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In this paper we are interested in studying coarse graining in field theories using the language of quantum
open systems. Motivated by the ideas of Hu and Calzetta on correlation histories we employ the Zwanzig
projection technique to obtain evolution equations for relevant observables in self-interacting scalar field
theories. Our coarse-graining operation consists in concentrating solely on the evolution of the correlation
functions of degree less thann, a treatment which corresponds to the familiar truncation of the BBKGY
hierarchy at thenth level. We derive the equations governing the evolution of mean-field and two-point
functions thus identifying the terms corresponding to dissipation and noise. We discuss possible applications of
our formalism, the emergence of classical behavior, and the connection to the decoherent histories framework.
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I. INTRODUCTION

A. Motivation

Quantum field theory~QFT! has a rich structure, which
manifests itself in the possibility of describing the same field
system from diverse points of view. Hence, depending on the
problem of interest one could focus, for instance, on the
Hamiltonian; the statistical, or the particle aspects of the
quantum field. This potentiality for description within differ-
ent frameworks, inherent in quantum field theory, is the
cause of its large domain of applications, but is also a source
of interesting questions.

The more important one is to identify the level of obser-
vation in a field theory or, putting it another way, what an
actual observer measures in a quantum field. The answer to
this question is not easy and it is clear that the level of
observation cannot be fixed uniquely. Unlike nonrelativistic
quantum mechanics where one is essentially measuring
phase-space quantities for a particle system spatially local-
ized, in quantum field theory local measurements contain
only a very small portion of information about the state of
the field. A local observer will, for instance, be able to record
only the mean field, and the higher order correlation func-
tions are inaccessible to him. Therefore, for most of the pos-
sible configurations, one might lose all sense of predictability
for the field observables.

This is closely connected with the problem of the classical
limit of field theories. In the context of the decoherent histo-
ries approach to quantum mechanics, the classical domain
corresponds to a set of coarse-grained and noninterfering his-
tories, from which one can obtain almost deterministic equa-
tions for a class of observables@1#. In our case there is a
large number of such classes. At low energies one might
consider the particlelike behavior of the fields and obtain in
the classical limit a theory of interacting nonrelativistic par-
ticles. Or one could concentrate on phase-space histories, to
see the extent to which QFT behaves as a Hamiltonian sys-
tem. Or even consider histories of quantities such as energy

and momentum density and obtain a classical hydrodynamics
description.

The above issues are also of value for early Universe
cosmology. The transition from quantum to classical is of
great importance in models of inflation since many of its
predictions are based on the fact that the long wavelength
modes of the inflaton exhibit classical behavior. When con-
sidering the nonequilibrium dynamics of fields~mainly for
the study of phase transitions!, the first point needed to be
settled is what are the variables we should concentrate, that
contain the relevant information for the problem in hand.

The notion of natural coarse graining in field theories is
also important in the context of field theories in curved
spacetime. For it is only one quantity that actually governs
the back-reaction dynamics of spacetime: the expectation
value of the field energy-momentum tensor~essentially con-
structed from the two-point correlation functions in the case
of free fields!.

To address these problems a number of techniques from
nonequilibrium statistical mechanics has been employed
with varying degree of success: the Feynman-Vernon influ-
ence functional technique@2–4# and the close time-path for-
malism@5,6#. It is the aim of this paper to exhibit the use of
another powerful technique of statistical mechanics in a field
theoretic context: the Zwanzig projection method~for a re-
view see@7–9#!. The great advantage of this method lies in
its wide range of possible applications: for any choice of
coarse graining it can be applied once we are able to identify
the coarse-graining operation with an indempotent map on
the space of states. Our choice of coarse graining is moti-
vated by the ideas of Hu and Calzetta@10# on the truncation
of the Schwinger-Dyson hierarchy ofn-point functions.

But before discussing the approach we adopt in this paper,
we find it meaningful to give a short discussion on possible
choices for coarse graining.

B. Coarse grainings

There are two important constraints one might impose on
our possible choices for coarse graining: naturality and Lor-
entz covariance. To see what we mean by naturality, let us*Electronic address: can@tp.ph.ic.ac.uk
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consider cases of typical coarse grainings in standard non-
equilibrium statistical mechanics. A typical situation is to
separate relevant and irrelevant observables according to the
order of magnitude of some physical parameter characteriz-
ing them. Hence we can for instance average out the effect of
‘‘fast’’ variables ~evolving within very short timescales! or
trace out the contribution of particles with the smaller masses
~as is the case in quantum Brownian motion!. Such a sepa-
ration of scales, while quite common in nonrelativistic many-
particle systems is rare in relativistic quantum field theory. If
possible, it would involve a fine-tuning of the the coupling
constants and masses of the field systems as well as the im-
position of a particular initial condition. In a generic system
it is unlikely that such ‘‘autocratic’’ coarse grainings can
emerge naturally@10#.

The requirement of Lorentz covariance, though it can be
relaxed in a number of situations~for instance, when nonrel-
ativistic matter is present@11#!, is of great importance both
for the cosmological applications and the emergence of clas-
sical behavior for the field variables. For when we try to
study a field system from first principles, there is no natural
way a non-Lorentz-invariant quantity can be introduced in
our schemes. Hence, for instance, a coarse graining taking
the form of a high momentum cutoff for the field modes
should not be considered as fundamental but rather as emerg-
ing from the full dynamics of the theory under particular
circumstances.

In addition to those twoa priori criteria for our choice of
coarse graining, there is an equally important one that can be
considered onlya posteriori, that is, after we have identified
the dynamics of the relevant variables. This is the require-
ment of persistent predictability for the evolution equations.
In the language of the decoherent histories approach it states
that histories of relevant observables ought to form a quasi-
classical domain. This means that the evolution equations
have to be approximately dynamically autonomous@9# ~even
though we cannot expect to obtain Markovian behavior!.
This again implies that the noise due to the irrelevant part of
the field, though sufficient to decohere the histories of rel-
evant observables, is weak enough to allow a degree of pre-
dictability @2#. In general, this is expected to be possible only
for a small class of initial states of our system~or the Uni-
verse for cosmological applications!. This is a fact that we
will verify in our analysis.

C. Truncation of the Schwinger-Dyson hierarchy

The coarse-graining operation we shall examine is one
proposed by Hu and Calzeta@10# ~see also@12#!. They re-
marked on the similarity of the chain of Dyson equations
linking each Green function to others of higher order with
the Bugolinbov-Burn-Green-Kirkwood-Yvon~BBKGY! hi-
erarchy of correlation functions in classical statistical me-
chanics. Since the set of expectation values of field products
contains all information about the state of the field, a trunca-
tion in the chain of Green function will form a natural
coarse-graining operation and the lower ordern-point func-
tions will be our relevant observables. The authors then pro-
ceed to compute the effective equations of motion from a
master effective action using a generalization of the close
time-path formalism. The important feature of these equa-

tions is the presence of correlation noise, which under par-
ticular conditions may guarantee decoherence of the ‘‘corre-
lation histories.’’

The truncation of the Schwinger-Dyson hierarchy does
satisfy the conditions of Lorentz covariance and naturality
for the choice of the coarse-graining operation. First, this
choice of coarse graining is closer to actual measurements of
the quantum field since any finite measurement device can-
not obtain information about arbitrarily high orders of corre-
lation. Actually, a local observer might be expected to moni-
tor only the mean-field values. Second, being an intrinsically
justifiable division between relevant and irrelevant observ-
ables, it can be applied to a wide variety of systems, without
the need to recourse to special arguments for each particular
case. Third, it seems promising when trying to consider evo-
lution of hydrodynamic quantities since quantities such as
energy and momentum density can be obtained through the
knowledge of low order correlation functions. In particular,
when dealing with the back-reaction problem in curved
spacetime, truncation of the hierarchy at the leveln52
might give interesting results since the energy-momentum
tensor determining back reaction can be determined through
the knowledge of two-point functions.

As far as the third requirement of predictability is con-
cerned, we need to have a detailed calculation of the dynami-
cal evolution of the relevant observables. Still, it is important
to note that the classical behavior of the two-point correla-
tions observed at later stages gives us at least a hint for the
possibility of an initial condition such that the dynamics of
observables obtained from a truncation at the leveln52 are
approximately autonomous.

D. The Zwanzig method

To obtain the evolution equations for the relevant observ-
ables, we are going to utilize, as mentioned earlier, the
Zwanzig projection technique. There is a number of reasons
for believing that this provides an important calculational
tool when dealing with the above issues.

~1! It allows us to use a canonical formalism, hence gain-
ing intuition by comparison with well-studied systems in
nonrelativistic quantum statistical mechanics. Our results are
still covariant, though not manifestly, since we have re-
stricted ourselves to an invariant choice of coarse graining.

~2! To perform a perturbation expansion for the equations
of motion it is sufficient to construct perturbatively the field

propagatore2 iĤ t. This is best carried out in the Fock repre-
sentation@13#, which turns out to be particularly useful for
implementing our choice of coarse graining.

~3! We are allowed a certain degree of flexibility since the
choice of the projector onto the level of description is not
unique@7#. Hence, depending on the details of our problem
~mainly the initial condition!, we can choose a projector so
as to reduce the strength of the noise terms.

~4! It provides a straightforward relation between the ini-
tial state of the irrelevant variables and the noise terms in the
evolution equations.

~5! It does not depend on the particular dynamics of the
full system, that is one can apply it even when the field
evolution is nonunitary, non-Markovian, or nonautonomous.
Therefore, it might be used in conjunction with other meth-
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ods ~in particular, the influence functional technique! in or-
der to reduce the amount of calculations needed for a par-
ticular problem.

~6! The Zwanzig method is essentially algebraic, in the
sense that it depends solely on the properties of the space of
observables and not on any particular realization in some
Hilbert space. This means that, at least in principle, one can
employ it in systems where quantum variables are coupled to
classical ones as is the case of the field theory in curved
spacetime.

E. This paper

It is the aim of this paper to apply the above ideas in the
simplest of field systems, first to exhibit the technique and to
understand the insight it can offer in particular for the case of
quantum to classical transition. Hence, we concentrate on a
single self-interacting scalar field in Minkowski spacetime
and consider coarse grainings corresponding to truncation at
the levelsn51 andn52.

We mainly focus on two issues: the derivation of the ef-
fective equation for the relevant variables and the estimation
of strength of the noise term, which determines the degree of
predictability of our preferred set of variables.

The paper is then organized as follows: In Sec. II we give
a brief review of the Zwanzig projection formalism, and con-
struct the indempotent operators that implement the coarse-
graining operation in the space of observables. In Sec. III, we
derive the mean-field dynamics in alf4 scalar field theory
and give a general discussion on the relation of correlation
noise with the initial condition. In Sec. IV we perform the
same analysis for agf3 theory for the case of truncation at
the level of two-point functions. Finally, in Sec. V, we give
a discussion of our results, on the possibility of obtaining
Markovian behavior, and on future applications of the for-
malism.

We have found it more convenient to implement the
coarse graining on the normal-ordered form of the observ-
ables. The expressions we obtain are simplified significantly
if we use an index notation to denote products of creation
and annihilation operatorsâ(x) and â†(x). The conventions
of this notation are found in Appendix A. Finally, some use-
ful formulas concerning the Fock representation and the nor-
mal form of operators are to be found in Appendix B.

II. THE METHOD

A. The Zwanzig technique

We will give a brief summary of the Zwanzig projection
formalism, following the conventions of Zeh@8#. The main
idea in the Zwanzig formalism is the representation of the
coarse-graining operator by an indempotent mappingP in
the space of states

r→r rel5Pr, P25P. ~2.1!

The irrelevant part of the state is then given by

r irr5~12P!r. ~2.2!

P is essentially a projection operator in the space of states
and determines through the trace functional a conjugate pro-

jector P* on the space of observables. The projector needs
not be self-adjoint (P5P* ) but for convenience we shall
assume so.

The projectorP determines the level of description for our
system. We should remark that the choice ofP projecting to
a particular class of observables is not unique; there can be
different inequivalent choices. Strictly speaking,P should be
considered as an operation on the states of the system and
only in this sense it is unique.

To obtain the evolution equation for the relevant observ-
ables one starts from the full dynamics of our system. The
formalism is not restricted to unitary dynamics; it can be
applied equally well when the dynamics are nonunitary, or
non-Markovian, or nonlocal in time. In our case, we shall
restrict ourselves to unitary evolution given through the von
Neumann equation

i
]r

]t
5Lr[@H,r#, ~2.3!

from which we obtain the following system of coupled dif-
ferential equations forr rel andr irr :

i
]r rel
]t

5PLr rel1PLr irr , ~2.4!

i
]r irr
]t

5~12P!Lr rel1~12P!Lr irr . ~2.5!

We can solve Eq.~2.5! by treating ther rel term as an external
force:

r irr~ t !5e2 i ~12P!L tr irr~0!2 i E
0

t

dte2 i ~12P!Lt~12P!

3Lr rel~ t2t!. ~2.6!

Here we have denoted bye2 i (12P)L t5(12P)e2 iL t(12P)
the evolution operator of the equation

i
]r

]t
5~12P!Lr. ~2.7!

The exponential is used to denote the solution of the equa-
tion. It is not an actual operator exponential unlessL is
bounded@14#. Substituting Eq.~2.6! into Eq.~2.4! we get the
Zwanzig premaster equation

i
]r rel~ t !

]t
5PLr rel~ t !1PLe2 i ~12P!L tr irr~0!

2 i E
0

t

dtG~t!r rel~ t2t!. ~2.8!

Here,G stands for the kernel:

G~t!5PLe2 i ~12P!Lt~12P!LP. ~2.9!

Given then a relevant observableA, i.e., one such thatPA
5A, we obtain for the evolution of its expectation value
^A&
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i
]

]t
^A&~ t !2^PLA&~ t !

1 i E
0

t

dt^PL~12P!eiLt~12P!LPA&~ t2t!5FA~ t !.

~2.10!

FA(t) is ‘‘driving force’’ term, essentially stochastic in na-
ture, since it depends on the irrelevant components of the
initial state that are inaccessible from our level of descrip-
tion. It reads

FA~ t !52Tr„r~0!@~12P!ei ~12P!L tLA#…. ~2.11!

Note, that in general the evolution of the relevant observ-
ables is nonlocal in time.

B. The coarse-graining operator

Equation~2.11! provides the starting point for a detailed
calculation of the evolution equations for the relevant ob-
servables. The only input one needs is the particular form of
the coarse-graining operatorP.

We wantP to correspond as closely as possible to the
notion of the truncation of the hierarchy of correlation func-
tions at some ordern. To see how one can proceed in the
construction, let us examine first the case forn51. Here, the
relevant variables are the values of the fieldf̂(x) at each
given instant of time. Recall that the field operator can be
written in terms of creation and annihilation operators. Then
consider any density matrix written in normal-ordered form

r5(
r ,s

âa1
† ...âar

† ra1 ...arb1 ...bsâ
b1...âbs. ~2.12!

We remark that the contributions to the expectation value of
f arise solely from the terms in the summation characterized
by r5s11 or r5s21. That is, only terms differing in the
number ofâ’s anda†’s by 1 are the contributing ones.

Requiring thatP projects any operator into a linear com-
bination of â’s and a†’s ~this corresponds to considering
field and momentum expectation values for relevant observ-
ables as is natural in a canonical treatment! and taking the
above remark into consideration, we arrive at a natural
choice for the projector. Write any observable into its
normal-ordered form

Â5(
r ,s

âa1
† ...âar

† Aa1 ...ar
b1 ...bs

âb1...âbs ~2.13!

and implement the action ofP in each term in the series as
follows: if ur2suÞ1 then the action ofP yields zero. Ifr
5s11 then

P~ âa1
† ...âas11

† Aa1 ...as11
b1 ...bs

âb1...âbs!5âa
†Ka,

~2.14!

whereKa is obtained by summing over all possible contrac-
tions of thes11 upper indices with thes lower ones.

Let us give one simple example to illustrate this. Consider
a term of the formA5âa

†âb
†Aab

câ
c. The action ofP reads

PÂ5âa
†Aab

b1âb
†Aab

a . ~2.15!

We proceed similarly for the caser5s21.
The generalization for higher order products of operators

follows along the same lines. Consider, for instance, a level
of description fixed at one- and two-point correlation func-
tions. We then haveP projecting onto linear combinations of
operators of the formâ, â†, ââ, â†â, andâ†â†. When act-
ing on any normal-ordered operatorP will yield a nonzero
expression ifur2suP$0,1,2%. For example, consider a term
âa
†âa

†Aab
cdâ

câd. Action with P will yield

âa
†Aab

cbâ
c1âa

†Aab
bdâ

d1âb
†Aab

caâ
c1âa

†Aab
adâ

d.
~2.16!

C. Perturbation expansion

Having identifiedP we are only left with the calculation
of the terms appearing in Eq.~2.11!. In the following we
shall assume that the Hamiltonian is of the formĤ5Ĥ0

1V̂. We should note that evolution according to the free
Hamiltonian does not change the level of description~since
L0P5PL0 whereL0r5@Ĥ0 ,r#! and, therefore, the expres-
sion of the nonlocal term simplifies

i E
0

t

dt^PV~12P!eiLt~12P!VPA&~ t2t!, ~2.17!

whereVr5@V̂,r#. From this expression we can readily see
that in a perturbative expansion local in time terms will be at
least of second order in the coupling constant. This is easily
understood since this term comes from correlations, that start
as relevant at time 0, become irrelevant due to interaction at
time t, propagate as irrelevant, and become relevant again at
time t. Hence in the perturbative expansion diagrams con-
taining at least two vertices are having nonzero contribution.
On the other hand, the noise term, containing the evolution
of correlations starting and propagating as irrelevant and due
to an interaction at timet becoming relevant, can be of the
first order to the coupling constant thus being dominant in
lowest part of the perturbation series. This means that unless
we consider some particular initial condition the effect of the
noise might destroy any sense of predictability for our se-
lected variables.

Another important observation is that the potential ap-
pears in the nonlocal term only in the combinationPV. This
part of the potential essentially scatters relevant information
only to a particular sector of irrelevant states~these are
sometimes called ‘‘doorway states’’@8#!. For example, in the
gf3 theory with truncation at the level ofn52, we shall
examine in the following sections, the doorway states are the
ones supporting third order correlations. Further propagation
is needed to reach states with higher order correlations.

When considering the lowest order term in the perturba-
tion expansion the expression of the nonlocal terms is sig-
nificantly simplified. To see this, note that these can be
writen in the form

i E
0

t

dt$P†V̂,~12P!„e2 iĤ0t@V̂,r rel~ t2t!#eiĤ0t
…‡,A%,

~2.18!
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where~,! refers to the Hilbert-Schmidt inner product. Now,
since ie2 iH0tr(t2t)eiH0t2r(t)i5O(g) we can easily
verify that within second order in the coupling constant we
get

i ^P„@~12P!~@Â,V̂# !,W#…&~ t !, ~2.19!

where

Ŵ~ t !5E
0

t

dte2 iĤ0tV̂eiĤ0t. ~2.20!

Hence to the lowest order in the perturbative expansion the
nonunitary term becomes local in time. This is due to the fact
that the free propagation can not remove correlations from
the doorway states into the more deeply lying states of the
irrelevant sector. Evolution within the sector of doorway
states makes the correlations lose fast the memory of the
initial condition ~within a time interval proportional to the

coupling constant! and hence when they reappear in the rel-
evant channel they do not impose a time correlation in the
relevant dynamics.

We are going to carry our calculation in the lowest order
of perturbation theory. We should remark that apart from the
technical complication the computation of higher order cor-
rections is not difficult. It is sufficient to have a perturbation

expansion in the propagatore2 iĤ t. This is best carried in the
Fock representation@13#, which is a desirable feature given
the connection of our coarse-graining projector with the
normal-ordered form of the observables.

III. EVOLUTION OF THE MEAN FIELD
IN A lf4 THEORY

Let us apply now the above construction to the case of a
lf4 theory for truncation at the leveln51. The operator for
the potential is given by Eqs.~B14!–~B19!, while the opera-
tor Ŵ is easily computed:

Ŵ5
l

4!
~Wabcdâ

aâbâcâd14âa
†Wa

bcdâ
bâcâd16âa

†âb
†Wab

cdâ
câd14âa

†âb
†âc

†Wabc
dâ

d1âa
†âb

†âc
†âd

†Wabcd!, ~3.1!

with

Wabcd E )
i51

4
dki

~2vki
!1/2

e2 i ~k1x11k2x21k3x31k4x4!~2p!3d~k11k21k31k4!
e2 i ~vk1

1vk2
1vk3

1vk4
!t21

2 i ~vk1
1vk2

1vk3
!1vk4

, ~3.2!

Wa
bcd E )

i51

4
dki

~2vki
!1/2

e2 i ~2k1x11k2x21k3x31k4x4!~2p!3d~k11k21k31k4!
e2 i ~2vk1

1vk2
1vk3

1vk4
!t21

2 i ~2vk1
1vk2

1vk3
!1vk4

, ~3.3!

Wab
cd E )

i51

4
dki

~2vki
!1/2

e2 i ~2k1x12k2x21k3x31k4x4!~2p!3d~k11k21k31k4!
e2 i ~2vk1

2vk2
1vk3

1vk4
!t21

2 i ~2vk1
2vk2

1vk3
!1vk4

, ~3.4!

Wabc
d E )

i51

4
dki

~2vki
!1/2

e2 i ~2k1x12k2x22k3x31k4x4!~2p!3d~k11k21k31k4!
e2 i ~2vk1

2vk2
2vk3

1vk4
!t21

2 i ~2vk1
2vk2

2vk3
!1vk4

, ~3.5!

Wabcd E )
i51

4
dki

~2vki
!1/2

ei ~k1x11k2x21k3x31k4x4!~2p!3d~k11k21k31k4!
ei ~vk1

1vk2
1vk3

1vk4
!t21

i ~vk1
1vk2

1vk3
!1vk4

. ~3.6!

Having the expression forŴ one can use in a straightfor-
ward way Eq.~2.19! to compute the dissipative terms in the
evolution equation. Let us perform the calculations step by
step.

First we compute the commutator@ âa,V̂#. It reads

@ âa,V̂#5
l

4!
~4Va

bcdâ
bâcâd112âb

†Vab
cdâ

câd

112âb
†âc

†Vabc
dâ

d1âb
†âc

†âd
†Vabcd!. ~3.7!

Acting the projectorP on this we obtain

P@ âa,V̂#5
l

4!
~24Vac

cbâ
c124âb

†Vabc
c!. ~3.8!

Hence we can easily read the operator (12P)@ âa,V̂#.
One then needs to compute its commutator with the op-

eratorŴ. This is indeed the difficult part of the calculations.
We will get 24 terms, out of which only 12 will survive after
the action on them ofP. There is no need to reproduce the
whole of the calculations here, but for purposes of exposition
we shall present the computations involved in one term.

A. An example

We consider the term

16We
fghV

abcd@ âb
†âc

†âd
† ,âe

†âf âgâh#. ~3.9!

After computing the commutator we will obtain
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216@9âe
†âc

†âd
†We

fgbV
abcdâf âg118âe

†âf
†We

fbcV
abcdâf16âe

†We
bcdV

abcd#. ~3.10!

The action ofP on Eq.~3.10! will yield

216@9~4âc
†We

ebdV
abcd12âe

†We
bcdV

abcd!112âd
†We

ebcV
abcd112âe

†We
bcdV

abcd16âe
†We

bcdV
abcd#

5216312~4âd
†We

ebc13âe
†We

bcdV
abcd!. ~3.11!

B. The evolution equations

The final result reads

l2F32 ~Wcbd
dV

a
bce2Wd

dbcV
abc

e!1~2WbcdeV
abcd2Wd

ebcV
abc

d1Wcd
beV

ab
cd1Wbcd

eV
a
bcd!G

1l2âe
†F32 ~Wcbd

dV
ae
cb2Wd

dbcV
abce!1~WbcdeVa

bcd1Wcde
bV

ab
cd2Wde

bcV
abc

d2We
bcdV

abcd!G . ~3.12!

Note, the symmetry between the terms contractingâe and âe
† .

We can, therefore, write down the evolution equation fora(x)5^â(x)& anda* (x)5^â†(x)&:

i
]

]t
a~x!2E dx8h~x,x8!a~x8!2lE dx@V~x,x8!a~x8!1V~x,2x8!a* ~x8!#

2 il2E dx8@A~x,x8!a~x8!1A* ~x,2x8!a* ~x8!#1l2E dx8@B~x,x8!a~x8!1B~x,2x8!a* ~x8!#5Fa~x!~ t !,

~3.13!

whereh(x,x8) is given by Eq.~B2!, V(x,x8) ~essentially,Vac
cb! reads

V~x,x8!5E dk1
~2vk1

!1/2
dk2

~2vk2
!1/2

1

2v~k11k2!/2
e2 ik1x1 ik2x8, ~3.14!

while

A~x,x8!5E )
i51

4
dki
2vki

e2 ik1~x2x8!~2p!3d~k11k21k31k4!D~k1 ,k2 ,k3 ,k4 ;t !, ~3.15!

B~x,x8!53E dk1
~2vk1

!1/2
dk2

~2vk2
!1/2

eik1x2 ik2x8S E dk1
2vk3

dk1
2vk4

~2p!3d~k11k21k31k4!E~k3 ,k4 ;t ! D . ~3.16!

D andE contain the time dependence of the kernelsA andB and read

D~k1 ,k2 ,k3 ,k4 ;t !5E
0

t

dte2 ivk1
t~2e2 i ~vk2

1vk3
1vk4

!t2e2 i ~vk2
1vk3

2vk4
!t1e2 i ~vk2

2vk3
2vk4

!t1ei ~vk2
1vk3

1vk4
!t!,

~3.17!

E~k,k8;t !5
cos~vk1vk8!t21

vk1vk8
. ~3.18!

Note that for timest!m21 we haveD(k1 ,k2 ,k3 ,k4 ;t)'t.
A more transparent form is given when calculating the expectation values of creation and annihilation operators in mo-

mentum space

]

]t
a~k!1 ivka~k!1 i E dk8@V~k,k8!2lB~k,k8!#@a~k8!1a* ~k8!#

2l2@A~k;t !a~k!1A* ~k;t !a* ~k!#52 iF a~k!~ t !, ~3.19!
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]

]t
a* ~k!2 ivka* ~k!2 i E dk8@V~k,k8!2lB~k,k8!#@a~k8!1a* ~k8!#2l2@A~k,t !a~k!1A* ~k;t !a* ~k!#52 iF a* ~k!~ t !,

~3.20!

with

A~k!5
1

2vk
E dk1

2vk1

dk2
2vk2

1

2vk1k11k2

D~k,k1 ,k2 ,k1k11k2 ;t !, ~3.21!

B~k,k8!5
3

16vk1k8vk8
E dk1

vk1
vk1k81k1

E~k1 ,k1k81k1 ;t !, ~3.22!

V~k,k8!5
1

4vk8v~k1k8!/2
. ~3.23!

C. Renormalization

The functionA(k;t) is actually divergent. We can per-
form a Taylor expansion ofA aroundk50 and verify that
the termA(0;t) is divergent, the terms containing first de-
rivatives vanish while the ones containing the second order
derivatives are finite. Hence, as could be expected, it is the
zero modes of the field that give a divergent contribution.
This can be removed by a redefinition:

Aren~k;t !5A~k;t !2A~0;t ! ~3.24!

and by absorbingA(0;t) in a field renormalization. To see
this, note that

]

]t S a~k!

a* ~k! D5finite terms

1l2SA~0;t !
A~0;t !

A* ~0;t !
A* ~0;t ! D S a~k!

a* ~k! D .
~3.25!

Hence, the divergencies can be absorbed through a redefini-
tion of the Heisenberg picture operatorsâ(k,t), â†(k,t);

S â~k,t !
â†~k,t ! D→expFl2E

0

t

dtSA~0;t !
A~0;t !

A* ~0;t !
A* ~0;t ! D G S â~k,t !

â†~k,t ! D .
~3.26!

It is easy to interpret the terms in~3.19! and~3.20!. The term
V contains the lowest order contribution from the potential to
our coarse-grained dynamics. Its form is better understood
by observing that the mean-field theory approximation
amounts to substituting four-point vertices~say with incom-
ing momentak1 andk2 and outcomingk3 andk4! with free
propagation of a mode with momentum the average of the
incoming ~or the outcoming! modes’ momenta (k11k2)/2.

The termB is higher order, time-dependent correction to
the contribution of the potential, while the termA corre-
sponds to dissipation. This is easily verified when we take
the time reverse of Eqs.~3.19! and ~3.20!. The terms con-
tainingA are the only noninvariant terms.

D. The noise terms

Most important, from the point of view of the classical
behavior and predictability of the mean field, is the noise
term. As we said it is at least of first order to the coupling
constant and in principle can dominate both the potential and
the dissipation terms.

Starting from Eq.~2.11! it is straightforward to calculate
the leading~first order tol! contribution to the noise. It reads
~we switch back to the index notation!

Faa~ t !5
l

4!
Tr@r~0!Â~ t !#, ~3.27!

where

Â~ t !54Va
bcdâ

b~ t !âc~ t !âd~ t !112âb
†~ t !Vab

cdâ
c~ t !âd~ t !

112âb
†~ t !âc

†~ t !Vabc
dâ

d~ t !14âb
†~ t !âc

†~ t !âd
†~ t !Vabcd

224Vac
cbâ

b~ t !224âb
†Vabc

c , ~3.28!

where withâ(t) andâ†(t) we denote the Heisenberg picture
operators evolving according to the free Hamiltonian.

In order for our coarse-grained description to satisfy the
predictability criterion, the noise term should be sufficiently
weak ~though strong enough to cause decoherence of the
mean-field histories!. This, as we see, cannot be true for a
generic initial state of the system. We can nevertheless ob-
serve that the noise terms vanish when the initial state is the
vacuumrvac5u0&^0u. This means that for statesr~0! suffi-
ciently close to the vacuum the noise term becomes smaller
and smaller. This means that for any stater~0! such that
ir(0)2rvaciHS,e the noise term will be of orderO(e).

Consider for instance that the initial state of the system is
some coherent stateua(x)&, determined by a square-
integrable functiona(x). Coherent states are eigenstates of
the annihilation operators, hence the trace in Eq.~2.11! is
easily performed. Now, if we assume thatia(x)i,e it is
easy to establish thatir(0)2rvaciHS5O(e). Hence to lead-
ing order ine the noise term reads

Faa~ t !52le„Vac
cbz

b~ t !1zb* ~ t !Vabc
c…, ~3.29!
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where we wrotea(t)5ez(t). This is an example of an ini-
tial condition that renders the noise term sufficiently weak to
allow for predictability. This particular condition, we be-
lieve, is realistic when considering cosmological scenarios.

Finally, we should remark that it is straightforward to
obtain evolution equations for the mean field and momentum
by using the equations

â~k!5E dxeikx„vkf̂~x!1 i p̂~x!…, ~3.30!

â†~k!5E dxe2 ikx
„vkf̂~x!2 i p̂~x!…. ~3.31!

IV. TWO-POINT FUNCTIONS IN gf3 THEORY

In this section we are going to give the results for the
truncation of the hierarchy at the leveln52 for agf3 scalar
field theory.

A. The mean-field equations

For completeness we will give very briefly the results of
the mean-field analysis for thegf3 case. The expectation
value of the operatorâ(k) evolves according to an equation
similar to Eq.~3.19!

]

]t
a~k!1 ivka~k!2 ig2E B~k,k8!@a~k8!1a* ~k8!#

2g2@A~k;t !a~k!1A* ~k;t !a* ~k!#5Fa~k!~ t !,

~4.1!

where the functionsA andB are given by

A~k;t !5
3

16vk
E dk1

vk31kvk3

D~k,k1k3 ,k3 ;t !, ~4.2!

B~k,k8;t !5
1

2vk8vk1k8

cosvk1k8t21

vk1k8
, ~4.3!

with

D~k1 ,k2 ,k3 ;t !522i E
0

t

e2 ivk1
tsin~vk2

1vk3
!. ~4.4!

As is well known, the potential does not contribute in the
lowest order equation for the mean-field theory, and the
quantitiesA andB again characterize dissipation and time-
dependent correction to the potential.

B. Evolution equations for two-point functions

Let us now give the results for the case of truncation at
then52 level. We prefer to give them in terms of the func-
tionsG(k) andZ(k) defined by

^â~x!â~x8!&5E dk

2vk
e2 ik~x1x8!G~k!, ~4.5!

^â†~x!â~x8!&5E dk

2vk
e2 ik~x2x8!Z~k!. ~4.6!

We will skip all calculations and present straightforwardly
the results, since the way to proceed is exactly as previously
and the only difficulty is a computational one. Thus, we get
for a final result

]

]t
a~k!1 ivka~k!52 iF a~k! , ~4.7!

]

]t
Z~k!2gS 2vk

1
1

~vkvk/2!
1/2D @a~k!1a* ~k!#1 ig2E dk8@r ~k,k8;t !G~k8!1r * ~k,k8;t !G* ~k8!1s~k,k8;t !Z~k8!#

1 ig2@D1~k;t !G~k!1D2~k;t !G* ~k!1D3~k;t !Z~k!#52 iF Z~k!~ t !, ~4.8!

]

]t
G~k!12ivkG~k!2gS 2vk

1
1

~vkvk/2!
1/2D @a~k!1a* ~k!#1 ig2E dk8@K1~k,k8;t !G~k8!1K2~k,k8;t !G* ~k8!

1K3~k,k8;t !Z~k8!#1 ig2@L1~k;t !G~k!1L2~k;t !Z~k!#52 iFG~k!~ t !. ~4.9!

The form of the functions appearing in these equations can
be found in Appendix C.

Now, in the equations for the mean field the noise can be
shown to vanish, since

P@V,aa#5@V,aa#. ~4.10!

Hence, the mean field evolves freely. In the second-order
correlation functions the noise terms read

Faaab5g Tr„r~0!Âab~ t !…, ~4.11!

Fa
a
†ab5g Tr„r~0!Âa

b~ t !…, ~4.12!

where

Aab522âc
†~ t !Vabc2Vc

acâb~ t !2Vd
acdc

bâe~ t !, ~4.13!

Aa
b5Vca

c âb2Vac
b âc1âc

†~ t !Va
bc2âa

†~ t !bcc , ~4.14!
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in terms of the Heisenberg picture operators evolving accord-
ing to the free Hamiltonian.

This noise, terms more or less has the same features as the
similar in Eq.~3.28!.

V. CONCLUSIONS AND REMARKS

The techniques we have employed in this paper have
given us a picture for the evolution of relevant variables,
when the coarse-graining operation consists in the truncation
of the Schwinger-Dyson hierarchy ofn-point functions.

One of the great difficulties in such considerations is the
complicated expressions we get for our equations in the end.
It seems that it is very difficult to find a regime in a field
theory where the dynamics would be Markovian. This essen-
tially means that noise should be with good approximation
‘‘white’’ and in the autonomous part of the dynamics one
should have no time-dependent coefficients. It seems un-
likely that we can obtain Markovian evolution for a generic
state of the system. In any case we should expect it when the
field is in a state of partial~local! equilibrium @8#. This re-
gime can still be studied using our techniques, but it might
be that a different choice of coarse-graining projector might
be more of use. The Kawasaki-Gunton and the Mori projec-
tor @7# might prove more convenient when dealing with this
regime.

Another avenue to explore towards obtaining Markovian
equations is to consider nonunitary dynamics for the evolu-
tion of the total system. This might come from a contact with
a heat bath or through the interaction with other ignored
degrees of freedom~a supermassive field or gravitons for the
case of cosmology!.

As far as the noise is concerned, we should stress that the
Zwanzig method allows one to derive the noise term in the
evolution equations solely from the knowledge of the initial
state of the system. The comparison of its strength with the
size of the terms entering the evolution equations offers a
good criterion~though rather heuristic! for the classicaliza-
tion of the variables under study. Remember, that noise
should be strong enough to decohere but weak enough to
allow for predictability and not covering up the effects of the
potential. Only a particular class of initial states offers this
possibility.

Finally, we should make some remarks concerning the
classical domain in generic field theories. The techniques
developed in this paper do provide a useful tool for dealing
with the emergence of classical behavior. Still, it is my be-
lief, that concrete understanding of the quantum to classical
transition requires, in addition, employment of the concep-
tual technical tools of the decoherent histories approach to
quantum mechanics. To obtain a complete and rigorous char-
acterization of the classical domain~for instance@15–17#!,
one needs to construct the decoherence functional for coarse-
grained correlation histories in a manageable computational
form. This is currently under investigation.
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APPENDIX A: THE INDEX NOTATION

In the paper we have heavily used an index notation con-
nected with the normal-ordered form of an operator, which
we describe in detail here.

For reasons of symmetry in our expressions we prefer to
work using the creation and annihilation operators in the
configuration space instead of the momentum as is usual.
Hence, we writeâ(x) and â†(x). They are related to the
standard operators in momentum space by

â~x!5E dk

~2vk!
1/2 e

2 ikxâ~k!. ~A1!

We denoteâ(x) by âa ~index up! and â†(x) by âa
† ~index

down!. To any function or distribution assign an abstract
index to each of its arguments. The index is lower or upper
according to whether the corresponding argument is inte-
grated out with anâ or an â†, respectively. Hence the op-
erator

E dx1dx2dx3K~x1 ,x2 ;x3!â
†~x1!â

†~x2!â~x3! ~A2!

will be represented as

âa
†âb

†Kab
câc . ~A3!

We can easily verify that lowering a single index corre-
sponds to changing the argument in the distribution fromx to
2x, and inversion of all indices amounts to complex conju-
gation.

APPENDIX B: USEFUL FORMULAS

Here we list a number of expressions we make use of in
the paper.

The free Hamiltonian can be written

Ĥ05
1

2 E dxdx8â†~x!h~x,x8!â~x8!, ~B1!

with

h~x,x8!5E dke2 ik~x2x8!vk . ~B2!

The evolution operatorÛ0(t)5e2 i tĤ0 reads

Û0~ t !5:expF E dxâ†~x!@D~x2x8;t !2d~x2x8!#â~x8!G :
~B3!

where

D~x2x8;t !5E dke2 ik~x2x8!e2 ivkt. ~B4!

A coherent state is characterized by the square integrable
functiona(x) and is an eigenstate of the annihilation opera-
tor â(x). Under evolution of the free Hamiltonian we have

Û0~ t !ua~x!&5ua~x,t !&, ~B5!
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where

a~x,t !5E dx8D~x2x8;t !a~x8!. ~B6!

The operator

V̂5:E dx
g

3!
f̂3: ~B7!

reads in the index notation

V~a* ,a!5
g

3!
~Vabcâ

aâbâc13âa
†Va

bcâ
bâc13âa

†âb
†Vab

câ
c1âa

†âb
†âc

†Vabc!, ~B8!

with the correspondence

Vabc E )
i51

3
dki

~2vki
!1/2

e2 i ~k1x11k2x21k3x3!~2p!3d~k11k21k3!, ~B9!

Va
bc E )

i51

3
dki

~2vki
1/2!

e2 i ~2k1x11k2x21k3x3!~2p!3d~k11k21k3!, ~B10!

Vab
c E )

i51

3
dki

~2vki
!1/2

e2 i ~2k1x12k2x21k3x3!~2p!3d~k11k21k3!, ~B11!

Vabc E )
i51

3
dki

~2vki
!1/2

ei ~k1x11k2x21k3x3!~2p!3d~k11k21k3!, ~B12!

while the operator

V̂5:E dx
l

4!
f̂4: ~B13!

reads

V̂5
l

4!
~Vabcdâ

aâbâcâd14âa
†Va

bcdâ
bâcâd16âa

†âb
†Vab

cdâ
câd14âa

†âb
†âc

†Vabc
dâ

d1âa
†âb

†âc
†âd

†!, ~B14!

with

Vabcd E )
i51

4
dki

~2vki
!1/2

e2 i ~k1x11k2x21k3x31k4x4!~2p!3d~k11k21k31k4!, ~B15!

Va
bcd E )

i51

4
dki

~2vki
!1/2

e2 i ~2k1x11k2x21k3x31k4x4!~2p!3d~k11k21k31k4!, ~B16!

Vab
cd E )

i51

4
dki

~2vki
!1/2

e2 i ~2k1x12k2x21k3x31k4x4!~2p!3d~k11k21k31k4!, ~B17!

Vabc
d E )

i51

4
dki

~2vki
!1/2

e2 i ~2k1x12k2x22k3x31k4x4!~2p!3d~k11k21k31k4!, ~B18!

Vabcd E )
i51

4
dki

~2vki
!1/2

ei ~k1x11k2x21k3x31k4x4!~2p!3d~k11k21k31k4!. ~B19!
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APPENDIX C: THE COEFFICIENTS IN EQS. „4.8… AND „4.9…

Here we give the expressions for the coefficients in Eqs.~4.8! and ~4.9!

r ~k,k8;t !5
3

2

1

vk1k8vk8
2 E

0

t

dte2 ivk8tsin~vk1vk1k8!t2
1

4

1

vk8
2 vk/2

cosvkt21

vk
, ~C1!

s~k,k8;t !5
3

2

1

vk1k8vk8
2 E

0

t

dt cosvk8t sin~vk1vk1k8!t2
1

2

1

vk8
2 vk/2

cosvkt21

vk
, ~C2!

D1~k;t !53u~k;t !22u8~k;t !, ~C3!

D2~k;t !523u* ~k;t !22u8~k;t !, ~C4!

D3~k;t !53@u~k;t !1u* ~k;t !#24u8~k,t !, ~C5!

u~k;t !5
1

4

1

vk
E dk1

vk1
vk1k2

E
0

t

dte2 ivktsin~vk1
1vk1k1

!t, ~C6!

u8~k;t !5
1

2

1

vk
3vk/2

~cosvkt21!, ~C7!

K1~b fk,k8;t !5
3

4

1

vk1k8vk8
2

cos~vk1vk1k82vk8!t21

vk1vk1k82vk8
2
1

2

1

vk8
2 vk/2

e2 ivkt21

vk
, ~C8!

K2~k,k8;t !5
3

2

1

vk1k8vk8
2 E

0

t

e2 i ~vk1vk8!t cos~vk1k8t!2
1

2

1

vk8
2 vk/2

e2 ivkt21

vk
, ~C9!

K3~k,k8;t !5
1

2

1

vk1k8vk8
2

cos~vk1vk1k81vk8!t21

vk1vk1k81vk8
, ~C10!

L1~k;t !52
3i

4

1

vk
E dk1

vk1
vk1k2

E
0

t

dte2 ivktcos~vk1
1vk1k1

!t2
1

vk8
2 vk/2vk

~cosvkt21!, ~C11!

L2~k;t !52
1

vk
3vk/2

~cosvkt21!1
3

4

1

vk
E dk1

vk1
vk1k1

E
0

t

dteivktsinvk21kt. ~C12!
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