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Generalized two-dimensional chiral QED: Anomaly and exotic statistics
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We study the influence of the anomaly on the physical quantum picture of the generalized chiral Schwinger
model defined ors!. We show that the anomaly) results in the background linearly rising electric field and
(i) makes the spectrum of the physical Hamiltonian nonrelativistic without a massive boson. The physical
matter fields acquire exotic statistics. We construct explicitly the algebra of the Pogeraeeators and show
that it differs from the Poincarene. We exhibit the role of the vacuum Berry phase in the failure of the
Poincarealgebra to close. We prove that, in spite of the background electric field, such phenomenon as the total
screening of external charges characteristic for the standard Schwinger model takes place in the generalized
chiral Schwinger model, todS0556-282(97)02014-¢

PACS numbgs): 11.10.Kk, 11.30.Rd, 12.20.Ds

[. INTRODUCTION same time, after quantization it is the auxiliary field that
furnishes the additional “irrelevant” quantum degrees of
Two-dimensional QED with massless fermions, i.e., thefreedom. The auxiliary field is described by the Wess-
Schwinger modelSM), demonstrates such phenomena asZumino (W2Z) term. When this term is added to the Lagrang-
the dynamical mass generation and the total screening of than of the original model, a new, anomaly-free model is ob-
chargd/1]. Although the Lagrangian of the SM contains only tained. Subsequent canonical quantization of the new model
massless fields, a massive boson field emerges out of thig achieved by the Dirac procedure.
interplay of the dynamics that govern the original fields. This For the CSM, the corresponding WZ term is not defined
mass generation is due to the complete compensation of amniquely. It contains the so-called Jackiw-Rajaraman param-
external charge inserted into the vacuum. eter a>1. This parameter reflects an ambiguity in the
In the chiral Schwinger mod€CSM) [2,3] the right and  bosonization procedure and in the construction of the WZ
left chiral components of the fermionic field have differentterm. The spectrum of the new, anomaly-free model turns
charges. The left-right asymmetric matter content leads to aaut to be relativistic and contains a relativistic boson. How-
anomaly. At the quantum level, the local gauge symmetry isver, the mass of the boson also depends on the Jackiw-
not realized by a unitary action of the gauge symmetry grougRajaraman parametg?,3]. This mass corresponds therefore
on Hilbert space. The Hilbert space furnishes a projectivdo the “irrelevant” quantum degrees of freedom. The quan-
representation of the symmetry grof#-6|. tum theory with such a parameter in the spectrum is not
In this paper, we aim to study the influence of thephysical, i.e., that final version of the quantum theory which
anomaly on the physical quantum picture of the CSM. Dowe would like to get. The latter should not contain any non-
the dynamical mass generation and the total screening qfhysical parameters, otherwise one cannot say anything
charges take place also in the CSM? Are there any newbout a physical quantum picture.
physical effects caused just by the left-right asymmetry? In another approach also formulated by Faddgdly the
These are the questions which we want to answer. auxiliary field is not added, so the quantum Gauss law con-
To get the physical quantum picture of the CSM we needstraint remains second class. The standard Gauss law is as-
first to construct a self-consistent quantum theory of thesumed to be regained as a statement valid in matrix elements
model and then solve all the quantum constraints. In thdetween some states of the total Hilbert space, and it is the
quantization procedure, the anomaly manifests itself throughtates that are called physical. The theory is regularized in
a special Schwinger term in the commutator algebra of thsuch a way that the quantum Hamiltonian commutes with the
Gauss law generators. This term changes the nature of thwnmodified, i.e., second-class quantum Gauss law con-
Gauss law constraint: instead of being a first-class constrainstraint. The spectrum turns out to be nonrelativif8¢l0Q].
it turns into a second-class one. As a consequence, the physi- Here, we follow the approach given in our previous work
cal quantum states cannot be defined as annihilated by th&1]. A peculiarity of the CSM is that its anomalous behavior
Gauss law generator. is trivial in the sense that the second-class constraint which
There are different approaches to overcome this problerappears after quantization can be turned into first class by a
and to consistently quantize the CSM. The fact that thesimple redefinition of the canonical variables. This allows us
second-class constraint appears only after quantizatioto formulate a modified Gauss law to constrain physical
means that the number of degrees of freedom of the quantustates. The physical states are gauge-invariant up to a phase,
theory is larger than that of the classical theory. To keep théhe phase being one-cocycle of the gauge symmetry group
Gauss law constraint first class, Faddeev and Shatashvili predgebra. In[12—-14), the modification of the Gauss law con-
posed adding an auxiliary field in such a way that the dy-straint is obtained by making use of the adiabatic approach.
namical content of the model does not chafgg At the Contrary to[11], where the CSM is defined oR!, we
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suppose here that the space is a circle of length Il. QUANTIZATION PROCEDURE
—L/2=x<L/2, so the space-time manifold is a cylinder
S'XR!. The gauge field then acquires a global physical de- ) ) ) )
gree of freedom represented by the nonintegrable phase of The Lagrangian density of the generalized CSM is
the Wilson integral or8®. We show that this brings into the

A. Classical theory

: ) L 1 _ _

physical quantum picture new features of principle. L=——F FEA4 dihvho. d+e Ry A
Another way of making two-dimensional gauge field dy- 4K WRY o0+ st Y d A

namics nontrivial is by fixing the spatial asymptotics of the — .

gauge field 15,16. If we assume that the gauge field defined te_yyHY-A,, @)

on R! diminishes rather rapidly at spatial infinities, then it here E =d A —d A (1,1)=01, =0y,
again acquires a global physical degree of freedom. We wil\il i " 5"20 g U’f 1(i :1—:%) are ,P:aluli matrilc,es The
see that the physical quantum picture for the model define?! 2 VY=Y =05 0iU=59) A2 T 0 '
on St is equivalent to that obtained [15,16]. l'e|d+¢5'5 two-component Dirac spinay=y'y" and ¢ =
We consider the general version of the CSM with @)U i(ﬁ—%)‘/{' | A =0 the Hamiltonian density i
gauge field coupled with different charges to both chiral N the temporal gauga, =1, the Hamiltonian density 1s
components of a fermionic field. We show that the charges H=Hem+ He , 2
are not arbitrary, but satisfy a quantization condition. The
SM where these charges are equal is a special case of théereHgy = 3E2, with E momentum canonically conjugate
generalized CSM. This will allow us at each step of ourto A;, and
consideration to see the distinction between the two models.

We work in the temporal gaugk,=0 in the framework He=H++H_,
of the canonical quantization scheme and the Dirac’s quan- + ot
tization method for the constrained systefhg]. We use the He=y¢.dogpo=F ¢ (ihdy+ecA) ..

chfzﬁnin()ftvvgltsstevgz.(argrst,l -thlg rizct:t.ellyfigc?sq;rznzzuz;iuzre d Or_llthe circl_e boundary copdit_ions for the fields must be
while A; is handled as a classical background field. TheSpeCIfled' We impose the periodic ones
gauge fieldA, is quantized afterwards, using the functional L L
Schralinger representation. We derive the anomalous com- Al — E) =Al(§),
mutators with nonvanishing Schwinger terms which indicate
that our model is anomalous. L L
In Sec. lll, we show that the Schwinger term in the com- ,/,+( _ _) =y, _). 3
mutator of the Gauss law generators is removed by a redefi- -2 12
nition of these generators and formulate the modified quan- . : L
tum Gauss law constraint. We prove that this constraint car € reguwe also thaH' and the classical fermionic currents
be also obtained by using the adiabatic approximation and+= =¥+ be periodic. o - o
the notion of quantum holonomy. The Lagrgngla_m and Hamiltonian densities are invariant
In Sec. IV, we construct the physical quantum Hamil- under local time-independent gauge transformations
tonian consistent with the modified quantum Gauss law con- i
straint, i.e., invariant under the modified gauge transforma- A — A+, ¢//+—>exp[—e+)\] o
tions both topologically trivial and nontrivial. We introduce h
the modified topologically nontrivial gauge transformation
operator and defin@ states which are its eigenstates. Wegenerated by
consider in detail the case of the SM and demonstrate its G=0,E+e,j.+e j_,
equivalence to the free field theory of a massive scalar field.
For the generalized CSM, we define the exotic statistics matx being a gauge function, as well as under global gauge
ter field and reformulate the quantum theory in terms of thisransformations of the right-handed and left-handed Dirac

field. ) fields which are generated by

In Sec. V, we construct two other Poincagenerators,
i.e., the momentum and the boost. We act in the same way as Lz
before with the Hamiltonian, namely we define the physical Q.=e. J_ L/ZdXJi(X)'

generators as those which are invariant under both topologi-
cally trivial and nontrivial gauge transformation_s. We ShOW Due to the gauge invariance, the Hamiltonian density is
that the algebra of the constructed generators is not a Poimot uniquely determined. On the constrained submanifold

careone and that the failure of the Poincagebra to close  G~0 of the full phase space, the Hamiltonian density
is connected to the nonvanishing vacuum Berry curvature.

In Sec. VI, we study the charge screening. We introduce H=H+vy-G, 4)
external charges and calculdi¢ the energy of the ground
state of the physical Hamiltonian with external charges andvherevy is an arbitrary Lagrange multiplier which can be
(i) the current density induced by these charges. Section Viany function of the field variables and their momenta, re-
contains our conclusions and a discussion. duces to the Hamiltonian density. In this sense, our theory
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cannot distinguish betwee® and #, and so both Hamil- then bringb into the interval0,%(2w/e.L)] . The configu-
tonian densities are physically equivalent to each other.  rationsb=0 andb=17%(2n/e,L) are gauge equivalent, since
For arbitraryeJr ,e_ the gauge transformations do not re- they are connected by the gauge transformation from the first
spect the boundary conditior8). The gauge transforma- topological class. The gauge-field configuration space is
tions compatible with the boundary conditions must be eithetherefore a circle with length(2w/e.L).
of the form
B. Quantization and anomaly

L L 2
)\(—) :)\< - = +h—7Tn, nezZ (5) The eigenfunctions and the eigenvalues of the first quan-
2 2 €+ tized fermionic Hamiltonians are
with e, 0 and d(xn; =)=+ e, (XN %),
e_
“—=N, NeZz 6) where
S
e 1 i fx g N [
or of the form (X|n; =)= \/—Eex il zZA(2) 72X,
L L 27
A E =\ _E +ﬁe—n, ne Z, _27T eibL
- En= =\ M)

with e_#0 and i
We see that the spectrum of the eigenvalues depends on

- For e, bL/27A =integer, the spectrum contains the zero en-
—=N, NeZ. (7)  ergy level. Asb increases from 0 td(2w/e, L), the ener-
gies of g, . decrease byi(2x/L), while the energies of
Equations(6) or (7) imply the charge quantization condition (—&n,-) increase by#i(27/L)N. Some of energy levels
for our system. Without loss of generality, we choose thechange sign. However, the spectra at the configurations
condition (6). ForN=1, e_=e_ and we have the standard b=0 andb=7(2m/e.L) are the same, namely, the integers,
Schwinger model. FaN=0, we get the model in which only as it must be since these gauge-field configurations are gauge
the right-handed component of the Dirac field is coupled toequivalent. In what follows, we will use separately the inte-
the gauge field. ger and fractional parts of,bL/27% (and e_bL/27h),
From Eq.(5) we see that the gauge transformations undeglenoting them age.blL/2x#] and {e.bL/27%}, corre-
consideration are divided into topological classes charactespondingly.
ized by the integen. If A(L/2)=\(—L/2), then the gauge Now we introduce the second quantized right-handed and
transformation is topologically trivial and belongs to the left-handed Dirac fields. For the moment, we will assume
n=0 class. Ifn#0 it is nontrivial and has winding number thatd. do not have zero eigenvalues. At tire0, in terms

n. of the eigenfunctions of the first quantized fermionic Hamil-
Given Eq.(5), the nonintegrable phase tonians the second quantized-function regulated fields
have the expansiof22]
i L2
F(A)zexp[—e+f dxAl(x,t)} B
A )L PR00= 2, an(xn;+) e, |72

is a unique gauge-invariant quantity that can be constructed
from the gauge field18-21. By a topologically trivial

S _ . —s/2
transformation we can mak&; independent ok, ‘MX)‘EZ br(X|n; =) hen,-| 7% ®)
Ag(x,1)=Db(t), Here \ is an arbitrary constant with dimension of length

which is necessary to makke, . dimensionless, while
a,,a' andb,,b! are, correspondingly, right-handed and left-

i handed fermionic annihilation and creation operators which
F(A):exp{%ed_b(t)]_ fulfil the commutation relations

[an va;']]+ :[bn 1b;]+ = 5m,n .
For 4> (x), the equal time anticommutators are
[42 (0, (V] =E=(5%,Y), ©)

is invariant only under the topologically trivial gauge trans-with all other anticommutators vanishing, where
formations. The gauge transformations from thih topo-

logical class shifb by #(2#/e,.L)n. By a nontrivial gauge (SXV)= xIn: =M+ vy e, .| S
transformation of the formg,=exp{i(2#/L)Anx, we can £=(sxy) ngz< Ins =)= ly) hen |7

i.e., obeying the Coulomb gauggA,=0, then

In contrast withI"(A), the line integral

1 (L2
b(t):EJ I_/deAl(x,t)
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s being large and positive. In the limit where the regulator is ss 1 . s
removed, i.e..s=0, {.(s=0, x,y)=48(x—y) and Eq.(9) 1200 =500, 92 (0]
takes the standard form.

The vacuum state of the second quantized fermionigq

Hamiltonian
. L/2 . 1 (L2
|[vacA)=|vacA; +)®|vacA; —) HSi:J,L,deHi(X)ZEJ, X(p15dL s — S dt s,
is defined such that all negative energy levels are filled and
the others are empty: Substituting Eq(8) into these expressions, we obtain
e,bL - 2
a,vacA;+)=0 for n> 2+7-rh , 15(x )—nzz—ex |—nx]p+(n)
allvacA;+)=0 for n=< e.bL (10) where
n S Tl 2wk |
1
and Pi(n)zkzzE[alaak+n]7|)\3k,+|75/2|)\8k+n,+|73/2:
bnlvacA;—)=0 f < ebL} 1
vacA;—)= or n< , _ _
" 27h Ps—(n)EkEZE[blabk+n]—|)\8k,—| %2 Neyin, |
t e_bL .
bilvacA;—)=0 for n> el (1) are momentum space charge densdy currenj operators,
and
Excited states are constructed by operating creation operators 5
on the Fock vacuum. H(x)= > —ex i—an] HE.(n)
In the ¢-function regularization scheme, we define the ac- nez L L -
tion of the functional derivative on first quantized fermionic
kets and bras by HS.(M)=H; . (n)Fe.bps(n), (12)

——|n;=)=Ilim m; = where
SALG0 M) lim 2, m; )

T 1
N 5 T H8’+(n)zﬁtk22(2k+n)E[aﬂ,ak+n]_|)\sk,+|‘5/2
A0 | Em ©
« - ><|7\"3k+n,+|_5/2.
n;, =+ =lim
"1 SA - = AL T 1 ,
1( ) s—omeZ 1( ) H(S),f(n)EhEKE‘JZ(2k+n)§[bk+n1bl]fl)\8k,f| sl2

X{m;=||\ep +| 52
) X [Negin| %2
From Eq.(8) we get the action 08/ 5A;1(x) on the operators

an, aj in the form The charges corresponding to the currgritéx) are
0 —lim X < L‘m'+> o Y2 s s
AL (x) on sQmeZ SAL(X) | Qi:eif, ,zdxji(x):eipi(o)'

X am|hem 4|52 .
mi==m, ! With Egs.(10) and(11), we have, for the vacuum expecta-

tion values,
0 ot lim >, <m + o n +>
a,= ———|N;
5A1(X) " s—omeZ 5A1(X) 1
(vacA; = (x)|vacA; £)=— S 7.,
><"’1;2"||)\8m,+|_S/2-
. t : ~ . 1
The action of 6/ 6A1(x) on b,,b, can be written analo (vacAlAg|vacA)=— = (&, +£.)

gously.
Next we define the quantum fermionic currents and fer-
mionic parts of the second-quantized Hamiltonian as where
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1 .
me=tlm =3 sgriey ) hey«| >,

€

—|Im E |7\6k+| sl

Taking the sums, we obtain
2([esbL] 1
L\| 2wt | 2)

_ ;2 e.bL] 1\? 1
&=\ 2mm | " 2) 12

The quantum fermionic currents, charges, and Hamilto-

nians can therefore be written as

o 1
H.=Ho.Fe.b:p.(0): = &,

where double dots indicate normal ordering with respect to

|[vacA),
“ 2 + B
Ho+ =% —Ilim kagagNey 4| ~°
s—0| k>[e bL27h]
- kakall)\sk,+|_s]y
k<[e bL/2mH]
. 2 N _
H =h—Iim kbkbk|)\8kyf| S
50| k>[e bLi2at]
- > kblbk|}\8k,|s]:
k<[e BL/2m#]
and

alakl)\sk&rs

:p+(0):=|im{ >

s0| k>[e bL/27h]

- > aaf| ey 4|5,
k<[e.bL/27h] '

bibylhey |~

:p_(O):=|im{ >
k=l

s—0| ks[e_bL/2w#]

- bkbl|)\8k’_|_s}.
k>[e bL/2wh]

To construct the quantum electromagnetic Hamiltonian,
we quantize the gauge field using the functional Sdimger
representation. In this representation, when the vacuum and
excited fermionic Fock states are functionals &f, the
gauge field operators are represented Aagx)—A(X),
E(x)— —iA[ 8/ 5A1(x)] and the inner product is evaluated
by functional integration. We first introduce the Fourier ex-
pansion for the gauge field

A(X)=b+ >, el@mibipxg
peZ
p#0

SinceA,(x) is a real functiong,, satisfies

The Fourier expansion for the canonical momentum conju-
gate toA;(x) is then

. 1. d

E()=[m hE e
Peg @p
p#

where m,=—i#%(d/db). The electromagnetic part of the
Hamiltonian density is

N 1 2T
Hen(X)= 2 exp i ——Px| Heu(p),
peZ

where
Heu(p) 1h2 d d
p)=-—+ T
EM L" da_,db
RESLE (p#0)
2L qe 2 da,p+q dafq '
q#(0;p)
(14)

so the corresponding quantum Hamiltonian becomes

1. 1 d d
f2 T2 -
HEM Hem(p=0)= 2L ™o Lﬁqu dag da_q’

The total quantum Hamiltonian is

1
—e+b:p+(0):+e_b:p_(0):—§(§++§_)-

If we multiply two operators that are finite linear combi-
nations of the fermionic creation and annihilation operators,
the ¢-function regulated operator product agrees with the na-
ive product. However, if the operators involve infinite sum-
mations their naive product is not generally well defined. We
then define the operator product by mutiplying the regulated
operators withs large and positive and analytically continue

The operatorsj:. (x): and H. : are well defined when act- the result tos=0. In this way we obtain the relations
ing on finitely excited states which have only a finite number

of excitations relative to the Fock vacuum.

[p(M),pe(N)]-=+mMbpy _,, (15
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20 For N=1, i.e., for the standard SM, both commutators
[Hox(n), Hox(M)]-=*A——(N—=mM)Ho.(n+m), vanish. Another case of vanishing Schwinger terms is axial
electrodynamics wherfl= —1 and the fermionic fieldss..
2 are of opposite charge.
[Ho+,px(M)]_= :hTmPr(m)y
Ill. QUANTUM CONSTRAINTS

and A. Quantum symmetry
d In nonanomalous gauge theories, Gauss law is considered
%pi(m)=0, to be valid for physical states only. This identifies physical

states as those which are gauge invariant. The problem with
the anomalous behavior of the generalized CSM, in terms of
states in Hilbert space, is apparent: owing to the Schwinger
terms we cannot require that states be annihilated by the

L Gauss law generatofs. (p).
p_( ):e; n (p>0). (16) Let us represent the action of the topologically trivial
27h gauge transformations by the operators

d B e+L
daipp+(m)_ 20 ﬁ p"'mr

da.,

The quantum Gauss operator is

Uo(r)=eXpHéoro+ ;L—E (é+r++ér)J (17
p>0

E=6 1+ e el @allpx_ G e~ i(27/L)p
0 L2 Z {G+(p) (p) T with 74,7, (p) smooth, then

where Ual(T)a:on(T):a:_ipT:(p)a

GOE

|~

H 2
e+ pn(0), Uy (T) d Ug(7)= d #(1—%(%) 7-(P),

R d e.L
Gi(p)Eﬁpdafpt;—WpN(ip), (p>0).

The composition law for the operatok, is

andpy=p. +Np_ is momentum space total charge density 1 5 ) D o L 5
operator. Uo(7)Uo(7?) =expf2i (71, 7?)}Ug( 71+ 712)),

Using Eqgs(15) and(16), we easily get thgp , (= p) [and

p_(*p)] are gauge invariant. For example, for(+p) we  Where
have LL\2
[8.(p).p+ ()] =0 ol A= g 2)(2 h)
+ P+ = -=Y,
. ()72 11 (2)
[G_(p).pi(=a)]-=0, x 2 p(rte =)

(p>00>0). The operator$..(p) do not commute with s 5 two-cocycle of the gauge group algebra. Thus Nor

either themselves, #+1 we are dealing with a projective representation.
&2 L2 The two-cocyclew,(1),7(?) is trivial, since it can be
& G = (1-N?2 S removed by a simple redefinition dfy(7). Indeed, the
[G+(p).G-(@)]-=( )4 2 P%aq modified operators

or the Hamiltonian, Ug(r)=expli2may(y;7)}Uo(7), (18)
e?

42d

where

[H,G.(p)]-=%(1-N (p>0).

e, L

2
ZWﬁ) pZO (@ p7-—apTy)

The last two commutators reflect an anomalous behavior of ®1(¥:7)=
the generalized CSM. The appearance of the Schwinger term

in the first commutator changes the nature of the Gauss lay a one-cocycle, satisfy the ordinary composition law
constraints: instead of being first-class constraints, they turn

into second-class ones. The Schwinger term in the sgcond Uo(# ) Ug(#2) =Ty Y+ 72,

commutator means that the total quantum Hamiltonian is not

invariant under the topologically trivial gauge transforma-j.e., the action of the topologically trivial gauge transforma-
tions generated b (p). tions represented by E@L9) is unitary.

— 11N2
-~ (1-N)
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The modified Gauss law generators corresponding to Eq. A L(O)|F, ALY = e (D] F,A1)).
(18) are F ' F ’
- The state|F=0A(t))=|vacA(t)) is a ground state of

2 A 1 erL oo
G:(p):G:(p)i%(l—Nz)g—wza:p. (19 He:(),
‘He:(t)|vacA(t))=0.
The Fock statesF,A(t)) depend ont only through their

e e _ implicit dependence oA,. They are assumed to be periodic
[G+(p).G-(q)]-=0. in time, |F,A(T))=|F,A(0)), orthonormalized,

This means that Gauss law can be maintained at the quantum
level for N+ *1, too. We define physical states as those

The generatoréi (p) commute:

(F' A(|F AD) =8¢,

which are annihilated bf?ﬁi(p) [11]: and nondegenerate.
A The time evolution of the wave function of our system
éi(P)|phySA>=0- (20) (fermions in a background gauge figli$ clearly governed

by the Schrdinger equation

The zero componer, is a sum of quantum generators of (t)
the global gauge transformations of the right-handed and ﬁw_::HF:(t)d/(t)'
left-handed fermionic fields, so the other quantum con-

straints are i i i
For eacht, this wave function can be expanded in terms of

:p-(0):|physA)=0. (21  the “instantaneous” eigenstatés,A(t)).
Let us choose/r(0)=|F,A(0)), i.e., the system is ini-
It follows from Eq. (20) that the physical statephysA)  tially described by the eigenstdte,A(0)). According to the
respond to a gauge transformation from the zero topologicaddiabatic approximation, if at=0 our system starts in a
class with the phase stationary stat¢F,A(0)) of :H:(0), then it will remain, at
. any other instant of time, in the corresponding eigenstate
Uo(7)|physA)=exp{—i2ma;(y;7)}|physA). (22 |F,A(t)) of the instantaneous Hamiltonial; :(t). In other

. . _ . words, in the adiabatic approximation transitions to other
Only for models without anomaly, i.e., fbf= =1, does this eigenstates are neglected.

equatio_n tra_nslate into the statement that physical states are At time t=T our system will be described by the state

gauge invariant.
Equation(22) expresses in an exact form the nature of Pe(T) exp[wdynﬂ),gerry}%(o)

anomaly in the CSM. At the quantum level the gauge invari-

ance is not broken, but realized projectively. The one-yhere

cocyclea occurring in the projective representation contrib-

utes to the commutator of the Gauss law generators by a dyn
Schwinger term and therefore produces the anomaly. == _f dteg(t),
B. Adiabatic approach while

Let us show now that we can come to the quantum con- L2 S
straints(20) and(21) in a different way, using the adiabatic 7Be"y—f dtj dxA (X, t)< F,A(t)>
approximation[23,24. In the adiabatic approach, the dy- 5A1(X't)
namical variables are divided into two sets, one which we (23
call fast variables and the other which we call slow variables, B hasd 24
In our case, we treat the fermions as fast variables and the erry's phas¢24J.
gauge fields as slow variables. If we define the 1) connection

Let A! be a manifold of all static gauge field configura-
tions A;(x). On Al a time-dependent gauge fiels(x,t) Ae(x,t)= <|: A(t)‘ A ‘F,A(t)>, (24
corresponds to a path and a periodic gauge field to a closed ( 3

loop. hen
We consider the fermionic part of the second-quantize(}

Hamiltonian 1:|F: which depends ort through the back- Berry T L2 .
ground gauge fieldA; and so changes very slowly with YE :JO dtj_L/ZdXAl(X,t)AF(X,t)-
time. We consider next the periodic gauge field
Ai(x,1)(0=t<T). After a time T the periodic field \ye see that upon parallel transport around a closed loop on
Al(X’E) retums to Its original valué\;(x,0)=A1(X,T), SO 41 the Fock stateF,A(t)) acquires an additional phase
that :Hg:(0)=:Hg :(T) . which is integrated exponential ofg(x,t). Whereas the dy-

At each instant we define eigenstates foHx:(t) by namical phasey‘,iy” provides information about the duration
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of the evolution, the Berry’s phase reflects the nontrivial ho-This phase is associated with the projective representation of

lonomy of the Fock states ad’.

the gauge group. FoN= =1, when the representation is

However, a direct computation of the diagonal matrix el-unitary, the curvaturer, _ and the Berry phase vanish.

ements ofs/ 5A;(x,t) in Eq. (23) requires a globally single-
valued basis for the eigenstatés A(t)) which is not avail-
able [25]. For that reason, to calculatgZ®™ it is more
convenient to compute first the(l) curvature tensor

fF(va!t) AF(X t)

(29

5 5
A0 FY YT S D

and then deducelr .
The vacuum curvature tensor is evaluated 24§

N2 e 21_ 2w
F=0=( )an sin T n(x—y)

2

e
—(1-N2)—*
(=N

1 1
2| 5e(x=y)= T (x=y)|. (28
The corresponding (1) connection is easily deduced as
1fu2
E —L/2
The Berry phase becomes

Li2 Li2
Y= — f dtj dxf dyA;(x,t)
L/2 L/2

X]:F:O(vait)Al(yvt)-

Ap=o(X,t) = — dyFe—o(X,Y,DAL(Y,1).

In terms of the Fourier components, the connection

Ap—g is rewritten as

<vacA(t)’ vacA(t)> =0,

db(t)

<vaCA(t)’ vaCA(t)>EA+(p,t)

ap(t)
212 1

_+(1 N) thp Fpr

so the nonvanishing curvature is

F ——dA dA—lNZeiLzl
+_(p)_da,p + d_a/p —_( )47T2h26

A parallel transportation of the vacuumacA(t)) around a
closed loop in &, ,a ) space p>0) yields back the same
vacuum state multiplied by the phase

2,2

e Le (T 1 .
Berry_ (1 _ N2\ T
Yr=o—(1 N)4w2ﬁ2fodtp2>oplapap'

As mentioned in the beginning of this section, the projec-
tive representation is trivial and the two-cocycle in the com-
position law of the gauge transformation operators can be
removed by a redefinition of these operators. Analogously, if
we redefine the momentum operators as

d d d , e’L? 1
8m°h? p

aipv (27)

da+p

then the corresponding connection and curvature vanish

- d
A:E<vac,A(t) da-, vac,A(t)> =
7o -9 a- %5 o
P a2 a0

However, the nonvanishing curvatufe, (p) shows itself
in the algebra of the modified momentum operators which
are noncommuting:

d d
dTap’da,q

=F, (P)bpg-

Following Eq.(27), we modify the Gauss law generators as

~ P a e+|_
G.(p)=G(p)=hp g — =5 —pn(*P)
=p

that coincides with Eq(19). The modified Gauss law gen-
erators have vanishing vacuum expectation values,

(vacA(t)léi(p,t)|vacA(t)>= 0.

This justifies the definitior{20).
For the zero componeﬁio, the vacuum expectation value

1
(vacA(t)|G0|vac,A(t))—— (e,n,+e_n_)

can be also made equal to zero by the redefinition

1 1
GO_’GO GO+ (e+77++e n-)=r e+ pn(0):

that leads to Eq(21). Thus, both quantum constrain20)
and (21) can be realized in the framework of the adiabatic
approximation.

IV. PHYSICAL QUANTUM CSM
A. Construction of physical Hamiltonian

(1) From the point of view of Dirac quantization, there are
many physically equivalent classical theories of a system
with first-class constraints. The origin of such an ambiguity
lies in the gauge freedom. For the classical CSM, the gauge
freedom is characterized by an arbitrary(x) in Eq. (4). If
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we use the Fourier expansion fog(x), then the general In terms of the momentum space charge density operators,

form of the classical Hamiltonian is rewritten as the gauge invariant electromagnetic Hamiltonian becomes
—~ . 1.,
H=H+ 2 (0n.+Gs+vp-Co). (28 Hew=5rm5+Vipn:on),

Any HamiltonianH with fixed nonzero ¢y vy 1) gives where
rise to the same weak equations of motion as those deduced

from H, although the strong form of these equations may be R
quite different. The physics is, however, described by the 85Tz p
weak equations. Differentv —,vy +) lead to different

mathematical descriptions of the same physical situation. s the energy of the Coulomb current-current interaction.
To construct the quantum theory of any system with first- |5 order to make the dependence binfor the Hamil-

class constraints, we usually quantize one of the corresponggnian more obvious, let us represenf as

ing classical theories. All the possible quantum theories con-

structed in this way are believed to be equivalent to each 1 1

other. pn=5(1+N)p+5(1-N)o,
In the case where gauge degrees of freedom are anoma-

lous, the situation is different: the physical equivalence ofyyhere

guantum Hamiltonians is lost. For the CSM, the quantum

HamiltonianH does not reduce tBl on the physical states: pP=p1=p+tp-,
FilphysA)#FphysA). TTpmThe b
and
The quantum theory consistently describing the dynamics of
the CSM should be definitely _com.patiple with E(Q'O). The [p(p),p(q)]-=[c(p),o(q)]_-=0,
corresponding quantum Hamiltonian is then defined by the
conditions [o(P).p(a)]-=2P3p, .
[H,G.(p)]_=0 (p>0), (299  Then the Coulomb interaction energy takes the form

~ 1 1
which specify thatH must be invariant under the modified V(pnipn) = 7(1+ N)2V(p;p)+ Z(l—N)ZV(O';O')
topologically trivial gauge transformations generated by
G.(p).
We have in Eq(29) a system of nonhomogeneous equa-
tions in the Lagrange muItipIien@sH,i which become opera-

tors at the quantum level. The solution of these equations iEorN=1, p(p) ando(p) are respectively momentum space
electric and axial charge density operators, the electromag-

1
+§(1—N2)V(p;0'). (30

R A1 d _ ,[eil)? netic Hamiltonian depending only gt
UH,t(p)_EF p_da+p+(1_N) % %ol
- A 1.
& T2 .
HEM_2L7Tb+V(p1p)

Substituting this expression fo}H,i(p) into the quantum

counterpart of Eq(28), on the physical stateiphysA) we For N=—1, the momentum space electric charge density

obtain operator iso(p) and
1 ~ ~ ~ ~ S
Ego {[on,+(P).G (D] +vw,-(p).G (P14} Hew=or 7o+ V(0.
=—12ﬁ22 d d E{i d } For N# =1, i.e., for models with anomaly, the last term in
L°" g0 \dapda_p, 2[dap'da_p]_ |’ Eq. (30) does not vanish and is of principal importance. This

term means thah ando are not decoupled as before for the
i.e., the last term in the right-hand side of E88) contrib-  cases without anomaly and that the electromagnetic Hamil-
utes only to the electromagnetic part of the Hamiltonian tonian involves the noncommuting charge density operators.
changingd/de.. to d/da. : (2) The topologically nontrivial gauge transformations
- - change the integer part ef. bL/277% :

d d

— e,bL
dap'da_,

27h

N . — 1. 1
Aev— Hew=Hem(0)=5—me—>-h% 3, e+blL
EM EM EM 2L b 2L =0 > +

—

+
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=X physical state from Eq20).
In one dimension the parametgris related to a constant
and background electric field. To show this, let us introduce
states which are invariant even against the topologically non-

R 2mn ). (so-called# states[26,27]), where|physA) is an arbitrary
i —ex [/

e_bL e_bL trivial gauge transformations. Recalling that, bL/27% ] is
P R yers +N-n, shifted byn under a gauge transformation from thth to-
pological class, we obtain such states by the transition

_—ex iNzinx o | e bL
- L - [phys;0)—[phys=exp i| 5 —-|0{|physif). (32

The action of the topologically nontrivial gauge transforma-The new states|phys continue to be annihilated by

tions on the states can be represented by the operators = . . .
P y P G.(p), and are also invariant under the topologically non-

i trivial gauge transformations.
Un=exp[ - —n-Tb] Uy, (31 The electromagnetic part of the Hamiltonian transforms

h as

where -
H EM—> eXpl’ |

R R 2 (L2 . N
To= T, blizen) =~ —L/ZdXX[J +(X)+Nj_(x)]

e, bL
27h

e, bL
27h

. 1 d d
- _ 2_ T 32 o
L d S (—1)" oL (Mo LE) 5 pzo{dap’dap L
= dteblizan] T & T P )
n#0 i.e., in the new Hamiltonian the momentum, is supple-

mented by the electric field strengéh=(e./27) 6.

(3) The Fourier components of the fermionic currents are
nsformed under the topologically nontrivial gauge trans-
formations as

andUy is given by Eq.(17).
To identify the gauge transformation as belonging to thetra

nth topological class we use the indexin Eq. (31). The

casen=0 corresponds to the topologically trivial gauge

transformations. p.(£p)—p.(£p)—(—1)Pn,
The topologically nontrivial gauge transformation opera-
tors satisfy the same composition law as the topologically p_(£p)—p_(£p)+(—1)PNn (p>0)

trivial ones. The modified operators are
_ being invariant under the topologically trivial ones.
~ P o The quantum Hamiltonian invariant under the topologi-
U,=exp —+n-Ty(Ug. L : o .
cally trivial gauge transformations is still not uniquely deter-
mined. We can add to it any linear combination of the op-
On the physical states eratorsp (= p) andp_(=p) :

exp[ _ ;—?b]

Among all stategphysA) one may identify the eigen- /nere are arbitrary functions. The conditio(&9) do
states of the operators of the physical variables. The action qf; cleg()r]f f?x these func)t/ions. ' 9

the topologically nontrivial gauge transformations on such tha Hamiltonian of the consistent quantum theory of the

states may, generally speaking, change only the phase 8fneralized CSM should be invariant under the topologically

these states by @ number, since with any gauge transfor- ,nirivial gauge transformations as well. So in addition to
mations both topologically trivial and nontrivial, the opera- Eq. (29) is the following condition:

tors of the physical variables and the observables cannot be
changed. Usingphys;#) to designate these physical states,
we have

I

U, |physA)= [physA).

—>ﬁ+,80+p22[/3+p+(|0)+ﬁ7p7(|0)], (33)

p#0

[H,T,]_=0. (34)

. The condition(34) can be then rewritten as a system of linear

exp{ ;'_-“rb] |phys;6)=e*?|phys;6). equations in Bo,B-). We can easily find a solution of these
h equations, which gives us g§,B8+) as functions of

] ) [e,bL/27%]. The most general solution must involve con-

The stategphys;f) are easily constructed in the form stants depending ofe. bL/27%}. However, these constants
, N are irrelevant for our consideration and we neglect them.
hys:0) = e—ma( exp — —T ) hvs: _ Finding (ﬂo,,B_i) from Eq. (34) f_;md substituting th_em

[phys:0) n;z p[ h b] [phys) into the expressio33), on the physical states we obtain
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ﬁlphysA)zﬂphprhysA), The commutation relations far, are

where s ~ e2 L
[76(X), T(¥)]- =1 (1=N*)5—(x=Y).
We see that due to the new interactions the physical degrees
of freedom behave themselves as though moving in a back-
ground linearly rising electric field. This is an effective field
not related directly to the original fields of our model. It may

+bL
ah

2 e+bL o be considered as produced by a charge uniformly distributed
+ Z (=1)Pp_n(p), (39 on the circle with density
pstO
, . 1(1 N?) e, bL
1. e L bgrd= — {47 275 |
BN =5 ™8+ Vipnipn) 7 2 (1-N?) "

This situation is similar to that in 21 or 3+1 dimen-

e;bL > (—1)F sions. As known, in the non-Abelian models governed by
2mh |z p® Pn(P) Lagrangians with topological termshe Pontryagin density
p#0 in 3+1 dimensions or the Chern-Simons term in2dimen-
2 e, bL]\? siong the non-Abelian gauge field is moving in a back-
2)2 S ) (36) groundU (1) functional gauge potential expressed in terms

of the non-Abelian gauge field componeft$ The peculiar-

ity of the situation in our case is that there is no magnetic
field related to the gauge field in+1l dimensions, so the
background field is electric.

If we again make the transition to the physical states in-
o variant under both the topologically trivial and nontrivial
ﬂgi:_ﬁ 2 I\ep L 7% (= p)pS(p). gauge transformations, then the density of the kinetic part of

’ L 5o ’ the physical electromagnetic Hamiltonian becomes

The free fermionic Hamiltonianélo,i can be expressed in
terms ofp..(p), by making use of the bosonization proce-
dure. Their bosonized version is

Equations(35) and (36) give us a physical Hamiltonian in- 1 o ~

variant under both topologically trivial and nontrivial gauge TW%HT{T%— L[Ep+EX) 2.

transformationsHE™S and HEW being invariant separately.

The last two terms in Eq.35) make the free fermionic part While the constant background electric field is general in

of the Hamiltonian invariant, while the ones in E6)  one-dimensional gauge models defined on the circle, the lin-

make the electromagnetic part invariant. early rising one is specific to models with left-right asym-
For N==*1, the last two terms in Ed36) vanish. These metric matter contertL5].

terms are therefore caused by the anomaly and represent new The next-to-last term in Eq36) means that the fermionic

types of interactions which are absent in the nonanomaloughysical degrees of freedom abdare not decoupled in the

models. physical Hamiltonian. This term represents the Coulomb-
The new interactions admit the following interpretation. type background-matter interaction

Let us combine the last term in EB6) with the kinetic part

of the electromagnetic Hamiltonian, then 2 e,bL (=1)P
#(1_“1) 2+7'rh Zz 02 pn(p)
1., €L . e,bL %0
Lo o (1-ND? |5 22 A
e’L (— 1)
1 (L2 == 4772; 02 5 Pbgrd®n(P)-
:TJLL/ZdX[Wb_LE(X)]Z' p#0

A It is just the background linearly rising electric field that
i.e., the momenturr, is supplemented by the linearly rising couplesb to the fermionic physical degrees of freedom in the
electric field strength Coulomb interaction.

As a consequence, the eigenstates of the physical Hamil-
tonian are not a direct product of the purely fermionic Fock
states and wave functionals bf This is a common feature
of gauge theories with anomaly. That the Hilbert space in
As in four-dimensional models of a relativistic particle mov- such theories is not a tensor product of the Hilbert space for
ing in an external field, we may define a generalized momena gauge field and the fixed Hilbert space for fermions was
tum operator in the form shown in[6,7].

N A The background charge interpretation is related to the
mp(X) =1 — LE(X). definition of the Fock vacuum. The definition given in Egs.

e+bL

e,
E(X)=— —x(1—N?)| —— o

L
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(10—(11) depends ome, bL/27%] and remains unchanged - -

only locally on A%, in regions wherde, bL/2x#] is fixed. PL(0= 2 an(x|n;+)Nen .| "5,
The values of the gauge field in regions of different nez

[e,bL/27#A] are connected by the topologically nontrivial

gauge transformations. [&, bL/27# ] changes, then there is PE(x)= 2 bo(xIn;—=)nen |2,
a nontrivial spectral flow, i.e., some of the energy levels of nez

the first quantized fermionic Hamiltonians cross zero anq/vhere

change sign. This means that the definition of the Fock

vacuum changes. _ 2w .
The charge operator®. also change. LetQ®: be anEEXp['e+|_7"b]an+[e+bu2wﬁ]-
charge operators defined in the region whém bL/
27h] =0 and normal ordered with respect to the correspond- _ 2 .
ing Fock vacuum. Then in regions with nonzero b,=ex g™ Bniie bLizan] -

[e.bL/2wh] the charge operators becomeQ®:
+e.[e.bL/27wA]. For models without anomaly, the addi- The exotic creation and annihilation operat@s,a, and
tional terms in the positive and negative chirality charges ar%*r B, fulfill the following commutation relations algebra:
opposite in sign, so the total charge @ : +:Q©: in all

regions of differenfe,bL/27#], i.e., defined globally on alantam_1a_ 1= Smns
AL. For models with anomaly, the additional terms do not

cancel (_each other and the total charge operator up to terms anam+ ams1an_1=0,
depending on {e.bL/27h} becomes

:Q©:+:Q): + e, Lppgq. The background charge is there- and
fore that part of the total charge which depends on —_—— =
[e.bL/27%] and changes in the transition between regions bnbmtbm b Smn

of different[e bL/27#A]. EB+B 0
nPmt Dm-10n4+1=0.

S5 —+

B. Exotization We next introduce the new Fock vacuum

We can formally decouple the matter and gauge field delVacA)=|vacA;+)®|vacA; —) defined as
grees of freedom by introducing the exotic statistics matter
fields (the so-called exotization procedur&6]). Let us de-
fine the composite fields

ajlvacA;+)=0 for n>0,

allvacA;+)=0 for n<o,

~ B T 27~ e.bL
Y (X)=ex +'fx_'eiL T+ €+ X e P (X). and

(37 bnJvacA;—)=0 for n<0,
The fieldsy. (x) are invariant under the topologically non- bl|vacA;—)=0 for n>0,

trivial gauge transformation@ve putUg,=1)
denoting the normal ordering with respect [teacA) by

i i triple dots
exq’gn?b]% exp[ — gn:rb] =, If we compare the old and the new definitions of the Fock

vacuum, then we see a shift of the level that separates the

filled levels and the empty ones. The new Fock vacuum is

and have the commutation relations defined such that for all values ¢&,bL/27%] only the
levels with energy lower thafor equal t9 the energy of the

level n=0 are filled and the others are empty, i.e., the new

PLOOPL(y)+eTFOV Y (y) Pl (x)= 8(x—y), definition does not depend ¢e, bL/27#] and remains un-
changed as the gauge configuration changes.

F )T The exotic matter current operators are
P 0P (y) +e TN Y (y)h (=0, (39

27
i = [expin n
where F(x,y)=(2#/L)(x—y). The commutation relations =(X)= ngz xp|| X]p (),

(38) are indicative of exotic statistics @f. (x). These fields
are neither fermionic nor bosonic. Only far=y Egs. (38)
become anticommutatorgz. (x) [and ¥ & (x)] anticommute
with themselves, i.e., behave as fermionic fields.

Using Eq.(37) and the expansion8), we obtain the Fou-

rier expansions for the exotic fields. (x) :

Fi(n)=k22 5E5k+n|)\8k,+|75/2|)\8k+n,+|73/2!
€

;i(n):i;z b by nlhew | Neyn |2
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The new operatorg . (n) and the old oneg . (n) are con-
nected in the following way:

o~ e+bL
:pt(n) - P+(n) — r‘IO 27Tﬁ
The exotic matter charges are
B N e+bL
Q+ H Q+ . _e+ th

On the physical statel®1) the exotic charges become

s e_bL
:Q= i[physA)= *e.| 5 —-||physA). (39

With Eq. (39), we decouple the matter and gauge-field .

degrees of freedom in the physical Hamiltoni¢d6). We
obtain

- 1., 1 27
Hons=r ™o 5 (£ + ) +A - 2 [pons(~ P)piot(P)

tot. tot)

+ Prot—(P) Prot—(—P) ]+ V(pN i oN)

where we have defined the operators

tot__
Pr\? =prot,+ T Nptot,f )

_ 1 -
Ptot,tEP¢+(_1)pe_5Q¢5-

These operators are invariant under both topologically trivial

and nontrivial gauge transformations.

To diagonalize the exotic matter part of the physical
Hamiltonian, we perform the Bogoliubov transformation
over the operatorg, (£ p) andpy—(*p),(p>0) :

Prot+ (£ P)— prot+ (= P) = COSHppior 1 (£ P)

+ Sin“pptotﬁ( *p),

Prot—(£P)— proy—(£P)

=Ssinfppior (£ P) +COSHpp o (£ P),
(40)
where
27Tp L
cosh2,=—| —1#h+ —2—(1+N ),
Ep 8w
2, — 1 eiL
sin E pp N,
and
2 2
E,= \/p@®+ )(1 N%Z
2mp\2 . €
EE(N)E(%p B2 4 —C (14N

GENERALIZED TWO-DIMENSIONAL CHIRAL QED: ...

1067

The Bogoliubov transformed operators
ptoH_( P), pot—(£P) satisfy the same commutation rela-

tions as the nontransformed ones:

[Ptot+ (M), Prot+ (M- =[pror—(N), prog— (M- =My, _.

The generator of the Bogoliubov transformati@t®) is

1 - _ _
Bp= eXp[ Btp[ Pot—(P) Prot+(—P) = Prot+(P) Prot—

(- p)]] :
The diagonalized form of the total physical Hamiltonian is

1., 1 y R— _
Hons=rmo— 5 (£ + )+ 2 DB pio(—P) i (P)

+ Pt~ (P) Prot-(—P)]- (41)
The physical Hamiltonian obtained is expressed in terms of
the exotic matter and global gauge-field degrees of freedom.
The exotic fields are composites of the fermionic matter and
background electric fields.

For theN=1 model,e_=e,=e and the linearly rising
background electric field vanishes. The spectrum of the
physical Hamiltonian becomes relativistic:

2 2
Wp) +M?2?,

E,=Ep(N=1)=# ( i

whereM?= (e?/7)(1/%).
If we introduce the creation and annihilation operators for

c'= vt a2 (]2,
R e
[C.CT]=1,

then the global gauge-field part of the physical Hamiltonian
becomes

M(CTC h)
TR (§++§ )= +

The wave function of its lowest energy eigenstate is

o225

The total physical Hamiltonian takes the form

1/4
eX

2ML%

=l

2

2
eL

ebL
2mh

1

ol

2

N t 1 - _
thys: MC'C+ E _Ep[Ptot,+(_p)Ptot,+(p)
p>0 p

+ prot—(P) Pro—(—P)1- (42)
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This is just the Hamiltonian of a massive scalar boson withi.e., at the classical level, these generators obey the Poincare
massM. algebra.
The N=—1 model can be considered analogously. We At the quantum level, the momentum and boost genera-
get the same physical Hamiltonié2). Thus, for both cases tors become
N==*1, the quantum generalized CSM is equivalent to the
free field theory of a massive scalar field. A~ A A Lz
For the N#*=1 models, the spectrum of the physical P:P++P—_f_L/2dXE‘91A1’
Hamiltonian is nonrelativistic and does not correspond to a
massive boson. So the quantum theory of the models with 1 (e
anomal_y is not equivalent to the theory of a free massive pis_ﬁf dx( ¢t (—ia) e — e (ia) Pl ],
scalar field. 2" )
Since the matter and gauge-field degrees of freedom are
decoupled in the physical Hamiltonig@l), its eigenstates N L2 R - -
can be represented as a direct product of the exotic matter K= f_ /de><[H+(x)+H_(x)+HEM(x)].
Fock states and wave functionals bf In particular, the

ground state of the physical Hamiltonian is defined as Using the Fourier expansions for the fermionic and gauge

fields, we rewrite the quantum generators as

|ground =0, ,

A A . efL )
P=P,—P -5 —(1- )pzoa,pap,

(1

Eow(n) |ground =p_mt’,( —n)|groung=0, n>0.

For theN=1 model, the ground state is P.= iﬂoi:%fi_ %ei 7=bL,

|vacA)

|grouno}=fo<b>( H0 uf

Lo (-Dp
L R=—ign 2, —5 M (P H-(P)+ Heu(P)],
:fo(b)eXp{ _nZO ﬁ[ptot,—(n)Ptot,+(_n) p#0

where H..(p) and Hgy(p) are given, respectively, by Egs.
(12) and (14).

As the Hamiltonian, the quantum momentum and boost
generators are not uniquely determined. We can use this ar-
All the excited states are constructed by acting the Bogoliubitrariness in order to make them invariant under both topo-
bov transformed operatonstoH( n), prt—(N),(n>0) and logically trivial and nontrivial gauge transformations. Acting
the global gauge-field degree of freedom creation operatof the same way as before in Sec. IV, we obtain the physical

— Prot (M) prot—(— n)]} [vacA).

C' on the ground state. momentum and boost generators in the form
Thus, the quantum generalized CSM can be formulated in
two equivalent ways. In the first way, the matter fields are Ponys= [H2YT0)—HP™0)],

fermionic and coupled nontrivially to the global gauge-field

degree of freedom. In the second way, the matter and gauge- (—1)P

field degrees of freedom are decoupled in the physicaK, ~—i P 2 ——[H™p) + HPMY p) + HEN )],
Hamiltonian, but the matter fields acquire exotic statistics. Tpez P

p#0
V. POINCARE ALGEBRA where
(1) The classical momentum and boost generators are
given by thys(p =f qEZ Prot,+(P+0)pror, = (— ),
L2 q#(O;*p)
P=f dx(—ihgl oy, —ihy 9,y —EoA),
G HEY(0)=HE¥{(p=0),
L/2
K=f dXXH(X). and
~LP2
phy e, d e+L
After a straightforward calculation we obtain Mip)= p 27 5= P P) 5 db 8m2
{H,P}=0,

1
qu q(g+p

)ptot(p Q)Ptot( Q).
{P,K}Z—H, {H,K}=—P, q#(0;—p)



56 GENERALIZED TWO-DIMENSIONAL CHIRAL QED: ...

1069

(2) Let us now construct the algebra of the physicalis another point where the nonvanishing curvatufe

Hamiltonian, momentum, and boost generators. For

shows itself(recall the commutator of the modified momen-

# = 1, the relativistic invariance is broken, so this algebra istum operators

not certainly a Poincarene.
For the operators H’™{p), HEYp), and

HEW0)=HEYS, we get the commutation relations

[H&“ﬁn).Hi“ﬁm)];rﬁ?(n—mm&“ﬁ(nm),

2
[HET0) — HMT0), HENTP) | = —h T PHENTP).
and
[HP™Y0) — HPMY0), HENS0)]_ =

[HE™ p), HEWI0)]- = [HA™R0), HENp)] - .

ForN==1, 7, _ vanishes and up to the boundary terms
we get the Poincéralgebra. In the limit. — o0, these bound-
ary terms vanish on the physical states, because the energy
density is assumed to diminish at spatial infinities faster than
1/L. Otherwise, the total energy of the system would become
infinite. Therefore, for theN=*=1 models on the line, the
Poincare algebra closes exactly. However, the boundary
terms do not affect the spectrum of the physical Hamiltonian
which is relativistic in the case of the circle too.

ForN# *1, in the limitL— o the first term in the com-
mutator [ HEWY0),HEWYp)]_ disappeargsince the gauge
field has no global gauge-field degrees of freeglowhile
the second one survives. For ther =1 models the Poin-
carealgebra does not close even on the line. This means that
such models are not relativistically invariant.

We can conclude that the nonclosure of the Poinedre

With these commutation relations, we easily obtain the algegebra in Eq.(43) is essentially due to the projective repre-

bra of the Poincargenerators:

[thySa |E’phys] ~=0,

[ﬁ)physa kphys], =—i ﬁﬂphstr (boundary termg,
and
[thys:kphys]— =—i hﬁ)phys
(=P
-1 E . D phys(o) thys(p)]7
b0
+(boundary terms, (43
where
[HER0) M) ) =~
- 2 Lp
.2
+h 2 Fi Q) 7= Q(D+Q) Ptot(p Q)ptot( a,

CI#(O p)

while the boundary terms are

- L\ . L
(boundary termg=ifiL Hﬂhys( 5|+ HP“Y{ E)
N L
+ HE?XS( > } :
A L N L
(boundary termgp=ifL HﬁhV{ E) - HB'WE( 5) } .

sentation of the local gauge symmetry. Working on the circle
allowed us to construct explicitly the Poincaigebra break-
ing term connected to the nonvanishing curvatére .

Let us note that the Poincasdgebra fails to close in the
physical sector where the states satisfy the quantum Gauss
law constraint(20) and the Poincargenerators are gauge
invariant. The physical Hamiltonian and momentum genera-
tor commute, so the translational invariance is preserved.
The origin of the breakdown of the relativistic invariance lies
in the anomaly or, more exactly, in the fact that the local
gauge symmetry is realized projectively.

VI. CHARGE SCREENING

Let us introduce a pair of external charges, namely, a
positive charge with strengtipat x, and a negative one with
the same strength &t [28]. The external current density is

JexdX) =0 (X—Xo) — 8(x—Yo) = E j@emi2mplLix,

where

i sz @l (2mp/L)xg _ @i (27p/L)yg.

The total external charge is zero, so the external current den-
sity has vanishing zero modg*=0. The Lagrangian den-
sity of the generalized CSM changes as

‘C*)E—FAOjeX,O'
The classical generalized CSM with the external charges

added can be quantized in the same way as that without
external charges. The quantum Gauss law operator becomes

éex5é+jex,0: ‘?1E+e+i+ +e—j—+jex,0-

The algebra obtained differs from the Poincame in the

boundary terms and in  the  commutator Its Fourier expansion is
[HEYY0),HEYp)]_ . The curvatureF, _ associated with

the projective representation of the gauge group makes th|sG =G+

ée ei(ZwlL)px_éP;x e*i(Z‘IT/L)pX ,
commutator nonvanishing for the models with anomaly. This L2p§>:0 [G¥p) (P) ]
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where Comparing this Hamiltonian with the physical Hamiltonian
without the external charges, we see that the external charges
A A qL change the ground state. The ground state of the physical
G¥(p)=G . (p) +ﬁ(j ), Hamiltonian(44) satisfies

qL [prot+(P)+ &p,+(159* 1| ground; ex=0,
G¥(p)=G_ (p)—ZW o
[prot-(—P)+ xp,- i llground;ex=0, p>0.

The physical statefphysA;ex) are defined as
The last term in Eq(44) is just the energy of the ground

G ex( p) 1 ei L 2 State
- 2
8w

G¥(p)|physA;ex) =

Eo=(ground; e;|<|3| ohydground; ex

X(l—Nz)aip)|phyS;A;eX> zq ooy
L & E2 (N Ip)™
=0.
The energyE, depends only on the distance between the two
The physical quantum Hamiltonian becomes external charges:
N 1., 1 2 202 1 20
_ 2 q p
thys_zﬂb_z(ng‘l‘ E)+h szo [ptot,+(_ p)Ptot,+(p) EozﬁszZO Ef,m[ 1_CO<T(XO_yQ)> ]
+ pot,—(P)ptot,—(— P) ]+ Vey, g% cosiLMy/2)—cosiLMy/2—My|xo—Yol)
where 2My sinh(LM\/2)
, where M2=(e2/27)(1/4)(1+N?). In the limit L>1, we
_ e+L 1 tot, q . tot Obtall’]
Vex= 8772pe F(Pﬁ(—pﬂ'a]gx o(p)+ (]ex*
p#0 2
Eo=opp (1—eMkomvol),
is the Coulomb energy in the presence of the external 2My

charges. Two new interactions contribute to the Coulomb

energy owing to the external charges. One is the classicdle., the ground-state energy has the form of the Yukawa-
Coulomb interaction between the external charges and thiype potential. The long-range Coulomb force between
other is the interaction between the total internal current anevidely separated external charges disappears. Since there is

the external current. no long-range force, the external charges are screened. To
After some calculations we rewrite the physical Hamil- show this we calculate currents induced by the charges. The
tonian as induced currentor charge densilyis

1

= ST 5 e >+2 THlpw(—p) (ground;exj.. () +NJ(x): ground; ex

o

1
2P ' — 5 Pogra™ (X,X0) ~ @(X.Yo),
+up,+ip P+ (P) + Kp 4 (15)*] 2 Phgrd 0 0

+[prot—(P) + #p,— (19 * M pror—(— P)+ kp - I} where (—3ppgr) IS @ current induced by the background

2 charge, whilep(x,X) and ¢(x,y,) are currents induced by

297 1 ex) % 44 the external charges at pointg andy,, correspondingly,
T2 Eza e U (44
p=0 E5(N)
ith B 1 {ZWH )
wit P(x,y)= = )E (N)CO (x=y)
ge, 1 _ qMy cosiLMy/2—My|x—y])

Kp+=h—5— 5 Ep(N)(COSh ptNsinht,),

2e, sinh(LM \/2)
e 1 The current induced by the two external charges is a sum of
q_+ —5—(sinht,+Ncosh,). the currents induced by each charge.

K _E
P E5(N) In the limit L>1,



qMN —Mplx—
~ NS
(P(X!XO) Ze+ €

and damps exponentially asgoes far fromx, . Screening
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the models with anomaly, the spectrum of the physical
Hamiltonian turns out to be nonrelativistic and does not con-
tain a massive boson.

We have constructed the physical quantum Poingare

occurs only globally. The induced charge density distributiorerators and shown that their algebra is not a Poinoare

is spread within the range of the orddi*. So if we are far
away from the external charges, we cannot find them.

We have demonstrated a relation between the anomaly,
Berry phase, and breakdown of the relativistic invariance.

The screening of each external charge occurs indeped¥amely, the curvature, _ related to the Berry phase does
dently of the other charges. That is, the charge density innot vanish because of the left-right asymmetric matter con-

duced around any of the two external charges does not déent. Atthe same time, just the nonvanishifig_ makes the
pend on the location of the other one. Next, the externaflgebra of the Poincargenerators different from the Poin-

charges are screened independently of the fact whether tiér€one.

background charge vanishes or not.

The Poincarelgebra fails to close on the physical states

The screening mechanism works therefore in the generall the chiral two-dimensional QCRQCD,) as well [29].
ized CSM, too. When a charge is placed in the system, thdhe origin of the breakdown of the relativistic invariance is
accompanying external current polarizes the vacuum produdb€ same in both models and lies in the anomaly. It would be
ground linearly rising electric field characteristic for modelsinvariance is broken for other models with the projective

with N# =1 does not influence this mechanism. realization of a local gauge symmetry, especially in higher
dimensions.

(iii) The total screening of charges characteristic for the
SM takes place in the generalized CSM too. External charges
We have shown that the anomaly influences essentiallare screened globally even in the background linearly rising
the physical quantum picture of the generalized CSM. electric field. The current density induced by the external
(i) For the models witiN# *=1 and defined or$*, when  charges damps exponentially far away from them indepen-
the gauge field has a global physical degree of freedom, thdently of the background charge.
left-right asymmetric matter content results in the back- Because of Schwingéd], the total screening of external
ground linearly rising electric field. This is a new physical charges implies the existence of a massive particle. The
effect just caused by the anomaly and absent in the modelsreakdown of the relativistic invariance does not mean, in
without the anomaly, i.e., foN=1 (the standard Schwinger principle, that in the anomalous models the dynamical mass
mode) andN=—1 (axial electrodynamigs generation mechanism fails and that the massive particle
This effect distinguishes the generalized CSM3rfrom  cannot exist. Using the fact that the physical Hamiltonian
the model defined oR* as well. In the latter case, the gauge and momentum commute, we may try to prove the existence
field has neither local nor global physical degrees of freedonof the simultaneous eigenstates of the relativistic massive
and the background field disappears. particle energy-momentum relation and then to identify these
(i) The anomaly leads also to the breakdown of the relastates with massive physical particles. For the 0 model
tivistic invariance. For the quantum theory of both thedefined onR!, such a massive eigenstate is constructed in
N==1 andN# +1 models we have presented the exotic[11]. The existence of the massive eigenstates for he

VII. DISCUSSION

statistics matter formulation. In this formulation the physical # + 1 models defined oS will be investigated. We intend
Hamiltonian is written in a compact diagonalized form. Forto report on that in a future publication.

[1] J. Schwinger, Phys. Rev. D28 2425(1962; in Theoretical
Physics, Trieste Lecture4962 (IAEA, Vienna, 1963.

[2] R. Jackiw and R. Rajaraman, Phys. Rev. L'e4.1219(1985.

[3] R. Rajaraman, Phys. Lett54B, 305(1985.

[4] E. Wigner, Ann. Math40, 149 (1939.

[5] R. Jackiw, inRelativity, Groups and Topology, IProceedings
of the Les Houches Summer School, 198®orth-Holland,
Amsterdam, 1984

[6] P. Nelson and L. Alvarez-Gaume, Commun. Math. P19g.
103 (1985.

[7] L. D. Faddeev and S. L. Shatashvili, Phys. L&67B, 225
(1986.

[8] L. D. Faddeev, Phys. Letl.4B, 81(1984); Nuffield Workshop
on Supersymmetry and Supergravity, 1985.

[9] I. G. Halliday, E. Rabinovici, and A. Schwimmer, Nucl. Phys.
B268 413(1986.

[10] M. B. Paranjape, Nucl. Phy8307, 649(1988.

[11] F. M. Saradzhev, Int. J. Mod. Phys.&\ 3823(199J); 8, 2915
(1993; 8, 2937(1993.

[12] A. Niemi and G. Semenoff, Phys. Rev. Le®5, 927 (1985;
56, 1019(1986.

[13] A. Niemi and G. Semenoff, Phys. Lett. B75 439(1986.

[14] G. Semenoff, inSuper Field Theoryedited by H. Leeet al.
(Plenum, New York, 1987

[15] F. M. Saradzhev, Phys. Lett. B8 449 (1992.

[16] F. M. Saradzhev, Phys. Lett. 84, 192 (1994.

[17] P. A. M. Dirac, Lectures on Quantum Mechani¢¥eshiva
University Press, New York, 1964

[18] N. S. Manton, Ann. Phys(N.Y.) 159, 220(1985.

[19] S. Rajeev, Phys. Lett. B12 203(1988.

[20] J. E. Hetrick and Y. Hosotani, Phys. Rev.3B, 2621(1988;
Phys. Lett. B230, 88 (1989.



1072 FUAD M. SARADZHEV 56

[21] F. M. Saradzhev, Sov. Phys. Lebedev. Inst. Rep., No. 9, 5725] F. M. Saradzhev, J. Phys. 30, 2219(1997).
(1988; Int. J. Mod. Phys. A9, 3179(1994; A. O. Barut and  [26] R. Jackiw and C. Rebbi, Phys. Rev. L&, 172(1976.

F. M. Saradzhev, Ann. PhygN.Y.) 234, 220(1994. [27] C. G. Callan, Jr., R. Dashen, and D. J. Gross, Phys. 688,
[22] A. Niemi and G. Semenoff, Phys. Rep35 99 (1986. 334(1976.
[23] L. I. Schiff, Quantum MechanicéMcGraw-Hill, New York, [28] S. Iso and H. Murayama, Prog. Theor. Phg4, 142 (1990.
1968. [29] F. M. Saradzhev, Phys. Lett. B72, 283(1996.

[24] M. V. Berry, Proc. R. Soc. LondoA392, 45 (1984).



