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Renormalons beyond one loop
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Higher order renormalons beyond the chain of one-loop bubbles are discussed. A perturbation method for
the infrared renormalon residue is found. The large order behavior of the current-current correlation function
due to the first infrared renormalon is determined in both QED and QCD to the first three orders.
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[. INTRODUCTION due to the IR renormalons in non-Abelian gauge theory
. L . rises from the imaginary part of the nonperturbative effects,
Perturbation theory in field theories is generally plagueosacuum condensations, and so a precise calculation of the

by the rapld_ly growing coeff|C|e_nts, wh|c_h cause _the Series Ir]arge order behavior gives detailed information on the imagi-
weak coupling to be asymptotic. Classical solutions, instan-

tons. cause the perturbative coefficients to arownbdor nary part of the nonperturbative amplitudes, which could be
' P 09 essential in understanding the full amplitude. For a recent
large n, wheren is the order of perturbation, and so do

. . consideration in this direction one may refer[&].
certain subsets of Feynman diagrams, renormai@mme of y &

th ’ f th | di dh This paper is organized as follows. In Sec. I, we discuss
€ properties of the renormalons are discussed here. in QED the higher order renormalons beyond the chain of
A chain of the one-loop bubble diagrams in a photon

one-loop bubbles, and show in detail how the large order
FHehavior gets contribution from the higher order renorma-
lons. In Secs. llI-V, a systematic method of summing those
higher order renormalons is discussed, and the renormalon
residue to the first three orders is given. In Sec. VI, we dis-
Euss the calculation of the large order behavior in QCD using
X ! . the analytic property in Borel plane, and give the large order
lon, in which a soft momenturik? u*~exp(-n/2)] flows in behavio?/to rihepfirst three orgers. In Se?:. VIl, the gscheme

the propagator. P,
The actual form of the large order behavior due to andependence of the large order behavior is discussed.

infrared renormalon is generally given by

lons (Fig. 1). An exchange of the one-loop Gell-Mann—Low
(GL) effective charge gives a contribution f for an ultra-
violet renormalon, in which the momentum flowing in the
propagator is large compared to the renormalization scal
[k?/ u?>~exp)], and (—1)"n! for an infrared(IR) renorma-

Il. HIGHER ORDER RENORMALONS

Kn!n”by "[1+0O(1/n)], (1) We first review how a chain of the one-loop bubble dia-
grams gives rise to factorial growing coefficients, and then
where v and b, are renormalon-specific, known constants.show that the large order behavior of perturbation theory is
The coefficienK is an all-order quantity1]. It depends not an all-order property by giving an estimate of the higher
only on the one-loop renormalon mentioned above but als@rder renormalons.
on an infinite set of higher order renormalons, and so deter-
mining it is nontrivial.
However, it should be emphasized tiais calculable, at
least perturbatively. For example, if we had calculated the
series to a very high order, then Ed) implies that we could
extract the coefficient to an accuracy ©{1/n). Therefore,
there must be a convergent sequelggfor K, with K being
its limit, associated with the perturbation of the amplitude in
consideration. The main purpose of this paper is to present
such a sequence for the first IR renormalon in the Borel
plane.
The precise calculation of the large order behavior is im-
portant, besides its theoretical interest, because it could play
an essential role in an effort to reconstruct the true ampli-
tudes from the perturbation theory. The large order behavior FIG. 1. One-loop renormalon.

The Green’s function we consider is the electromagnetic
'Renormalons also denote the singularities in the Borel plane. current correlation function in QED in the Euclidean regime
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( MZ) where B, is the first coefficient of the8 function, to obtain
I a(u),
if e9(j ,.(x)i,(0))d*x=(a,4,—a’g )ﬂ et 8o
pe rw r a(u) (’2) = 873Q7 fotln(t)”dt
whereQ?=—g2>0, and =——ef2ﬂ4 _Fo nn'[1+0(1/n)] (8)
o 1673Q% 2 ;
400 = gy ux). ()
where
For large order behavior, it is more convenient to consider )
the renormalization scheme and scale-invariant quaiitity t= k_ )
defined by u?
w? For largen the leading contribution to the integral comes
I “(“)v@ from the kinetic regiork?~ u?exp(—n/2), and thus the lead-

D(a(w),u?1Q?)=Q? ing large order behavior is independent of the upper bound

of the integral.

QL a(w)

w? Let us now consider the effect of higher order renorma-

P H(a(u),@) lons on the large order behavior of perturbation. First, we
-Q%*— introduce some definitions. In the following the vacuum po-
9Q a(p) a(p)=0 larization diagrams are assumed to include two external pho-

w ton propagators. An irreducible renormalon is defined by re-

_ 2102 n+1 placing all photon propagators in an irreducible vacuum
_ngo An(p QL) @ polarization diagram with chains of the one-loop bubbles.

Similarly, reducible renormalons are defined by replacing all

A single exchange of the GL effective charge gives rise tgohoton lines in reducible vacuum polarization diagrams with
the first IR renormalon singularity in the Borel plane. It is chains of the one-loop bubbles. Thus for every vacuum po-
also generally assumed that the leading residue of the first IRrization diagram there are corresponding renormalons.
singularity can be completely determined by a single ex- We assign an ordgs, and the number of reduced photon
change of the GL effective charge, which implies equiva-propagatorsy, to each irreducible vacuum polarization dia-
lently that the large order behavior due to the IR renormalorgram by
can be determined by a single exchange of the GL effective

charge(Fig. 1. For the other IR renormalon in the Borel p=na—n —1,
plane, it is similarly believed that their residues can be satu-
rated by the multiple exchanges of the GL effective charges. g=np—nNq, (10

The analysis for IR renormalon in non-Abelian gauge theory

using operator product expansion supports this assumptionhere n, is the number of photon propagators amd,n;

[3,4]. With this assumption for the large order behavior fordenote the number of irreducible vacuum polarization sub-

the first IR renormalonD may be written as diagrams and the number of the one-loop bubbles, respec-
tively. A reduced photon propagator is simply a chain of an

unspecified number of one-loop bubbles. The sanzndq
D(a(p),n*1Q%)= fof(kz)a( k?)die, ) of an irreducible vacuum polarization diagram are defined as
the order and the number of the reduced photon lines of the
wherea(k?) denotes the GL effective charge and corresponding renormalon. For example, the order and the
number of reduced photon lines of the one-loop renormalon
—esz in Fig. 1 isp=0,g=1. Other higher order renormalons may
f(k?)= 870" for k?—0, (6)  be similarly characterized by thp and q. For reducible

renormalons, the highest order of the irreducible subrenor-
with e; denoting the charge of the fermiah This infrared malons of a reducible renormalon is defined as th_e order of
limit of (k) can be easily read off from the coefficient of the reducible renormalon. Some examples of the higher order
normalons are given in Fig. 2.
Before we discuss the effect on large order behavior of
higher order renormalons in general, let us take some spe-
cific examples of low order renormalons, and see their con-
tribution to the large order behavior. This exercise is very
instructive and gives an insight to more complex renorma-
n lons.
a(p)™ 1, It was first noticed by Grunbeld ], and diagrammatically
by Mueller[5], that the large order behavior of perturbation
is an all-order propertysee alsd6]). The following argu-
(7 ment is motivated by Mueller’'s observation. Let us consider

Ffw term in the operator product expansion of the currenf®
product in Eq.(2).

To see then! growth of the perturbative coefficient from
the chain of the one-loop bubbles, we may substiafte)
in Eqg. (5) with its one-loop form

k2
aun{ o

a(k2)= a(u) 2 :;
1_,3001(#«)'”(;2)
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which comes from the renormalization scale invariance of
| the GL effective charga(k?):

------- @ a(p)

3 a(a(,u),t)zm-

(14
Putting the perturbative form dil in Eq. (12) into Eq.(13),
@5 @6) we get the recursion equation

d n
tg;Mnra=—Bnt > (m=1)B, I, for n=23,...,
m=2

(15
____________ _____ - with

I =—Bolnt+py,

24 p=3 II,=— BqInt+p,. (16)

FIG. 2. Examples of higher order renormalons. Dashed Iine§_|ere'8m are the coefficients of thg function defined by

denote chains of one-loop bubbles, apdq) denote the order and da() %
number of the reduced photon propagators, respectively. o _ 2 atu _ al )™ 2 1
Bla(u)=p* =g 7= 2 Bna(w)™ % (17

andp; are constants.

the order-one renormalon in Fig. 3. The coefficiap(t) of X ) )
Solving the recursion equation we have

a(u)"*? due to this renormalon in the perturbation of the
GL effective charge inx(w) is given by

_ 4B
1 0= (Bon() | == () +p,|. (18
a(t)=2, [~ - mln-n, 1D o . _
r=1 Substitution of this into Eq(11) gives
wherell, is ther-loop vacuum polarization function _ n-1 B,
ay(1)= 2, (BoIn(1)"" =In() = p|(n—1).  (19)

M(a(p),)=2 T (Ha(p)" (12 . _—
r=1 Here we kept only the Inf term inII,(t) for simplicity, and

the effect of the constant term iH,(t) will be discussed

The powers ofll, in Eq. (11) obviously come from the ghorly. Since a factor of (B in the integrand in Eq(5)
one-loop bubbles in the external reduced photon propagatorg,qiq give rise to

and the factorif—r) accounts for ther{—r) possible loca-

tion of the fermion loop with the internal reduced photon (—1)"n!

line. TI{™, denotes the terms proportional &' in I, ;. o (20
The general form of1{™, can be deduced by considering

the following renormalization group equation for 3 (t) gives the following large order behavior:

I(a(u),t),
dj 1 1 oW1 =~ ot (‘ Bo)n”'
2 _ n 16m°QY 2

B p
2 L(Inn+ yE—l)—ZB—%

X

[1+0(1/M)],

(21)

which is comparable to the one-loop renormalon contribu-
______________ tion. Hereyg is the Euler constant.
Going back to Eq(11), expanding the factor

(—II)" "= (BoInt—py)" ", (22)

it is easy to see that every term in the expansion proportional
to
FIG. 3. Order-one renormalon. Dashed lines denote chains of .
the one-loop bubbles. (py)' for i<n (23
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OO+ OO+ S mem=q-ptl,

FIG. 4. Chains of the order-one renormalons.

2, mi=k,
also contributes to the large order behavior. Thus the inclu- =2
sion of the constant term ifl,(t) would modify Eq.(21)
into a form (m+m)(i—1)=p. (30)
i=2
Bo\" ,31 Y s
e 2[(Inn)h(pl)+h (pl)]+—h (P1) Here p; is the constant term off;(t). The I1{", 9% 2)(t) of
orderp renormalon is then given by
X[1+0(1/n)], (24) .
where Hﬁr+_1q+2)(t):ﬂa_q+zgo (Int)r—Pricrt
h(py)=ho+ha| 2| +h, P1), (25) ok TT
PUZ R0l g ) el gy ) T x 3 cpr I glplh. @

{m; m;}
Hereh; are calculable constants. Note that this series runs t

an infinite order in the imin—cs. h'(py),h"(p,) are simi- %y solving the recursion equatiq5) explicitly for the sev-

larly defined in a series form eral low order diagrams, and considering the form of the

Using a similar method it is now easy to estimate theIarge order behavior in Eq1), it is not difficult to convince

large order behavior from other renormalons. For example, iQneseIf that asymptotically

is straightforward to check that the chains of the order-one rpak _
irreducible renormalon in Fig. 4 along with the one-loop C{z?ﬂ}wrmk “g(inr)  for r—ee. (32
renormalon contribution in Eq(8) exponentiate the |mj

term in Eq.(21) to give then” factor in the large order Here the functiong(x) is a polynomial of degree at most
behavior with —1 for my,=2, and causes the” term in the large order

behawor
-2B; Substituting Eq(31) into Eq.(27) and ignoring the loga-
v= 5 (26)  rithmic dependence ig, we get

p+1

2 Ip.k) H g™ ™, (33

(B0 TE mom

which agrees with the well-known result for the first IR n!( '80)
renormalon4].

Now to discuss the higher order renormalons in general,
consider an irreducible renormalon of orderand reduced
photon propagator number. The large order behavior due \yhereJ(p,k) is a function ofp andk. This shows that the
to this renormalon in the infrared regime is given by irreducible renormalons of all order contribute to the large

order behavior. Further note that the large order behavior due
to an irreducible renormalon of ordegr involves only the
coefficients of the vacuum polarization function and e
(27)  function to (p+1)-loop order.
These are also true for the reducible renormalons. As we
Here we picked up only the Itj(term in II,(t) as before. chain more irreducible subrenormalons into a reducible
The general solution of the recursion equatid6) may be  renormalon, more powers oftlin a,(t) due to this renor-
organized in terms op andq as malon are being lost, resulting in suppressed integra it
this suppression is exactly compensated by the larger com-
a1 binatoric factor caused by the more possible locations in put-
M= 2 By %2 > (Inp Pkt ting the subrenormalons, giving a large order behavior com-
= p=1k=0 parable to those from the irreducible renormalons. Therefore,
p+1 all reducible renormalons also contribute to the leading large
x > CE,&?fm}H B 1p| : (28)  order behavior. Also, sinca,(t) for a reducible renormalon
{m; i} with m irreducible subrenormalons is proportional to

an~

n—-1

Nf t 2 (Bolnt)" " THIN A ()] (n—r)dt
0r=q-2

r

where (r1=01+2)pp(ra=az+2) (rm=dm*2)
1_[r +l 1_[r +1 1_[r +l !

(34

q'=q-2 (29

(ri—gi+2)
with eachHr L

andm, ﬁ are non-negative integers that satisfy obvious that the large order behavior from this reducible

coming from the subrenormalons, it is
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renormalon depends on the vacuum polarization function and 1

the 8 function to (p+ 1)-loop order. Ala(p), )= o (39)
The inclusion of the constant term Il,(t) in Eq. (27) — Bo| Int+ [ do— —

would modify the large order behavior in EQ3) in a simi- Bla) Bo

lar fashion as in the example of the order-one irreducible . ' . . .
renormalon in Eq(24). With p; included, each term in Eq. Wh(_erepll is defined in Eq(16) and the integral of (e) is
defined in the perturbative form

(33) will be multiplied by a series irp; in the form of Eq.

(25), with the coefficient$; now depending on each particu- el 1 1 By
lar term. _ _ . _ _ Mda:_ Boa(1) —[?Ina(,u)Jr-n. (40
Though this analysis of diagrams is very helpful in under- 0 0

standing general higher order renormalons qualitatively, i%ince

seems difficult, or at least inconvenient, to systematically

calculate the higher order renormalons using this technique. B

We need a more straightforward approach for systematic A(kz)za(kz)[l——1a(k2)|na(k2)+... . (4D
evaluation of the higher order renormalons. In the following Bo

sections such an approach is discussed. A can be as good an expansion parameter.as(k?) is also
independent of renormalization scheme. The scheme inde-
ll. BOREL TRANSFORM OF GL EFFECTIVE CHARGE pendence of\(k?) can be easily understood by considering
TIhe difference of the integral in Eq39) between two
schemes. Since the difference js independent, it cannot
depend ona(w) and thus must be a constant. It is in fact
given by

The problem of determining the renormalon residues o
D(a(u),#?/Q? eventually reduces to finding the Borel
transform of the GL effective charge. We give in this section
a perturbation method for the Borel transformagk?). We
are going to introduce a scheme and scale-independent cou- ) dX a(w) dX

. . . . a’(u) M
pling, and then write the GL effective charge in terms of the — —— =, (42
A : . : B’ (x) B(X)
coupling in a form that is particularly convenient for Borel

transform. : . . :
. . where vy, is the first coefficient of the relation between the
The Borel transform oD (a(u),1?/Q?) is defined by couplin);gls of the two schemes

© ’ — 2

The difference in Eq(42) is then canceled by the scheme
With the perturbative series & (a(u),x?/Q?) in Eq. (4), dependence gby

B P1=P1t+ ¥, (44)

—~ a
D(b)= ZO n—?b”. (36)  leading to the scheme independenceAgk?). Note that a
e similar effective charge was considered in relation to the
) ) renormalization scheme-invariant perturbation by Maximov
The large order behavior of the form in E(l) causes a 54 Vovk[7].
singularity (renormalof in D(b) and, conversely, the singu- Now C(a(k?)) in Eq. (38) may be expanded in an
larity in D(b) determines the large order behavior. Thus byasymptotic series as
studyingD (b) near the renormalon singularéties2 we can de- -
termine the large order behavior Bf(a (), u“/Q%). 2y 2 2\ —1
Let us first gonsider the renormali(zgzioﬁ group equation Clalk®))=cyIn(ak ))+§ ci(@a(k?))™". (45)
for the GL effective charga(k?),
The coefficientsc; can be determined by solving perturba-
J J tively a(k?) in Eq. (38) with the help of Eqs(39) and(40) in
MZFJFB(CY)% a(a(u),t)=0. (37 terms ofa(u), and comparing it with the perturbative ex-
® pansion of the GL effective charge w(«) using Eq.(14).

) . ) ) Then it is not difficult to see that; are given by the renor-
Solving the equation we may write the GL effective chargeygjization scheme-invariant combinations of the coefficients
as of the vacuum polarization function an@l function. This
expansion turns out to be a critical step for the Borel trans-
form of the effective charge. Introdu@&™) (k?):

1
ak?)=— , (38)

Ay +He@) V() = .

N .
——+ciIn@N(k?)+ D, ca™M(k?)' !

whereC(a) is a scheme-independent function. The effective Ak?) @7k 22: @)

couplingA is defined by (46)
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Solving a™(k?) in Eq. (46) recursively ina(u), it can be oc 1 a\ o
. ) / (N) 212
seen that this equation generates all the higher order renor- D""(a,u/Q%)= & —by—+Nnj | f(b)
malon diagrams to orde\.
Let us now consider a modified Borel transform at X &~ bPLg~ABIIZ(N) ) i, (54)
X (k?) defined by

From this we can read off the modified Borel transform of

b \=mpyap.  @n  D™(a(uw).uQ)

a(“““(m'“:f:exf(‘m

Note that this Borel transform of GL effective charge was

introduced by Qrungerdjl]. Suzbsti;[uting_Eq.(47) into EQ.  Then using the relation between the ordinary Borel transform
(5), we can writeD™(a(u),u?/Q?), which is defined by and the modified ong8], we have the ordinary Borel trans-

Diva(b)=e PPiT(b)e *adN(b). (55

replacinga(k?) in Eq. (5) with a™M(k?), as form
a(p) da 2 4
D(N)(a(:“),MZ/QZ):f ex;{bﬁo W B(N)(b):_g;_%e—bople—xbolnbo’a“(l\l)(bo)
x{e PP1T (b)a™(b)}db, (49 (—2\/Bo)!
X Bo) s [1+0(2+ b, .
where 1+ Ebﬁo)
"f'(b):f f(t)exp(bB,lnt)dt. (49) (56)
0

The real problem here is to find tr&™)(b). However,
The first IR renormalon singularity arises from the IR diver-with the help of the expansion in E¢46) it is now easy to
gence in the integral in E¢49). Substituting Eq(6) into Eq.  calculate the Borel transform af™)(k?). The inverse of Eq.

(49), (47) is
’f’ b)= Mf bﬁolntd S(N) 1 bx4(N)
(b) (te t aN(b)=— [ e”aM(x)dx, (57)
0 2mi e
2 4
__ Grn JMtebﬁolntdt with the contour wrapping around the negative real axis.
87Q%), Here
=—ﬂ;[1+(2+bﬁ )|n|\/|+...] 1
8’773Q4 24 bIBO 0 ' X= m (58)
50
0 and
whereM is an arbitrary UV cutoff. Notice that the leading
renormalon singularity is cutoff independent. aN(x)= 1 (59

The scheme dependence of the Borel transform of

~ x+cqdn @M (x)+20c[aN(x)]
DM (a(u),n?Q?) is now isolated in

Putting
—bp; d b a(pm) da 51
e and expbpgg _,3(a) . (51 1
y:a(T(x)’ (60)
To find the Borel transform explicitly, let us take a renormal-
ization scheme in which thg8 function is given by the e can write Eq(59) as
simple form
N
C.
Boa® x=y+c,lny— > —— (61)
Bla)= , (52 1 PIRVEEE
1-\a
where and Eq.(57) as
N N —
P =(N) 1 f by, ,bc; - Ci Ci
=—. b)==—[ e®yP1lexg —b>, ——1| >, —dy,
= (53 aM(b)=5— | ePyPalex i:zz'lizzoy'y

With this 8 function, Eq.(48) defines the modified Borel
transform by Brown, Yaffe, and Zh&aBYZ) [8]: where
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1 fori=0, puts the IR renormalon as the closest singularity to the ori-
— o gin, but here we consider a simple form
ci= (o fori=1, (63)
(i—=1)c; fori=2. b
| 2= f b (68)
The exponential term in the integrand may be expanded as Po
N o0 kk(N—1) with its inverse
Ci (=b) Ak
exp —b — | = , 64
p( gy'l) kzo k& y o 6 1(2
b=—-——|. 69
where Bo\ 112 (69
N-1 n In the z plane, the closest singularity to the origin is the first
,H1Ci+1 IR renormalon at
-
hNk|: kl E N—1 ’ (65) _ 2
{n; .H ! Zp=—3%, (70

and all the UV renormalons are pushed beyamd—1 on

with the set{n;} of non-negative integers satisfying the real axis. It is interesting to note that the freedom in
choosing this analytic transform is similar to that for the

N NT1 renormalization scheme. As the renormalization scheme can
2 nji =1, 2 ni=Kk. (66)  be optimized for a particular process, the analytic transform
i=1 i=1 .. . .
could be chosen to optimize the perturbative evaluation of
Substituting Eq(64) into Eq. (62), we finally have the residue. N
Now to find b?¢taN)(b) at the first IR renormalon, we
bo=(N) bbe by “ (—b)k have to substitutd in Eq. (67) with that in Eq.(69) and
b1a™(b)= ﬁf €& Tk expand it in Taylor series a=0 to orderN, and evaluate it
atz=z,. Thus the Borel transform of GL effective charge at
MY by . the first IR renormalon is given by
X 2 X cyPa iy
=k Y i=0 N
o K(N- — =bP%aN(b)|p_p = zy, 71
3 k(zl)% (— )Ny C, i KN (D)l bo MZZO amZo (71
k=0 =k i=okIT'(lI+i+1—bcy) ' _
with
(67)
. . N k(N-1)
This completes the Borel transform of the GL effective QM=(M—1)!B6ME 2
charge. k=0 =k
N N N K |
IV. RENORMALON RESIDUE DS (=" "hywcicy
i=0 j=0 m=0 k!m!(M—m—l)!

To find the leading renormalon residue BfV(b), we

have to evaluate®“1a™)(b) at the first IR renormalon posi- Xy B S 1 vi v jrmm - (72
tion, bo= —2/B,. If we directly substituté in Eq. (67) with

by, the resulting large order behavior would sum all the con-Here yj{“} is defined by

tribution from the renormalons to orddt, but unfortunately

this large order behavior does not have a finite limit for 1 _
N— oo [14]. The reason for this is that(b) is singular at the I'(n+1-x) <6
UV and IR renormalon positions, and its radius of conver-

gence when it is expanded as in H7) is given by the Note that the coefficientyy is completely determined by
position atb=1/8, of the first UV renormalon, which is the  3(N)(p) in Eq. (67), and is not modified by the Borel trans-

closest renormalon to_ the origin in the Borel plane. There'form AN*+m)(b) of the higher order effective charge. The IR
fore, we cannot substitute with by in Eq. (67) to correctly residue is then

evaluate the Borel transform at the first IR renormalon.
This problem can be avoided by introducing an analytic @
transform of the Borel plane so that the closest renormalon to _ E M 74
L . X K amZo - (74)
the origin in the new complex plane is the first IR renorma- M=0
lon [9]. Because the singularity @f(b) at the IR renormalon . ) o )
is such that it is finite but has divergent derivatiad, we It should be emphasized that, though this series is being
can then express the residue as a convergent series. evaluated at its radius of convergence, it is convergent be-
For this purpose, we can take any analytic transform thatause of the finiteness a@i(b(z)) at z=2z,.

yivx. (73



1098 TAEKOON LEE 56
V. LARGE ORDER BEHAVIOR TABLE I. The first three elements of the sequence for the first

_ . ~ IR renormalon residue in QEDx, denotes the residue from the
The Borel transforrD(b) can now be used in determin- one-loop renormalon.

ing the leading large order behavior Df{ ). Note that the
leading large order behavior is determined by the leading Ni=1 N{=2 N{=3 N;=4 N;=5 N;=100
Borel singularity, and the f/ correction in the large order
behavior corresponds to th®(b—bg) correction in the *° 1 1 1 L 1 1

Borel transform. First, we give the large order behavior in a1 1.63 132 121 116 113 1.00
renormalization scheme in which thefunction is given by %2 0.71 131 131 127 124 1.02
Eq. (52), and then in Sec. VII discuss a class of schemes irfts ~ —1.53 125 141 139 134 1.02
which all schemes share a common large order behavior ex-
cept for a trivial scheme-dependent term. Using the known

result for the vacuum polarization function and tBeunc- D :i[( _ 1_43_ 3_7§(3)+ Eg(S)) N
tion to three loop and four loop, respectively, we will also 3 s 288 24 2 f
give numerical values for the large order behavior. 3701 19
Let us go back to the Borel transform Bf in Eq. (56). +<_ i _5(3)> N2 | (78)
ExpandingD™)(b) at the origin, and using the definition of 2592 18

the Borel transform in Eq(36), the leading large order be-

. . . 2 .
havior of D™ (a( ), u?/Q?) is given by whereNs is the number of fermion flavors. Solvirafk<) in

Eq. (38) in terms ofa(u) and comparing it with Eq(14) we

ez,u4 find
f _ _ ~ _
aE]N): _ 16,”_3Q4e bOple )\bolnbOa(N)(bo)n! n)\bobo n IBl
Cj_: - =,
B
ith by——— (75) O
Wi =,
" By B: Bi piBa

Co=——"+ 5 ———+p,,
2T By B B, P2

Then the sequence for the large order behavior mentioned in

.| fi
Sec. | may be defined as Bs BB BI piB2 PiBi 3 piB1 _ P2ps

C3=— v - +
< efut 7 280 BS 283 Bo  BS 2Bo  Bo
=— e PP,
§ 16m°Q" § +P1P2+P3. (79
with «y defined in Eq(71). Note that the use of the vacuum polarization function and the

To evaluate the numerical values fog, we have to find g ynction in” MSis allowed, because, are independent of
the coefficients; in Eq. (46) explicitly. The g function and  onormalization scheme.
the vacuum polarization function in the modified minimal ¢ xy Obtained by substituting Eq79) into Eq. (71) is
subtraction ( M$ scheme to three loop and four loop, re- given in Table | for several flavor numbers. In the table, we
spectively, are given bj10] see that for a reliable estimation of the large order behavior,
a higher order calculation beyond the current one is required

B :i N for the vacuum polarization function and tjgefunction.
027\ 31 Not surprisingly, the numbers in the table also suggest
that the largeN; limit is the one-loop renormalon. This is
1 [N; indeed the case. To see this, note that the following coeffi-
Bi=5 25| cients scale as
1 1 1 Bi~NL for i>0,
Y S ) |
27273 167 72°f ci~Ni? (80)
1 23 95 13 , 17T for large N;. Then scaling the variablg in Eq. (62) by
“27% 64 432 18 o : oY, it is straightforward to see that
Pa=54 ~6aNit| 2327 1853 INi T 142N b htforward h
7 .
77 lim xky=1. (81
and Ni—ee
5 VI. RESIDUE IN QCD

In QCD, there is unfortunately no satisfactory definition
of renormalization scheme and scale-invariant effective
N¢| 55 charge that may be used in the diagrammatic study of renor-

' malon. However, as long as such an effective charge is de-
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fined, the formalism developed in QED may be used without TABLE Il. The first three elements of the sequence for the large

modification. order behavior in QCD.

Often in renormalon calculation in QCDL(t) in Eq. (14)
that defines the effective charge is considered in certain limit Ne=1 N¢=2 N¢=3 Ni=4 N¢=5
[11], for example, as in the B approximation combined K, 0.881 0.904 0.946 1018 1132

Wlth "nalve-non-AbeI|an|zat|9n”[12], and the pinch teg:h— , 0521 0546 0592 0674 0813
nique [13]. The pinch technique appears to be promising, 0592 0549 0.494 0411 0.307
though presently there is no all-order definition for the effec-_>3 i i i ' '
tive charge in this scheme. In pinch technigli€t) at one-

loop level is defined by collecting the gluon vacuum polar- . ~
ization, and the vacuum polarizationlike term in the vertex D=D
and box diagrams. (

(b)(1=b/bg) o]y,

However, if we are only interested in the calculation of
the residue, the definition of the effective charge is not re-
quired. Indeed the calculation is cunningly simple; it only
requires the strength of the renormalon singularity and the

perturbative calculation db(a). where it is straightforward to find, in terms of the pertur-
Consider the Borel transform of the current correlatlonb‘,ﬂlve coefficientsa,. Note that the series is convergent
function in QCD. The renormalon singularity @(b) in  even if R(b(z)) is not analytic az=z,, because then the
QCD radius of convergence of the series is givenzyz,, and
R(b(zp)) is finite.
Using the perturbative calculation of the current correla-

2 z))“)[l b(2)/bg]" M0,z = 2, o2

_”
n!

(89

D(b)~ (1—b/bg) T Bo (82 tion function, andD(«), to three lood 8], we have
j . 33QF
gives the large order behavior R(b(z))= 163 [1.333-0.748~ 0.31122+ 0(Z%)]
- (90
~ Nbopy—
an~ (Abg)! nin*%bg, ™. (83 for Ny=3. This is in the renormalization scheme in which

the one-loop renormalization point is same as that of MS
scheme, and thg function is given in the form in Eq$52)
and(53). Evaluating this series at the renormalon position at
z=2,, we have

To calculate the residud, consider a function

R(b)=D(b)(1—b/by)**Po, (84)
1.333
Then because of E482), we have K1=m=0.946,
D =R(by). (85) (1.323-0.74&,)
K,= (Abg)! =0.592,
To avoid the first UV renormalon, we introduce a new vari-
ablez, as we did in QED, which is defined by (1.323—0.74&0—0.31123)
Ks= =0.494. 91
(Abg)!
_ Bob
== 1—Bob’ (86) For several other flavor numbers we gikg in Table II.
with its inverse VII. SCHEME DEPENDENCE
OF LARGE ORDER BEHAVIOR
b= __1( i) 87 In Sec. V, we determined the large order behavior in
Boll—-z renormalization schemes in which tfgefunction is given by
the simple form in Eq(52). With this 8 function, the scheme
In the z plane, the IR renormalon at dependence of the large order behavior arises only through
the factor
Z0=% (88)

e PoP1 (92)

is the closest singularity to the origin, and so the radius of, Eq. (76). In fact, this result is more general. All renormal-

convergence of the Taylor seriesdfb(z)) atz=0 is given  jzation schemes for which the coefficients of {gunction

by the first IR renormalon. do not grow faster tham, share the same large-large order
Now D can be expressed in a convergent series form  behavior except for the scheme dependence in(&).
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To see this, let us consider two renormalization schemes
(say, unprimed and primedn which the relation between
the couplings is given by Eq43). We now assume that the

ﬂ'(a'>=n20 ﬁ;a'“”:ﬁ(a)rgo (N+1)ypa"

large order behavior by the first UV renormalon is extracted Boa?
out so that the leading large order behavior of a scheme- =1 > (n+1)yna
independent subamplitud®’ of D is given by the first IR @
renormalon. Then using o
=Bo2 Bra"?, (98)

D'=> aja(u)"" =2 aja’ (W)™, (93
n=0 n=0
where
we get the relation betweeay, anda;,

, al_,  nn+1)a,, , Bi= 2 A" Kkt 1)y [1+0(1M)]. (99
ap=a, 1+(n+1) a’ 71+ 2 a’ Y17
n n
, Inverting Eq.(43) to expressa in terms ofa’, and substi-
+ a;?’n)_ (94 tuting itin Eq. (98), we have
n

BL=B"[1+0(1n)]=ny,[1+0(1n)]. (100

With the large order behavior @, in the form Eq.(1), this

equation becomes Then the restriction ory,, in Eq. (97) implies that any renor-

malization scheme in whic®,, does not grow faster than

a,=ane P11+ 0(1/n)], (95)
provided n!n’by" (109)
Ny, has the same large order behaviekcept for the factor in
"”] ;= const. (96)  Eq.(92)] as in a scheme for which thefunction is given by
e Eq. (52).
Thus if y, does not grow faster than
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