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We study numerically the collapse of massless scalar fields in two-dimensional dilaton gravity, both clas-
sically and semiclassically. At the classical level, we find that the black hole mass scales at threshold like
MBH}up2p* ug, whereg.0.53. At the semiclassical level, we find that in generalMBH approaches a nonzero
constant asp→p* . Thus, one-loop effects suggest a mass gap not present classically at the onset of black hole
formation.@S0556-2821~97!50508-X#

PACS number~s!: 04.60.Kz, 04.70.Dy

The discovery of universality and scaling at the onset of
black hole formation@1# may have important implications in
understanding the structure of solution-space in gravitational
theory. Choptuik studied numerically the collapse of a
spherically symmetric self-gravitating real scalar field in
four-dimensional~4D! Einstein gravity and considered one-
parameter families of initial data,S@p#, wherep is a param-
eter specifying the strength of the gravitational self-
interaction of the scalar field. He found that there exists a
critical value,p5p* , such that forp,p* , the ‘‘subcritical
case,’’ no black hole is formed and the solution is regular,
while for p.p* , the ‘‘supercritical case,’’ a black hole is
formed. Furthermore, by careful analysis of the solutions
near criticality,p5p* , he found that asp approachesp*
from above, the mass of the created black hole approaches
zero, and when a black hole just forms, its mass scales as
MBH}up2p* ug, where the critical exponentg.0.37. The
critical solutions also exhibit discrete self-similarity@1#.
Similar behavior was found in other models of nonlinear
gravity @2#.

In the semiclassical scenario, i.e., for a quantum field
propagating on a classical dynamical background metric, the
created black hole of massM radiates in 4D with the Hawk-
ing temperatureTH}M21 @3#. As M→0 near criticality,
TH becomes large and quantum effects are clearly important.
To gain some understanding of how quantum effects may
alter the classical scenario near criticality, we investigate a
tractable two-dimensional~2D! model that exhibits classical
scaling as well as significant quantum effects near criticality.

The model we study is 2D dilaton gravity coupled to a
massless scalar field. We first consider the classical theory
and then include quantum effects. We find that classically
there is universal scaling of the black hole mass near criti-
cality,MBH}up2p* ug, whereg.0.5360.01 is independent
of initial data. In addition, we find that the ground state of
the classical theory gives a lower bound on the energy of
spacetimes resulting from dynamical processes in which a
black hole is formed. This is related to a radiation energy
deficitD rad that we describe later. At the semiclassical level,
although the Hawking temperature in our 2D model is inde-

pendent ofM , we find that quantum effects alter significantly
the critical behavior. Most interestingly, whenp is suffi-
ciently close top* , the classical scaling behavior breaks
down andMBH approaches a nonzero constant value that
depends on the initial data. Thus our one-loop calculations
indicate the possiblity for the existence of a mass gap. This is
a new result that may be of fundamental interest. Also, since
the breakdown of the classical scaling law occurs in the do-
main of validity of the semiclassical approximation, we
prove the absence of Choptuik scaling in the full quantum
theory.

The classical theory is described by the 2D Callan-
Giddings-Harvey-Strominger~CGHS! action @4#
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wheref is the dilaton field,R is the 2D Ricci scalar formed
from the metric tensorgmn , l is a positive constant, and
the f i are N massless scalar matter fields conformally
coupled to the 2D geometry. We work in the conformal
gauge, g225g1150 and g1252(1/2)exp(2r), ~i.e.,
ds252exp@2r(x1,x2)#dx1dx2), where (x1,x2) are the
‘‘Kruskal’’ null coordinates in whichf(x1,x2) f(x1,x2)
5r(x1,x2) @5#.

The general vacuum solution of the classical theory~1! is
f52(1/2)ln(2l2x1x21C), where lC is its Arnowitt-
Deser-Misner~ADM ! mass@6#. ForC.0 the vacuum solu-
tions describe static 2D black holes. TheC50 solution is the
linear dilaton vacuum~LDV !, which is the ground state of
the theory. Solutions withC,0 have timelike naked singu-
larities in the strong coupling region where exp(2f)→`. The
weak coupling, asymptotically flat region will be taken to be
on the right-hand side~RHS! of the spacetime@5#. In this
work we takeC,0, but we avoid the region of strong cou-
pling and the singularity by considering the solutions only in
the weak coupling region exp(2f)<exp(2fc) for a given
constantfc , and by imposing reflecting boundary conditions
on the timelike boundary curvef(x1,x2)5fc . A previous
study of such a system at the onset of black hole formation
@7# was based on boundary conditions that mix classical and
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one-loop contributions and do not have a standard classical
limit. The reflecting boundary conditions@8,9# that we im-
pose here have a standard classical limit. Let the boundary be
described by the curvex15xB

1(x2). Then the reflecting
boundary condition is

T22~x2!5S ]xB
1

]x2D 2T11@xB
1~x2!#, ~2!

where T665(1/2)( i(]6 f i)
2 are the components, in the

(x1,x2) coordinates, of the stress tensor of the massless
scalar fields. The general solution for the conformally
coupled matter fields isf i(x

1,x2)5 f i
1(x1)1 f i

2(x2). The
initial data at right asymptotic past null infinity,IR

2 , are
therefore given byf i

1(x1) or T11(x
1). Working in the

largeN limit @5# we are able to choose the boundary curve to
be at exp(22fc)→01 and get a second order nonlinear ordi-
nary differential equation~ODE! for the classical boundary
curve @5#
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1)dx̄1. We solve the ODE~3!
numerically for different initial data,T11(x

1), with com-
pact support, x1

1,x1,x2
1 . To the past of x1

1 , i.e.,
for x1,x1

1 , we have a vacuum solutionf52~1/
2)ln(2l2x1x21C), with C being a negative constant. In this
region we have an analytical solution for the boundary curve:
xB

1(x2)5C/x2, wherex2,C/x1
1 . For x2.C/x1

1 , we in-
tegrate Eq.~3! numerically to find the boundary curve and
the corresponding solutions for the metric and dilaton field.

We study in detail the two families of initial data shown
in Fig. 1. Family (a) is a two-parameter family specified by

the amplitude,A, and the inverse width,G, of the profile
Tvv(v), where v5l21ln(lx1) and u5l21ln@2lx2

2P1(`)/l] are the manifestly asymptotically flat null co-
ordinates onIR

6 . Family (b) is a five-parameter family de-
scribed byA1, A2, G1, G2, and d. All the parameters are
scaled by appropriate powers ofl to make them dimension-
less. In these two cases~and in other cases that we studied!
we find that fixing all but one arbitrarily chosen parameter,
sayp, yields a regular evolution with no black hole forma-
tion if and only if p,p* . The critical value,p* , depends on
the values of the other fixed parameters. As in the 4D
solution-space, the only ‘‘intermediate solution’’ separating
black hole solutions from regular ones is the critical solution
with p5p* .

Next we show that there is a universal scaling of the
black hole mass near criticality in the classical theory. In
order to find the mass of the created black hole we calcu-
late the outgoing radiation reaching right asymptotic future
null infinity, IR

1 , after being reflected from the boundary.
This radiation is described by the stress tensor,Tuu(u). Then
we find that the Bondi mass at late times (u→`) on
IR

1 is MBondi
(`) [MBondi(u→`)5MADM2*2`

` Tuu(u)du. Here
MADM is the ADM mass@10# of the spacetime, defined such
that the LDV ground state has zero ADM mass. In Fig. 2 we
show the numerical results for the reflected outgoing radia-
tion, Tuu(u), for two nearby sets of initial data. The two
solutions correspond to family (a) with the same width,
G50.2, but with different amplitudes,A. The upper curve
corresponds to a subcritical solution near criticality,
A5Asub5A*2e151.546. The lower curve corresponds to a
supercritical case near criticality,A5Asuper5A*1e2
51.547, whereA* is the critical value of the amplitude pa-
rameterA.

Although the initial data are very similar in the two cases,
the late-time outgoing radiation is quite different. For the
subcritical solution near criticality, the boundary curve be-
comes almost null and the late-time outgoing radiation is
highly blue-shifted@5#. In the supercritical case on the other
hand, this blue-shifted radiation is absent, and we find that
part of the incoming radiation does not reach future
asymptotic null infinity. SinceTuu is quite different in the
two cases, the Bondi mass defined through the integral
*Tuu(u)du is obviously different. For all the subcritical
solutions the Bondi mass at late times,MBondi

(`) , is equal to

FIG. 1. Two families of initial data described by the stress ten-
sorTvv .

FIG. 2. The stress tensorTuu , in units of l2, describing the
outgoing radiation. The upper curve corresponds to a subcritical
solution just below criticality and the lower curve corresponds to a
supercritical solution just above criticality.
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the negative ADM mass of the initial spacetime,lC. How-
ever, for the supercritical solutionsMBondi

(`) is always posi-
tive. We define the ‘‘radiation energy deficit,’’D rad, to
be D rad[ lime→0$MBondi

(`) @p5p*1e#2MBondi
(`) @p5p*2e#%.

The fact thatD rad turns out to be nonzero is a striking mani-
festation of the nonlinearity of our problem.

We find thatD rad does not depend on the profile of the
infalling matter, but only on the initial vacuum geometry.
Explicitly,

D rad52lC5luCu, ~4!

whereC is the constant specifying the initial vacuum geom-
etry. The existence of this nonzeroD rad can be interpreted
as implying that in the classical theory the LDV is a
‘‘stable ground state.’’ In particular, we have started with a
negative-mass geometry and find that the process of
throwing in matter to form a black hole results in spacetimes
having non-negative mass relative to the LDV. In agreement
with cosmic censorship, this suggests that systems in
this classical theory will not evolve to states of energy lower
than the LDV, which have naked singularities. Once the
infalling matter configuration is dense enough,p.p* ,
part of the incoming energy is ‘‘swallowed’’ by the
strong curvature region to compensate for the negative
mass of the initial spacetime and make the future spacetime
a solution with positive energy compared to the LDV.
For our initial geometry with negative ADM masslC,
the minimum energy that must be swallowed in order to
get a positive-energy spacetime, is preciselyD rad. The
resulting positive-energy spacetime is a 2D black hole. We
find that in this classical theory the mass of the created black
hole, MBH[MBondi

(`) @p.p* #, approaches zero asp ap-
proachesp* from above. Moreover, the black hole mass
scales as

MBH}up2p* ug ~5!

at threshold, whereg50.5360.01. The value ofg does not
appear to depend on the profile of the infalling matter or the
initial geometry. In Fig. 3~a! we plot ln(MBH /l)1ai versus
lnupi2pi* u for different parameterspi . The constantsai are
chosen such that the three curves intersect at a given point.
The slopes of all the lines are the same within our numerical
accuracy.

Next we consider quantum effects. We quantize the scalar
fields on a classical dynamical background geometry consist-
ing of the metric and the dilaton field. The semiclassical
effective action that we study is@11#

Seff5SCGHS2
k

8pE d2xA2g~x!E d2x8A2g~x8!

3R~x!G~x,x8!R~x8!1
k

2p

3E d2xA2g@~¹f!22fR#, ~6!

wherek5N\/12 andG(x,x8) is an appropriate Green func-
tion for the massless scalar fields. The second term on the
RHS of Eq. ~6! is the Polyakov-Liouville effective action
derived from the trace anomaly of the 2D massless scalar
fields @12#, and the last term on the RHS of Eq.~6! is a local
counter-term that we add to our effective theory in order to
make it exactly solvable@11#. The vacuum solutions of our
semiclassical theory are f52(1/2)ln@2l2x1x22(k/
4)ln(2l2x1x2)1C̄], whereC̄ is a constant. The ground state
is the solution withC̄5C̄0[(k/4)@ ln(k/4)21#. As in the
classical case, we impose reflecting boundary conditions on a
timelike boundary curve and study the solutions only in the
weak coupling region. The reflecting boundary condition is a
modification of Eq.~2! whereT66 are now components of
the total stress tensor, including the classical and one-loop
contributions. There is also an extra term due to possible
particle creation from the boundary, which is effectively a
moving mirror @13#. One can eliminate the moving mirror
term by taking the large N limit together with
exp(22fc)→01 @5#. In contrast to Eq.~3!, the resulting non-
linear ODE for the semiclassical boundary curve,
x15xB

1(x2), is @5#

FIG. 3. ln(MBH /l) vs lnup2p* u in the classical case,~a!, and the
quantum case,~b!.
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We consider initial data with no quantum radiation on
IR

2 and classical incoming radiation corresponding to the
profiles shown in Fig. 1. We find that as in the classical
case, the solutions are regular and no black hole is formed
if and only if p,pq* ~wherepq* is the critical value of the
parameterp in the semiclassical case!. Forp.pq* , the black
hole that is formed evaporates by emitting Hawking radia-
tion @11#. To look for scaling analogous to Eq.~5!, we cal-
culate theinitial mass of the created black hole. It is this
mass that reduces in the limitN\→0 to the mass of the
classical black hole that appears in Eq.~5!. The initial black
hole mass,MBH

( i ) , is the Bondi mass atu5u0, whereu0 is the
minimum of the apparent horizonu5uah(v). The apparent
horizon is the solution of the equation]1f50. Explicitly,
MBH

( i ) 5MADM2*
2`
u0 Tuudu, whereTuu(u) is the total stress

tensor of the outgoing radiation andMADM is the ADM mass
of the spacetime, defined such that the semiclassical ground
state, i.e., the static vacuum solution withC̄5C̄0, has zero
ADM mass.

We examine quantum effects by considering cases with
different values of k5N\/12. In Fig. 3~b! we plot
ln(MBH

( i ) /l) versus lnup2pq* u for two different values ofk. We
do so in the case of the family (a) of initial data shown in
Fig. 1, where the free parameterp is the amplitudeA, and
the parameterG50.2 is fixed. For large values ofMBH

( i ) the
initial mass of the black hole behaves like that of the classi-
cal black hole@see Eq.~5!#. However, asMBH

( i ) decreases,
deviations from the classical behavior appear. Unlike the
classical case, asp approachespq* the initial mass,MBH

( i ) of
the created black holedoes notgenerally approach zero, but

rather approaches a constant,Mgap. We find that this mass
gap,Mgap, depends not only on the value ofk but also on
the initial data. For the cases shown in Fig. 3~b! we have
Mgap/l.0.014 for k51022, and Mgap/l.0.0037 for
k51023. The radiation energy deficit in the quantum case is
D rad
q 5l(C̄02C̄)1Mgap.
The deviations from the classical scaling law~5! become

significant for values ofMBH
( i ) that are of orderkl. When

MBH
( i ) takes values that are of order or less thankl, the semi-

classical approximation remains valid providedN is suffi-
ciently large@5,14#. However for any fixed value ofN, no
matter how large, the semiclassical approximation breaks
down whenp is sufficiently close topq* @5#, i.e., as one
moves to the far left well beyond the region shown in Fig.
3~b!. Thus, determining the behavior of the curve as
lnup2pq* u→2` requires full quantization of the theory. Al-
though we do not prove the presence of a mass gap in the full
quantum theory, our one-loop calculations strongly suggest
that such a mass gap might persist even when higher order
corrections are incorporated. Moreover, since breakdown of
the classical scaling law occurs in the domain of validity of
the semiclassical approximation, such a scaling will be ab-
sent even in the full quantum theory. We are currently study-
ing the phase structure of the semiclassical theory near
threshold which appears to be richer than that in the classical
case.

In this work we investigate numerically the collapse of
massless scalar fields in 2D dilaton gravity. We find that
classically the black hole mass at threshold obeys a power-
law,MBH}up2p* ug, whereg50.5360.01. However, quan-
tum effects destroy the classical scaling and strongly suggest
the formation of a mass gap that depends on the initial data.
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