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Choptuik scaling and quantum effects in 2D dilaton gravity
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We study numerically the collapse of massless scalar fields in two-dimensional dilaton gravity, both clas-
sically and semiclassically. At the classical level, we find that the black hole mass scales at threshold like
Mpgy|p—p*|?, wherey=0.53. At the semiclassical level, we find that in gendvig}, approaches a nonzero
constant ap— p*. Thus, one-loop effects suggest a mass gap not present classically at the onset of black hole
formation.[S0556-282(97)50508-X]

PACS numbegps): 04.60.Kz, 04.70.Dy

The discovery of universality and scaling at the onset ofpendent oM, we find that quantum effects alter significantly
black hole formatiori1] may have important implications in the critical behavior. Most interestingly, whem is suffi-
understanding the structure of solution-space in gravitationatiently close top*, the classical scaling behavior breaks
theory. Choptuik studied numerically the collapse of adown andMygy approaches a nonzero constant value that
spherically symmetric self-gravitating real scalar field independs on the initial data. Thus our one-loop calculations
four-dimensional4D) Einstein gravity and considered one- indicate the possiblity for the existence of a mass gap. This is
parameter families of initial data] p], wherep is a param-  a new result that may be of fundamental interest. Also, since
eter specifying the strength of the gravitational self-the breakdown of the classical scaling law occurs in the do-
interaction of the scalar field. He found that there exists amain of validity of the semiclassical approximation, we
critical value,p=p*, such that forpp<p*, the “subcritical  prove the absence of Choptuik scaling in the full quantum
case,” no black hole is formed and the solution is regulartheory.
while for p>p*, the “supercritical case,” a black hole is The classical theory is described by the 2D Callan-
formed. Furthermore, by careful analysis of the solutionsGiddings-Harvey-StromingdiCGHS action[4]
near criticality, p=p*, he found that ap approachegp*
from above, the mass of the created black hole approaches 1
zero, and when a black hole just forms, its mass scales as SCGHS:_f dzx\/—_g[ e 2 R+4(Vp)2+42?]
Mgx|p—p*|?, where the critical exponeny=0.37. The 27
critical solutions also exhibit discrete self-similarifyl].
Similar behavior was found in other models of nonlinear
gravity [2].

In the semiclassical scenario, i.e., for a quantum field
propagating on a classical dynamical background metric, thehere ¢ is the dilaton field R is the 2D Ricci scalar formed
created black hole of mass radiates in 4D with the Hawk- from the metric tensog,,, \ is a positive constant, and
ing temperatureT,«M ! [3]. As M—0 near criticality, the f; are N massless scalar matter fields conformally
T, becomes large and quantum effects are clearly importangoupled to the 2D geometry. We work in the conformal
To gain some understanding of how quantum effects magauge, g__=9g,,=0 and g._=—(1/2)exp(3), (i.e.,
alter the classical scenario near criticality, we investigate als’= —exgd2p(x* x)]dx"dx"), where &',x") are the
tractable two-dimensiongRD) model that exhibits classical “Kruskal” null coordinates in which¢(x*,x™) ¢(x,x7)
scaling as well as significant quantum effects near criticality = p(x*,x~) [5].

The model we study is 2D dilaton gravity coupled to a The general vacuum solution of the classical thedyyis
massless scalar field. We first consider the classical theorp=—(1/2)In(—A\>"x~+C), where \C is its Arnowitt-
and then include quantum effects. We find that classicallyjDeser-MisnefADM) mass[6]. For C>0 the vacuum solu-
there is universal scaling of the black hole mass near crititions describe static 2D black holes. T@e- 0 solution is the
cality, Mgy<|p— p*|?, wherey=0.53+0.01 is independent linear dilaton vacuun{LDV), which is the ground state of
of initial data. In addition, we find that the ground state of the theory. Solutions witlt<0 have timelike naked singu-
the classical theory gives a lower bound on the energy ofarities in the strong coupling region where expj2-«. The
spacetimes resulting from dynamical processes in which aeak coupling, asymptotically flat region will be taken to be
black hole is formed. This is related to a radiation energyon the right-hand sidéRHS) of the spacetimé5]. In this
deficit A .4 that we describe later. At the semiclassical level,work we takeC<0, but we avoid the region of strong cou-
although the Hawking temperature in our 2D model is inde-pling and the singularity by considering the solutions only in

the weak coupling region expfd<exp(2p,) for a given
constantp.., and by imposing reflecting boundary conditions

N| =

N
;1 (vmz], (6h)

*Electronic address: yoav@csd.uwm.edu on the timelike boundary curvé(x*,x~ )= ¢.. A previous
"Electronic address: bose@csd.uwm.edu study of such a system at the onset of black hole formation
*Electronic address: leonard@cosmos.phys.uwm.edu [7] was based on boundary conditions that mix classical and
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i D FIG. 2. The stress tensdr,,, in units of A2, describing the

outgoing radiation. The upper curve corresponds to a subcritical
/ family (s) solution just below criticality and the lower curve corresponds to a
| supercritical solution just above criticality.
1
U
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h the amplitude, A, and the inverse widthl", of the profile
DA v T,,(v), where v=\"ln(\x") and u=\"lIn[—Ax"
— P, (0)/\] are the manifestly asymptotically flat null co-
FIG. 1. Two families of initial data described by the stress ten-Ordinates orz . Family (8) is a five-parameter family de-
sorT,,. scribed byA;, A,, 'y, T'5, and 6. All the parameters are
scaled by appropriate powers »fto make them dimension-
one-loop contributions and do not have a standard classic#Ss- In these two cas¢and in other cases that we studied
limit. The reflecting boundary conditior{8,9] that we im-  We find .that fixing all but one arblt.rarlly chosen parameter,
pose here have a standard classical limit. Let the boundary &Y P, Yields a regular evolution with no black hole forma-

described by the curve* =x:(x"). Then the reflecting tion if and only if p<p*. The critical valuep*, depends on
boundary condition is the values of the other fixed parameters. As in the 4D

solution-space, the only “intermediate solution” separating
o black hole solutions from regular ones is the critical solution
T (x->=(‘9X—B) T DX (60)] @ "o
- ax~| TTLTB ' Next we show that there is a universal scaling of the
black hole mass near criticality in the classical theory. In
where T...=(1/2)2;(9.f;))? are the components, in the order to find the mass of the created black hole we calcu-
(x*,x7) coordinates, of the stress tensor of the massleskte the outgoing radiation reaching right asymptotic future
scalar fields. The general solution for the conformallynull infinity, 35, after being reflected from the boundary.
coupled matter fields i$;(x*,x")="f;"(x*)+f; (x7). The  This radiation is described by the stress ten$gy(u). Then
initial data at right asymptotic past null infinit@i; , are ~ we find that the Bondi mass at late times—=) on
therefore given byf;"(x™) or T, ,(x™). Working in the Ig is M) =M gong(U—°) =M apom— S .. Tuu(u)du. Here
largeN limit [5] we are able to choose the boundary curve toM apm is the ADM masg 10] of the spacetime, defined such
be at expt-2¢,)—0" and get a second order nonlinear ordi- that the LDV ground state has zero ADM mass. In Fig. 2 we
nary differential equatiofODE) for the classical boundary show the numerical results for the reflected outgoing radia-

curve[5] tion, T,,(u), for two nearby sets of initial data. The two
solutions correspond to familye) with the same width,
a2t o dxct | 2 I'=0.2, but with different gmplitudes%_. The upper curve
[X~+ P, (x5)\?] B +2—B+2)\2T++(x+)(—8) corresponds to a subcritical solution near criticality,
B dx 2 “dx B7\ dx A=A ,=A* —e;=1.546. The lower curve corresponds to a
-0 3) supercritical case near criticality, A=Ag,pe=A* + €,
' =1.547, whereA* is the critical value of the amplitude pa-
+ o S — rameterA.
where P, (x") =[5 T, .(x")dx". We solve the ODH?3) Although the initial data are very similar in the two cases,
numerically for different initial dataT, . (x"), with com-  the Jate-time outgoing radiation is quite different. For the
pact support,x; <x*<x, . To the past ofx;, i.e., subcritical solution near criticality, the boundary curve be-

for x*<x;, we have a vacuum solutiong=—(1/ comes almost null and the late-time outgoing radiation is
2)In(—A**x"+C), with C being a negative constant. In this highly blue-shifted’5]. In the supercritical case on the other
region we have an analytical solution for the boundary curvehand, this blue-shifted radiation is absent, and we find that
Xg (Xx7)=CIx~, wherex <C/x; . Forx >C/x;, we in- part of the incoming radiation does not reach future
tegrate Eq.(3) numerically to find the boundary curve and asymptotic null infinity. Sincel, is quite different in the
the corresponding solutions for the metric and dilaton field.two cases, the Bondi mass defined through the integral
We study in detail the two families of initial data shown [T, (u)du is obviously different. For all the subcritical
in Fig. 1. Family () is a two-parameter family specified by solutions the Bondi mass at late timaﬂg;%di, is equal to
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the negative ADM mass of the initial spacetim&;. How- 1.0
ever, for the supercritical solution® §;),, is always posi-
tive. We define the “radiation energy deficit,A 4, to
be A= lim _o{Monalp=p* +e]-ME) [ p=p* — €]}
The fact thatA .4 turns out to be nonzero is a striking mani-
festation of the nonlinearity of our problem.

We find thatA,,4 does not depend on the profile of the
infalling matter, but only on the initial vacuum geometry.

bobo-
wnm O

In Mg /M) + g

Explicitly, -35
4.0
o o O p; = A-family (o)
A= —AC=\[C], 4) 45 WB,&" O p = T- famil.y (@)
50 lg#® X pi = & - family (8)
whereC is the constant specifying the initial vacuum geom- 10 9 8 I € 5 4 3 2
etry. The existence of this nonzefn,4 can be interpreted In Ip; - p;*l

as implying that in the classical theory the LDV is a
“stable ground state.” In particular, we have started with a
negative-mass geometry and find that the process of -1 (b)
throwing in matter to form a black hole results in spacetimes 20
having non-negative mass relative to the LDV. In agreement
with cosmic censorship, this suggests that systems in
this classical theory will not evolve to states of energy lower
than the LDV, which have naked singularities. Once the
infalling matter configuration is dense enough>p*,
part of the incoming energy is “swallowed” by the
strong curvature region to compensate for the negative — 45

2.5
-3.0

-3.5

In Mg /)

mass of the initial spacetime and make the future spacetime

: : o 5.0
a solution with positive energy compared to the LDV. X k =001
For our initial geometry with negative ADM massC, 5.5 O k =0001
the minimum energy that must be swallowed in order to 4, i
get a positive-energy spacetime, is precisdy,y. The -12 -10 -8 . -4
resulting positive-energy spacetime is a 2D black hole. We In Ip - pg*l

find that in this classical theory the mass of the created black
hole, Mg=M$:) [p>p*], approaches zero ap ap-
proachesp* from above. Moreover, the black hole mass
scales as

FIG. 3. InMgy/\) vs Injp—p*| in the classical cas¢q), and the
guantum casepb).

Mgne|p—p*|” (5) wherex=N#%/12 andG(x,Xx") is an appropriate Green func-
BH*|P—P ) .
tion for the massless scalar fields. The second term on the
RHS of Eq.(6) is the Polyakov-Liouville effective action
at threshold, where/=0.53-0.01. The value ofy does not  gerived from the trace anomaly of the 2D massless scalar
appear to depend on the profile of the infalling matter or the\‘ields[lZ], and the last term on the RHS of E) is a local
initial g*eometry. In Fig. &) we plot InMg/A) +2; VErsus ¢ nter-term that we add to our effective theory in order to
In[p;—pf| for different parameterg;. The constants; are 1 jt exactly solvablgl1]. The vacuum solutions of our
chosen such that the three curves intersect at a given po'r%emiclassical theory are ¢=—(1/2)IN -\ —(«!
The slopes of all the lines are the same within our numerica P —
accuracy 4)In(—A“x"x7)+C], whereC is a constant. The ground state
Next we consider quantum effects. We quantize the scaldf the solution withC=Co=(«/4)[In(«/4)—1]. As in the

fields on a classical dynamical background geometry consisﬁ'ass'cal case, we impose reflecting boundary conditions on a

ing of the metric and the dilaton field. The semiclassicallimelike boundary curve and study the solutions only in the

effective action that we study [€1] weak coupling region. The reflecting boundary condition is a
modification of Eq.(2) whereT.. . are now components of

the total stress tensor, including the classical and one-loop

_ A Y N vl N ey contributions. There is also an extra term due to possible
Sefi= SceHs 877] d™x g(x)f d*x'v=g(x’) particle creation from the boundary, which is effectively a
p moving mirror [13]. One can eliminate the moving mirror
xR(x)G(x,x’)R(x’)+2— term by taking the largeN Ilimit together with
a

exp(—2¢.)—0" [5]. In contrast to Eq(3), the resulting non-
linear ODE for the semiclassical boundary curve,

* [ @ aver-gm) © X" =x50), s (5]
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 PL(xg) k |d%g  dxg rather approaches a constakity,,. We find that this mass
X N2 2xg, |dx 2 +2d7 gap, Mgq,, depends not only on the value efbut also on
the initial data. For the cases shown in Figb)3we have
. ko ][dxg\? Mgap/A=0.014 for k=102, and Mg,,/A=0.0037 for
+|2N 72T, (Xg)— ——5|| =—=| =0. (7) 3
BT AN 2 || dx k=10"". The radiation energy deficit in the quantum case is

AL=N(Co—C) + Mgy,

We consider initial data with no quantum radiation on  The deviations from the classical scaling 1848y become
Jr and classical incoming radiation corresponding to thesignificant for values oM), that are of orderx\. When
profiles shown in Fig. 1. We find that as in the classicaly (), takes values that are of order or less than the semi-
case, the solutions are regular and no black hole is formeélassmal approximation remains valid providddis suffi-
if and only if p<pg (wherepg is the critical value of the ciently large[5,14]. However for any fixed value oi, no
parametep in the semiclassical cage=or p>py , the black  matter how large, the semiclassical apprOX|mat|on breaks
hole that is formed evaporates by emitting Hawking radla-down Whenp is Suff|c|ent|y close top [5] i.e., as one

tion [11]. To look for scaling analogous to EF), we cal-  moves to the far left well beyond the region shown in Fig.
culate theinitial mass of the created black hole. It is this 3(n). Thus, determining the behavior of the curve as

mass that reduces in the limNZ—0 to the mass of the |- pk|——2 requires full quantization of the theory. Al-

classical black hole that appears in Ef). The initial black though we do not prove the presence of a mass gap in the full
hole massM ), is the Bondi mass at= uo, whereu, is the  quantum theory, our one-loop calculations strongly suggest
minimum of the apparent horizon=u,{v). The apparent that such a mass gap might persist even when higher order
horizon is the solution of the equation ¢=0. Explicitly,  corrections are incorporated. Moreover, since breakdown of
MSLZ MADM—ffowTuud u, whereT,,(u) is the total stress the classical scaling law occurs in the domain of validity of
tensor of the outgoing radiation aii,py is the ADM mass  the semiclassical approximation, such a scaling will be ab-
of the spacetime, defined such that the semiclassical grourgent even in the full quantum theory. We are currently study-
state, i.e., the static vacuum solution with=C,, has zero ing the phase structure of the semiclassical theory near

ADM mass. threshold which appears to be richer than that in the classical
We examine quantum effects by considering cases witl§@Se.
different values of k=N#/12. In Fig. 3b) we plot In this work we investigate numerically the collapse of

massless scalar fields in 2D dilaton gravity. We find that
classically the black hole mass at threshold obeys a power-
law, M go<|p— p*|?, wherey=0.53+0.01. However, quan-
tum effects destroy the classical scaling and strongly suggest
the formation of a mass gap that depends on the initial data.

IN(MEY/\) versus p—p3| for two different values of. We

do so in the case of the family of initial data shown in
Fig. 1, where the free parametgris the amplitudeA, and
the parameteF =0.2 is fixed. For large values ofl{), the
initial mass of the black hole behaves like that of the classi-
cal black hole[see Eq.(5)]. However, asM gﬁ' decreases, We would like to thank B. Allen, J. Friedman, D.
deviations from the classical behavior appear. Unlike theGarfinkle, T. Piran, and A. Steif for very helpful discussions.
classical case, g3 approachespa‘ the initial mass,M(') of  This work was supported by the National Science Founda-
the created black holdoes notgenerally approach zero, but tion under Grant No. PHY 95-07740.
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