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We study the influence of the anomaly on the physical quantum picture of the generalized chiral Schwinger
model defined onS1. We show that the anomaly~i! results in the background linearly rising electric field and
~ii ! makes the spectrum of the physical Hamiltonian nonrelativistic without a massive boson. The physical
matter fields acquire exotic statistics. We construct explicitly the algebra of the Poincare´ generators and show
that it differs from the Poincare´ one. We exhibit the role of the vacuum Berry phase in the failure of the
Poincare´ algebra to close. We prove that, in spite of the background electric field, such phenomenon as the total
screening of external charges characteristic for the standard Schwinger model takes place in the generalized
chiral Schwinger model, too.@S0556-2821~97!02014-6#

PACS number~s!: 11.10.Kk, 11.30.Rd, 12.20.Ds

I. INTRODUCTION

Two-dimensional QED with massless fermions, i.e., the
Schwinger model~SM!, demonstrates such phenomena as
the dynamical mass generation and the total screening of the
charge@1#. Although the Lagrangian of the SM contains only
massless fields, a massive boson field emerges out of the
interplay of the dynamics that govern the original fields. This
mass generation is due to the complete compensation of any
external charge inserted into the vacuum.

In the chiral Schwinger model~CSM! @2,3# the right and
left chiral components of the fermionic field have different
charges. The left-right asymmetric matter content leads to an
anomaly. At the quantum level, the local gauge symmetry is
not realized by a unitary action of the gauge symmetry group
on Hilbert space. The Hilbert space furnishes a projective
representation of the symmetry group@4–6#.

In this paper, we aim to study the influence of the
anomaly on the physical quantum picture of the CSM. Do
the dynamical mass generation and the total screening of
charges take place also in the CSM? Are there any new
physical effects caused just by the left-right asymmetry?
These are the questions which we want to answer.

To get the physical quantum picture of the CSM we need
first to construct a self-consistent quantum theory of the
model and then solve all the quantum constraints. In the
quantization procedure, the anomaly manifests itself through
a special Schwinger term in the commutator algebra of the
Gauss law generators. This term changes the nature of the
Gauss law constraint: instead of being a first-class constraint,
it turns into a second-class one. As a consequence, the physi-
cal quantum states cannot be defined as annihilated by the
Gauss law generator.

There are different approaches to overcome this problem
and to consistently quantize the CSM. The fact that the
second-class constraint appears only after quantization
means that the number of degrees of freedom of the quantum
theory is larger than that of the classical theory. To keep the
Gauss law constraint first class, Faddeev and Shatashvili pro-
posed adding an auxiliary field in such a way that the dy-
namical content of the model does not change@7#. At the

same time, after quantization it is the auxiliary field that
furnishes the additional ‘‘irrelevant’’ quantum degrees of
freedom. The auxiliary field is described by the Wess-
Zumino ~WZ! term. When this term is added to the Lagrang-
ian of the original model, a new, anomaly-free model is ob-
tained. Subsequent canonical quantization of the new model
is achieved by the Dirac procedure.

For the CSM, the corresponding WZ term is not defined
uniquely. It contains the so-called Jackiw-Rajaraman param-
eter a.1. This parameter reflects an ambiguity in the
bosonization procedure and in the construction of the WZ
term. The spectrum of the new, anomaly-free model turns
out to be relativistic and contains a relativistic boson. How-
ever, the mass of the boson also depends on the Jackiw-
Rajaraman parameter@2,3#. This mass corresponds therefore
to the ‘‘irrelevant’’ quantum degrees of freedom. The quan-
tum theory with such a parameter in the spectrum is not
physical, i.e., that final version of the quantum theory which
we would like to get. The latter should not contain any non-
physical parameters, otherwise one cannot say anything
about a physical quantum picture.

In another approach also formulated by Faddeev@8#, the
auxiliary field is not added, so the quantum Gauss law con-
straint remains second class. The standard Gauss law is as-
sumed to be regained as a statement valid in matrix elements
between some states of the total Hilbert space, and it is the
states that are called physical. The theory is regularized in
such a way that the quantum Hamiltonian commutes with the
nonmodified, i.e., second-class quantum Gauss law con-
straint. The spectrum turns out to be nonrelativistic@9,10#.

Here, we follow the approach given in our previous work
@11#. A peculiarity of the CSM is that its anomalous behavior
is trivial in the sense that the second-class constraint which
appears after quantization can be turned into first class by a
simple redefinition of the canonical variables. This allows us
to formulate a modified Gauss law to constrain physical
states. The physical states are gauge-invariant up to a phase,
the phase being one-cocycle of the gauge symmetry group
algebra. In@12–14#, the modification of the Gauss law con-
straint is obtained by making use of the adiabatic approach.

Contrary to@11#, where the CSM is defined onR1, we
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suppose here that the space is a circle of lengthL,
2L/2<x,L/2, so the space-time manifold is a cylinder
S13R1. The gauge field then acquires a global physical de-
gree of freedom represented by the nonintegrable phase of
the Wilson integral onS1. We show that this brings into the
physical quantum picture new features of principle.

Another way of making two-dimensional gauge field dy-
namics nontrivial is by fixing the spatial asymptotics of the
gauge field@15,16#. If we assume that the gauge field defined
on R1 diminishes rather rapidly at spatial infinities, then it
again acquires a global physical degree of freedom. We will
see that the physical quantum picture for the model defined
on S1 is equivalent to that obtained in@15,16#.

We consider the general version of the CSM with a U~1!
gauge field coupled with different charges to both chiral
components of a fermionic field. We show that the charges
are not arbitrary, but satisfy a quantization condition. The
SM where these charges are equal is a special case of the
generalized CSM. This will allow us at each step of our
consideration to see the distinction between the two models.

We work in the temporal gaugeA050 in the framework
of the canonical quantization scheme and the Dirac’s quan-
tization method for the constrained systems@17#. We use the
system of units wherec51. In Sec. II, we quantize our
model in two steps. First, the matter fields are quantized,
while A1 is handled as a classical background field. The
gauge fieldA1 is quantized afterwards, using the functional
Schrödinger representation. We derive the anomalous com-
mutators with nonvanishing Schwinger terms which indicate
that our model is anomalous.

In Sec. III, we show that the Schwinger term in the com-
mutator of the Gauss law generators is removed by a redefi-
nition of these generators and formulate the modified quan-
tum Gauss law constraint. We prove that this constraint can
be also obtained by using the adiabatic approximation and
the notion of quantum holonomy.

In Sec. IV, we construct the physical quantum Hamil-
tonian consistent with the modified quantum Gauss law con-
straint, i.e., invariant under the modified gauge transforma-
tions both topologically trivial and nontrivial. We introduce
the modified topologically nontrivial gauge transformation
operator and defineu states which are its eigenstates. We
consider in detail the case of the SM and demonstrate its
equivalence to the free field theory of a massive scalar field.
For the generalized CSM, we define the exotic statistics mat-
ter field and reformulate the quantum theory in terms of this
field.

In Sec. V, we construct two other Poincare´ generators,
i.e., the momentum and the boost. We act in the same way as
before with the Hamiltonian, namely we define the physical
generators as those which are invariant under both topologi-
cally trivial and nontrivial gauge transformations. We show
that the algebra of the constructed generators is not a Poin-
caréone and that the failure of the Poincare´ algebra to close
is connected to the nonvanishing vacuum Berry curvature.

In Sec. VI, we study the charge screening. We introduce
external charges and calculate~i! the energy of the ground
state of the physical Hamiltonian with external charges and
~ii ! the current density induced by these charges. Section VII
contains our conclusions and a discussion.

II. QUANTIZATION PROCEDURE

A. Classical theory

The Lagrangian density of the generalized CSM is

L52
1

4
FmnF

mn1 c̄ i\gm]mc1e1c̄1gmc1Am

1e2c̄2gmc2Am , ~1!

where Fmn5]mAn2]nAm , (m,n)50,1, g05s1, g1

52 is2, g0g15g55s3, s i ( i51,3) are Pauli matrices. The
field c is two-component Dirac spinorc̄5c†g0 andc65
1
2(16g5)c.
In the temporal gaugeA050, the Hamiltonian density is

H5HEM1HF , ~2!

whereHEM5 1
2E

2, with E momentum canonically conjugate
to A1, and

HF5H11H2 ,

H6[c6
† d6c657c6

† ~ i\]11e6A1!c6 .

On the circle boundary conditions for the fields must be
specified. We impose the periodic ones

A1S 2
L

2D5A1S L2D ,
c6S 2

L

2D5c6S L2D . ~3!

We require also thatH and the classical fermionic currents
j6[c6

† c6 be periodic.
The Lagrangian and Hamiltonian densities are invariant

under local time-independent gauge transformations

A1→A11]1l, c6→expH i\ e6lJ c6 ,

generated by

G5]1E1e1 j11e2 j2 ,

l being a gauge function, as well as under global gauge
transformations of the right-handed and left-handed Dirac
fields which are generated by

Q65e6E
2L/2

L/2

dx j6~x!.

Due to the gauge invariance, the Hamiltonian density is
not uniquely determined. On the constrained submanifold
G'0 of the full phase space, the Hamiltonian density

H̃5H1vH•G, ~4!

wherevH is an arbitrary Lagrange multiplier which can be
any function of the field variables and their momenta, re-
duces to the Hamiltonian densityH. In this sense, our theory
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cannot distinguish betweenH and H̃, and so both Hamil-
tonian densities are physically equivalent to each other.

For arbitrarye1 ,e2 the gauge transformations do not re-
spect the boundary conditions~3!. The gauge transforma-
tions compatible with the boundary conditions must be either
of the form

lS L2D5lS 2
L

2D1\
2p

e1
n, nPZ ~5!

with e1Þ0 and

e2

e1
5N, NPZ ~6!

or of the form

lS L2D5lS 2
L

2D1\
2p

e2
n, nPZ,

with e2Þ0 and

e1

e2
5N̄, N̄PZ. ~7!

Equations~6! or ~7! imply the charge quantization condition
for our system. Without loss of generality, we choose the
condition ~6!. ForN51, e25e1 and we have the standard
Schwinger model. ForN50, we get the model in which only
the right-handed component of the Dirac field is coupled to
the gauge field.

From Eq.~5! we see that the gauge transformations under
consideration are divided into topological classes character-
ized by the integern. If l(L/2)5l(2L/2), then the gauge
transformation is topologically trivial and belongs to the
n50 class. IfnÞ0 it is nontrivial and has winding number
n.

Given Eq.~5!, the nonintegrable phase

G~A!5expH i\ e1E
2L/2

L/2

dxA1~x,t !J
is a unique gauge-invariant quantity that can be constructed
from the gauge field@18–21#. By a topologically trivial
transformation we can makeA1 independent ofx,

A1~x,t !5b~ t !,

i.e., obeying the Coulomb gauge]1A150, then

G~A!5expH i\ e1Lb~ t !J .
In contrast withG(A), the line integral

b~ t !5
1

LE2L/2

L/2

dxA1~x,t !

is invariant only under the topologically trivial gauge trans-
formations. The gauge transformations from thenth topo-
logical class shiftb by \(2p/e1L)n. By a nontrivial gauge
transformation of the formgn5exp$i(2p/L)\nx%, we can

then bringb into the interval@0,\(2p/e1L)# . The configu-
rationsb50 andb5\(2p/e1L) are gauge equivalent, since
they are connected by the gauge transformation from the first
topological class. The gauge-field configuration space is
therefore a circle with length\(2p/e1L).

B. Quantization and anomaly

The eigenfunctions and the eigenvalues of the first quan-
tized fermionic Hamiltonians are

d6^xun;6&56«n,6^xun;6&,

where

^xun;6&5
1

AL
expH i\ e6E

2L/2

x

dzA1~z!1
i

\
«n,6xJ ,

«n,65
2p

L S n\2
e6bL

2p D .
We see that the spectrum of the eigenvalues depends onb.
For e1bL/2p\5 integer, the spectrum contains the zero en-
ergy level. Asb increases from 0 to\(2p/e1L), the ener-
gies of «n,1 decrease by\(2p/L), while the energies of
(2«n,2) increase by\(2p/L)N. Some of energy levels
change sign. However, the spectra at the configurations
b50 andb5\(2p/e1L) are the same, namely, the integers,
as it must be since these gauge-field configurations are gauge
equivalent. In what follows, we will use separately the inte-
ger and fractional parts ofe1bL/2p\ ~and e2bL/2p\),
denoting them as@e6bL/2p\# and $e6bL/2p\%, corre-
spondingly.

Now we introduce the second quantized right-handed and
left-handed Dirac fields. For the moment, we will assume
thatd6 do not have zero eigenvalues. At timet50, in terms
of the eigenfunctions of the first quantized fermionic Hamil-
tonians the second quantized (z-function regulated! fields
have the expansion@22#

c1
s ~x!5 (

nPZ
an^xun;1&ul«n,1u2s/2,

c2
s ~x!5 (

nPZ
bn^xun;2&ul«n,2u2s/2. ~8!

Here l is an arbitrary constant with dimension of length
which is necessary to makel«n,6 dimensionless, while
an ,an

† andbn ,bn
† are, correspondingly, right-handed and left-

handed fermionic annihilation and creation operators which
fulfil the commutation relations

@an ,am
† #15@bn ,bn

†#15dm,n .

For c6
s (x), the equal time anticommutators are

@c6
s ~x!,c6

†s~y!#15z6~s,x,y!, ~9!

with all other anticommutators vanishing, where

z6~s,x,y![ (
nPZ

^xun;6&^n;6uy&ul«n,6u2s,
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s being large and positive. In the limit where the regulator is
removed, i.e.,s50, z6(s50, x,y)5d(x2y) and Eq. ~9!
takes the standard form.

The vacuum state of the second quantized fermionic
Hamiltonian

uvac;A&5uvac;A;1& ^ uvac;A;2&

is defined such that all negative energy levels are filled and
the others are empty:

anuvac;A;1&50 for n.Fe1bL

2p\ G ,
an
†uvac;A;1&50 for n<Fe1bL

2p\ G , ~10!

and

bnuvac;A;2&50 for n<Fe2bL

2p\ G ,
bn
†uvac;A;2&50 for n.Fe2bL

2p\ G . ~11!

Excited states are constructed by operating creation operators
on the Fock vacuum.

In thez-function regularization scheme, we define the ac-
tion of the functional derivative on first quantized fermionic
kets and bras by

d

dA1~x!
un;6&5 lim

s→0
(
mPZ

um;6&

3 Km;6U d

dA1~x!
Un;6 L ul«m,6u2s/2,

K n;6U dQ

dA1~x!
5 lim

s→0
(
mPZ K n;6U dQ

dA1~x! Um;6L
3^m;6uul«m,6u2s/2.

From Eq.~8! we get the action ofd/dA1(x) on the operators
an , an

† in the form

d

dA1~x!
an52 lim

s→0
(
mPZ

K n;1U d

dA1~x!
Um;1 L

3amul«m,1u2s/2,

d

dA1~x!
an
†5 lim

s→0
(
mPZ

Km;1U d

dA1~x!
Un;1 L

3am
† ul«m,1u2s/2.

The action ofd/dA1(x) on bn ,bn
† can be written analo-

gously.
Next we define the quantum fermionic currents and fer-

mionic parts of the second-quantized Hamiltonian as

ĵ6
s ~x!5

1

2
@c6

†s~x!,c6
s ~x!#2

and

Ĥ6
s 5E

2L/2

L/2

dxĤ6
s ~x!5

1

2E2L/2

L/2

dx~c6
†sd6c6

s 2c6
s d6* c6

†s!.

Substituting Eq.~8! into these expressions, we obtain

ĵ6
s ~x!5 (

nPZ

1

L
expH i 2p

L
nxJ r6

s ~n!,

where

r1
s ~n![ (

kPZ

1

2
@ak

† ,ak1n#2ul«k,1u2s/2ul«k1n,1u2s/2,

r2
s ~n![ (

kPZ

1

2
@bk

† ,bk1n#2ul«k,2u2s/2ul«k1n,2u2s/2

are momentum space charge density~or current! operators,
and

Ĥ6
s ~x!5 (

nPZ

1

L
expH i 2p

L
nxJH6

s ~n!,

H6
s ~n![H0,6

s ~n!7e6br6
s ~n!, ~12!

where

H0,1
s ~n![\

p

L (
kPZ

~2k1n!
1

2
@ak

† ,ak1n#2ul«k,1u2s/2

3ul«k1n,1u2s/2,

H0,2
s ~n![\

p

L (
kPZ

~2k1n!
1

2
@bk1n ,bk

†#2ul«k,2u2s/2

3ul«k1n,2u2s/2.

The charges corresponding to the currentsĵ6
s (x) are

Q̂6
s 5e6E

2L/2

L/2

dx ĵ6
s ~x!5e6r6

s ~0!.

With Eqs. ~10! and ~11!, we have, for the vacuum expecta-
tion values,

^vac;A;6u ĵ6~x!uvac;A;6&52
1

2
h6 ,

^vac,AuĤFuvac,A&52
1

2
~j11j2!,

where
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h6[6 lim
s→0

1

L(
kPZ

sgn~«k,6!ul«k,6u2s,

j6[ lim
s→0

1

l (
kPZ

ul«k,6u2s11.

Taking the sums, we obtain

h656
2

LS H e6bL

2p\ J 2
1

2D ,
j652\

2p

L F S H e6bL

2p\ J 2
1

2D
2

2
1

12G .
The quantum fermionic currents, charges, and Hamilto-

nians can therefore be written as

ĵ6~x!5: ĵ6~x!:2
1

2
h6 ,

Q̂65e6 :r6~0!:2
L

2
e6h6 ,

Ĥ65Ĥ0,67e6b:r6~0!:2
1

2
j6 , ~13!

where double dots indicate normal ordering with respect to
uvac,A&,

Ĥ0,15\
2p

L
lim
s→0

H (
k.[e1bL/2p\]

kak
†akul«k,1u2s

2 (
k<[e1bL/2p\]

kakak
†ul«k,1u2sJ ,

Ĥ0,25\
2p

L
lim
s→0

H (
k.[e2bL/2p\]

kbkbk
†ul«k,2u2s

2 (
k<[e2bL/2p\]

kbk
†bkul«k,2u2sJ ,

and

:r1~0!:5 lim
s→0

H (
k.[e1bL/2p\]

ak
†akul«k,1u2s

2 (
k<@e1bL/2p\#

akak
†ul«k,1u2sJ ,

:r2~0!:5 lim
s→0

H (
k<[e2bL/2p\]

bk
†bkul«k,2u2s

2 (
k.[e2bL/2p\]

bkbk
†ul«k,2u2sJ .

The operators :ĵ6(x): and :Ĥ6 : are well defined when act-
ing on finitely excited states which have only a finite number
of excitations relative to the Fock vacuum.

To construct the quantum electromagnetic Hamiltonian,
we quantize the gauge field using the functional Schro¨dinger
representation. In this representation, when the vacuum and
excited fermionic Fock states are functionals ofA1, the
gauge field operators are represented asÂ1(x)→A1(x),
Ê(x)→2 i\@d/dA1(x)# and the inner product is evaluated
by functional integration. We first introduce the Fourier ex-
pansion for the gauge field

A1~x!5b1 (
pPZ
pÞ0

ei ~2p/L !pxap .

SinceA1(x) is a real function,ap satisfies

ap5a2p* .

The Fourier expansion for the canonical momentum conju-
gate toA1(x) is then

Ê~x!5
1

L
p̂b2

i

L
\ (
pPZ
pÞ0

e2 i ~2p/L !px
d

dap
,

where p̂b[2 i\(d/db). The electromagnetic part of the
Hamiltonian density is

ĤEM~x!5 (
pPZ

1

L
expH i 2p

L
pxJHEM~p!,

where

HEM~p![2
1

L
\2

d

da2p

d

db

2
1

2L
\2 (

qPZ
qÞ~0;p!

d

da2p1q

d

da2q
~pÞ0!,

~14!

so the corresponding quantum Hamiltonian becomes

ĤEM5HEM~p50!5
1

2L
p̂b
22

1

L
\2(

q.0

d

daq

d

da2q
.

The total quantum Hamiltonian is

Ĥ5Ĥ0,11Ĥ0,21ĤEM

2e1b:r1~0!:1e2b:r2~0!:2
1

2
~j11j2!.

If we multiply two operators that are finite linear combi-
nations of the fermionic creation and annihilation operators,
thez-function regulated operator product agrees with the na-
ive product. However, if the operators involve infinite sum-
mations their naive product is not generally well defined. We
then define the operator product by mutiplying the regulated
operators withs large and positive and analytically continue
the result tos50. In this way we obtain the relations

@r6~m!,r6~n!#256mdm,2n , ~15!
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@H0,6~n!,H0,6~m!#256\
2p

L
~n2m!H0,6~n1m!,

@Ĥ0,6 ,r6~m!#257\
2p

L
mr6~m!,

and

d

db
r6~m!50,

d

da6p
r1~m!52

e1L

2p\
dp,6m ,

d

da6p
r2~m!5

e2L

2p\
dp,6m ~p.0!. ~16!

The quantum Gauss operator is

Ĝ5Ĝ01
2p

L2 (
p.0

$Ĝ1~p!ei ~2p/L !px2Ĝ2~p!e2 i ~2p/L !px%,

where

Ĝ0[
1

L
e1rN~0!,

Ĝ6~p![\p
d

da7p
6
e1L

2p
rN~6p!,

andrN5r11Nr2 is momentum space total charge density
operator.

Using Eqs.~15! and~16!, we easily get thatr1(6p) @and
r2(6p)# are gauge invariant. For example, forr1(6p) we
have

@Ĝ1~p!,r1~6q!#250,

@Ĝ2~p!,r1~6q!#250,

(p.0,q.0). The operatorsĜ6(p) do not commute with
either themselves,

@Ĝ1~p!,Ĝ2~q!#25~12N2!
e1
2 L2

4p2 pdp,q ,

or the Hamiltonian,

@Ĥ,Ĝ6~p!#256~12N2!\
e1
2 L

4p2

d

da7p
~p.0!.

The last two commutators reflect an anomalous behavior of
the generalized CSM. The appearance of the Schwinger term
in the first commutator changes the nature of the Gauss law
constraints: instead of being first-class constraints, they turn
into second-class ones. The Schwinger term in the second
commutator means that the total quantum Hamiltonian is not
invariant under the topologically trivial gauge transforma-
tions generated byĜ6(p).

For N51, i.e., for the standard SM, both commutators
vanish. Another case of vanishing Schwinger terms is axial
electrodynamics whereN521 and the fermionic fieldsc6

are of opposite charge.

III. QUANTUM CONSTRAINTS

A. Quantum symmetry

In nonanomalous gauge theories, Gauss law is considered
to be valid for physical states only. This identifies physical
states as those which are gauge invariant. The problem with
the anomalous behavior of the generalized CSM, in terms of
states in Hilbert space, is apparent: owing to the Schwinger
terms we cannot require that states be annihilated by the
Gauss law generatorsĜ6(p).

Let us represent the action of the topologically trivial
gauge transformations by the operators

U0~t!5expH i\Ĝ0t01
i

\ (
p.0

~Ĝ1t11Ĝ2t2!J ~17!

with t0,t6(p) smooth, then

U0
21~t!a6pU0~t!5a62 ipt7~p!,

U0
21~t!

d

da6p
U0~t!5

d

da6p
7

i

\2 ~12N2!S e1L

2p D 2t6~p!,

~p.0!.

The composition law for the operatorsU0 is

U0~t~1!!U0~t~2!!5exp$2p iv2~t~1!,t~2!!%U0~t~1!1t~2!!,

where

v2~t~1!,t~2!![2
i

4p
~12N2!S e1L

2p\ D 2
3 (

p.0
p~t2

~1!t1
~2!2t1

~1!t2
~2!!

is a two-cocycle of the gauge group algebra. Thus forN
Þ61 we are dealing with a projective representation.

The two-cocyclev2(t
(1),t (2)) is trivial, since it can be

removed by a simple redefinition ofU0(t). Indeed, the
modified operators

Ũ0~t!5exp$ i2pa1~g;t!%U0~t!, ~18!

where

a1~g,t![2
1

4p
~12N2!S e1L

2p\ D 2(
p.0

~a2pt22apt1!

is a one-cocycle, satisfy the ordinary composition law

Ũ0~t~1!!Ũ0~t~2!!5Ũ0~t~1!1t~2!!,

i.e., the action of the topologically trivial gauge transforma-
tions represented by Eq.~18! is unitary.
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The modified Gauss law generators corresponding to Eq.
~18! are

Ĝ̃6~p!5Ĝ6~p!6
1

\
~12N2!

e1
2 L2

8p2 a6p . ~19!

The generatorsĜ̃6(p) commute:

@ Ĝ̃1~p!,Ĝ̃2~q!#250.

This means that Gauss law can be maintained at the quantum
level for NÞ61, too. We define physical states as those

which are annihilated byĜ̃6(p) @11#:

Ĝ̃6~p!uphys;A&50. ~20!

The zero componentĜ0 is a sum of quantum generators of
the global gauge transformations of the right-handed and
left-handed fermionic fields, so the other quantum con-
straints are

:r6~0!:uphys;A&50. ~21!

It follows from Eq. ~20! that the physical statesuphys;A&
respond to a gauge transformation from the zero topological
class with the phase

U0~t!uphys;A&5exp$2 i2pa1~g;t!%uphys;A&. ~22!

Only for models without anomaly, i.e., forN561, does this
equation translate into the statement that physical states are
gauge invariant.

Equation ~22! expresses in an exact form the nature of
anomaly in the CSM. At the quantum level the gauge invari-
ance is not broken, but realized projectively. The one-
cocyclea1 occurring in the projective representation contrib-
utes to the commutator of the Gauss law generators by a
Schwinger term and therefore produces the anomaly.

B. Adiabatic approach

Let us show now that we can come to the quantum con-
straints~20! and ~21! in a different way, using the adiabatic
approximation@23,24#. In the adiabatic approach, the dy-
namical variables are divided into two sets, one which we
call fast variables and the other which we call slow variables.
In our case, we treat the fermions as fast variables and the
gauge fields as slow variables.

Let A1 be a manifold of all static gauge field configura-
tions A1(x). On A1 a time-dependent gauge fieldA1(x,t)
corresponds to a path and a periodic gauge field to a closed
loop.

We consider the fermionic part of the second-quantized
Hamiltonian :ĤF : which depends ont through the back-
ground gauge fieldA1 and so changes very slowly with
time. We consider next the periodic gauge field
A1(x,t)(0<t,T). After a time T the periodic field
A1(x,t) returns to its original valueA1(x,0)5A1(x,T), so
that :ĤF :(0)5:ĤF :(T) .

At each instantt we define eigenstates for :ĤF :(t) by

:ĤF :~ t !uF,A~ t !&5«F~ t !uF,A~ t !&.

The state uF50,A(t)&[uvac,A(t)& is a ground state of
:ĤF :(t),

:ĤF :~ t !uvac,A~ t !&50.

The Fock statesuF,A(t)& depend ont only through their
implicit dependence onA1. They are assumed to be periodic
in time, uF,A(T)&5uF,A(0)&, orthonormalized,

^F8,A~ t !uF,A~ t !&5dF,F8,

and nondegenerate.
The time evolution of the wave function of our system

~fermions in a background gauge field! is clearly governed
by the Schro¨dinger equation

i\
]c~ t !

]t
5:ĤF :~ t !c~ t !.

For eacht, this wave function can be expanded in terms of
the ‘‘instantaneous’’ eigenstatesuF,A(t)&.

Let us choosecF(0)5uF,A(0)&, i.e., the system is ini-
tially described by the eigenstateuF,A(0)&. According to the
adiabatic approximation, if att50 our system starts in a
stationary stateuF,A(0)& of :ĤF :(0), then it will remain, at
any other instant of timet, in the corresponding eigenstate
uF,A(t)& of the instantaneous Hamiltonian :ĤF :(t). In other
words, in the adiabatic approximation transitions to other
eigenstates are neglected.

At time t5T our system will be described by the state

cF~T!5exp$ igF
dyn1 igF

Berry%cF~0!,

where

gF
dyn[2

1

\E0
T

dt«F~ t !,

while

gF
Berry[E

0

T

dtE
2L/2

L/2

dxȦ1~x,t !K F,A~ t !U i d

dA1~x,t !
UF,A~ t !L

~23!

is Berry’s phase@24#.
If we define the U~1! connection

AF~x,t ![ K F,A~ t !U i d

dA1~x,t !
UF,A~ t !L , ~24!

then

gF
Berry5E

0

T

dtE
2L/2

L/2

dxȦ1~x,t !AF~x,t !.

We see that upon parallel transport around a closed loop on
A1 the Fock stateuF,A(t)& acquires an additional phase
which is integrated exponential ofAF(x,t). Whereas the dy-
namical phasegF

dyn provides information about the duration
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of the evolution, the Berry’s phase reflects the nontrivial ho-
lonomy of the Fock states onA1.

However, a direct computation of the diagonal matrix el-
ements ofd/dA1(x,t) in Eq. ~23! requires a globally single-
valued basis for the eigenstatesuF,A(t)& which is not avail-
able @25#. For that reason, to calculategF

Berry it is more
convenient to compute first the U~1! curvature tensor

FF~x,y,t ![
d

dA1~x,t !
AF~y,t !2

d

dA1~y,t !
AF~x,t !

~25!

and then deduceAF .
The vacuum curvature tensor is evaluated as@25#

FF505~12N2!
e1
2

2p2\2(
n.0

1

n
sinS 2p

L
n~x2y! D

5~12N2!
e1
2

2p\2S 12 e~x2y!2
1

L
~x2y! D . ~26!

The corresponding U~1! connection is easily deduced as

AF50~x,t !52
1

2E2L/2

L/2

dyFF50~x,y,t !A1~y,t !.

The Berry phase becomes

gF50
Berry52

1

2E0
T

dtE
2L/2

L/2

dxE
2L/2

L/2

dyȦ1~x,t !

3FF50~x,y,t !A1~y,t !.

In terms of the Fourier components, the connection
AF50 is rewritten as

K vac,A~ t !U d

db~ t ! Uvac,A~ t !L 50,

K vac,A~ t !U d

da6p~ t !
Uvac,A~ t !L [A6~p,t !

56~12N2!
e1
2 L2

8p2\2

1

p
a7p ,

so the nonvanishing curvature is

F12~p![
d

da2p
A12

d

dap
A25~12N2!

e1
2 L2

4p2\2

1

p
.

A parallel transportation of the vacuumuvac,A(t)& around a
closed loop in (ap ,a2p) space (p.0) yields back the same
vacuum state multiplied by the phase

gF50
Berry5~12N2!

e1
2 L2

4p2\2E
0

T

dt(
p.0

1

p
iapȧ2p .

This phase is associated with the projective representation of
the gauge group. ForN561, when the representation is
unitary, the curvatureF12 and the Berry phase vanish.

As mentioned in the beginning of this section, the projec-
tive representation is trivial and the two-cocycle in the com-
position law of the gauge transformation operators can be
removed by a redefinition of these operators. Analogously, if
we redefine the momentum operators as

d

da6p
→

d̃

da6p
[

d

da6p
7~12N2!

e1
2 L2

8p2\2

1

p
a7p , ~27!

then the corresponding connection and curvature vanish

Ã6[K vac,A~ t !U d̃

da6p
Uvac,A~ t !L 50,

F̃125
d̃

da2p
Ã12

d̃

dap
Ã250.

However, the nonvanishing curvatureF12(p) shows itself
in the algebra of the modified momentum operators which
are noncommuting:

F d̃

dap
,

d̃

da2q
G

2

5F12~p!dp,q .

Following Eq.~27!, we modify the Gauss law generators as

Ĝ6~p!→ Ĝ̃6~p!5\p
d̃

da7p
6
e1L

2p
rN~6p!

that coincides with Eq.~19!. The modified Gauss law gen-
erators have vanishing vacuum expectation values,

^vac,A~ t !uĜ̃6~p,t !uvac,A~ t !&50.

This justifies the definition~20!.
For the zero componentĜ0, the vacuum expectation value

^vac,A~ t !uĜ0uvac,A~ t !&52
1

2
~e1h11e2h2!

can be also made equal to zero by the redefinition

Ĝ0→ Ĝ̃05Ĝ01
1

2
~e1h11e2h2!5

1

L
e1 :rN~0!:

that leads to Eq.~21!. Thus, both quantum constraints~20!
and ~21! can be realized in the framework of the adiabatic
approximation.

IV. PHYSICAL QUANTUM CSM

A. Construction of physical Hamiltonian

~1! From the point of view of Dirac quantization, there are
many physically equivalent classical theories of a system
with first-class constraints. The origin of such an ambiguity
lies in the gauge freedom. For the classical CSM, the gauge
freedom is characterized by an arbitraryvH(x) in Eq. ~4!. If
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we use the Fourier expansion forvH(x), then the general
form of the classical Hamiltonian is rewritten as

H̃5H1 (
p.0

~vH,1G11vH,2G2!. ~28!

Any HamiltonianH̃ with fixed nonzero (vH,2 ,vH,1) gives
rise to the same weak equations of motion as those deduced
from H, although the strong form of these equations may be
quite different. The physics is, however, described by the
weak equations. Different (vH,2 ,vH,1) lead to different
mathematical descriptions of the same physical situation.

To construct the quantum theory of any system with first-
class constraints, we usually quantize one of the correspond-
ing classical theories. All the possible quantum theories con-
structed in this way are believed to be equivalent to each
other.

In the case where gauge degrees of freedom are anoma-
lous, the situation is different: the physical equivalence of
quantum Hamiltonians is lost. For the CSM, the quantum

HamiltonianĤ̃ does not reduce toĤ on the physical states:

Ĥ̃uphys;A&ÞĤuphys;A&.

The quantum theory consistently describing the dynamics of
the CSM should be definitely compatible with Eq.~20!. The
corresponding quantum Hamiltonian is then defined by the
conditions

@ Ĥ̃,Ĝ̃6~p!#250 ~p.0!, ~29!

which specify thatĤ̃ must be invariant under the modified
topologically trivial gauge transformations generated by

Ĝ̃6(p).
We have in Eq.~29! a system of nonhomogeneous equa-

tions in the Lagrange multipliersv̂H,6 which become opera-
tors at the quantum level. The solution of these equations is

v̂H,6~p!5
\

L

1

p2H p d

da6p
7~12N2!S e1L

4p\ D 2a7pJ .
Substituting this expression forv̂H,6(p) into the quantum
counterpart of Eq.~28!, on the physical statesuphys;A& we
obtain

1

2(p.0
$@ v̂H,1~p!,Ĝ1~p!#11@ v̂H,2~p!,Ĝ2~p!#1%

5
1

L2
\2(

p.0
S d

dap

d

da2p
2
1

2
F d̃

dap
,

d̃

da2p
G

1
D ,

i.e., the last term in the right-hand side of Eq.~28! contrib-
utes only to the electromagnetic part of the Hamiltonian,
changingd/da6 to d̃ /da6 :

ĤEM→ Ĥ̃EM5H̃EM~0![
1

2L
p̂b
22

1

2L
\2(

p.0
F d̃

dap
,

d̃

da2p
G

1

.

In terms of the momentum space charge density operators,
the gauge invariant electromagnetic Hamiltonian becomes

Ĥ̃EM5
1

2L
p̂b
21V~rN ;rN!,

where

V~rN ;rN![
e1
2 L

8p2 (
pPZ
pÞ0

1

p2
rN~2p!rN~p!

is the energy of the Coulomb current-current interaction.
In order to make the dependence onN for the Hamil-

tonian more obvious, let us representrN as

rN5
1

2
~11N!r1

1

2
~12N!s,

where

r[r15r11r2 ,

s[r215r12r2 ,

and

@r~p!,r~q!#25@s~p!,s~q!#250,

@s~p!,r~q!#252pdp,2q .

Then the Coulomb interaction energy takes the form

V~rN ;rN!5
1

4
~11N!2V~r;r!1

1

4
~12N!2V~s;s!

1
1

2
~12N2!V~r;s!. ~30!

ForN51, r(p) ands(p) are respectively momentum space
electric and axial charge density operators, the electromag-
netic Hamiltonian depending only onr:

Ĥ̃EM5
1

2L
p̂b
21V~r;r!.

For N521, the momentum space electric charge density
operator iss(p) and

Ĥ̃EM5
1

2L
p̂b
21V~s;s!.

For NÞ61, i.e., for models with anomaly, the last term in
Eq. ~30! does not vanish and is of principal importance. This
term means thatr ands are not decoupled as before for the
cases without anomaly and that the electromagnetic Hamil-
tonian involves the noncommuting charge density operators.

~2! The topologically nontrivial gauge transformations
change the integer part ofe1bL/2p\ :

Fe1bL

2p\ G→Fe1bL

2p\ G1n,
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ĉ1→expH i2pn

L
xJ ĉ1 ,

and

Fe2bL

2p\ G→Fe2bL

2p\ G1N•n,

ĉ2→expH iN2pn

L
xJ ĉ2 .

The action of the topologically nontrivial gauge transforma-
tions on the states can be represented by the operators

Un5expH 2
i

\
n•T̂bJU0 , ~31!

where

T̂b[p̂ [e1bL/2p\]2
2p

L E
2L/2

L/2

dxx@ ĵ1~x!1N ĵ2~x!#

[2 i\
d

d@e1bL/2p\#
1 i\ (

nPZ
nÞ0

~21!n

n
rN~n!

andU0 is given by Eq.~17!.
To identify the gauge transformation as belonging to the

nth topological class we use the indexn in Eq. ~31!. The
case n50 corresponds to the topologically trivial gauge
transformations.

The topologically nontrivial gauge transformation opera-
tors satisfy the same composition law as the topologically
trivial ones. The modified operators are

Ũn5expH 2
i

\
n•T̂bJ Ũ0 .

On the physical states

Ũnuphys;A&5S expH 2
i

\
T̂bJ D nuphys;A&.

Among all statesuphys;A& one may identify the eigen-
states of the operators of the physical variables. The action of
the topologically nontrivial gauge transformations on such
states may, generally speaking, change only the phase of
these states by aC number, since with any gauge transfor-
mations both topologically trivial and nontrivial, the opera-
tors of the physical variables and the observables cannot be
changed. Usinguphys;u& to designate these physical states,
we have

expH 7
i

\
T̂bJ uphys;u&5e6 iuuphys;u&.

The statesuphys;u& are easily constructed in the form

uphys;u&5 (
nPZ

e2 inuS expH 2
i

\
T̂bJ D nuphys;A&

~so-calledu states@26,27#!, where uphys;A& is an arbitrary
physical state from Eq.~20!.

In one dimension the parameteru is related to a constant
background electric field. To show this, let us introduce
states which are invariant even against the topologically non-
trivial gauge transformations. Recalling that@e1bL/2p\# is
shifted byn under a gauge transformation from thenth to-
pological class, we obtain such states by the transition

uphys;u&→uphys&[expH i Fe1bL

2p\ GuJ uphys;u&. ~32!

The new statesuphys& continue to be annihilated by

Ĝ̃6(p), and are also invariant under the topologically non-
trivial gauge transformations.

The electromagnetic part of the Hamiltonian transforms
as

ĤEM→expH i Fe1bL

2p\ GuJ ĤEMexpH 2 i Fe1bL

2p\ GuJ
5

1

2L
~p̂b2LEu!22

1

2L
\2(

p.0
F d̃

dap
,

d̃

da2p
G

1

,

i.e., in the new Hamiltonian the momentump̂b is supple-
mented by the electric field strengthEu[(e1/2p)u.

~3! The Fourier components of the fermionic currents are
transformed under the topologically nontrivial gauge trans-
formations as

r1~6p!→r1~6p!2~21!pn,

r2~6p!→r2~6p!1~21!pNn ~p.0!,

being invariant under the topologically trivial ones.
The quantum Hamiltonian invariant under the topologi-

cally trivial gauge transformations is still not uniquely deter-
mined. We can add to it any linear combination of the op-
eratorsr1(6p) andr2(6p) :

Ĥ̃→ Ĥ̃1b01 (
pPZ
pÞ0

@b1r1~p!1b2r2~p!#, ~33!

whereb0, b6 are arbitrary functions. The conditions~29! do
not clearly fix these functions.

The Hamiltonian of the consistent quantum theory of the
generalized CSM should be invariant under the topologically
nontrivial gauge transformations as well. So in addition to
Eq. ~29! is the following condition:

@ Ĥ̃,T̂b#250. ~34!

The condition~34! can be then rewritten as a system of linear
equations in (b0 ,b6). We can easily find a solution of these
equations, which gives us (b0 ,b6) as functions of
@e1bL/2p\#. The most general solution must involve con-
stants depending on$e6bL/2p\%. However, these constants
are irrelevant for our consideration and we neglect them.

Finding (b0 ,b6) from Eq. ~34! and substituting them
into the expression~33!, on the physical states we obtain
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Ĥ̃uphys;A&5Ĥphysuphys;A&,

where

Ĥphys5ĤF
phys1ĤEM

phys,

ĤF
phys5Ĥ0,11Ĥ0,22

1

2
~j11j2!2

p

L
\~11N2!S Fe1bL

2p\ G D 2

1
2p

L
\Fe1bL

2p\ G (
pPZ
pÞ0

~21!pr2N~p!, ~35!

ĤEM
phys5

1

2L
p̂b
21V~rN ;rN!1

e1
2 L

4p2 ~12N2!

3Fe1bL

2p\ G (
pPZ
pÞ0

~21!p

p2
rN~p!

1
e1
2 L

24
~12N2!2S Fe1bL

2p\ G D 2. ~36!

The free fermionic HamiltoniansĤ0,6 can be expressed in
terms ofr6(p), by making use of the bosonization proce-
dure. Their bosonized version is

Ĥ0,6
s 5

2p

L
\ (
p.0

ul«p,6u2sr6
s ~2p!r6

s ~p!.

Equations~35! and ~36! give us a physical Hamiltonian in-
variant under both topologically trivial and nontrivial gauge
transformations,ĤF

phys and ĤEM
phys being invariant separately.

The last two terms in Eq.~35! make the free fermionic part
of the Hamiltonian invariant, while the ones in Eq.~36!
make the electromagnetic part invariant.

ForN561, the last two terms in Eq.~36! vanish. These
terms are therefore caused by the anomaly and represent new
types of interactions which are absent in the nonanomalous
models.

The new interactions admit the following interpretation.
Let us combine the last term in Eq.~36! with the kinetic part
of the electromagnetic Hamiltonian, then

1

2L
p̂b
21

e1
2 L

24
~12N2!2S Fe1bL

2p\ G D 2
5

1

2L2E2L/2

L/2

dx@p̂b2LE~x!#2,

i.e., the momentump̂b is supplemented by the linearly rising
electric field strength

E~x![2
e1

L
x~12N2!Fe1bL

2p\ G .
As in four-dimensional models of a relativistic particle mov-
ing in an external field, we may define a generalized momen-
tum operator in the form

p̂̃b~x![p̂b2LE~x!.

The commutation relations forp̂̃b are

@ p̂̃b~x!,p̂̃b~y!#25 i ~12N2!
e1
2 L

2p
~x2y!.

We see that due to the new interactions the physical degrees
of freedom behave themselves as though moving in a back-
ground linearly rising electric field. This is an effective field
not related directly to the original fields of our model. It may
be considered as produced by a charge uniformly distributed
on the circle with density

rbgrd52
1

L
~12N2!Fe1bL

2p\ G .
This situation is similar to that in 211 or 311 dimen-

sions. As known, in the non-Abelian models governed by
Lagrangians with topological terms~the Pontryagin density
in 311 dimensions or the Chern-Simons term in 211 dimen-
sions! the non-Abelian gauge field is moving in a back-
groundU(1) functional gauge potential expressed in terms
of the non-Abelian gauge field components@5#. The peculiar-
ity of the situation in our case is that there is no magnetic
field related to the gauge field in 111 dimensions, so the
background field is electric.

If we again make the transition to the physical states in-
variant under both the topologically trivial and nontrivial
gauge transformations, then the density of the kinetic part of
the physical electromagnetic Hamiltonian becomes

1

2L2
p̂̃b
2→

1

2L2
$p̂b2L@Eu1E~x!#%2.

While the constant background electric field is general in
one-dimensional gauge models defined on the circle, the lin-
early rising one is specific to models with left-right asym-
metric matter content@15#.

The next-to-last term in Eq.~36! means that the fermionic
physical degrees of freedom andb are not decoupled in the
physical Hamiltonian. This term represents the Coulomb-
type background-matter interaction

e1
2 L

4p2 ~12N2!Fe1bL

2p\ G (
pPZ
pÞ0

~21!p

p2
rN~p!

52
e1
2 L2

4p2 (
pPZ
pÞ0

~21!p

p2
rbgrdrN~p!.

It is just the background linearly rising electric field that
couplesb to the fermionic physical degrees of freedom in the
Coulomb interaction.

As a consequence, the eigenstates of the physical Hamil-
tonian are not a direct product of the purely fermionic Fock
states and wave functionals ofb. This is a common feature
of gauge theories with anomaly. That the Hilbert space in
such theories is not a tensor product of the Hilbert space for
a gauge field and the fixed Hilbert space for fermions was
shown in@6,7#.

The background charge interpretation is related to the
definition of the Fock vacuum. The definition given in Eqs.
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~10!–~11! depends on@e1bL/2p\# and remains unchanged
only locally onA1, in regions where@e1bL/2p\# is fixed.
The values of the gauge field in regions of different
@e1bL/2p\# are connected by the topologically nontrivial
gauge transformations. If@e1bL/2p\# changes, then there is
a nontrivial spectral flow, i.e., some of the energy levels of
the first quantized fermionic Hamiltonians cross zero and
change sign. This means that the definition of the Fock
vacuum changes.

The charge operatorsQ̂6 also change. Let :Q̂6
(0) : be

charge operators defined in the region where@e1bL/
2p\]50 and normal ordered with respect to the correspond-
ing Fock vacuum. Then in regions with nonzero

@e1bL/2p\# the charge operators become :Q̂6
(0) :

7e6@e6bL/2p\#. For models without anomaly, the addi-
tional terms in the positive and negative chirality charges are
opposite in sign, so the total charge is :Q̂1

(0) :1:Q̂2
(0) : in all

regions of different@e1bL/2p\#, i.e., defined globally on
A1. For models with anomaly, the additional terms do not
cancel each other and the total charge operator up to terms
depending on $e6bL/2p\% becomes
:Q̂1

(0) :1:Q̂2
(0) :1e1Lrbgrd. The background charge is there-

fore that part of the total charge which depends on
@e1bL/2p\# and changes in the transition between regions
of different @e1bL/2p\#.

B. Exotization

We can formally decouple the matter and gauge field de-
grees of freedom by introducing the exotic statistics matter
fields ~the so-called exotization procedure@16#!. Let us de-
fine the composite fields

c̃6~x!5expH 7 i
p

L
x6 i

2p

e6L
S p̂b7e6xFe6bL

2p\ G D J c6~x!.

~37!

The fieldsc̃6(x) are invariant under the topologically non-
trivial gauge transformations~we putU051)

expH i\ nT̂bJ c̃6expH 2
i

\
nT̂bJ 5c̃6

and have the commutation relations

c̃ 6
† ~x!c̃6~y!1e7 iF ~x,y!c̃6~y!c̃6

† ~x!5d~x2y!,

c̃6~x!c̃6~y!1e6 iF ~x,y!c̃6~y!c̃6~x!50, ~38!

whereF(x,y)[(2p/L)(x2y). The commutation relations
~38! are indicative of exotic statistics ofc̃6(x). These fields
are neither fermionic nor bosonic. Only forx5y Eqs. ~38!
become anticommutators:c̃6(x) @and c̃ 6

† (x)# anticommute
with themselves, i.e., behave as fermionic fields.

Using Eq.~37! and the expansions~8!, we obtain the Fou-
rier expansions for the exotic fieldsc̃6(x) :

c̃1
s ~x!5 (

nPZ
ãn^xun;1&ul«n,1u2s/2,

c̃2
s ~x!5 (

nPZ
b̃n^xun;2&ul«n,2u2s/2,

where

ãn[expH i 2p

e1L
p̂bJ an1[e1bL/2p\] ,

b̃n[expH 2 i
2p

e2L
p̂bJ bn1[e2bL/2p\] .

The exotic creation and annihilation operatorsã n
† , ãn and

b̃ n
† , b̃n fulfill the following commutation relations algebra:

ã n
†ãm1 ãm21ã n21

† 5dmn ,

ãnãm1 ãm11ãn2150,

and

b̃ n
†b̃m1 b̃m11b̃ n11

† 5dmn ,

b̃nb̃m1 b̃m21b̃n1150.

We next introduce the new Fock vacuum
uvac;A&5uvac;A;1& ^ uvac;A;2& defined as

anuvac;A;1&50 for n.0,

an
†uvac;A;1&50 for n<0,

and

bnuvac;A;2&50 for n<0,

bn
†uvac;A;2&50 for n.0,

denoting the normal ordering with respect touvac;A& by
triple dots.

If we compare the old and the new definitions of the Fock
vacuum, then we see a shift of the level that separates the
filled levels and the empty ones. The new Fock vacuum is
defined such that for all values of@e1bL/2p\# only the
levels with energy lower than~or equal to! the energy of the
level n50 are filled and the others are empty, i.e., the new
definition does not depend on@e1bL/2p\# and remains un-
changed as the gauge configuration changes.

The exotic matter current operators are

ĵ̃ 6
s ~x!5 (

nPZ

1

L
expH i 2p

L
nxJ r̃ 6

s ~n!,

r̃ 1
s ~n!5 (

kPZ
ã k
†ãk1nul«k,1u2s/2ul«k1n,1u2s/2,

r̃ 2
s ~n!5 (

kPZ
b̃ k
†b̃k2nul«k,2u2s/2ul«k2n,2u2s/2.
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The new operatorsr̃ 6(n) and the old onesr6(n) are con-
nected in the following way:

A r̃ 6~n!A5:r6~n!:6dn,0Fe6bL

2p\ G .
The exotic matter charges are

A Q̂̃6A5:Q̂6 :6e6Fe6bL

2p\ G .
On the physical states~21! the exotic charges become

A Q̂̃6Auphys;A&56e6Fe6bL

2p\ G uphys;A&. ~39!

With Eq. ~39!, we decouple the matter and gauge-field
degrees of freedom in the physical Hamiltonian~36!. We
obtain

Ĥphys5
1

2L
p̂b
22

1

2
~j11j2!1\

2p

L (
p.0

@r tot,1~2p!r tot,1~p!

1r tot,2~p!r tot,2~2p!#1V~rN
tot ;rN

tot!,

where we have defined the operators

rN
tot[r tot,11Nr tot,2 ,

r tot,6[ r̃ 61~21!p
1

e6
A Q̂̃6A.

These operators are invariant under both topologically trivial
and nontrivial gauge transformations.

To diagonalize the exotic matter part of the physical
Hamiltonian, we perform the Bogoliubov transformation
over the operatorsr tot,1(6p) andr tot,2(6p),(p.0) :

r tot,1~6p!→ r̄ tot,1~6p!5coshtpr tot,1~6p!

1sinhtpr tot,2~6p!,

r tot,2~6p!→ r̄ tot,2~6p!

5sinhtpr tot,1~6p!1coshtpr tot,2~6p!,

~40!

where

cosh2tp5
1

Ep
S 2pp

L
\1

e1
2 L

8p2p
~11N2! D ,

sinh2tp5
1

Ep

e1
2 L

4p2p
N,

and

Ep5AEp
2~N!1S e1

2 L

8p2D 2~12N2!2
1

p2
,

Ep
2~N![S 2pp

L D 2\21
e1
2

2p
\~11N2!.

The Bogoliubov transformed operators
r̄ tot,1(6p), r̄ tot,2(6p) satisfy the same commutation rela-
tions as the nontransformed ones:

@ r̄ tot,1~m!, r̄ tot,1~n!#25@ r̄ tot,2~n!, r̄ tot,2~m!#25mdm,2n .

The generator of the Bogoliubov transformation~40! is

Bp[expH 1p tp@ r̄ tot,2~p! r̄ tot,1~2p!2 r̄ tot,1~p! r̄ tot,2

~2p!#J .
The diagonalized form of the total physical Hamiltonian is

Ĥphys5
1

2L
p̂b
22

1

2
~j11j2!1 (

p.0

1

p
Ep@ r̄ tot,1~2p! r̄ tot,1~p!

1 r̄ tot,2~p! r̄ tot,2~2p!#. ~41!

The physical Hamiltonian obtained is expressed in terms of
the exotic matter and global gauge-field degrees of freedom.
The exotic fields are composites of the fermionic matter and
background electric fields.

For theN51 model,e25e1[e and the linearly rising
background electric field vanishes. The spectrum of the
physical Hamiltonian becomes relativistic:

Ep5Ep~N51!5\AS 2pp

L D 21M2,

whereM2[(e2/p)(1/\).
If we introduce the creation and annihilation operators for

b,

C†[
1

A2ML
F2\

d

db
12Ap\S H ebL2p\J 2

1

2D G ,
C[

1

A2ML
F\ d

db
12Ap\S H ebL2p\J 2

1

2D G ,
@C,C†#51,

then the global gauge-field part of the physical Hamiltonian
becomes

1

2L
p̂b
22

1

2
~j11j2!5M SC†C1

\

2D .
The wave function of its lowest energy eigenstate is

f 0~b!5SML

p\ D 1/4expF2S 2p

eLD 2ML\

2 S H ebL2p\J 2
1

2D
2G .

The total physical Hamiltonian takes the form

Ĥphys5MC†C1 (
p.0

1

p
Ep@ r̄ tot,1~2p! r̄ tot,1~p!

1 r̄ tot,2~p! r̄ tot,2~2p!#. ~42!
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This is just the Hamiltonian of a massive scalar boson with
massM .

The N521 model can be considered analogously. We
get the same physical Hamiltonian~42!. Thus, for both cases
N561, the quantum generalized CSM is equivalent to the
free field theory of a massive scalar field.

For the NÞ61 models, the spectrum of the physical
Hamiltonian is nonrelativistic and does not correspond to a
massive boson. So the quantum theory of the models with
anomaly is not equivalent to the theory of a free massive
scalar field.

Since the matter and gauge-field degrees of freedom are
decoupled in the physical Hamiltonian~41!, its eigenstates
can be represented as a direct product of the exotic matter
Fock states and wave functionals ofb. In particular, the
ground state of the physical Hamiltonian is defined as

S 1

2L
p̂b
22

1

2
~j11j2! D uground&50,

r̄ tot,1~n!uground&5 r̄ tot,2~2n!uground&50, n.0.

For theN51 model, the ground state is

uground&5 f 0~b!S )
n.0

Un
†D uvac;A&

5 f 0~b!expH 2 (
n.0

1

n
@ r̄ tot,2~n! r̄ tot,1~2n!

2 r̄ tot,1~n! r̄ tot,2~2n!#J uvac;A&.

All the excited states are constructed by acting the Bogoliu-
bov transformed operatorsr̄ tot,1(2n), r̄ tot,2(n),(n.0) and
the global gauge-field degree of freedom creation operator
C† on the ground state.

Thus, the quantum generalized CSM can be formulated in
two equivalent ways. In the first way, the matter fields are
fermionic and coupled nontrivially to the global gauge-field
degree of freedom. In the second way, the matter and gauge-
field degrees of freedom are decoupled in the physical
Hamiltonian, but the matter fields acquire exotic statistics.

V. POINCARÉ ALGEBRA

~1! The classical momentum and boost generators are
given by

P5E
2L/2

L/2

dx~2 i\c1
† ]1c12 i\c2

† ]1c22E]1A!,

K5E
2L/2

L/2

dxxH~x!.

After a straightforward calculation we obtain

$H,P%50,

$P,K%52H, $H,K%52P,

i.e., at the classical level, these generators obey the Poincare´
algebra.

At the quantum level, the momentum and boost genera-
tors become

P̂5 P̂11 P̂22E
2L/2

L/2

dxÊ]1A1 ,

P̂6[
1

2
\E

2L/2

L/2

dx@c6
† ~2 i ]1!c62c6~ i ]1!c6

† #,

K̂5E
2L/2

L/2

dxx@Ĥ1~x!1Ĥ2~x!1ĤEM~x!#.

Using the Fourier expansions for the fermionic and gauge
fields, we rewrite the quantum generators as

P̂5 P̂12 P̂22
e1
2 L

2p
~12N2! (

p.0
a2pap ,

P̂656Ĥ0,67
1

2
j62

1

2
e6h6bL,

K̂52 i
L

2p (
pPZ
pÞ0

~21!p

p
@H1~p!1H2~p!1HEM~p!#,

whereH6(p) andHEM(p) are given, respectively, by Eqs.
~12! and ~14!.

As the Hamiltonian, the quantum momentum and boost
generators are not uniquely determined. We can use this ar-
bitrariness in order to make them invariant under both topo-
logically trivial and nontrivial gauge transformations. Acting
in the same way as before in Sec. IV, we obtain the physical
momentum and boost generators in the form

P̂phys5@H1
phys~0!2H2

phys~0!#,

K̂phys52 i
L

2p (
pPZ
pÞ0

~21!p

p
@H1

phys~p!1H2
phys~p!1HEM

phys~p!#,

where

H6
phys~p![\

p

L (
qPZ

qÞ~0;2p!

r tot,6~p1q!r tot,6~2q!,

H6
phys~0!5H6

phys~p50!,

and

HEM
phys~p!5

\

p

e1

2p
r tot
N ~p!

d

db
1
e1
2 L

8p2

3 (
qPZ

qÞ~0;2p!

1

q~q1p!
r tot
N ~p1q!r tot

N ~2q!.
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~2! Let us now construct the algebra of the physical
Hamiltonian, momentum, and boost generators. ForN
Þ61, the relativistic invariance is broken, so this algebra is
not certainly a Poincare´ one.

For the operators H6
phys(p), HEM

phys(p), and

HEM
phys(0)5ĤEM

phys, we get the commutation relations

@H6
phys~n!,H6

phys~m!#256\
2p

L
~n2m!H6

phys~n1m!,

@H1
phys~0!2H2

phys~0!,HEM
phys~p!#252\

2p

L
pHEM

phys~p!,

and

@H1
phys~0!2H2

phys~0!,HEM
phys~0!#250,

@H6
phys~p!,HEM

phys~0!#25@H6
phys~0!,HEM

phys~p!#2 .

With these commutation relations, we easily obtain the alge-
bra of the Poincare´ generators:

@Ĥphys,P̂phys#250,

@ P̂phys,K̂phys#252 i\Ĥphys1~boundary terms!1 ,

and

@Ĥphys,K̂phys#252 i\ P̂phys

2 i
L

2p (
pPZ
pÞ0

~21!p

p
@HEM

phys~0!,HEM
phys~p!#2

1~boundary terms!2 , ~43!

where

@HEM
phys~0!,HEM

phys~p!#252\3
e1

2pL

1

p
F12~p!r tot

N ~p!
d

db

1\2
e1
2

4p2 (
qPZ

qÞ~0;2p!

F12~q!
1

q~p1q!
r tot
N ~p1q!r tot

N ~2q!,

while the boundary terms are

~boundary terms!1[ i\LF Ĥ1
physS L2D1Ĥ2

physS L2D
1ĤEM

physS L2D G ,
~boundary terms!2[ i\LF Ĥ1

physS L2D2Ĥ2
physS L2D G .

The algebra obtained differs from the Poincare´ one in the
boundary terms and in the commutator
@HEM

phys(0),HEM
phys(p)#2 . The curvatureF12 associated with

the projective representation of the gauge group makes this
commutator nonvanishing for the models with anomaly. This

is another point where the nonvanishing curvatureF12

shows itself~recall the commutator of the modified momen-
tum operators!.

ForN561, F12 vanishes and up to the boundary terms
we get the Poincare´ algebra. In the limitL→`, these bound-
ary terms vanish on the physical states, because the energy
density is assumed to diminish at spatial infinities faster than
1/L. Otherwise, the total energy of the system would become
infinite. Therefore, for theN561 models on the line, the
Poincare´ algebra closes exactly. However, the boundary
terms do not affect the spectrum of the physical Hamiltonian
which is relativistic in the case of the circle too.

ForNÞ61, in the limit L→` the first term in the com-
mutator @HEM

phys(0),HEM
phys(p)#2 disappears~since the gauge

field has no global gauge-field degrees of freedom!, while
the second one survives. For theNÞ61 models the Poin-
caréalgebra does not close even on the line. This means that
such models are not relativistically invariant.

We can conclude that the nonclosure of the Poincare´ al-
gebra in Eq.~43! is essentially due to the projective repre-
sentation of the local gauge symmetry. Working on the circle
allowed us to construct explicitly the Poincare´ algebra break-
ing term connected to the nonvanishing curvatureF12 .

Let us note that the Poincare´ algebra fails to close in the
physical sector where the states satisfy the quantum Gauss
law constraint~20! and the Poincare´ generators are gauge
invariant. The physical Hamiltonian and momentum genera-
tor commute, so the translational invariance is preserved.
The origin of the breakdown of the relativistic invariance lies
in the anomaly or, more exactly, in the fact that the local
gauge symmetry is realized projectively.

VI. CHARGE SCREENING

Let us introduce a pair of external charges, namely, a
positive charge with strengthq at x0 and a negative one with
the same strength aty0 @28#. The external current density is

j ex,0~x!5q@d~x2x0!2d~x2y0!#5
q

L (
pPZ

j p
exe2 i ~2pp/L !x,

where

j p
ex[ei ~2pp/L !x02ei ~2pp/L !y0.

The total external charge is zero, so the external current den-
sity has vanishing zero mode,j 0

ex50. The Lagrangian den-
sity of the generalized CSM changes as

L→L1A0 j ex,0.

The classical generalized CSM with the external charges
added can be quantized in the same way as that without
external charges. The quantum Gauss law operator becomes

Ĝex[Ĝ1 j ex,05]1Ê1e1 ĵ11e2 ĵ21 j ex,0.

Its Fourier expansion is

Ĝex5Ĝ01
2p

L2 (
p.0

@Ĝ1
ex~p!ei ~2p/L !px2Ĝ2

ex~p!e2 i ~2p/L !px#,
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where

Ĝ1
ex~p![Ĝ1~p!1

qL

2p
~ j p

ex!* ,

Ĝ2
ex~p![Ĝ2~p!2

qL

2p
j p
ex.

The physical statesuphys;A;ex& are defined as

Ĝ̃6
ex~p!uphys;A;ex&[S Ĝ6

ex~p!6
1

\

e1
2 L2

8p2

3~12N2!a6pD uphys;A;ex&

50.

The physical quantum Hamiltonian becomes

Ĥphys5
1

2L
p̂b
22

1

2
~j11j2!1\

2p

L (
p.0

@r tot,1~2p!r tot,1~p!

1r tot,2~p!r tot,2~2p!#1Vex,

where

Vex[
e1
2 L

8p2 (
pPZ
pÞ0

1

p2S rN
tot~2p!1

q

e1
j p
exD S rN

tot~p!1
q

e1
~ j p

ex!* D
is the Coulomb energy in the presence of the external
charges. Two new interactions contribute to the Coulomb
energy owing to the external charges. One is the classical
Coulomb interaction between the external charges and the
other is the interaction between the total internal current and
the external current.

After some calculations we rewrite the physical Hamil-
tonian as

Ĥphys5
1

2L
p̂b
22

1

2
~j11j2!1 (

p.0

Ep

p
$@ r̄ tot,1~2p!

1kp,1 j p
ex#@ r̄ tot,1~p!1kp,1~ j p

ex!* #

1@ r̄ tot,2~p!1kp,2~ j p
ex!* #@ r̄ tot,2~2p!1kp,2 j p

ex#%

1\2
q2

L (
p.0

1

Ep
2~N!

j p
ex~ j p

ex!* , ~44!

with

kp,1[\
qe1

2p

1

Ep
2~N!

~coshtp1Nsinhtp!,

kp,2[\
qe1

2p

1

Ep
2~N!

~sinhtp1Ncoshtp!.

Comparing this Hamiltonian with the physical Hamiltonian
without the external charges, we see that the external charges
change the ground state. The ground state of the physical
Hamiltonian~44! satisfies

@ r̄ tot,1~p!1kp,1~ j p
ex!* #uground;ex&50,

@ r̄ tot,2~2p!1kp,2 j p
ex#uground;ex&50, p.0.

The last term in Eq.~44! is just the energy of the ground
state

E05^ground;exuĤphysuground;ex&

5\2
q2

L (
p.0

1

Ep
2~N!

j p
ex~ j p

ex!* .

The energyE0 depends only on the distance between the two
external charges:

E05\2
2q2

L (
p.0

1

Ep
2~N!

H 12cosS 2pp

L
~x02y0! D J

5
q2

2MN

cosh~LMN /2!2cosh~LMN/22MNux02y0u!
sinh~LMN/2!

,

whereMN
25(e2/2p)(1/\)(11N2). In the limit L@1, we

obtain

E05
q2

2MN
~12e2MNux02y0u!,

i.e., the ground-state energy has the form of the Yukawa-
type potential. The long-range Coulomb force between
widely separated external charges disappears. Since there is
no long-range force, the external charges are screened. To
show this we calculate currents induced by the charges. The
induced current~or charge density! is

^ground;exu: ĵ1~x!1N ĵ2~x!:uground;ex&

52
1

2
rbgrd1w~x,x0!2w~x,y0!,

where (2 1
2rbgrd) is a current induced by the background

charge, whilew(x,x0) andw(x,y0) are currents induced by
the external charges at pointsx0 andy0, correspondingly,

w~x,y![2 (
n.0

\
e1q

pL
~11N2!

1

En
2~N!

cosS 2pn

L
~x2y! D

52
qMN

2e1

cosh~LMN/22MNux2yu!
sinh~LMN/2!

.

The current induced by the two external charges is a sum of
the currents induced by each charge.

In the limit L@1,
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w~x,x0!.2
qMN

2e1
e2MNux2x0u

and damps exponentially asx goes far fromx0 . Screening
occurs only globally. The induced charge density distribution
is spread within the range of the orderMN

21 . So if we are far
away from the external charges, we cannot find them.

The screening of each external charge occurs indepen-
dently of the other charges. That is, the charge density in-
duced around any of the two external charges does not de-
pend on the location of the other one. Next, the external
charges are screened independently of the fact whether the
background charge vanishes or not.

The screening mechanism works therefore in the general-
ized CSM, too. When a charge is placed in the system, the
accompanying external current polarizes the vacuum produc-
ing the complete compensation of the charge. The back-
ground linearly rising electric field characteristic for models
with NÞ61 does not influence this mechanism.

VII. DISCUSSION

We have shown that the anomaly influences essentially
the physical quantum picture of the generalized CSM.

~i! For the models withNÞ61 and defined onS1, when
the gauge field has a global physical degree of freedom, the
left-right asymmetric matter content results in the back-
ground linearly rising electric field. This is a new physical
effect just caused by the anomaly and absent in the models
without the anomaly, i.e., forN51 ~the standard Schwinger
model! andN521 ~axial electrodynamics!.

This effect distinguishes the generalized CSM onS1 from
the model defined onR1 as well. In the latter case, the gauge
field has neither local nor global physical degrees of freedom
and the background field disappears.

~ii ! The anomaly leads also to the breakdown of the rela-
tivistic invariance. For the quantum theory of both the
N561 andNÞ61 models we have presented the exotic
statistics matter formulation. In this formulation the physical
Hamiltonian is written in a compact diagonalized form. For

the models with anomaly, the spectrum of the physical
Hamiltonian turns out to be nonrelativistic and does not con-
tain a massive boson.

We have constructed the physical quantum Poincare´ gen-
erators and shown that their algebra is not a Poincare´ one.
We have demonstrated a relation between the anomaly,
Berry phase, and breakdown of the relativistic invariance.
Namely, the curvatureF12 related to the Berry phase does
not vanish because of the left-right asymmetric matter con-
tent. At the same time, just the nonvanishingF12 makes the
algebra of the Poincare´ generators different from the Poin-
caréone.

The Poincare´ algebra fails to close on the physical states
in the chiral two-dimensional QCD~QCD2) as well @29#.
The origin of the breakdown of the relativistic invariance is
the same in both models and lies in the anomaly. It would be
of interest to study the question of whether the relativistic
invariance is broken for other models with the projective
realization of a local gauge symmetry, especially in higher
dimensions.

~iii ! The total screening of charges characteristic for the
SM takes place in the generalized CSM too. External charges
are screened globally even in the background linearly rising
electric field. The current density induced by the external
charges damps exponentially far away from them indepen-
dently of the background charge.

Because of Schwinger@1#, the total screening of external
charges implies the existence of a massive particle. The
breakdown of the relativistic invariance does not mean, in
principle, that in the anomalous models the dynamical mass
generation mechanism fails and that the massive particle
cannot exist. Using the fact that the physical Hamiltonian
and momentum commute, we may try to prove the existence
of the simultaneous eigenstates of the relativistic massive
particle energy-momentum relation and then to identify these
states with massive physical particles. For theN50 model
defined onR1, such a massive eigenstate is constructed in
@11#. The existence of the massive eigenstates for theN
Þ61 models defined onS1 will be investigated. We intend
to report on that in a future publication.
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