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Higher order renormalons beyond the chain of one-loop bubbles are discussed. A perturbation method for
the infrared renormalon residue is found. The large order behavior of the current-current correlation function
due to the first infrared renormalon is determined in both QED and QCD to the first three orders.
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I. INTRODUCTION

Perturbation theory in field theories is generally plagued
by the rapidly growing coefficients, which cause the series in
weak coupling to be asymptotic. Classical solutions, instan-
tons, cause the perturbative coefficients to grow asn! for
large n, where n is the order of perturbation, and so do
certain subsets of Feynman diagrams, renormalons.1 Some of
the properties of the renormalons are discussed here.

A chain of the one-loop bubble diagrams in a photon
propagator in massless QED is an example of the renorma-
lons ~Fig. 1!. An exchange of the one-loop Gell-Mann–Low
~GL! effective charge gives a contribution ofn! for an ultra-
violet renormalon, in which the momentum flowing in the
propagator is large compared to the renormalization scale
@k2/m2;exp(n)#, and (21)nn! for an infrared~IR! renorma-
lon, in which a soft momentum@k2/m2;exp(2n/2)# flows in
the propagator.

The actual form of the large order behavior due to an
infrared renormalon is generally given by

Kn!nnb0
2n@11O~1/n!#, ~1!

wheren and b0 are renormalon-specific, known constants.
The coefficientK is an all-order quantity@1#. It depends not
only on the one-loop renormalon mentioned above but also
on an infinite set of higher order renormalons, and so deter-
mining it is nontrivial.

However, it should be emphasized thatK is calculable, at
least perturbatively. For example, if we had calculated the
series to a very high order, then Eq.~1! implies that we could
extract the coefficient to an accuracy ofO(1/n). Therefore,
there must be a convergent sequenceKN for K, with K being
its limit, associated with the perturbation of the amplitude in
consideration. The main purpose of this paper is to present
such a sequence for the first IR renormalon in the Borel
plane.

The precise calculation of the large order behavior is im-
portant, besides its theoretical interest, because it could play
an essential role in an effort to reconstruct the true ampli-
tudes from the perturbation theory. The large order behavior

due to the IR renormalons in non-Abelian gauge theory
arises from the imaginary part of the nonperturbative effects,
vacuum condensations, and so a precise calculation of the
large order behavior gives detailed information on the imagi-
nary part of the nonperturbative amplitudes, which could be
essential in understanding the full amplitude. For a recent
consideration in this direction one may refer to@2#.

This paper is organized as follows. In Sec. II, we discuss
in QED the higher order renormalons beyond the chain of
one-loop bubbles, and show in detail how the large order
behavior gets contribution from the higher order renorma-
lons. In Secs. III–V, a systematic method of summing those
higher order renormalons is discussed, and the renormalon
residue to the first three orders is given. In Sec. VI, we dis-
cuss the calculation of the large order behavior in QCD using
the analytic property in Borel plane, and give the large order
behavior to the first three orders. In Sec. VII, the scheme
dependence of the large order behavior is discussed.

II. HIGHER ORDER RENORMALONS

We first review how a chain of the one-loop bubble dia-
grams gives rise to factorial growing coefficients, and then
show that the large order behavior of perturbation theory is
an all-order property by giving an estimate of the higher
order renormalons.

The Green’s function we consider is the electromagnetic
current correlation function in QED in the Euclidean regime1Renormalons also denote the singularities in the Borel plane.

FIG. 1. One-loop renormalon.
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i E eiqx^ j m~x! j n~0!&d4x5~qmqn2q2gmn!

PS a~m!,
m2

Q2D
a~m!

,

~2!

whereQ252q2.0, and

j m~x!5 c̄gmc~x!. ~3!

For large order behavior, it is more convenient to consider
the renormalization scheme and scale-invariant quantityD
defined by

D„a~m!,m2/Q2
…5Q2

]

]Q2
FPS a~m!,

m2

Q2D
a~m!

G
2Q2

]

]Q2
FPS a~m!,

m2

Q2D
a~m!

GU
a~m!50

5 (
n50

`

an~m2/Q2!@a~m!#n11. ~4!

A single exchange of the GL effective charge gives rise to
the first IR renormalon singularity in the Borel plane. It is
also generally assumed that the leading residue of the first IR
singularity can be completely determined by a single ex-
change of the GL effective charge, which implies equiva-
lently that the large order behavior due to the IR renormalon
can be determined by a single exchange of the GL effective
charge~Fig. 1!. For the other IR renormalon in the Borel
plane, it is similarly believed that their residues can be satu-
rated by the multiple exchanges of the GL effective charges.
The analysis for IR renormalon in non-Abelian gauge theory
using operator product expansion supports this assumption
@3,4#. With this assumption for the large order behavior for
the first IR renormalon,D may be written as

D„a~m!,m2/Q2
…5E

0
f ~k2!a~k2!dk2, ~5!

wherea(k2) denotes the GL effective charge and

f ~k2!5
2ef

2k2

8p3Q4 for k2→0, ~6!

with ef denoting the charge of the fermionc. This infrared
limit of f (k2) can be easily read off from the coefficient of
Fmn
2 term in the operator product expansion of the current

product in Eq.~2!.
To see then! growth of the perturbative coefficient from

the chain of the one-loop bubbles, we may substitutea(k2)
in Eq. ~5! with its one-loop form

a~k2!5
a~m!

12b0a~m!lnS k2m2D 5(
0

` Fb0lnS k2m2D Gna~m!n11,

~7!

whereb0 is the first coefficient of theb function, to obtain

an52
ef
2m4b0

n

8p3Q4 E
0
t ln~ t !ndt

52
ef
2m4

16p3Q4S 2
b0

2 D nn! @11O~1/n!#, ~8!

where

t5
k2

m2 . ~9!

For largen the leading contribution to the integral comes
from the kinetic regionk2;m2exp(2n/2), and thus the lead-
ing large order behavior is independent of the upper bound
of the integral.

Let us now consider the effect of higher order renorma-
lons on the large order behavior of perturbation. First, we
introduce some definitions. In the following the vacuum po-
larization diagrams are assumed to include two external pho-
ton propagators. An irreducible renormalon is defined by re-
placing all photon propagators in an irreducible vacuum
polarization diagram with chains of the one-loop bubbles.
Similarly, reducible renormalons are defined by replacing all
photon lines in reducible vacuum polarization diagrams with
chains of the one-loop bubbles. Thus for every vacuum po-
larization diagram there are corresponding renormalons.

We assign an orderp, and the number of reduced photon
propagatorsq, to each irreducible vacuum polarization dia-
gram by

p5nA2nL21,

q5nA2n1 , ~10!

wherenA is the number of photon propagators andnL ,n1
denote the number of irreducible vacuum polarization sub-
diagrams and the number of the one-loop bubbles, respec-
tively. A reduced photon propagator is simply a chain of an
unspecified number of one-loop bubbles. The samep andq
of an irreducible vacuum polarization diagram are defined as
the order and the number of the reduced photon lines of the
corresponding renormalon. For example, the order and the
number of reduced photon lines of the one-loop renormalon
in Fig. 1 isp50,q51. Other higher order renormalons may
be similarly characterized by thep and q. For reducible
renormalons, the highest order of the irreducible subrenor-
malons of a reducible renormalon is defined as the order of
the reducible renormalon. Some examples of the higher order
renormalons are given in Fig. 2.

Before we discuss the effect on large order behavior of
higher order renormalons in general, let us take some spe-
cific examples of low order renormalons, and see their con-
tribution to the large order behavior. This exercise is very
instructive and gives an insight to more complex renorma-
lons.

It was first noticed by Grunberg@1#, and diagrammatically
by Mueller @5#, that the large order behavior of perturbation
is an all-order property~see also@6#!. The following argu-
ment is motivated by Mueller’s observation. Let us consider
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the order-one renormalon in Fig. 3. The coefficientãn(t) of
a(m)n11 due to this renormalon in the perturbation of the
GL effective charge ina(m) is given by

ãn~ t !5 (
r51

n21

@2P1~ t !#
n2r21@2P r11

~r21!~ t !#~n2r !, ~11!

whereP r is the r -loop vacuum polarization function

P„a~m!,t…5(
r51

`

P r~ t !a~m!r . ~12!

The powers ofP1 in Eq. ~11! obviously come from the
one-loop bubbles in the external reduced photon propagators,
and the factor (n2r ) accounts for the (n2r ) possible loca-
tion of the fermion loop with the internal reduced photon
line. P r11

(m) denotes the terms proportional tob0
m in P r11.

The general form ofP r11
(m) can be deduced by considering

the following renormalization group equation for
P„a(m),t…,

m2
d

dm2F 1

a~m!
1

1

a~m!
P„a~m!,t…G50, ~13!

which comes from the renormalization scale invariance of
the GL effective chargea(k2):

a„a~m!,t…5
a~m!

11P„a~m!,t…
. ~14!

Putting the perturbative form ofP in Eq. ~12! into Eq. ~13!,
we get the recursion equation

t
d

dt
Pn1152bn1 (

m52

n

~m21!bn2mPm for n52,3, . . . ,

~15!

with

P152b0lnt1p1 ,

P252b1lnt1p2 . ~16!

Herebm are the coefficients of theb function defined by

b„a~m!…5m2
da~m!

dm2 5 (
m50

`

bma~m!m12, ~17!

andpi are constants.
Solving the recursion equation we have

P r11
~r21!5„b0ln~ t !…r21F2b1

r
ln~ t !1p2G . ~18!

Substitution of this into Eq.~11! gives

ãn~ t !5 (
r51

n21

„b0ln~ t !…n22Fb1

r
ln~ t !2p2G~n2r !. ~19!

Here we kept only the ln(t) term inP1(t) for simplicity, and
the effect of the constant term inP1(t) will be discussed
shortly. Since a factor of (lnt)n in the integrand in Eq.~5!
would give rise to

~21!nn!

2n11 , ~20!

ãn(t) gives the following large order behavior:

an~m2/Q2!52
ef
2m4

16p3Q4S 2
b0

2 D nn!
3F22b1

b0
2 ~ lnn1gE21!22

p2
b0
2G @11O~1/n!#,

~21!

which is comparable to the one-loop renormalon contribu-
tion. HeregE is the Euler constant.

Going back to Eq.~11!, expanding the factor

~2P1!
n2r215~b0lnt2p1!

n2r21, ~22!

it is easy to see that every term in the expansion proportional
to

~p1!
i for i!n ~23!

FIG. 2. Examples of higher order renormalons. Dashed lines
denote chains of one-loop bubbles, and (p,q) denote the order and
number of the reduced photon propagators, respectively.

FIG. 3. Order-one renormalon. Dashed lines denote chains of
the one-loop bubbles.
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also contributes to the large order behavior. Thus the inclu-
sion of the constant term inP1(t) would modify Eq.~21!
into a form

an;S 2
b0

2 D nn! Fb1

b0
2 @~ lnn!h~p1!1h8~p1!#1

p2
b0
2h9~p1!G

3@11O~1/n!#, ~24!

where

h~p1!5h01h1S p1b0
D1h2S p1b0

D 21•••. ~25!

Herehi are calculable constants. Note that this series runs to
an infinite order in the limitn→`. h8(p1),h9(p1) are simi-
larly defined in a series form.

Using a similar method it is now easy to estimate the
large order behavior from other renormalons. For example, it
is straightforward to check that the chains of the order-one
irreducible renormalon in Fig. 4 along with the one-loop
renormalon contribution in Eq.~8! exponentiate the ln(n)
term in Eq. ~21! to give thenn factor in the large order
behavior with

n5
22b1

b0
2 , ~26!

which agrees with the well-known result for the first IR
renormalon@4#.

Now to discuss the higher order renormalons in general,
consider an irreducible renormalon of orderp and reduced
photon propagator numberq. The large order behavior due
to this renormalon in the infrared regime is given by

an;E
0
t (
r5q22

n21

~b0lnt !
n2r21@P r11

~r2q12!~ t !#~n2r !dt.

~27!

Here we picked up only the ln(t) term in P1(t) as before.
The general solution of the recursion equation~15! may be
organized in terms ofp andq as

P r115 (
q851

r

b0
r2q8(

p51

q8

(
k50

1

~ lnt !r2p2k11

3 (
$mi ,m̄i %

C
$mi ,m̄i %
rpqk )

i52

p11

b i21
mi pi

m̄i , ~28!

where

q85q22 ~29!

andmi ,m̄i are non-negative integers that satisfy

(
i>2

mi1m̄i5q82p11,

(
i>2

m̄i5k,

(
i>2

~mi1m̄i !~ i21!5p. ~30!

Here pi is the constant term ofP i(t). TheP r11
(r2q12)(t) of

orderp renormalon is then given by

P r11
~r2q12!~ t !5b0

r2q12(
k50

1

~ lnt !r2p2k11

3 (
$mi ,m̄i %

C
$mi ,m̄i %
rpqk )

i52

p11

b i21
mi pi

m̄i . ~31!

By solving the recursion equation~15! explicitly for the sev-
eral low order diagrams, and considering the form of the
large order behavior in Eq.~1!, it is not difficult to convince
oneself that asymptotically

C
$mi ,m̄i %
rpqk

;r p1k22g~ lnr ! for r→`. ~32!

Here the functiong(x) is a polynomial of degree at most
m221 for m2>2, and causes thenn term in the large order
behavior.

Substituting Eq.~31! into Eq. ~27! and ignoring the loga-
rithmic dependence ing, we get

an;

n! S 2
b0

2 D n
~2b0!

q21 (
k50

1

J~p,k! (
$mi ,m̄i %

)
i52

p11

b i21
mi pi

m̄i , ~33!

whereJ(p,k) is a function ofp andk. This shows that the
irreducible renormalons of all order contribute to the large
order behavior. Further note that the large order behavior due
to an irreducible renormalon of orderp involves only the
coefficients of the vacuum polarization function and theb
function to (p11)-loop order.

These are also true for the reducible renormalons. As we
chain more irreducible subrenormalons into a reducible
renormalon, more powers of lnt in ãn(t) due to this renor-
malon are being lost, resulting in suppressed integral int, but
this suppression is exactly compensated by the larger com-
binatoric factor caused by the more possible locations in put-
ting the subrenormalons, giving a large order behavior com-
parable to those from the irreducible renormalons. Therefore,
all reducible renormalons also contribute to the leading large
order behavior. Also, sinceãn(t) for a reducible renormalon
with m irreducible subrenormalons is proportional to

P r111
~r12q112!

P r211
~r22q212!

•••P rm11
~rm2qm12! , ~34!

with eachP r i11
(r i2qi12) coming from the subrenormalons, it is

obvious that the large order behavior from this reducible

FIG. 4. Chains of the order-one renormalons.
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renormalon depends on the vacuum polarization function and
theb function to (p11)-loop order.

The inclusion of the constant term inP1(t) in Eq. ~27!
would modify the large order behavior in Eq.~33! in a simi-
lar fashion as in the example of the order-one irreducible
renormalon in Eq.~24!. With p1 included, each term in Eq.
~33! will be multiplied by a series inp1 in the form of Eq.
~25!, with the coefficientshi now depending on each particu-
lar term.

Though this analysis of diagrams is very helpful in under-
standing general higher order renormalons qualitatively, it
seems difficult, or at least inconvenient, to systematically
calculate the higher order renormalons using this technique.
We need a more straightforward approach for systematic
evaluation of the higher order renormalons. In the following
sections such an approach is discussed.

III. BOREL TRANSFORM OF GL EFFECTIVE CHARGE

The problem of determining the renormalon residues of
D„a(m),m2/Q2

… eventually reduces to finding the Borel
transform of the GL effective charge. We give in this section
a perturbation method for the Borel transform ofa(k2). We
are going to introduce a scheme and scale-independent cou-
pling, and then write the GL effective charge in terms of the
coupling in a form that is particularly convenient for Borel
transform.

The Borel transform ofD„a(m),m2/Q2
… is defined by

D„a~m!,m2/Q2
…5E

0

`

expS 2
b

a~m! D D̃~b!db. ~35!

With the perturbative series ofD„a(m),m2/Q2
… in Eq. ~4!,

D̃~b!5 (
n50

`
an
n!
bn. ~36!

The large order behavior of the form in Eq.~1! causes a
singularity~renormalon! in D̃(b) and, conversely, the singu-
larity in D̃(b) determines the large order behavior. Thus by
studyingD̃(b) near the renormalon singularities we can de-
termine the large order behavior ofD„a(m),m2/Q2

….
Let us first consider the renormalization group equation

for the GL effective chargea(k2),

S m2
]

]m2 1b~a!
]

]a Da„a~m!,t…50. ~37!

Solving the equation we may write the GL effective charge
as

a~k2!5
1

1

A~k2!
1C„a~k2!…

, ~38!

whereC(a) is a scheme-independent function. The effective
couplingA is defined by

A„a~m!,t…5
1

2b0S lnt1*a~m!
1

b~a!
da2

p1
b0

D , ~39!

wherep1 is defined in Eq.~16! and the integral of 1/b(a) is
defined in the perturbative form

Ea~m! 1

b~a!
da52

1

b0a~m!
2

b1

b0
2 lna~m!1•••. ~40!

Since

A~k2!5a~k2!F12
b1

b0
a~k2!lna~k2!1••• G , ~41!

A can be as good an expansion parameter asa. A(k2) is also
independent of renormalization scheme. The scheme inde-
pendence ofA(k2) can be easily understood by considering
the difference of the integral in Eq.~39! between two
schemes. Since the difference ism independent, it cannot
depend ona(m) and thus must be a constant. It is in fact
given by

Ea8~m! dx

b8~x!
2Ea~m! dx

b~x!
5g1 , ~42!

whereg1 is the first coefficient of the relation between the
couplings of the two schemes

a8~m!5a~m!@11g1a~m!1g2a~m!21•••#. ~43!

The difference in Eq.~42! is then canceled by the scheme
dependence ofp1

p185p11g1 , ~44!

leading to the scheme independence ofA(k2). Note that a
similar effective charge was considered in relation to the
renormalization scheme-invariant perturbation by Maximov
and Vovk @7#.

Now C„a(k2)… in Eq. ~38! may be expanded in an
asymptotic series as

C„a~k2!…5c1ln„a~k
2!…1(

2

`

ci„a~k
2!…i21. ~45!

The coefficientsci can be determined by solving perturba-
tively a(k2) in Eq. ~38! with the help of Eqs.~39! and~40! in
terms ofa(m), and comparing it with the perturbative ex-
pansion of the GL effective charge ina(m) using Eq.~14!.
Then it is not difficult to see thatci are given by the renor-
malization scheme-invariant combinations of the coefficients
of the vacuum polarization function andb function. This
expansion turns out to be a critical step for the Borel trans-
form of the effective charge. Introducea(N)(k2):

a~N!~k2!5
1

1

A~k2!
1c1ln„a

~N!~k2!…1(
2

N

cia
~N!~k2! i21

.

~46!
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Solving a(N)(k2) in Eq. ~46! recursively ina(m), it can be
seen that this equation generates all the higher order renor-
malon diagrams to orderN.

Let us now consider a modified Borel transform ofa(N)

3(k2) defined by

a~N!
„a~m!,t…5E

0

`

expS 2
b

A~ t ! D ã~N!~b!db. ~47!

Note that this Borel transform of GL effective charge was
introduced by Grunberg@1#. Substituting Eq.~47! into Eq.
~5!, we can writeD (N)

„a(m),m2/Q2
…, which is defined by

replacinga(k2) in Eq. ~5! with a(N)(k2), as

D ~N!
„a~m!,m2/Q2

…5E expFbb0Ea~m! da

b~a!G
3$e2bp1 f̃ ~b! ã~N!~b!%db, ~48!

where

f̃ ~b!5E
0
f ~ t !exp~bb0lnt !dt. ~49!

The first IR renormalon singularity arises from the IR diver-
gence in the integral in Eq.~49!. Substituting Eq.~6! into Eq.
~49!,

f̃ ~b!5E
0

M

f ~ t !ebb0lntdt

52
ef
2m4

8p3Q4E
0

M

tebb0lntdt

52
ef
2m4

8p3Q4

1

21bb0
@11~21bb0!lnM1•••#,

~50!

whereM is an arbitrary UV cutoff. Notice that the leading
renormalon singularity is cutoff independent.

The scheme dependence of the Borel transform of
D (N)

„a(m),m2/Q2
… is now isolated in

e2bp1 and expS bb0Ea~m! da

b~a! D . ~51!

To find the Borel transform explicitly, let us take a renormal-
ization scheme in which theb function is given by the
simple form

b~a!5
b0a

2

12la
, ~52!

where

l5
b1

b0
. ~53!

With this b function, Eq. ~48! defines the modified Borel
transform by Brown, Yaffe, and Zhai~BYZ! @8#:

D ~N!~a,m2/Q2!5E
0

`

expF2bH 1a 1l lnS a

b D J G f̃ ~b!

3e2bp1e2lblnbã~N!~b!db. ~54!

From this we can read off the modified Borel transform of
D (N)

„a(m),m2/Q2
…

D̃BYZ
~N! ~b!5e2bp1 f̃ ~b!e2lblnbã~N!~b!. ~55!

Then using the relation between the ordinary Borel transform
and the modified one@8#, we have the ordinary Borel trans-
form

D̃ ~N!~b!52
ef
2m4

16p3Q4e
2b0p1e2lb0lnb0ã~N!~b0!

3
~22l/b0!!

S 11
1

2
bb0D 122l/b0

@11O~21bb0!#.

~56!

The real problem here is to find theã(N)(b). However,
with the help of the expansion in Eq.~46! it is now easy to
calculate the Borel transform ofa(N)(k2). The inverse of Eq.
~47! is

ã~N!~b!5
1

2p i ECebxa~N!~x!dx, ~57!

with the contour wrapping around the negative real axis.
Here

x5
1

A~k2!
~58!

and

a~N!~x!5
1

x1c1ln a~N!~x!1(2
Nci@a

~N!~x!# i21 . ~59!

Putting

y5
1

a~N!~x!
, ~60!

we can write Eq.~59! as

x5y1c1ln y2(
i52

N
ci
yi21 , ~61!

and Eq.~57! as

ã~N!~b!5
1

2p i E ebyybc121expS 2b(
i52

N
ci
yi21D (

i50

N
c̄ i
yi
dy,

~62!

where
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c̄ i5H 1 for i50,

c1 for i51,

~ i21!ci for i>2.

~63!

The exponential term in the integrand may be expanded as

expS 2b(
2

N
ci
yi21D 5 (

k50

`
~2b!k

k! (
l5k

k~N21!
hNkl
yl

, ~64!

where

hNkl5k!(
$ni %

P
i51

N21

ci11
ni

P
i51

N21

ni !
, ~65!

with the set$ni% of non-negative integers satisfying

(
i51

N21

ni i5 l , (
i51

N21

ni5k. ~66!

Substituting Eq.~64! into Eq. ~62!, we finally have

bbc1ã~N!~b!5
bbc1

2p i E eby(
k50

`
~2b!k

k!

3 (
l5k

k~N21!
hNkl
yl (

i50

N

c̄ iy
bc12 i21dy

5 (
k50

`

(
l5k

k~N21!

(
i50

N
~21!khNkl c̄ i

k!G~ l1 i112bc1!
bk1 l1 i .

~67!

This completes the Borel transform of the GL effective
charge.

IV. RENORMALON RESIDUE

To find the leading renormalon residue ofD̃ (N)(b), we
have to evaluatebbc1ã(N)(b) at the first IR renormalon posi-
tion, b0522/b0. If we directly substituteb in Eq. ~67! with
b0, the resulting large order behavior would sum all the con-
tribution from the renormalons to orderN, but unfortunately
this large order behavior does not have a finite limit for
N→` @14#. The reason for this is thatã(b) is singular at the
UV and IR renormalon positions, and its radius of conver-
gence when it is expanded as in Eq.~67! is given by the
position atb51/b0 of the first UV renormalon, which is the
closest renormalon to the origin in the Borel plane. There-
fore, we cannot substituteb with b0 in Eq. ~67! to correctly
evaluate the Borel transform at the first IR renormalon.

This problem can be avoided by introducing an analytic
transform of the Borel plane so that the closest renormalon to
the origin in the new complex plane is the first IR renorma-
lon @9#. Because the singularity ofã(b) at the IR renormalon
is such that it is finite but has divergent derivative@1#, we
can then express the residue as a convergent series.

For this purpose, we can take any analytic transform that

puts the IR renormalon as the closest singularity to the ori-
gin, but here we consider a simple form

z5
b0b

12b0b
, ~68!

with its inverse

b5
1

b0
S z

11zD . ~69!

In thez plane, the closest singularity to the origin is the first
IR renormalon at

z052 2
3 , ~70!

and all the UV renormalons are pushed beyondz521 on
the real axis. It is interesting to note that the freedom in
choosing this analytic transform is similar to that for the
renormalization scheme. As the renormalization scheme can
be optimized for a particular process, the analytic transform
could be chosen to optimize the perturbative evaluation of
the residue.

Now to find bbc1ã(N)(b) at the first IR renormalon, we
have to substituteb in Eq. ~67! with that in Eq. ~69! and
expand it in Taylor series atz50 to orderN, and evaluate it
at z5z0. Thus the Borel transform of GL effective charge at
the first IR renormalon is given by

kN5bbc1ã~N!~b!ub5b0
5 (

M50

N

qMz0
M , ~71!

with

qM5~M21!!b0
2M(

k50

N

(
l5k

k~N21!

3(
i50

N

(
j50

N

(
m50

N
~21!k1mhNkl c̄ ic1

j

k!m! ~M2m21!!

3g j
$ l1 i %b0

mdk1 l1 i1 j1m,M . ~72!

Hereg j
$n% is defined by

1

G~n112x!
5(

j50
g j

$n%xj . ~73!

Note that the coefficientqN is completely determined by
ã(N)(b) in Eq. ~67!, and is not modified by the Borel trans-
form ã(N1m)(b) of the higher order effective charge. The IR
residue is then

k5 (
M50

`

qMz0
M . ~74!

It should be emphasized that, though this series is being
evaluated at its radius of convergence, it is convergent be-
cause of the finiteness ofã„b(z)… at z5z0.
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V. LARGE ORDER BEHAVIOR

The Borel transformD̃(b) can now be used in determin-
ing the leading large order behavior ofD(a). Note that the
leading large order behavior is determined by the leading
Borel singularity, and the 1/n correction in the large order
behavior corresponds to theO(b2b0) correction in the
Borel transform. First, we give the large order behavior in a
renormalization scheme in which theb function is given by
Eq. ~52!, and then in Sec. VII discuss a class of schemes in
which all schemes share a common large order behavior ex-
cept for a trivial scheme-dependent term. Using the known
result for the vacuum polarization function and theb func-
tion to three loop and four loop, respectively, we will also
give numerical values for the large order behavior.

Let us go back to the Borel transform ofD in Eq. ~56!.
ExpandingD̃ (N)(b) at the origin, and using the definition of
the Borel transform in Eq.~36!, the leading large order be-
havior ofD (N)

„a(m),m2/Q2
… is given by

an
~N!52

ef
2m4

16p3Q4e
2b0p1e2lb0lnb0ã~N!~b0!n!n

lb0b0
2n

with b05
22

b0
. ~75!

Then the sequence for the large order behavior mentioned in
Sec. I may be defined as

KN52
ef
2m4

16p3Q4e
2b0p1kN , ~76!

with kN defined in Eq.~71!.
To evaluate the numerical values forkN , we have to find

the coefficientsci in Eq. ~46! explicitly. Theb function and
the vacuum polarization function in the modified minimal
subtraction ( MS̄) scheme to three loop and four loop, re-
spectively, are given by@10#

b05
1

2pS 23Nf D ,
b15

1

2p2SNf

2 D ,
b25

1

2p3S 2
1

16
Nf2

11

72
Nf
2D ,

b35
1

2p4F2
23

64
Nf1S 954322

13

18
z~3! DNf

22
77

1944
Nf
3G ,

~77!

and

p15
5

9p
Nf ,

p25
Nf

p2F55482z~3!G ,

p35
1

p3F S 2
143

288
2
37

24
z~3!1

5

2
z~5! DNf

1S 2
3701

2592
1
19

18
z~3! DNf

2G , ~78!

whereNf is the number of fermion flavors. Solvinga(k
2) in

Eq. ~38! in terms ofa(m) and comparing it with Eq.~14! we
find

c152
b1

b0
,

c252
b2

b0
1

b1
2

b0
2 2

p1b1

b0
1p2 ,

c352
b3

2b0
1

b1b2

b0
2 2

b1
3

2b0
3 2

p1b2

b0
1
p1b1

2

b0
2 2

p1
2b1

2b0
2
p2b1

b0

1p1p21p3 . ~79!

Note that the use of the vacuum polarization function and the
b function in MS̄is allowed, becauseci are independent of
renormalization scheme.

ThekN obtained by substituting Eq.~79! into Eq. ~71! is
given in Table I for several flavor numbers. In the table, we
see that for a reliable estimation of the large order behavior,
a higher order calculation beyond the current one is required
for the vacuum polarization function and theb function.

Not surprisingly, the numbers in the table also suggest
that the largeNf limit is the one-loop renormalon. This is
indeed the case. To see this, note that the following coeffi-
cients scale as

b i;Nf
i for i.0,

ci;Nf
i21 ~80!

for large Nf . Then scaling the variabley in Eq. ~62! by
b0y, it is straightforward to see that

lim
Nf→`

kN51. ~81!

VI. RESIDUE IN QCD

In QCD, there is unfortunately no satisfactory definition
of renormalization scheme and scale-invariant effective
charge that may be used in the diagrammatic study of renor-
malon. However, as long as such an effective charge is de-

TABLE I. The first three elements of the sequence for the first
IR renormalon residue in QED.k0 denotes the residue from the
one-loop renormalon.

Nf51 Nf52 Nf53 Nf54 Nf55 Nf5100

k0 1 1 1 1 1 1
k1 1.63 1.32 1.21 1.16 1.13 1.00
k2 0.71 1.31 1.31 1.27 1.24 1.02
k3 21.53 1.25 1.41 1.39 1.34 1.02
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fined, the formalism developed in QED may be used without
modification.

Often in renormalon calculation in QCD,P(t) in Eq. ~14!
that defines the effective charge is considered in certain limit
@11#, for example, as in the 1/Nf approximation combined
with ‘‘naive-non-Abelianization’’ @12#, and the pinch tech-
nique @13#. The pinch technique appears to be promising,
though presently there is no all-order definition for the effec-
tive charge in this scheme. In pinch technique,P(t) at one-
loop level is defined by collecting the gluon vacuum polar-
ization, and the vacuum polarizationlike term in the vertex
and box diagrams.

However, if we are only interested in the calculation of
the residue, the definition of the effective charge is not re-
quired. Indeed the calculation is cunningly simple; it only
requires the strength of the renormalon singularity and the
perturbative calculation ofD(a).

Consider the Borel transform of the current correlation
function in QCD. The renormalon singularity ofD̃(b) in
QCD

D̃~b!'
D̂

~12b/b0!
11lb0

~82!

gives the large order behavior

an'
D̂

~lb0!!
n!nlb0b0

2n . ~83!

To calculate the residueD̂, consider a function

R~b!5D̃~b!~12b/b0!
11lb0. ~84!

Then because of Eq.~82!, we have

D̂5R~b0!. ~85!

To avoid the first UV renormalon, we introduce a new vari-
ablez, as we did in QED, which is defined by

z52
b0b

12b0b
, ~86!

with its inverse

b5
21

b0
S z

12zD . ~87!

In the z plane, the IR renormalon at

z05
2
3 ~88!

is the closest singularity to the origin, and so the radius of
convergence of the Taylor series ofD̃„b(z)… at z50 is given
by the first IR renormalon.

Now D̂ can be expressed in a convergent series form

D̂5D̃~b!~12b/b0!
11lb0ub5b0

5S (
n50

`
an
n!
„b~z!…nD @12b~z!/b0#

11lb0uz5z0
5 (

n50

`

r nz0
n ,

~89!

where it is straightforward to findr n in terms of the pertur-
bative coefficientsan . Note that the series is convergent
even if R„b(z)… is not analytic atz5z0, because then the
radius of convergence of the series is given byz5z0, and
R„b(z0)… is finite.

Using the perturbative calculation of the current correla-
tion function, andD(a), to three loop@8#, we have

R„b~z!…5
3( fQf

2

16p3 @1.33320.748z20.311z21O~z3!#

~90!

for Nf53. This is in the renormalization scheme in which
the one-loop renormalization point is same as that of MS¯
scheme, and theb function is given in the form in Eqs.~52!
and~53!. Evaluating this series at the renormalon position at
z5z0, we have

K15
1.333

~lb0!!
50.946,

K25
~1.32320.748z0!

~lb0!!
50.592,

K35
~1.32320.748z020.311z0

2!

~lb0!!
50.494. ~91!

For several other flavor numbers we giveKn in Table II.

VII. SCHEME DEPENDENCE
OF LARGE ORDER BEHAVIOR

In Sec. V, we determined the large order behavior in
renormalization schemes in which theb function is given by
the simple form in Eq.~52!. With thisb function, the scheme
dependence of the large order behavior arises only through
the factor

e2b0p1 ~92!

in Eq. ~76!. In fact, this result is more general. All renormal-
ization schemes for which the coefficients of theb function
do not grow faster thanan share the same large-large order
behavior except for the scheme dependence in Eq.~92!.

TABLE II. The first three elements of the sequence for the large
order behavior in QCD.

Nf51 Nf52 Nf53 Nf54 Nf55

K1 0.881 0.904 0.946 1.018 1.132
K2 0.521 0.546 0.592 0.674 0.813
K3 0.592 0.549 0.494 0.411 0.307
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To see this, let us consider two renormalization schemes
~say, unprimed and primed! in which the relation between
the couplings is given by Eq.~43!. We now assume that the
large order behavior by the first UV renormalon is extracted
out so that the leading large order behavior of a scheme-
independent subamplitudeD8 of D is given by the first IR
renormalon. Then using

D85 (
n50

`

ana~m!n115 (
n50

`

an8a8~m!n11, ~93!

we get the relation betweenan andan8

an5an8S 11~n11!
an218

an8
g11

n~n11!

2

an228

an8
g1
21•••

1
a08gn

an8
D . ~94!

With the large order behavior ofan8 in the form Eq.~1!, this
equation becomes

an85ane
2b0g1@11O~1/n!#, ~95!

provided

lim
n→`

ngn

an8
5 const. ~96!

Thus if gn does not grow faster than

~n21!!nnb0
2n , ~97!

the scheme dependence of large order behavior is given by
the simple relation in Eq.~95!. In fact the large order behav-
ior we found in Sec. V exactly transforms according to Eq.
~95! under scheme changes.

We may now translate the limit in Eq.~96! on gn to that
of bn . Let theb function in the unprimed scheme be given
by the simple form in Eq.~52!. Then Eq.~43! gives the
b8(a8) in the form

b8~a8!5 (
n50

`

bn8a8n125b~a! (
n50

`

~n11!gna
n

5
b0a

2

12la(
n

~n11!gna
n

5b0(
n50

`

bn8̄a
n12, ~98!

where

bn8̄5 (
k50

n

ln2k~k11!gk;ngn@11O~1/n!#. ~99!

Inverting Eq.~43! to expressa in terms ofa8, and substi-
tuting it in Eq. ~98!, we have

bn85b 8̄n@11O~1/n!#5ngn@11O~1/n!#. ~100!

Then the restriction ongn in Eq. ~97! implies that any renor-
malization scheme in whichbn does not grow faster than

n!nnb0
2n ~101!

has the same large order behavior@except for the factor in
Eq. ~92!# as in a scheme for which theb function is given by
Eq. ~52!.
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