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We propose that the Universe was created from ‘‘nothing’’ with a relatively small number of particles and
quickly relaxed to a quasiequilibrium state at the Planck parameters. The classic cosmological solution for this
Universe with aL term has two branches divided by a gap. The quantum process of tunneling between the
cosmological solution branches and kinetics of the second order relativistic phase transition in a supersym-
metric SU~5! model on GUT scale are investigated using numerical methods. The Einstein equations are solved
together with the equations of relaxation kinetics. Another quantum geometrodynamics process~the bounce
from a singularity! and the Wheeler-DeWitt equation are also investigated. The computer experiments show
that because of the rapid character of the relaxation processes and the absence in the inflaton potential of
peculiarities that are able to delay the system in the overcooled phase, the usual type of inflation regime is not
realized. For the formation of the observed number of particles a model of a slowly swelling Universe as the
result of the multiple reproduction of cosmological cycles arises naturally.@S0556-2821~97!50110-X#

PACS number~s!: 98.80.Cq, 98.80.Hw

The inflation model and its basic modifications@1# are
very attractive and explain many cosmological problems.
Currently it is the cosmological paradigm@2#. The standard
conception of first order cosmological relativistic phase tran-
sition ~RPT! from a strong overcooled highly symmetric
~HS! phase is well developed@3#. An inflaton potential with
quite specific properties is necessary to realize this concep-
tion ~as a rule, this potential must have a wide flat part!. It
should also be noted that the problem of the formation of the
observed number of particles has not been investigated in
detail using computer methods. Some ideas about this have
been put forward recently@4#. The case when the inflaton
potential does not possess specific properties, and a Universe
with aL term is created from ‘‘nothing,’’ and RPT is close
to second order is discussed in this article.

We propose the following.
~I! The plasma and vacuum of the Universe, created from

‘‘nothing,’’ after relaxation processes taking place near the
Planck parameters~see@5#!, are in a quasiequilibrium state.
In our opinion, the superearly Universe was created from
‘‘nothing’’ in an anisotropic state~for example IX type of
Bianchi! with some number of particles and with some non-
equilibrium state of the vacuum condensate.

~II ! The topology of the Universe is closed. Only such a
Universe can be created from ‘‘nothing’’~the local proper-
ties of this Universe approach to the local properties of a flat
Universe if the cosmological scenario solves the problem of
flatness/entropy!.

~III ! After going out of the Universe from a singularity the
initial number of particlesNo is large in comparison with
unity (N0;104–106), but it is small in comparison with the
number of particles in the observed Universe (Nobs;1088).

~IV ! RPT on the GUT scale (T;1016 GeV!, which is
close to the Planck scale, is not first order RPT; it is second
order RPT, for which the generation of a new phase occurs
continuously@6#.

One possible series of RPT in the early Universe for sym-
metry breaking is

G⇒@SU~5!#SUSY⇒@U~1!3SU~2!3SU~3!#SUSY

⇒U~1!3SU~2!3SU~3!⇒U~1!3SU~3!⇒U~1!.

Here G is the local supersymmetry group joining all
physical fields and interactions. The only trace of the first
RPT is the initialL term ~the vacuum energy density! con-
nected with interactions of the local multidimensional super-
gravity. The remaining RPT are described by modern theo-
ries of elementary particles. During RPT, with cooling of the
cosmological plasma, a vacuum condensate with a negative
energy density is produced. This condensate has the
asymptotic state equationpvac52evac5const. Thus RPT se-
ries are accompanied by the generation of negative contribu-
tions to the cosmologicalL term in the Einstein equations.
In accordance with observational data, after all RPT, the final
L term is practically zero. For simplicity, we have proposed
the exact compensation of theL term already on the SUSY
GUT energy scale. Our paper considers a quantitative model
of the RPT@SU~5!#SUSY⇒@U~1!3SU~2!3SU~3!#SUSY on the
scale;1016 GeV. Some particles acquire a rest mass, which
is proportional to the average value of the Higgs field after
spontaneous gauge symmetry breaking. The system consid-
ered consists of three subsystems:~1! a gas of massless par-
ticles, ~2! a gas of massive particles interacting with the
vacuum condensate, and~3! vacuum condensate. The reac-
tions of massless and massive particles to the cosmological
expansion are different. The changes of these particles’ en-
ergy spectra due to redshift obey different laws. To obtain
evolution equations of the nonequilibrium system we use~a!
the order parameter~OP! origin as theC number average of
the Higgs field,~b! a method obtaining the relaxation kinet-
ics equations for subsystems of particles analogous to that
described in@7#, ~c! a method for analysis of nonequilibrium
relativistic systems analogous to that described in@8#, and
~d! an estimate of the local particles’ creation rate in the
variable OP field obtained using a method analogous to that
described in@9#.
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The total system of equations for our theory involves the Einstein equations with the nonequilibrium energy-momentum
tensor for a heterogeneous system, which are the nonequilibrium generalization of energy density (e) and pressure (p),
corresponding to the equilibrium thermodynamical functional~5!,
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the evolution equations for the dissipative functionD and order parameterh,
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and also the entropy equation, which can be transformed to an equation for the temperature of the plasma:
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wherek.(1019 GeV)22 is the Einstein constant;k is the
number of boson degrees of freedom~exactly equal to the
number of fermion degrees of freedom!, the rest mass of
which is equal to zero both in the high symmetric~HS! phase
and the low symmetric~LS! phase;w is the analogous num-
ber of degrees of freedom of particles with massh in the LS
phase;g is the gauge coupling constant of particles with the
vacuum condensate;m5const is the limiting value of the
particle mass whenT→0 in the LS phase;b is a numerical
coefficient of order unity;t is the relaxation time between
the subsystems of massless and massive particles~we use
units in which\5c51):

Jn~T,h!5
1

2p2E
0

`p2n

v S 1

exp
v

T
21

1
1

exp
v

T
11D dp,

n50,1,2 v5~p21h2!1/2

are characteristic integrals through which the observable
magnitudes of our model are expressed.

The dissipative functionD takes into account the effect of
the difference of the particle subsystem energy densities
from their equilibrium values corresponding to the quasi-
equilibrium temperatureT. Equation~3! is for a Higgs field
in which two additional effects are included~the creation of
particles in a variable Higgs field and the difference of par-
ticle states interacting with the Higgs field from equilibrium!.
We use the self-coordinated field approach, in which only
the interaction of quantum particles with the classical Higgs
field of the OP is taken into account. Then the Landau free
energy is
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and here the potential entering in this equation and associ-
ated with the OP is natural.

In the theory ~1!–~4!, the properties of the
early Universe depend on the total number of particles in a
closed space, the critical value of which isNcr
[7j(3)(k1w/2)1/4(12g/pkm2)3/2.531011, where j(3)
is the zeta function of Riemann. If the initial total number of
particles in the HS plasmaN0,Ncr , then the cosmological
solution contains two branches divided by a gap~Fig. 1!.
Branch I is the Friedmann solution, distorted slightly byL
term, and branch II is the de Sitter solution, which is dis-
torted slightly by matter. Investigation of the evolution of the
plasma temperature regime shows that on branch I, the mini-
mal temperatureTI~min! ~corresponding to the maximal radius
aI~max! is substantially more than the critical temperature
Tc5(4m2/wg2)1/2 defining the boundary of thermodynami-
cal stability of the HS phase. On branch II, the maximal
temperatureTII ~max! ~corresponding to the minimal radius
aII ~min!! is substantially less thanTc . From this hierarchy of
temperatures, it follows that~1! the Universe evolving on
branch I does not undergo RPT in the LS phase~it goes out
from an initial singularity and come to final state in the HS
phase,~2! on branch II, the Universe cannot be in the HS
phase in principle. Branch II is classically prohibited. There
are two reasons for this. First, branch II is separated from
branch I by a classically uncrossable gap; second, branch II
is thermodynamically unstable. Note that if branch II exists
formally there is nonzeroL term. When the plasma and
vacuum are in the LS phase and theL term is equal to zero,
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branch II does not appear at all. From the classical point of
view branch II does not exist, i.e., in general, it exists only
virtually as a classically unrealized version of evolution.
Therefore, if a Universe created from ‘‘nothing,’’ has a par-
ticle number less than the critical number, then this Universe
cannot transform into a macroscopic object containing the
observed particle number.

However, the situation changes radically in quantum
geometrodynamics~QGD! of a closed Universe. In this
theory, there is a small, but nonzero, probability of tunneling
through the gap dividing branch I and branch II of the clas-
sical solution. Let us briefly discuss the mathematical model
of this phenomenon.

The problem is to construct the quantum analogue of
equations~1!–~4!, i.e., the Wheeler-DeWitt~WDW! equa-
tion for the Universe wave functionc5c(a,h). However,
the dissipative dynamics of system~1!–~4! is not Hamilton
since the formal methods of quantization do not apply to the
solution of this problem. The necessity of a new quantum
theory that must correlate with the second law of thermody-
namics was discussed by Penrose@10#. The absence of such
a theory compels us to solve this task in two steps. In the first
stage, dissipative processes are not taken into account. We
hope the quantum nondissipative geometrodynamics ap-
proximately reflects the properties of processes of tunneling
through the barrier and bounce from the singularity. In the
second stage, dissipative processes are described by the clas-
sical method based on Eqs.~1!–~4!.

The quantization nondissipative system is the realization
of an idea Lapchinsky and Rubakov@11# suggested to de-
scribe the presence of matter in a closed Universe using the
effective potential in the WDW equation. The fact of the
existence of the Hamilton bond requires a separate discus-
sion. This bond is caused by the gauge invariance of the
theory relative to time transformation. The arbitrary in time
choice is removed by an addition condition put on the gauge
variable. This variable is the algebraic form of metric com-
ponents containing theg00 component. For example, if the
gauge variable isg005l2, then the WDW equation does not

depend on the choice of the additional condition
F(l,a,h)50. However, we can introduce the local confor-
mal time transformation and gauge variable

dt5a f~a!dt8, l5l8a f~a!, ~6!

wheref (a) is an arbitrary function. In this case, the equation
does not depend on the gauge conditionF(l8,a,h)50, but
depends on the generator of the local conformal transforma-
tion f (a). Formally, from the mathematical point of view,
this dependence is caused by the nonlinear coupling of the
gauge variablel5l8a f(a) with the square of the general-
ized impulsep;ȧ. Every change of the order of operators
disposition that coincides with the Hermiticity property of
the Hamiltonian generates additional terms in the WDW
equation. These terms can be interpretated as an additional
contribution to the potential of the WDW equation:
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Thus, there is spontaneous breaking of symmetry relative to
the local conformal time transformations~6! in the WDW
theory for a closed isotropic Universe. The additional contri-
bution ~7! has the meaning of energy of some gravitational
vacuum condensate~GVC!, the production of which fixes the
symmetry breaking in the whole space of the closed Uni-
verse. We propose that the GVC must secure the bounce
from the singularity, i.e., prolong the time of the Universe’s
existence. This will take place if
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whereS5const.0 is a parameter of the GVC. The WDW
equation in this case is written for the Universe wave func-
tion c5cNS(a,h), which depends on the two variables
a,h and on the two parametersN andS:
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where eN(,ah) is the energy density of the subsystems of
particles, the mathematical form for which coincides with the
thermodynamical expression. Equation~9! has a very impor-
tant property: there is a solution located on the HS vacuum
~near h50) for every value of the Universe radius. The
main dependence of a wave function quasilocated on the HS
vacuum on the radius of the Universe can be factorized by a
separate function. This function satisfies an equation that is
formally similar to the Schro¨dinger equation for the station-
ary states of some conditional ‘‘particle’’ in a potential field
U(a) with the shape shown in Fig. 2. The asymptotics of the
potentialU(a) for small a are defined by the GVC energy
~8!. From Fig. 2 we can see that the GVC provides the quan-

FIG. 1. The cosmological solution for a closed Universe for
initial particle numberN0!Ncr . The units of time and scale factor
are t0.3.5310238 sec,a0.1.5310227 cm.
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tum bounce from the singularity. According to the quantum
bounce hypothesis, a Universe with a small number of par-
ticles oscillates quasiclassically in region I of the potential
U(a). Sector II of potentialU(a) corresponds to branch II of
the classical cosmological solution~compare Fig. 1 and Fig.
2!. The probability of tunneling through the barrier dividing
branches I and II is exponentially small when the number of
particles is small. It increases monotonously with an increase
in the number of oscillation cycles in region I. If the number
of oscillation cycles is large, then the cause-effect connec-
tions have been set up among all its space-time points and
there is no horizon problem. We propose that after tunneling,
the cause-effect connections among different points of the
Universe are preserved.

Thus, our Universe was created from ‘‘nothing’’ with a
small number of particles, and performed exponentially long
oscillations in region I of the effective potentialU(a). Here

the Universe existed in the HS phase. After a large number
of oscillations the Universe underwent a tunneling transition
in the HS thermodynamically unstable phase. If after tunnel-
ing the Universe appears in the direct vicinity at the barrier,
i.e., on the left boundary of region II, then its size increases
by the factor

aII ~min!

aI~max!
52SNcr

N0
D 2/3. ~10!

According to Eq. ~10! when the initial particle number
N0553105, the radius increases by a factor 23104 as the
result of quantum tunneling. This phenomenon can be con-
sidered as an analogue of classical inflation. After tunneling
the Universe will be in a strongly nonequilibrium state. The
relaxation of the nonequilibrium plasma and vacuum to the
new equilibrium state corresponding to the stable LS phase
occurs in the relaxation kinetics regime, and is accompanied
by a sharp entropy increase. This process is described by
Eqs.~1!–~4!.

The classical state corresponding to the minimum curve
aII must appear with the greatest probability. The evolution
of a Universe with the initial statea(t0)5aII ~min! and with

FIG. 2. The dependence of the Universe wave function factor-
ized by the separate functionU(a) on scale factora.

FIG. 3. The change of order parameter (h) during the evolution
of the Universe. The units of time and scale factor are the same as
in Fig. 1.

FIG. 4. The change of relative particle number (N/N0) during
the evolution of the Universe. The units of time and scale factor are
the same as in Fig. 1.

FIG. 5. The change of scale factor(a) during the evolution of
the Universe. The units of time and scale factor are the same as in
Fig. 1.
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N0.53105 is shown in Figs. 3–5. The RPT begins in fact
immediately after the tunneling and is accompanied by non-
linear OP oscillations with frequency;Tc ~Fig. 3! and par-
ticles creation~Fig. 4!. After damping of these oscillations
and the end of the RPT, the particle number in the Universe
is increased by a factor of 2.63106 ~for N0553105). Our
numerical experiments show that the total particle number in
the Universe after relaxation approximately coincides with
Ncr for various valuesN0;102–109. Thus the particle num-
ber in the macroscopic Universe after tunneling and RPT is
expressed through the fundamental constants

Ncr;k23/2m235S 1019 GeV

m D 3. ~11!

The classical evolution of the closed Universe shown in Figs.
3–5 ends in a singularity. However, the calculation of QGD
effects transfers the entry to the singularity to the quantum
bounce at the Planck parameters. The number of particles is
conserved during this bounce since the next classical evolu-
tion cycle starts forN.Ncr . Numerical studies of this Uni-
verse evolution cycle were also performed. The main result
is the conclusion that in a Universe withN.Ncr the second
order RPT happens quasiadiabatically. The relative increase
of particle number for the total evolution cycle is smaller
than one percent. Thus we obtain a model of a slowly swell-
ing Universe. In this context we note Ref.@12#.

Further, more detailed investigation of this scenario of the
evolution of the Universe requires the calculation of RPT on
other energetic scales. During its evolution the Universe
must overcome some potential barriers similar to the barrier
shown in Fig. 2. According to Eq.~11! after the last RPT on
a scale;100 MeV, we obtain the macroscopic Universe
with particles numberN;1060. The problem is that
N;1088 in the observed Universe. We can formulate some
hypotheses explaining this.~1! The observed particle number
has been created after multiple cosmological cycles contain-
ing all series of RPT. During each cycle, the particle number
is increased because of dissipative processes accompanying
the RPT.~2! After tunneling through some barriers in some
evolutionary cycles the Universe can appear at a point of the
trajectory that is rather far from the left boundary of region II
~see Fig. 2!. From the solution of the WDW equations it
follows that the probability of this process decreases expo-
nentially with movement away from the barrier. Our numeri-
cal experiments show that the number of particles created
during a RPT that is delayed in time, increases exponentially
with time delay.~3! Effects of strong nonlinear interaction of
different vacuum condensates in more complex series of
RPT lead to time delays of these RPT~for example, the
seriesG⇒E6⇒O~10!⇒SU~5!, . . . , can beconsidered!. ~4!
The fourth possibility is connected with the hypothetical pos-
sibility of a dynamic chaos regime in the region of nonequi-
librium RPT.
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