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Fine structure of Choptuik’s mass-scaling relation
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We conjecture(analytically and demonstraténumerically the existence of a fine structure above the
power-law behavior of the mass of black holes that form in the gravitational collapse of a spherical massless
scalar field. The fine structure is a periodic function of the critical separapenp). We predict that the
periodw is universaland that it depends on the previous universal parameters, the critical exphraemd the
echoing period\ asw=A/(23).[S0556-282(97)50202-5

PACS numbes): 04.70.Bw

I. INTRODUCTION Il. THEORETICAL PREDICTIONS
VS NUMERICAL RESULTS

The gravitational collapse of a spherically symmetric

. i : We consider the spherical collapse of a massless scalar
massless scalar field has two possible end states. Either the . o
i e : . fiéld. Choptuik has shown that for a critical paramepér
scalar field dissipates away, leaving a flat spacetime, or

black hole form. Numerical simulations of this model prob_fr’here is a critical solution which has an infinite discrete self-

- ; similar behavior. The scalar field oscillates with a period
lem [1] have revealed an unexpected critical behavior Wherh The physical quantities, and in particulkt/r, depend
the initial conditions are close to the critical cgse p* (p ' ' !

) . . %uadratically on the field’s derivatives and hence have a pe-
is some parameter which characterizes the strength of thrlod A/2 ie. there are two phvsical echoes for each echo in
initial scalar field, ang* is the threshold valyeMore pre- L phy

cisely, Choptuik has found a power-law dependence of th the scalar field. In the following we will be interested only in

fhese physical echoes
black-hole mass on critical separatiop-p*) of the form i SO . .
Mauoc(p—p*)E for p>p*, and a discrete echoing with a The critical solution by itself does not yield the scaling

iod A (a discret if-similar behaviofor p— p* relation of the black-hole mass in which we are interested.
perio a discrete sefl-simiiar benavioror p=p-. We perturb, therefore, the critical initial conditions. This

Subsequentlyz sim.ilar criticgl behavipr has .be('an observepeads to a dynamical instability—a growing deviation from
for other collapsing fields: axisymmetric gravitational WaV€ihe critical evolution toward either a subcritical dissipation

pﬁcketz[Z], sp?ericall;l/ s;;_mlrg:]tri:: ra;lji?r:ive quic[j%]l, andb or a supercritical black-hole formation.
charged complex scalar Tielge]. In afl these model prob- Let f(u) be a function ofu, the time coordinate of an

lems the critical exponeng tumed out to be close to the observer at rest at the origin, that characterize the solution

value originally found by Choptuik, 0.37, suggesting a uni- X . -
) : along the outgoing null geodesic that leaves the origio.at
versal behavior. However, Maisdib] has shown that for The function,f, could be, for example, the maximal value of

fluid collapse models with an equation of state given byM(u r)/r along this geodesic. Following Evans and Cole-

St:rklg the critical exponent strongly depends on the param- - [3] and Maison[5] we describe the runaway of the

In this work we conjecture the existence of a small peri_perturbed solution from the critical evolutiqdescribed by
f.) as a power law

odic correction¥[In(p—p*)], to the power-law dependence
of the black-hole mag$]. W is periodic and its periods is

universal and it depends on the previous universal param- f(u)—fo(u)=n(u*—u)~ ¢ 1)
eters asw=A/(2B). Our analytical argument predicts the
existence of the fine-structure periodic term and its expecte
period. The argument is based upon the final stage of a s
percritical evolution: from the moment when the deviation
from the exact self-similar critical evolution becomes larger

;?%“;;’Te %Vﬁlne Vr?gl:iinnd ftg]r;(:\;/iglr?“\?\r/]elihr:a?l Io?g\%:erllt_ exact critical evolution; i.e., the evolution is approximately
P : P self-similar until|f—f;|=y. From here on, the evolution is

merical e."'d?”ce that ver|f|_es the.eX|ste.nce OT the CONIECH tside the scope of the perturbation theory—there is sub-
tured periodic term, the universality of its period and the

relationw—A/(28) critical dissipation of the field or supercritical black-hole for-
@ : : . . ... mation. In either case, the evolution from this stage onwards
Our numerical formalism is based on the characteristi

. . . Yoses its self-similar character. We choose npw p* so
scheme of Goldwirth and Pirdi7], to which we have added that the perturbed initial conditions develop into a black

an expansion near the origin which is essential to achieve thﬁole The timeu,(p—p*) required in order to reach the
: X

extremely high accuracy needed for these computations. The . AN X X

: ; ; . maximal deviation is given simply by the relation
evolution equations, our algorithm and numerical methods,
and the discretization and error analysis are all described in a

previous papef4], and will not be repeated here. ANUu*—u,) “=x. 2

g/here the critical solution reaches the zero-mass singularity
Ytu=u*. The prefactoin satisfiesh o« (p—p*).

We assume that the range of validity of the perturbation
theory is restricted to some maximal deviatign,from the
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Of course, a larger initial perturbation requires a shorter time —
to reach this value. We define now the logarithmic time, L () b
T=—In[(u* —u)/u*], in which the critical solution is peri- L - “t .
odic. The logarithmic timd , , which corresponds to the loss AR x £ %
of self-similarity, is given by

005 [ ‘ & N . A;r
_ -1 B L R S
Ty=—a “In(p—p*)+by, 3 I £ : sy

whereb, depends ory, u*, andk. The indexk denotes the
family of initial conditions considered. We conjecture now
that the logarithmic time until the horizon formation equals
T, plus a periodic ternf[In(p—p*)], or

—Tay—<—Tpy>
T

Ten=—a 'In(p—p*)+ b+ FIn(p—p*)]. (4 -

The period,w, is universal and it depends on the previous 0% [
universal parameters according to I

w=aAl2. (5) LA =

Consider now two different initial conditions, which lead 20 e 15 10
to n andn+1 echoes, respectivelyntil the deviation from
the critical seli-similar evolution reachag. These solutions . FIG. 1. lllustration of the conjecturedniversal periodic fine
are related to each other by an exact scale transform_atloaructureOf ~Tay. The quantity — Tey—(— Tee)] is plotted as a
with a factore(*'?. The final stages of these two supercritical ¢,nction of In@), wherea=(p— p*)/p*, for the four families. The
evolutions, from the stage when the deviation from the exact,res were shifted horizontallgbut not vertically in order to
critical evolution reachey (and the evolution ceases to be gyerlap the first oscillation of each family with the first one of
periodic inT), up to the horizon formation, are equal up to afamily (a). (Tg) is the value ofTg, determined from a straight
scaling transformation. The periodic nature of the functon Jine approximation, i.e{Tgy)=const- BIn(p—p*). The numerical
arises from this final stage: The period of the functoris  results agree with thpredictedrelation w = aA/2~4.6.
the amount that should be added to the quantitg4ng*), in

order to reduce the number of echoes by one. This will re- MW =M@=\ (0g=dk(p—p*)A, (8)
duce Tgy by A/2. From Eq.(4) this amounts to a period
w=aA/2 inF. from which it follows thatg=1/«.

This conjecture is verified by numerical simulations of To obtain Mgy, the final black-hole mass, one should
four families of initial data(two neutral and two charggdn ~ multiply M by a periodic functionG[In(p—p*)] which
all those families we have found thatTpy as a function of measures the change of mass, from the stage when the evo-
In(p—p*) was well fit by a straight line with a slope lution is no longer periodic i, until the horizon forms. The
1/a~0.37. On top of this straight line there was a smallfunction G depends only on the field configuration at the
modulation. The deviation from a straight line is shown inmoment when the deviation from the exact self-similar evo-
Fig. 1, which provides numerical evidence for the existencdution reaches (and the evolution is no longer self-similar
of the periodic tern in Eq. (4). We see that the functiof  Thus, G is expected to have the same value each time the
is indeed periodic, with a universal periagl= aA/2~4.6. system completes another echo, i.e., each tinmereases by
We have to relate now the exponentto the critical ex-  unity. Using Eq.(6) we find that the functioiG[ In(p—p*)] is
ponentB (which describes the power-law dependence of theexpected to have a period ef=A/(28). Thus, we obtain
black-hole masgs and then generalize Choptuik’s scaling re-
lation by proving that one should also add a periodic term to In(Mgy) = BIn(p—p*) +c,+¥[In(p—p*)], (9

Choptuik’s mass scaling relation. We writg,, in the form
P g B wherec, is a family-dependent constant awd In(p—p*)] is

Ten=TinttNA+F, (6) a periodic function with auniversalperiod, .

Figure 2 depicts this periodic fine structure for our four
where T;,; is the initial logarithmic time required for the families of solutions mentioned earlier. In all four families
system to settle down to a periodic behaviorTinandn is ~ We obtain the basic power law behavior wjh=0.37. Fig-
the number of echoes. We assume fRgt is independent of ure 2 displays the deviation of Iilg,;) from this straight line

(p—p*). Using Eq.(4) we obtain as a function of Ing—p*). The agreement between the four
families shows that the fine structure is indeed universal with
nA=—a lin(p—p*)+d,, (7)  the expected period. The periodic functioRsand ¥ are

universal in shape. However, there is a family-dependent
whered, is a family-dependent constant. We defé™ as  horizontal offset(which depends o8 and on the previous
the mass aften echoegqnote that this is not the final black- family-dependent constants these functions; see al$8].
hole masg Since M decreases in each echo by a factor One may worry, of course, whether this fine structure is
e 2 we have, using Eq7), real or if it could arise from some numerical errors. In a
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FIG. 2. lllustration of the conjecturedniversal periodic fine- FIG. 3. Infm—(In(m)) is plotted as a function of lia§ for family

structure generalization of Choptuik's mass-scaling relation. (&), and with it, five different resolution grids with 100, 200, 400,
In(m)—(In(m)) is plotted as a function of laj for the four families, 800, and 1600 grid points. The five curves overlap and all show the
wherem=Mg,, /M, . is the normalized black-hole mass in units of Same periodic behavior.

the initial mass in the critical solutiol; . (In(m)) is the value of »
In(m) determined from a straight line approximation. The curvesl@w dependence of the black-hole mass on the critical sepa-

were shifted horizontallybut not vertically in order to overlap the ration. We have shown the existence of a fine-structure
first oscillation of each family with the first one of familp). The ~ above this power-law dependence in the form of a periodic
numerical results agree with the predicted relation term with a universal periody. We are not aware of such a
w=A/(2B8)~4.6. fine-structure periodic term in any other phase transitions in
statistical mechanics. Our periodic term with its period
previous papef4] we have established the stability and con-strongly depends on the discrete echoing character of the
vergence of our code with numerous tests. Still, because ddritical solution. This discrete self-similarity has been seen
the importance of this issue, we demonstrate here the physbnly in the works of Choptuik1], Abrahams and Evari2]
cal character of this fine structure. Figure 3 depicts the detcollapse of axisymmetric vacuum gravitational fieldnd in
viations of InMgy) from a straight line as a function of our work concerning the gravitational collapse of a charged
In(p—p*) for five different calculations with 100, 200, 400, (complex scalar field[4]. Abrahams and Evang2] have
800, and 1600 grid points for the same initial data. The saméund an echoing period af~0.6. Thus, using our analyti-
features were found on all grids even though the grid sizesal argument, we conjecture that a careful analysis will re-
differ by a factor of 16. The five curves overlap and all showveal a periodic fine structuréo the power-law behavipr
the same periodic behavior. Numerical convergeftiee 800  with a period ofw~0.8, in the model problem of the col-
and 1600 curves are nearer than the 100 and 200 curves, flapse of axisymmetric gravitational wave packets.
examplé is clearly seen. We have learned, after submission, that Gund[&ithas
shown independently that such a periodicity should exist.

IIl. SUMMARY AND CONCLUSIONS
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