answer this question we will analyze the
fate of the chiral zero mode in the weak coupling limit for
(MY s=Ul | p(n)8s_1,—a(s) ds;. (4 B. In this limit, the gauge field actioBg is reduced to

HereUs ,(n),Usp(n) (D=2k+1) are link variables con-
necting a site 1,s) to (n+u,s) or (n,s+1), respectively. SG=,BSE 2 {1-Re T{V(n,s)VI(n+u,s)]}, (6)
Because of a periodic boundary condition in the extra dimen- s Ma
sion, s,t run from —Lg to Lg—1, anda(s) is given by
where the link variabldJsp(n) in the extra direction is re-

a(s)=1-mg sgri(s+3) sgrLs—s—3)] garded as a site variabl(n,s)[=U p(n)]. This action is
1 1 identical to the one of akkdimensional spin model arglis
1-mg ( — T<s<L - _) regarded as an independent flavor. The action equédios
2 2 invariant under
= 1 1 (5
1+mo ( “Lemgsss- 5)' V(n,s)—g(s)V(n,s)g'(s+1) [g(s)eGl,  (7)

wherem, is the height of the domain-wall mass. It is easy towhereG is the gauge group of the original model. Therefore,
check that the above fermionic action is identical to the onehe total symmetry of the model 32s, where 2, the size
in 2k+1 dimensions, proposed by Kaplg3,g]. of the extra dimension, is regarded as the number of inde-
In weak coupling limit of both and B, it has been pendent flavors. We use thissduced model for our numeri-
showr that at 0<my<1 a desired chiral zero mode appearscal investigation.
on a domain wall §=0 plang without unwanted doublers.
Because of the periodic boundary condition in the extra di-
mension, however, a zero mode of the opposite chirality to
the one on the domain wall appears on the antidomain wall When the dynamical gauge fields are added even on the
(s=L¢—1). Overlap between two zero modes decreases exextra dimension only, it is difficult to calculate the fermion
ponentially at large_. A free fermion propagator is easily propagator analytically. Instead of calculating the fermion
calculated and an effective action of(2+1)- and (4+1)- propagatoexactly we use a mean-field approximation to see
dimensional model including the gauge anomaly and thén effect of the dynamical gauge field qualitatively. The
Chern-Simons term can be obtained for smooth backgrounghean-field approximation we adopt is that the link variables
gauge field§4,5,7]. are replaced as
The original Kaplan's domain-wall models in the+4
dimensions, however, have not been investigatesgrper- V(n,s)[=Usp(n)]—z, ®
turbatively, exceptB;=0 [10,25,26 and(2+1)-dimensional

B. Mean-field approximation for fermion propagators

wherez is a (n,s)-independent constant. From E@®) the
fermion action in a R-dimensional momentum space be-
2In fact, the solutions of a chiral zero mode exist atfi,<2 in comes
the free case. A smoothly damping solution is obtained at
0<my<1, while an oscillating damping one is obtained at _
1<my<2. Since the two solutions are transformed to each other by Se— 2 U(—p)
simple oscillation factor, one may restrict the region ro§ to stp

0<my<1 without loss of a generality. Aing=1, a solution be-
comes singular. +[M(Z)PR+MT(Z)PL]S,I) (p), 9

> i7,Sin(p,,) s

w
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tain a mean-field fermion propagator on a finite lattice with
the periodic boundary condition

V(p) G(p)si=|{| —i p,+M(2)|G P
(M(2)s= MJ(@)s+ 5B, (Ploc=| || 712 7uPut M@ |CulP)f P
> +1| =12 7,0, +M'(2)|Cr(p)| Prl.
V(p)= 2, 2(cop,—1), (10) e .
=
(12
(Mo(2))s1=28s11;—a(S) S5t »
(M(2)s:=26s_1¢—a(S) S5y . (11 G = G =
O s B L= oM’ P T S MM
Following Refs.[4,5,8], especially Ref[5], it is easy to ob- (13
|
with p ,=sin(p,). For largeL s where we neglect terms @ (e °Ls) with ¢>0, G, andGg are given by
Be sl (A —B)e *+ TV (Ag—B)e *+(2sS7 (5,1=0),
ALefa+S+a,t+ARefaJr(LS*S)*a,(LSH) (S?O,tﬁO),
[GL(p)]S,t: ALea_Sfa_*_’[_'_ARe*a_(LSJrS)*a_,,(LSft) (S<0,t>0), (14)
Ce @574 (A —C)e* V4 (Ag—C)e @ ststD (5t<0),
Be*a+|sft\ + (AR_ B)efa+(s+t+2)+ (AL_ B)efa_,_(ZLS*S*t*Z) (S,t? _ 1),
ARefa+(S+l)+a_(I+1)+ALefa+(Lsfsfl)fa_(LS+t+l) (S? _ l,t$ _ 1),
[Gr(P)]st= Age?~(SFD-an(t+ ) A gma (LorstD=ar(bst=1) (g< 1 t=—1), (15
Ce*a,|57t\ + (AR_ C)ea,(s+t+2)+ (AL_ C)efa,(ZLSJrSHJrZ) (S,tg _ l),
|
where modes is m{=1—z. Since A, term dominate} for
V(p) 1-z<my<1 in the G, [Eg. (14)] and Gk [Eg. (15)], a
a+:z(1— Timo):zb+, (16) right-handed zero mode appears in #e0 plane, and a
left-handed zero mode in thes=L,—1 plane. For
— 5.2 0<my<1-z the right- and left-handed fermions are mas-
— arccos pe+z°+bZ 17 sive in alls planes. Since the terms &f (Ag) andB(C) are
e 2zb. : almost of the same values in this regiomay, a translational
invariant term dominates i, andGg in the positive(nega-
A = 1 A= 1 tive) s layer, so that the spectrum becomes vectorlike.
L a,e*r—a_e ¢’ R a_e*—a,e ¥+’ If z— 1, the model becomes a free theory. The propagator
(18 obtained in this section agrees with the one obtained in Ref.
1 1 [4]. In the opposite limit thaz— 0, since there is no hopping
B=—————, C=———. (199  term to the neighboring layers, this model becomes the one
2a, sinha 2a_sinha analyzed in Ref[25] in the case of the strong coupling limit

Like a free fermion theory, the terms 8;,B, andC have
no singularity for allz’'s asp—0. A behavior ofA| is, how-
ever, different. Ap—0, A, behaves as

1
< <1-
[(I-mg?—ZT+0(p) o me=t7?
A amZ—[(22—1)—mZ]?
0 — 0 (1-z<mp<1l).
4mgyzp

(20

Bs=0, and in Ref[26], in the case that is identified to the
vacuum expectation value of the link variables. This consid-
eration suggests that the region where the zero modes exist
becomes smaller and smallerg4 — z<my<1) approaches
zero.

What corresponds tv? Boundary conditions which sat-
isfies arez=1 at B;=> andz=0 at 8,=0. As explained

3To be exact, the zero mode exists for ¥<<my<1+z when the
domain-wall mass height is<Omy<2 in which doublers decouple
from the fermion spectrum. As mentioned in the footnote 2, how-
ever, since one can restrict the regionnaf to 0<my<<1 without

A critical value of the domain-wall mass that separates doss of a generality, it is sufficient that the rangenaf with a zero
region with a zero mode and a region without any zeromode is 1 z<my<1.
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before, the gauge field action of our model is identical to that

of the U1) spin system in four-dimensions. So the most
naive candidat§26] is
z=(V(n,s)), (21

which is not invariant under the symmetf¥). In our simu-
lations onL3x L,X 2L lattices, as an order parameter, we

take a vacuum expectation value of link variable calculated
A

with rotational technique:

| )

Although v defined in Eq.(22) is always nonzero on finite

1
2L

AN

S

EV(ns

(22

lattices, it becomes zero in the symmetric phase but stay:

nonzero in the broken phase in the infinite volume limit.
Figure Xa) shows that, even on finite latticaspehaves as if

it was an order parameter: it is very small and decreases a

the volume increases in the would-be symmetric phase. If th
identification thatz=v is true, zero modes disappear in the
symmetric phase, where=0. The other choice, which is
invariant under Eq(7), is the vacuum expectation value of
plaquette:

22=(TrRe[V(n,s)VT(n+ u,s)}). (23
In this identification the zero modes always exist in both
phases, sincéTr Re[V(n,s)VT(n+ u,s)}) is nonzero for all

Bs exceptB,=0 and is insensitive to which phase we are in,
as shown in Fig. (b).

IIl. NUMERICAL STUDY OF (4+1)-DIMENSIONAL
U(1) MODEL

A. Method of numerical calculations

In this section we numerically study the domain-wall
model in 41 dimensions with a 1) dynamical gauge field
in the extra dimension. As seen from E§), the gauge field
action can be identified with a four-dimensiona{1l spin
model (with 2L ¢ copies.

DOMAIN-WALL MODEL ... 1125
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FIG. 1. (8 Vacuum expectation value of link variableson
L3x 32x 16 lattices withL =4 (circles, 6 (diamonds, 8 (triangles
as a function ofBs. (b) Vacuum expectation value of plaquette
on L3x32x 16 lattices withL=4 (circles, 6 (diamonds, 8 (tri-
angles$ as a function of3;.

Our numerical simulation has been carried out by the

qguenched approximation. Configurations ofLlJdynamical

We take the following setup for four-dimensional momenta.

gauge field are generated and fermion propagators are calci-periodic boundary condition is taken for the first-, second-,
lated on these configurations. The obtained fermion propagand third-directions and the momenta in these directions are
tors are gauge noninvariant in general under the symmetriixed on p;,p,,p3=0. An antiperiodic boundary condition

(7). The fermion propagatds(p)s becomes “invariant” if
and only ifs=t. Thus, we take the-s layer as propagating
plane = “physical space’), and investigate the behavior of
the fermion propagator in this layer.

To study the fermion spectrum, we first extr&at and
Gg, defined in Eq.(12), from the fermion propagator. As-
suming Eqg.(13), we then obtain corresponding “fermion
masses” fromG, (p) andGx*(p) by fitting them linearly

in p? as follows:

G, '=p?+MM—mé(righty (p—0), (24)

Grl=p2+MMT—mi(left) (p—0). (25)

is taken for the fourth direction and the momentum in
this direction is variable, ps,=(2n+1)w/L,,
n=-—L,/2,...L4/2—1, whereL, is the number of site of
fourth direction.(Our numerical simulations have been per-
formed always fol,=32)

B. Simulation parameters

From Fig. Xa) it is inferred that the system is in the
symmetric phase gB,=0.29 and in the broken phase at
Bs=0.5. Our simulation is performed in the quenched ap-
proximation onL3x 32x 2L lattices withL=4, 6, 8 and
L,=8 at B,= 0.29 (symmetric phaseand 0.5 (broken
phase, wherelL is a lattice size of first, second, and third
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Bs=0.5 , 4°x32x16 , $=0 L =4 (circles, 6 (up triangle$, and 8(down trianglein the case of
50 ' ‘ ‘ putting a source on the domain wall &0, for the right-handed
:ﬁzzgié fermion (solid symbol$ and the left-handed fermiofopen sym-
a0l bols).

3.0+

20 |

1.0

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
b 2
(b) sin’(p,)

C. Fermion spectrum in the broken phase

The system is in broken phase@= 0.5. We first con-
sider the fermion spectrum on the layersatO. Let us show
Fig. 2, which is a plot of th&s, * andGy* as a function of
Eizsinz(p@ at my =0.1 and 0.6.(Note we always set
P1,P2,p3=0.) In the limit p,—0, Ggl remains nonzero at
both my’s, while G, * vanishes am,=0.6. We obtain the
value ofmf, which can be regarded as the mass square in
four-dimensional world, by the linear fit ip2 nearp2=0,
and plotm; as a function ofmy in Fig. 3. The mass of

FIG. 2. (a) [GR]E,é as a function of sif(p,) with p;,p,,p3=0
at 8;=0.5 on a 4x32x 16 lattice, atmy=0.1 (open circle and
0.6 (open triangles (b) [GL]aé as a function of sif(p,) with
P1,P2.P3=0 atB,=0.5 on a £x 32x 16 lattice, atm,=0.1 (solid
circles and 0.6(solid triangles. Solid lines of both figures stand for
the ones obtained from the mean-field propagator with the fittec
parameter.

directions. The coordinats in the extra dimension runs
—8=s=<7. Gauge configurations are generated by the five
hit Metropolis algorithm. For the thermalization first 5000
sweeps are discarded.

The fermion propagators are calculated by the conjugat:
gradient method on 50 configurations separated by 10
sweeps. We take the domain-wall masg= 0.7, 0.8, 0.9,
0.95, 0.99 afBs= 0.29 andmy= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.9 atB;= 0.5. As mentioned before, the boundary condi-
tions in first, second, third, and fifth directions are periodic
and the one in fourth direction is antiperiodic. Wilson param-
eterr has been set to=1. The fermion propagators have
been investigated mainly &=0, —1. Theses's are the
layers where we put sources. The layesat0 is the domain

unit bin size.

m,vs m,

s=0.29 , L’x32x16 , s=0
0.4 ; ; .
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FIG. 4. m; vs my at 8,=0.29 onL3x32x16 lattices with

L =4 (circles, 6 (up triangle$, and 8(down trianglegin the case of
putting a source on the domain wall &0, for the right-handed
wall. Errors are all estimated by the jackknife method withfermion (solid symbol$ and the left-handed fermiofopen sym-
bols). Solid line corresponds to-1mj.



56 CHIRAL ZERO MODES ON THE DOMAIN-WALL MODEL ...

-1 . 2
Gy vs sin"(p,)
Bs=0.29 , 4°x32x16 , s=0

Z(right-handed) vs 1/L
Ps=0.29, L’x32x16 , s=0

1127

3.0
Omg=0.7 o —eov
— fit (z=0.151) 040 - A--AM=07
OO M =095
V- mg=0.99

0.20 -

0.10 F 4% // |

0.00 . . % . L

0.0 . . . w . . . ‘ ‘
00 01 02 03 04 05 06 07 08 09 10 0.00 0.05 0.10 0.15 0.20 0.25
(a) sin(p,) (a) i
G, vs sin’(p,) Z(left-handed) vs 1/L
Ps=0.29 , 4°x32x18 , s=0 Bs=0.29 , L’x32x16 , 5=0
30 . ‘ . . T T
om=0.7 e —ov
— fit (z=0.127) Lo\ =07
Orvvvene <>m°=o 95
v vmo__.o‘gg
0.20
z
0.10 |
0.0 ‘ . ‘ . . . , . . 0.00 ‘ ‘
00 01 02 03 04 05 06 07 08 09 10 0.00 0.05 0.10
(b) sin’(p,) (b)

FIG. 6. (8 z (right handed and v vs 1L at B,=0.29 on
at B.=0.29 on a 4x 32x 16 lattice, atmy=0.7. (b) [G, ;% as a L X32x16 lattices withL=4, 6, and 8 am,=0.7 (up triangle,
function of sif(p) with py,p,,ps=0 at Bc=0.29 “on a 0.95(diamonds, and Q.99(down triangley in the case of putting a
43x 32x 16 lattice, atm,=0.7. Solid lines of both figures stand for Source on the domain wall a&=0. (b) z (left handed andv vs

the ones obtained from the mean-field propagator with the fitted/L @t Bs=0.29 on L3X32X_16 lattices withL=4, 6, and 8 at
parametez. my= 0.7 (up triangle$, 0.95(diamondg, and 0.99down triangley,

in the case of putting a source on the domain walsa0. Solid
right-handed fermion, obtained fror@[l, becomes very circles stand for the vacuum expectation value of link varidtsie
small (< 0.1) atmg larger than 0.35, so we conclude that the order parametgr
critical value ismg~0.35. Whenever the domain-wall mass
is larger than this value, this model produces the rightyne |imit, it should stay chiral also in the symmetric phase,
handed chiral zero mode on the domain walbat0. From  gjnce the phase transition is continuous. This means that, in
th.e results aboye we conc!ude that the dom?'”'wa.” mOdeirder to determine the fermion spectrum in the scaling limit
with the dynam.|cal gauge field qn'the extra dlmens'ﬂoel.', even from the broken phase, we have to know the spectrum
the we_ak coupling limit of the orlg_lnal modetan malntal_n in the symmetric phase. Therefore, from the knowledge of
the chiral zero mode on the domain wall, at least deep in thﬂwe fermion spectrum obtained in the broken phase so far, we
broken phage. - . cannot draw any conclusions on the fermion spectrum, chiral

Also in Fig. 2, solid lines stand for the inverse propaga- S L

; ; : .or vectorlike, in the scaling limit.

tors obtained from the mean-field propagator with appropri-
ately tuned parameter, and the lines show that the behavior
of the fermion propagator is well described by the mean-field
propagator. The system is in the symmetric phase@t0.29. The

An important question here is what a fermion spectrum ifermion propagator is analyzed in the same way as in the
in the scaling limit. If the fermion spectrum stays chiral in broken phase.

FIG. 5. (a) [GR]E,é as a function of sif(p,) with p;,p,,p3=0

D. Fermion spectrum in symmetric phase
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mvs m, Z(right-handed) vs 1/L
3
20 Ps=0.29, L'x32x16 , 50 conf. , s=-1 L’x32 , Bs=0.5 (in the symmetric phase) , s=0
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FIG. 7. m; vs my at Bs=0.29 onL3x32x16 lattices with Z(left-handed) vs 1/L

L =4 (circles, 6 (up triangle$, and 8(down trianglegin the case of
putting a source at= — 1, for the right-handed fermiofsolid sym-

L’x32, Bs=0.5 (in the symmetric phase) , s=0
0.20 T T T T

bols) and the left-handed fermiopen symbols Solid line corre- O-—0m=07
LA m=0.8
sponds to # mj. S o

0.15 v v m0=0499

In Fig. 4, we have plotted mass; of the right- and left-
handed modes ats=0 as a function ofmy,. On a
43x32x 16 lattice, it seems that the right-handed fermion Z o.10
becomes massless aiy,>0.95, while the left-handed fer-
mion stays massive at athy, so that the fermion spectrum
on the domain wall is chiral. However, as the lattice sizes ,, |
become larger, for example®&32x16 and §x32x 16,
mass differences between the right- and the left-hande
modes become smaller. This suggests that the fermion spe
trum becomes vectorlike in the infinite volume limit. From 098000 0010 0020 0030 0040 0050 0060 0070
this data alone, however, we cannot exclude a possibility the () n
the critical massn is very close to 1.0, since the fermion ) )
mass neamy= 1.0 is very small. In order to make a definite _~'C: 8 (@ z (right handegi andv vs 1L at f=0.5 in the
conclusion on the absence of chiral zero modes in the syms—ymmetrIC phase on. x32 lattices W'th.l‘:24 and 32 at

. 1 1 . . my=0.7 (squares 0.8 (up triangle$, 0.9 (diamondg, and 0.99
metric phase, we try to fi6_ " andGg " at givenm u5|.ng (down triangley in the case of putting a source on the domain wall
the fgrm of mean-field propagator, Eq44) _and (15)_’ W!th_ ats=0. (b) z (left handed andv vs 1L at B8s=0.5 in the symmet-
the fitting parametez. We show the quality of this fit in e phase onL?x32 Ilattices with L=24 and 32 atm,=0.7
Figs. §a) and §b). These figures show that the fermion (squarey 0.8 (up triangles, 0.9 (diamonds, and 0.99(down tri-
propagator is well described by the mean-field propagator iimgles, in the case of putting a source on the domain wall at
the fitting parametee is chosen such that? is minimized.  s=0. Solid circles stand for the vacuum expectation value of link
We then have plotted obtained by the fit as a function of variable(the order parameter
1/L in Figs. 6a) and Gb), wherelL’s take 4, 6, 8 on the
L3x32x 16 lattices. The values afs are almost indepen- sion that the fermion spectrum in the symmetric phase is
dent of my at each 1/ except the right-handed modes at vectorlike
my=0.99. The solid circles represent the order parameter  Figure 4 also shows that the fermion masses tend to ap-
defined in Eq(22). The behaviors of’s at differentmy’s are  proach the linem;=1—mg, which is the value of the mass
almost identical to one another and are very similar to that ofor free Wilson fermion at a positive layer, as the lattice
v except the right-handed onesrag=0.99. We think that volume increases. Furthermore, in Fig. 7 as a function of
the observed deviation a@f (right handedlat my=0.99 from  m,, we have also plotteth; at s= —1 (a negatives layer).
those at othemy’s is not a real effect but a statistical fluc- As the volume increases the mass difference between right-
tuation, since the? for the fit atmy,=0.99 is almost flat in  handed and left-handed fermions becomes smaller and both
the region betweez=0 andz~0.3. Ignoring this data at masses seem to approach to the time= 1+ mg, the value of
my=0.99 we see that can be identified withh and, there- the mass for free Wilson fermion at a negats/yer. Since
fore, z becomes zero as the lattice size goes to infinity sincéhe Dirac and Wilson terms in the extra direction of the fer-
the order parametar defined in Eq.(22) becomes zero in mion action(3) are absent in the case B{=0 or, equiva-
the infinite volume limit. This analysis leads us to a conclu-lently, the case of the mean-field parametebeing zero
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effectively, the fermion action is equivalent to the four- that the original domain-wall model cannot work as lattice
dimensional ones with the copies of the number of sites irchiral gauge theories.

the extra dimension and then two linesrof’'s at a positive In 2+1 dimensions we could not conclude whether or not
and a negative layer represent a free Wilson fermion mass #te fermionic zero mode exists because of the difficulty for
each layer. The phase where this phenomenon occurs ike simulation neamy=1 and the absence of the order pa-
known as the layered phag26] and in this phase the chiral rameter in the infinite volume limit for the two-dimensional
zero modes disappear because of the no-go theorem at eddfil) model. We try here to extract the parameteof the
layer. Therefore, this data also supports our conclusion of2+1)-dimensional model, by the method used for ilde
the absence of chiral zero modes in the symmetric phase. +1)-dimensional model. In Figs.(8 and &b), the param-

In summary our results af; at both positives and nega- eterz is plotted as a function of L/ The behavior ofz is
tive s layer suggest that chiral zero modes in the symmetrialmost identical to that of order parametein Eq. (22) but
phase disappear in the infinite volume limit. We concludenot to the square root of plaquette in E@3). This new
that the original Kaplan’s model fails to describe lattice chi-analysis shows that zero modes are absent in the symmetric

ral gauge theories in the symmetric phase. phase in thé2+1)-dimensional Y1) model as well as in the
(4+1)-dimensional model. Therefore, we conclude théat)u
IV. CONCLUSIONS AND DISCUSSIONS chiral gauge theories cannot be constructed via an original

] o domain-wall model, regardless of its dimensionality.

Using the quenched approximation, we have performed ope of the remaining questions is whether the above
the numerical study of the domain-wall model if-2 di-  pegative conclusion also holds for other gauge groups such
mensions with the W) dynamical gauge field on the extra 55'5y42). The answer is not so straightforward: For example,
dimension. From this study we obtain the following results.ine two-dimensional S(@) spin model has a symmetric
In the broken phase of the gauge field, there exists the criticgjpase only. We wonder whether chiral zero modes are absent
value of the domain-wall mass separating the region with g, the symmetric phase even if the gauge field of @e1)-
chiral zero mode and the region without it in the same cas@imensional domain-wall model becomes “smooth” for
of (2+1)-dimensional model. At the domain-wall mass |5rge put finites,. To answer this question we are currently

larger than its critical value, a zero mode with one chiralityjnyestigating the (2+1)-dimensional S() domain-wall
exists on the domain wall. In the symmetric phase, on thg,ggel.

other hand, our data an®x 32x 16 with L=4, 6, 8 lattices
suggest the absence of chiral zero modes in the infinite vol-
ume limit, though the chiral zero mode seems to exist on
finite lattices. We also found that fermion propagators ob- Numerical calculations for the present work were carried
tained through numerical simulations on finite lattices areout at the Center for Computational Physics and on
well described by the mean-field propagator witk-v. VPP500/30 at the Science Information Center, both at the
Since the existence of chiral zero modes in the symmetri¢niversity of Tsukuba. This work was supported in part by
phase is essential for the success of the original domain-wathe Grants-in-Aid of the Ministry of Educatior{Nos.
model, our results for théd+1)-dimensional model indicate 04NP0701 and 08640349
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