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Coarse grainings and irreversibility in quantum field theory
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In this paper we are interested in studying coarse graining in field theories using the language of quantum
open systems. Motivated by the ideas of Hu and Calzetta on correlation histories we employ the Zwanzig
projection technique to obtain evolution equations for relevant observables in self-interacting scalar field
theories. Our coarse-graining operation consists in concentrating solely on the evolution of the correlation
functions of degree less tham a treatment which corresponds to the familiar truncation of the BBKGY
hierarchy at thenth level. We derive the equations governing the evolution of mean-field and two-point
functions thus identifying the terms corresponding to dissipation and noise. We discuss possible applications of
our formalism, the emergence of classical behavior, and the connection to the decoherent histories framework.
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I. INTRODUCTION and momentum density and obtain a classical hydrodynamics
description.

The above issues are also of value for early Universe

Quantum field theoryfQFT) has a rich structure, which cosmology. The transition from quantum to classical is of
manifests itself in the pOSSIbIlIty of describing the same ﬁeldgreat importance in mode's Of inﬂation Since many Of |ts
system from diverse points of view. Hence, depending on thgredictions are based on the fact that the long wavelength
problem of interest one could focus, for instance, on thanodes of the inflaton exhibit classical behavior. When con-
Hamiltonian; the statistical, or the particle aspects of thesidering the nonequilibrium dynamics of fiel@sainly for
quantum field. This potentlallty for description within differ- the Study of phase transitio)',]ghe first point needed to be
ent frameworks, inherent in quantum field theory, is thesettied is what are the variables we should concentrate, that
cause of its large domain of applications, but is also a sourcgpntain the relevant information for the problem in hand.
of interesting questions. o The notion of natural coarse graining in field theories is

The more important one is to identify the level of obser-554 important in the context of field theories in curved
vation in a field theory or, putting it a”Ot*.‘er way, what an spacetime. For it is only one quantity that actually governs
actual observer measures in a quantum field. The answer ﬁ)e back-reaction dynamics of spacetime: the expectation
this question is not easy and it is clear that the level O{/alue of the field energy-momentum tensessentially con-

observation cannot be fixed umque_ly. Unl'ke.nonrelat'V'St'.Cstructed from the two-point correlation functions in the case
guantum mechanics where one is essentially measurin free fields

phase-space quantities for a particle system spatially local-
ized, in quantum field theory local measurements contail?10

only a very small portion of information about the state Ofwith varying degree of success: the Feynman-Vernon influ-

the field. A local observer will, for instance, be able to record : . . )
only the mean field, and the higher order correlation func-ence functional techniqu@-—4] and the close time-path for

i ) ible to him. Theref ¢ ¢ of th malism[5,6]. It is the aim of this paper to exhibit the use of
lons are inaccessivle to him. herefore, for most of e Pos; o powerful technique of statistical mechanics in a field
sible configurations, one might lose all sense of predictabilit

for the field observabl Y¥heoretic context: the Zwanzig projection methddr a re-

or the neld observables. . ._view seg[7-9]). The great advantage of this method lies in

. Th's IS closely _connected with the problem of the cIas_smahS wide range of possible applications: for any choice of
limit of field theories. In the context of the decoherent hlsto-Coarse graining it can be applied once we are able to identify
. ) ; e coarse-graining operation with an indempotent map on
corresponds to a set of coarse—gramed and ”0”"’.“6.”?””9 h'ﬁﬁe space of states. Our choice of coarse graining is moti-
tories, from which one can obtain almost deterministic equay,4iad by the ideas of Hu and Calzeft#] on the truncation
tions for a class of observablg¢&]. In our case there is a ?f the Schwinger-Dyson hierarchy afpoint functions.

Iarge_ number of_suc_h classes_. At low energies one '?"9“ But before discussing the approach we adopt in this paper,
consider the particlelike behavior of the fields and obtain Nye find it meaningful to give a short discussion on possible
the classical limit a theory of interacting nonrelativistic par- hoices for coarse graining

ticles. Or one could concentrate on phase-space histories, (l;o
see the extent to which QFT behaves as a Hamiltonian sys-
tem. Or even consider histories of quantities such as energy

A. Motivation

To address these problems a number of techniques from
nequilibrium statistical mechanics has been employed

B. Coarse grainings

There are two important constraints one might impose on
our possible choices for coarse graining: naturality and Lor-
*Electronic address: can@tp.ph.ic.ac.uk entz covariance. To see what we mean by naturality, let us
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1010 C. ANASTOPOULOS 56
consider cases of typical coarse grainings in standard nortions is the presence of correlation noise, which under par-
equilibrium statistical mechanics. A typical situation is to ticular conditions may guarantee decoherence of the “corre-
separate relevant and irrelevant observables according to thegion histories.”
order of magnitude of some physical parameter characteriz- The truncation of the Schwinger-Dyson hierarchy does
ing them. Hence we can for instance average out the effect afatisfy the conditions of Lorentz covariance and naturality
“fast” variables (evolving within very short timescalg®r  for the choice of the coarse-graining operation. First, this
trace out the contribution of particles with the smaller masseshoice of coarse graining is closer to actual measurements of
(as is the case in quantum Brownian mojio8uch a sepa- the quantum field since any finite measurement device can-
ration of scales, while quite common in nonrelativistic many-not obtain information about arbitrarily high orders of corre-
particle systems is rare in relativistic quantum field theory. Iflation. Actually, a local observer might be expected to moni-
possible, it would involve a fine-tuning of the the coupling tor only the mean-field values. Second, being an intrinsically
constants and masses of the field systems as well as the inustifiable division between relevant and irrelevant observ-
position of a particular initial condition. In a generic systemables, it can be applied to a wide variety of systems, without
it is unlikely that such “autocratic” coarse grainings can the need to recourse to special arguments for each particular
emerge naturally10]. case. Third, it seems promising when trying to consider evo-
The requirement of Lorentz covariance, though it can bdution of hydrodynamic quantities since quantities such as
relaxed in a number of situatiorifor instance, when nonrel- energy and momentum density can be obtained through the
ativistic matter is presenrtl1]), is of great importance both knowledge of low order correlation functions. In particular,
for the cosmological applications and the emergence of clagvhen dealing with the back-reaction problem in curved
sical behavior for the field variables. For when we try toSPacetime, truncation of the hierarchy at the lewet2
study a field system from first principles, there is no naturafMight give interesting results since the energy-momentum
way a non-Lorentz-invariant quantity can be introduced int€nsor determining back reaction can be determined through
our schemes. Hence, for instance, a coarse graining takirfj® knowledge of two-point functions. o
the form of a high momentum cutoff for the field modes As far as the third requirement of predictability is con-

should not be considered as fundamental but rather as emergned, we need to have a detailed calculation of the dynami-
ing from the full dynamics of the theory under particular cal evolution of the relevant observables. Still, it is important
circumstances. to note that the classical behavior of the two-point correla-

In addition to those twa priori criteria for our choice of ~{ions observed at later stages gives us at least a hint for the

coarse graining, there is an equally important one that can peossibility of an i_nitial condition such that the dynamics of
considered onlya posteriori that is, after we have identified ©Observables obtained from a truncation at the level are

the dynamics of the relevant variables. This is the require@PProximately autonomous.

ment of persistent predictability for the evolution equations.

In the language of the decoherent histories approach it states D. The Zwanzig method

that histories of relevant observables ought to form a quasi- ¢ gbtain the evolution equations for the relevant observ-
classical domain. _Thls means that the evolution equationgples we are going to utilize, as mentioned earlier, the
have to be approximately dynamically autonomg@is(even  zwanzig projection technique. There is a number of reasons

though we cannot expect to obtain Markovian behavior for pelieving that this provides an important calculational
This again implies that the noise due to the irrelevant part ofyo| when dealing with the above issues.

the field, though sufficient to decohere the histories of rel- (1) It allows us to use a canonical formalism, hence gain-
evant observables, is weak enough to allow a degree of préqg intuition by comparison with well-studied systems in
dictability [2]. In general, this is expected to be possible onlyngnre|ativistic quantum statistical mechanics. Our results are
for a small class of initial states of our systdor the Uni- i)l covariant, though not manifestly, since we have re-
verse for cosmological applicationsThis is a fact that we  gyricted ourselves to an invariant choice of coarse graining.
will verify in our analysis. (2) To perform a perturbation expansion for the equations
of motion it is sufficient to construct perturbatively the field

propagatore "', This is best carried out in the Fock repre-
The coarse-graining operation we shall examine is oneentation[13], which turns out to be particularly useful for
proposed by Hu and CalzefdO] (see alsd12]). They re- implementing our choice of coarse graining.
marked on the similarity of the chain of Dyson equations (3) We are allowed a certain degree of flexibility since the
linking each Green function to others of higher order withchoice of the projector onto the level of description is not
the Bugolinbov-Burn-Green-Kirkwood-Yvo(BBKGY) hi-  unique[7]. Hence, depending on the details of our problem
erarchy of correlation functions in classical statistical me-(mainly the initial condition, we can choose a projector so
chanics. Since the set of expectation values of field productas to reduce the strength of the noise terms.
contains all information about the state of the field, a trunca- (4) It provides a straightforward relation between the ini-
tion in the chain of Green function will form a natural tial state of the irrelevant variables and the noise terms in the
coarse-graining operation and the lower ordguoint func-  evolution equations.
tions will be our relevant observables. The authors then pro- (5) It does not depend on the particular dynamics of the
ceed to compute the effective equations of motion from dull system, that is one can apply it even when the field
master effective action using a generalization of the closevolution is nonunitary, non-Markovian, or nonautonomous.
time-path formalism. The important feature of these equaTherefore, it might be used in conjunction with other meth-

C. Truncation of the Schwinger-Dyson hierarchy
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ods (in particular, the influence functional technigue or-  jector P* on the space of observables. The projector needs
der to reduce the amount of calculations needed for a pafot be self-adjoint P=P*) but for convenience we shall

ticular problem. assume so.

(6) The Zwanzig method is essentially algebraic, in the The projecto determines the level of description for our
sense that it depends solely on the properties of the space gfstem. We should remark that the choicePgdrojecting to
observables and not on any particular realization in some particular class of observables is not unique; there can be
Hilbert space. This means that, at least in principle, one cagifferent inequivalent choices. Strictly speakifyshould be
employ it in systems where quantum variables are coupled tgonsidered as an operation on the states of the system and
classical ones as is the case of the field theory in curvednly in this sense it is unique.
spacetime. To obtain the evolution equation for the relevant observ-

ables one starts from the full dynamics of our system. The
E. This paper formalism is not restricted to unitary dynamics; it can be

It is the aim of this paper to apply the above ideas in theapplied equally well when the dynamics are nonunitary, or

simplest of field systems, first to exhibit the technique and td1on-_l\/larkowan, or non_local In time. In_ our case, we shall
understand the insight it can offer in particular for the case Ogstrlct ourselve; fo unitary evolution given through the von
guantum to classical transition. Hence, we concentrate on eumann equation
single self-interacting scalar field in Minkowski spacetime Ip
and consider coarse grainings corresponding to truncation at i —=Lp=[H,p], (2.3
the levelsn=1 andn=2. at

We mainly focus on two issues: the derivation of the ef- . . . .
fective equation for the relevant variables and the estimatiocr}(Orn Wh'Ch we obtain the following system of coupled dif-
of strength of the noise term, which determines the degree dErential equations opre and p; -
predictability of our preferred set of variables.

The paper is then organized as follows: In Sec. Il we give i OPrel _ PLpret PLpYs (2.9
a brief review of the Zwanzig projection formalism, and con- ot
struct the indempotent operators that implement the coarse-
graining operation in the space of observables. In Sec. I, we i B .
derive the mean-field dynamics inxap* scalar field theory "ot =(1=PLprert (1= P)Lpir (2.5

and give a general discussion on the relation of correlation
noise with the initial condition. In Sec. IV we perform the We can solve Eq.2.5) by treating thep,. term as an external
same analysis for g¢° theory for the case of truncation at force:
the level of two-point functions. Finally, in Sec. V, we give
a discussion of our results, on the possibility of obtaining
Markovian behavior, and on future applications of the for-
malism.

We have found it more convenient to implement the XLpre(t—1). (2.6)
coarse graining on the normal-ordered form of the observ- _ _
ables. The expressions we obtain are simplified significantljiere we have denoted by~ '*"P‘'=(1-P)e™'"'(1-P)
if we use an index notation to denote products of creatiorthe evolution operator of the equation
and annihilation operato(x) anda’(x). The conventions
of this notation are found in Appendix A. Finally, some use- i (9_/0:(1_ P)L

; : p- (2.7

ful formulas concerning the Fock representation and the nor- at
mal form of operators are to be found in Appendix B.

) t )
pirr(t) = e_l(l_P)Ltpirr(o) —Ii f dTe_I(l_P)LT(l_ P)
0

The exponential is used to denote the solution of the equa-

II. THE METHOD tion. It is not an actual operator exponential unlésds
_ _ bounded 14]. Substituting Eq(2.6) into Eq.(2.4) we get the
A. The Zwanzig technique Zwanzig premaster equation
We will give a brief summary of the Zwanzig projection
formalism, following the conventions of Z€l8]. The main - 9prel(t) —PL PLe I(1-PLt, (g
. . : . . . | prei(t) +PLe pir(0)
idea in the Zwanzig formalism is the representation of the at
coarse-graining operator by an indempotent mapgtnion .
the space of states —if d7G(7)pre(t—1). (2.9
0
p— prei=Pp, P?=P. 2.1

Here, G stands for the kernel:
The irrelevant part of the state is then given by
G(r)=PLe ' PL7(1—P)LP. (2.9
pir=(1=P)p. (2.2
Given then a relevant observab¥e i.e., one such thaPA
P is essentially a projection operator in the space of statessA, we obtain for the evolution of its expectation value
and determines through the trace functional a conjugate prgA)
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A_atpab | atpab
i %(A)(t)—(PLA}(t) PA=2a A% +a A?,. (2.15
We proceed similarly for the case=s—1.

The generalization for higher order products of operators
follows along the same lines. Consider, for instance, a level
of description fixed at one- and two-point correlation func-
(210 tions. We then hav® projecting onto linear combinations of
operators of the forna, a', aa, a'a, anda'a’. When act-

Fa(t) IS dn_vmg force™ term, e_ssent|ally stochastic in na- ing on any normal-ordered operatBrwill yield a nonzero
ture, since it depends on the irrelevant components of the

initial state that are inaccessible from our level of descrip-?fr(Pieff,'OrJC'AﬁOf_S| ._5{0,1.,2}. For e>§ample, consider a term
tion. It reads a,a,A%qa%a“. Action with P will yield

+i fth<PL(1— P)e'L(1—P)LPA)(t— 1) =F(t).
0

alA™" A+ alA, a%+ al AP At +al A, A

Fa(t)=—Tr(p(0)[(1-P) X PLLAD. (2.1D (2.16

Note, that in general the evolution of the relevant observ-
ables is nonlocal in time. C. Perturbation expansion

o Having identifiedP we are only left with the calculation
B. The coarse-graining operator of the terms appearing in E42.11). In the following we

Equation(2.11) provides the starting point for a detailed shall assume that the Hamiltonian is of the fokin=Hg
calculation of the evolution equations for the relevant ob-+V. We should note that evolution according to the free
servables. The only input one needs is the particular form oHamiltonian does not change the level of descriptisimce
the coarse-graining operatBr Lo,P=PL, whereLop=[Hg,p]) and, therefore, the expres-

We wantP to correspond as closely as possible to thesjon of the nonlocal term simplifies
notion of the truncation of the hierarchy of correlation func-
tions at some orden. To see how one can proceed in the
construction, let us examine first the caserfer1. Here, the
relevant variables are the values of the figdx) at each R
given instant of time. Recall that the field operator can bewhereVp=[V,p]. From this expression we can readily see
written in terms of creation and annihilation operators. Therthat in a perturbative expansion local in time terms will be at
consider any density matrix written in normal-ordered form least of second order in the coupling constant. This is easily

understood since this term comes from correlations, that start

p=> al ..alpa-ay L abL abs, (219 8 relevant at time 0, become irrelevant due to interactio_n at
rs 1 " 1% time 7, propagate as irrelevant, and become relevant again at

time t. Hence in the perturbative expansion diagrams con-

We remark that the contributions to the expectation value ofaining at least two vertices are having nonzero contribution.
¢ arise solely from the terms in the summation characterize®n the other hand, the noise term, containing the evolution
by r=s+1 orr=s—1. That is, only terms differing in the of correlations starting and propagating as irrelevant and due

number ofa’s anda''s by 1 are the contributing ones. to an interaction at timé becoming relevant, can be of the

Requiring thatP projects any operator into a linear com- first order to the coupling constant thus being dominant in
bination of a’s and a™s (this corresponds to considering lowest part of the perturbation series. This means that unless
field and momentum expectation values for relevant obserwe consider some particular initial condition the effect of the
ables as is natural in a canonical treatmemd taking the noise might destroy any sense of predictability for our se-
above remark into consideration, we arrive at a naturalected variables.
choice for the projector. Write any observable into its Another important observation is that the potential ap-
normal-ordered form pears in the nonlocal term only in the combinati®¥. This
part of the potential essentially scatters relevant information
only to a particular sector of irrelevant statéhese are
sometimes called “doorway state$8]). For example, in the
g¢° theory with truncation at the level ai=2, we shall
and implement the action d¢¥ in each term in the series as examine in the following sections, the doorway states are the
follows: if [r—s|#1 then the action of yields zero. Ifr ones supporting third order correlations. Further propagation

i fth<PV(1— P)elt(1-P)VPA)(t—17), (2.17)
0

A At at ab;  ab
A—rzs al ..alAh-Ay  pahabs (213

=s+1 then is needed to reach states with higher order correlations.
When considering the lowest order term in the perturba-
p(agl...a;SHAal---asubl,__bsabl...abs)za;Ka, tion expansion the expression of the nonlocal terms is sig-

(2.14  nificantly simplified. To see this, note that these can be
writen in the form
whereK? is obtained by summing over all possible contrac- .
tions of thes+1 upper indices with the lower ones. ; 9 —iFgrry iHor
. : ) . . i | dr{PLV,(1-P)(e "0V, p(t—71)]e"07)] A},
Let us give one simple example to illustrate this. Consider 0 mPLVi( ) [Vopreft=7)] LA}
a term of the formA=a!aJA°.a°. The action ofP reads (2.18
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where(,) refers to the Hilbert-Schmidt inner product. Now, coupling constantand hence when they reappear in the rel-
since [[e Mo7p(t—7)eHo"—p(t)|=0(g) we can easily evant channel they do not impose a time correlation in the
verify that within second order in the coupling constant werelevant dynamics.
get We are going to carry our calculation in the lowest order
o of perturbation theory. We should remark that apart from the
i(P((1—-P)([A,V]),W])(1), (2.19 technical complication the computation of higher order cor-
rections is not difficult. It is sufficient to have a perturbation

where expansion in the propagater '"!. This is best carried in the
R ¢ - Fock representatiofil3], which is a desirable feature given
W(t):f dre HoryeiHor, (2.20  the connection of our coarse-graining projector with the
0 normal-ordered form of the observables.

Hence to the lowest order in the perturbative expansion the IIl. EVOLUTION OF THE MEAN FIELD

nonunitary term becomes local in time. This is due to the fact IN A A* THEORY

that the free propagation can not remove correlations from

the doorway states into the more deeply lying states of the Let us apply now the above construction to the case of a
irrelevant sector. Evolution within the sector of doorway A ¢” theory for truncation at the level= 1. The operator for
states makes the correlations lose fast the memory of thée potential is given by Eq$B14)—(B19), while the opera-
initial condition (within a time interval proportional to the tor W is easily computed:

~ N . n R mn i . hmtn
W= 77 (W,peaPacad+4alwa,  aPacad+ 6alaiwab acad+ 4alalalwabe,ad+alafalajwared, (3.1
with
" ’ . e 7i(wk1+ wk2+ wk3+ wk4)t_ 1
—,— itk Tk tkexa Thaa)(2.7)3 5(ky + Ko+ kgt Kyg) — 3.2
adeWJH (2w )12 (2m)=o(ky+kotkstka) —I(wk1+wk2+wk3)+wk4' 32
—k oot Kt K e*i(fwkl+wkz+wk3+wk4)t_1
W e (ThaxitkoXotkaXs Thaxa) (271)3 5 (kg + Ko+ kgt kg) — , (33
bcdwf H ﬁwk)l (emPotkatetkatke) S S oS 63
4 —i(—wp —
dki ) e i( oK, wk2+wk3+wk4)t_l
Wab f efl(7k1x17k2x2+k3x3+k4x4) 2 35 ki+ Ko+ kot k i , 3.4
ed™ |1:[1 (2w )" (2my olkutketkatks) —i(— o, o, o) toy, 39
4 —i(— _ _
dk e i( O, ~ Wk, wk3+wk4)t_1
wabe j @~ 1(—kaxg—kaxa—kgxz+Kaxa) (2 O(ki+k,+ky+k - , 3.
d~ H (Zwk)172 ( 7T) ( 1 2 3 4) _I(_wkl_wkz_wk3)+wk4 ( 5)

ei (“’k1+ mk2+ mk3+ a)k4)'[ -1

abcd i (k1X1+KoXo+Kaxg+Kkgxs) 3 Ko+ Kot i ] )
W WJ H Tre (2m)° (K1 +Ka+Kz+Kg) o, + o, + )+ o, (3.6

Having the expression foA one can use in a straightfor- Hence we can easily read the operam%P)[éa,f/].
ward way Eq.(2.19 to compute the dissipative terms in the ~ One then needs to compute its commutator with the op-
evolution equation. Let us perform the calculations step byeratorw. This is indeed the difficult part of the calculations.
step. . We will get 24 terms, out of which only 12 will survive after
First we compute the commutatpa®,V]. It reads the action on them oP. There is no need to reproduce the
\ whole of the calculations here, but for purposes of exposition
[éa,\“/] (4Vabcd 3339+ 12aTVabcdé- 3d we shall present the computations involved in one term.
+1zagagvabcdad+ alalalversd. @7 _ A- An example
We consider the term

Acting the projectoP on this we obtain
16w vabeqalalalalafasan. (3.9

A A
aa _ ac Ac Atysabce
PLa%Vv] 4! (240 cpa+ 243,V70). (3.8 After computing the commutator we will obtain
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—16/98}alalWe;,vaPcaTas+ 183 AT Wey, VAPCAT + 62T W, JvaPed]. (3.10
The action ofP on Eq.(3.10 will yield

— 16[ 9(48] W VAP 28] W, VPO + 128 WE,, VAPt 128 WR,, VAP CO+ BATWE, V2P0
= — 16X 12(4a W8+ 321 WS, .v2PY). (3.11)

B. The evolution equations

The final result reads

3
2 E (WdedVabce_ debcvabce) + ( - Wbcdevade_ Wdebcvabcd+ WCdbeVabcd+ WdeeVabcd)}

el 3
+)\2al E (chddvaecb_wddbcvabce)+(Wbcde\/abcd+ chebvab Wde Vabc Web dVabcd)} (3‘12)

Note, the symmetry between the terms contraciifignda; .
We can, therefore, write down the evolution equation&(x)=(a(x)) anda* (x)=(a"(x)):

i = a(x)—f dx"h(x,x")a(x") )\f dX[V(x,x")a(x")+V(x,—x")a* (x")]

—i)\ZJ dx’[A(x,x’)a(x’)+A*(x,—x’)a*(x’)]+)\2J dx'[B(x,x")a(x")+B(x,—x")a* (x")]=F 4 (t),

(3.13
whereh(x,x’) is given by Eq.(B2), V(x,x") (essentiallyV3¢;,) reads
dk, dk, 1 L
V(XX zj eflklxﬂkzx , 3.1
XX | e ) 2w ™ 200, o2 (319
while
4 .
A(X,X )—f H & *ikl<X*X’><2w)36<k1+k2+k3+k4>A<k1,k2,k3,k4;t>, (3.19
B(x,x')=3 dky dkz gl Kix—ikpx! f dky dky (27)368(ky+ Ko+ kat+ k) E(Ks,kg:t) (3.19
) (Zwkl)l/z(zwkz)llz 2wk3 2wk4 m 1T KT K3 Ky 3:K4,0) |- .

A andE contain the time dependence of the kern&landB and read

t ) . ) ) .
A(kl ; k2 , k3 , k4,t) — f dTeflwklr( _ e*l(wk2+ wk3+wk4)7_ e*l(a)szr oK, wk4)7+ e*l(o)szwksfwk‘t)r_’_ el(wk2+ a)k3+ wk4)f),
0

(3.17
COS(wk+ wkr)t— 1

E(k K= (3.18

Note that for timeg<m™! we haveA(k;,k,,k3,k,;t)~t.
A more transparent form is given when calculating the expectation values of creation and annihilation operators in mo-
mentum space

%a(k)ﬂwka(k)ﬂf dk'[V(K,k" )= AB(k,k")J[a(k")+a* (k')]

—NAK;Da(k) +A* (k;t)a* (k)]=—iF 4(1), (3.19
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% a*(k)—iwka*(k)—ij dk'[V(k,k")=\B(k,k")][a(k’)+a* (k") ]— N [A(k,t)a(k)+A* (k;t)a* (k) ]= —iF ax (1),

(3.20
with

A(k) = ! f dly _dk; ! A(K,Kky Ky k+ky+ky:t) (3.21)

2wy zwkl Zwk2 2wk+kl+k2 e ek '
B(k,k')= f dky E(ky,k+k +ky:t) (3.22

' 6oy J oo g L '
V(K k')= ! 3.23

' 4o oKk '

|
C. Renormalization D. The noise terms

The functionA(k;t) is actually divergent. We can per- Most important, from the point of view of the classical
form a Taylor expansion ofA aroundk=0 and verify that behavior and predictability of the mean field, is the noise
the termA(0;t) is divergent, the terms containing first de- term. As we said it is at least of first order to the coupling
rivatives vanish while the ones containing the second ordeconstant and in principle can dominate both the potential and
derivatives are finite. Hence, as could be expected, it is théhe dissipation terms.
zero modes of the field that give a divergent contribution. Starting from Eq.(2.11) it is straightforward to calculate
This can be removed by a redefinition: the leadingfirst order to\) contribution to the noise. It reads

(we switch back to the index notatipn

Al Kit)=A(k;t) —A(0;t) (3.29
A -
and by absorbingh\(0;t) in a field renormalization. To see Faa(l)= 41 Te(OAM], (327
this, note that
where
d [ a(k) )—f' _ .
at |a* (k)| ~inite terms A1) = 4V AP(DA(DAY(1) + 12A1(1) VAP A%(1) A1)
L[A0;t)  A*(0;1) [ a(k) +12af(Hal(t)varead(t) +4al(val(tak(t)vaped
A(0;t) A*(0;t)/\a*(k)/"

— 24v3°, aP(t) — 24a]vabe, (3.28
(3.295
. _ “where witha(t) anda'(t) we denote the Heisenberg picture
Hence, the divergencies can be absorbed through a redef"&iperators evolving according to the free Hamiltonian.

tion of the Heisenberg picture operatark,t), a'(k,t); In order for our coarse-grained description to satisfy the
predictability criterion, the noise term should be sufficiently

a(k,t) 5 [t [AO;t)  A*(0;t) ack,t) weak (though strong enough to cause decoherence of the
éT(k,t) —exgA deT(A(o;t) A*(0:t) é’%k,t))' mean-field historigs This, as we see, cannot be true for a

(3.26 generic initial state of the system. We can nevertheless ob-
serve that the noise terms vanish when the initial state is the
vacuump,,.=|0)(0|. This means that for statgg0) suffi-
ciently close to the vacuum the noise term becomes smaller
nd smaller. This means that for any stat@) such that
p(0)— pyads< € the noise term will be of orded(e).
Consider for instance that the initial state of the system is

some coherent statéa(x)), determined by a square-
integrable functionx(x). Coherent states are eigenstates of
he annihilation operators, hence the trace in &j1)) is
easily performed. Now, if we assume that(x)||<e it is
easy to establish thiip(0)— p,adlns=O(€). Hence to lead-
é”g order ine the noise term reads

It is easy to interpret the terms {8.19 and(3.20. The term
V contains the lowest order contribution from the potential to
our coarse-grained dynamics. Its form is better understoo
by observing that the mean-field theory approximation
amounts to substituting four-point verticésay with incom-
ing momentak; andk, and outcomindks andk,) with free
propagation of a mode with momentum the average of th
incoming (or the outcomingmodes’ momentak(; +k»)/2.

The termB is higher order, time-dependent correction to
the contribution of the potential, while the terf corre-
sponds to dissipation. This is easily verified when we tak

the time reverse of Eq$3.19 and (3.20. The terms con- ac b . abe
taining A are the only noninvariant terms. Faa(t)=—Ne(V*,0(D + 5 (HVEED), (329
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where we wrotex(t) = €Z(t). This is an example of an ini- 3 dk,
tial condition that renders the noise term sufficiently weak to A(k;t)= j
. . . . . 16wk Wy, +
allow for predictability. This particular condition, we be- 3
lieve, is realistic when considering cosmological scenarios.
Finally, we should remark that it is straightforward to Fepy 1 COSwy 4 t—1

) ) . ; B(k,k'";t)= , 4.3
obtain evolution equations for the mean field and momentum
by using the equations

A(k,k+kg,ks;t), (4.2
k@kg

20 w4k Wy+k’
with
é(k)zf dxe*(w b (xX) +i (X)), (3.30

t
A(kl,kz,kg;t)z—zif e TSI wy + wy ). (4.9
0

aT(k)zf dxe (o d(X) =i 7(X)). (3.30)

As is well known, the potential does not contribute in the
lowest order equation for the mean-field theory, and the
IV. TWO-POINT FUNCTIONS IN g¢® THEORY quantitiesA and B again characterize dissipation and time-

) ) i i dependent correction to the potential.
In this section we are going to give the results for the
truncation of the hierarchy at the levet 2 for ag¢® scalar . . . .
field theory. B. Evolution equations for two-point functions
Let us now give the results for the case of truncation at

A. The mean-field equations then=2 level. We prefer to give them in terms of the func-

For completeness we will give very briefly the results oftlonSG(k) andZ(k) defined by

the mean-field analysis for thg¢® case. The expectation o dk ,
value of the operatoa(k) evolves according to an equation (a(x)a(x’))zf P e KIG(k), (4.9
similar to Eq.(3.19 K

d A Aly! dk —ik(x—x"
Ea(k)+iwka(k)—igzj B(k,k")[a(k’)+a*(k')] (af(xa(x )>=f 20, © KexDz(k). (4.6

—g?[Ak;t)a(k) +A* (k;t)a* (k) ]=Fa(t), We will skip all calculations and present straightforwardly
(4.1) the results, since the way to proceed is exactly as previously
and the only difficulty is a computational one. Thus, we get

where the functioné\ andB are given by for a final result
d . .
E a(k)-l-lwka(k):—lFa(k), (47)
d 2 1 )
—Z(k)—g|—+ ——p [a(k)+a*(k)]+|ng dk'[r(k,k";t)G(k")+r*(k,k";t)G* (k") +s(k,k";t)Z(k")]
ot o (0o

+ig’[D1(k;t)G(K) +Da(k;t) G* (k) + Da(k;t) Z(K) 1= —iF 7(1), (4.9

%G(k)+2ika(k)—g w_+(—1)1’7 [a(k)—i—a*(k)]—i—ing dk'[Kq(k,k";t)G(k") + Ky (K,k";1)G* (k')
k

WgWg/2
+Ka(k,k';)Z(K)]+ig7 Lk ) G(K) +La(k;t) Z(K)]= —iF g (1) (4.9
|
The form of the functions appearing in these equations can Fe0=0 Tr(p(0)A2R(t)), 4.11
be found in Appendix C.
Now, in the equations for the mean field the noise can be _ ADb
shown to vanish, since Falar=0 Tr(p(0)Aq(1)), 4.12

where
P[V,a?]=[V,a%]. (4.10
A= — 23T (1)vaPe_\ac3P(1) —VvacsPas(t), (4.13
Hence, the mean field evolves freely. In the second-order b \/C 2b sb 2c i A be At
correlation functions the noise terms read A= Vi@ — Ve tag(t)Va—ag(t)be,,  (4.19
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in terms of the Heisenberg picture operators evolving accord- APPENDIX A: THE INDEX NOTATION
ing to the free Hamiltonian.

This noise, terms more or less has the same features as them the paper we have heavily used an index notation con-
similar in Eq.(3.28. nécted with the normal-ordered form of an operator, which

we describe in detail here.

For reasons of symmetry in our expressions we prefer to
work using the creation and annihilation operators in the
configuration space instead of the momentum as is usual.

The techniques we have employed in this paper havélence, we writed(x) and a'(x). They are related to the
given us a picture for the evolution of relevant variables,standard operators in momentum space by
when the coarse-graining operation consists in the truncation
of the Schwinger-Dyson hierarchy afpoint functions.

One of the great difficulties in such considerations is the
complicated expressions we get for our equations in the end. . L ~t %
It seems that it is very difficult to find a regime in a field We denotea(x) by a* (index up anda'’(x) by a; (index
theory where the dynamics would be Markovian. This essendown). To any function or distribution assign an abstract
tially means that noise should be with good approximatiorindex to each of its arguments. The index is lower or upper
“white” and in the autonomous part of the dynamics one according to whether the corresponding argument is inte-
should have no time-dependent coefficients. It seems ur@rated out with aré or ana', respectively. Hence the op-
likely that we can obtain Markovian evolution for a generic €rator
state of the system. In any case we should expect it when the
field is in a state of partiaflocal) equilibrium[8]. This re- f dx, X 0XsK (Xq ,X0:X2) AT (X)) AT (X,)A(Xs)  (A2)
gime can still be studied using our techniques, but it might
be that a different choice of coarse-graining projector might .
be more of use. The Kawasaki-Gunton and the Mori projecwIII be represented as
tr(;;i[;]]emight prove more convenient when dealing with this alafkae.a, . (A3)

Another avenue to explore towards obtaining Markovianye can easily verify that lowering a single index corre-

equations is to consider nonunitary dynamics for the evolusponds to changing the argument in the distribution frotm
tion of the total system. This might come from a contact with_y - and inversion of all indices amounts to complex conju-

a heat bath or through the interaction with other ignoredyation.
degrees of freedorta supermassive field or gravitons for the
case of cosmology

As far as the noise is concerned, we should stress that the
Zwanzig method allows one to derive the noise term in the Here we list a number of expressions we make use of in
evolution equations solely from the knowledge of the initial the paper.
state of the system. The comparison of its strength with the The free Hamiltonian can be written
size of the terms entering the evolution equations offers a
good criterion(though rather heuristicfor the classicaliza-
tion of the variables under study. Remember, that noise
should be strong enough to decohere but weak enough to
allow for predictability and not covering up the effects of the with
potential. Only a particular class of initial states offers this
possibility.

Finally, we should make some remarks concerning the
classical domain in generic field theories. The techniques A R
developed in this paper do provide a useful tool for dealingThe evolution operatod o(t) =e~"*Ho reads
with the emergence of classical behavior. Still, it is my be-
lief, that concrete understanding of the quantum to classical ~ _ ot . v
transition requires, in addition, employment of the concep- Yo()=:€X fdxa (ILAX=x"1) = d(x—x")Ja(x") |:
tual technical tools of the decoherent histories approach to (B3)
guantum mechanics. To obtain a complete and rigorous char-
acterization of the classical domaifor instance[15-17), where
one needs to construct the decoherence functional for coarse-
grained correlation histories in a manageable computational A(x—x’;t)=f dke kX g=iwt (B4)
form. This is currently under investigation.

V. CONCLUSIONS AND REMARKS

. dk .
a(x)= j W e*'kxa(k). (A1)

APPENDIX B: USEFUL FORMULAS

~ 1 - e~

h(x,x')zf dke Kx=x g, . (B2)

A coherent state is characterized by the square integrable
ACKNOWLEDGMENTS fungtion a(x) and is an eigenstate of the a}nnihilation opera-
tor a(x). Under evolution of the free Hamiltonian we have
| would like to thank B. L. Hu for a stimulating discussion N
on relevant issues and for comments on the manuscript. Ug(t)|a(x))=]a(x,1)), (B5)
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where
j dx — ¢>3:

a(x,t)=f dx'A(x—=x";t)a(x’). (B6)

The operator reads in the index notation

V(a*,a)= % (Vapcd?aPac+3alva, alac+3alalvab.ac+alalalvare),

with the correspondence

abcwf H %o )1 e—l(k1x1+k2x2+k3x3)(277)35(k1+k2+k3)
K;

”*J H We (Thoatkoetkas) (2m)36(ky +kptka),

WJH T)l?e‘“ kakee Tkl (27)35(ky + Kot K3),
k

Vabe J H W elltwarioe Tk (2m)35(ky + ko tkg),
while the operator
y f dx — ¢>4
reads

with

4
dk;
Vabea H —)/z ik tkoxathaxs thaxa) (2713 5(ky + Ky + Kt Ky),

4

dk;
Ve g H W (—k1X1+k2X2+k3X3+k4X4)(27r)35(k1+k2+k3+k4),
dwf H ﬁw L Tk koo tkaa thexa) (2m)35(ky + K+ kgt Ky),
4

Vvareyw |11 (Zwk.)m e (krarkaemkaxa ke (2m)35( Ky + Ko+ kgt k),

4
Vabcdwj H Wei(leI+k2X2+k3X3+k4X4)(2ﬂ')35(kl+ k2+ k3+ k4)_

A d ty/a d tafyyab 3cad T ab d
V= (Vabcdaaaa +4avbcdaaa +6aa, V. a%a +4al abaV +al aba ad),

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)
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APPENDIX C: THE COEFFICIENTS IN EQS. (4.8) AND (4.9

Here we give the expressions for the coefficients in E4®) and (4.9

t _ 1 1 cosyt-1
rkk’ ;t)y=z ———— f dre 'K TSN o+ oy ) T— = , (CY
2 Wk W JO 4 wkrwk/z Wk
3 t 1 1 cosmt—-1
s(k,k";t)== fdr Coswy/ 7 SIN Wi+ @ik ) T— = , (C2
2 wk+k,wk, 0 2 wkrwk/2 Wy
D,(k;t)=3u(k;t)—2u’(k;t), (C3
D,(k;t)=—3u*(k;t)—2u’(k;t), (C4
Ds(k;t)=3[u(k;t)+u*(k;t)]—4u’ (k,t), (CH
u(k:t 1 1 dk, Jtd —lwyTgj + C6
uk;t)= 7 o m ,are sin(wy, + w1k,) T (Co)
u'(k;t)= 5 —3— (cosmt—1), (C7
2 wk ki2
3 1  coSoptopie—o)t—1 1 1 eled—1
Ka(bfk,k';t)= = G <) g , (o)
4 i op okt Ok~ oK 2 o,y Ok
*iwkt_
Ka(k K'it)= o R (€9
2 Wy ik @y, J0 2 wk,wk/z Wy
Ka(koK':t) = = oyt o+ o , (10
2 wk+krwk/ ot ot o
L,(k;t) 31 dky fd lokcod w, + ) ! ( t—1) (C11)
== — e '“*kcof wy, + T— —— (Coswt—1),
! 4 wg ) ook, R “
Lo(k;t) —3—1 ( t—1)+ - _da fd o (C12
t)=— COSwyt— 7€' “K7sinw T.
? WKWK/ “ 4o ) oo Kotk
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