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We conjecture~analytically! and demonstrate~numerically! the existence of a fine structure above the
power-law behavior of the mass of black holes that form in the gravitational collapse of a spherical massless
scalar field. The fine structure is a periodic function of the critical separation (p2p* ). We predict that the
periodÃ is universaland that it depends on the previous universal parameters, the critical exponentb, and the
echoing periodD asÃ5D/(2b). @S0556-2821~97!50202-5#

PACS number~s!: 04.70.Bw

I. INTRODUCTION

The gravitational collapse of a spherically symmetric
massless scalar field has two possible end states. Either the
scalar field dissipates away, leaving a flat spacetime, or a
black hole form. Numerical simulations of this model prob-
lem @1# have revealed an unexpected critical behavior when
the initial conditions are close to the critical casep5p* (p
is some parameter which characterizes the strength of the
initial scalar field, andp* is the threshold value!. More pre-
cisely, Choptuik has found a power-law dependence of the
black-hole mass on critical separation (p2p* ) of the form
MBH}(p2p* )b for p.p* , and a discrete echoing with a
periodD ~a discrete self-similar behavior! for p5p* .

Subsequently, similar critical behavior has been observed
for other collapsing fields: axisymmetric gravitational wave
packets@2#, spherically symmetric radiative fluids@3#, and
charged complex scalar fields@4#. In all these model prob-
lems the critical exponentb turned out to be close to the
value originally found by Choptuik, 0.37, suggesting a uni-
versal behavior. However, Maison@5# has shown that for
fluid collapse models with an equation of state given by
p5kr, the critical exponent strongly depends on the param-
eterk.

In this work we conjecture the existence of a small peri-
odic correction,C@ ln(p2p* )#, to the power-law dependence
of the black-hole mass@6#. C is periodic and its periodÃ is
universal and it depends on the previous universal param-
eters asÃ5D/(2b). Our analytical argument predicts the
existence of the fine-structure periodic term and its expected
period. The argument is based upon the final stage of a su-
percritical evolution: from the moment when the deviation
from the exact self-similar critical evolution becomes larger
than some given value~and the evolution is no longer self-
similar! up to the horizon formation. We then provide nu-
merical evidence that verifies the existence of the conjec-
tured periodic term, the universality of its period and the
relationÃ5D/(2b).

Our numerical formalism is based on the characteristic
scheme of Goldwirth and Piran@7#, to which we have added
an expansion near the origin which is essential to achieve the
extremely high accuracy needed for these computations. The
evolution equations, our algorithm and numerical methods,
and the discretization and error analysis are all described in a
previous paper@4#, and will not be repeated here.

II. THEORETICAL PREDICTIONS
VS NUMERICAL RESULTS

We consider the spherical collapse of a massless scalar
field. Choptuik has shown that for a critical parameterp*
there is a critical solution which has an infinite discrete self-
similar behavior. The scalar field oscillates with a period
D. The physical quantities, and in particularM /r , depend
quadratically on the field’s derivatives and hence have a pe-
riod D/2, i.e., there are two physical echoes for each echo in
the scalar field. In the following we will be interested only in
these physical echoes.

The critical solution by itself does not yield the scaling
relation of the black-hole mass in which we are interested.
We perturb, therefore, the critical initial conditions. This
leads to a dynamical instability—a growing deviation from
the critical evolution toward either a subcritical dissipation
or a supercritical black-hole formation.

Let f (u) be a function ofu, the time coordinate of an
observer at rest at the origin, that characterize the solution
along the outgoing null geodesic that leaves the origin atu.
The function,f , could be, for example, the maximal value of
M (u,r )/r along this geodesic. Following Evans and Cole-
man @3# and Maison@5# we describe the runaway of the
perturbed solution from the critical evolution~described by
f c) as a power law

f ~u!2 f c~u!5l~u*2u!2a, ~1!

where the critical solution reaches the zero-mass singularity
at u5u* . The prefactorl satisfiesl}(p2p* ).

We assume that the range of validity of the perturbation
theory is restricted to some maximal deviation,x, from the
exact critical evolution; i.e., the evolution is approximately
self-similar until u f2 f cu5x. From here on, the evolution is
outside the scope of the perturbation theory—there is sub-
critical dissipation of the field or supercritical black-hole for-
mation. In either case, the evolution from this stage onwards
loses its self-similar character. We choose nowp.p* so
that the perturbed initial conditions develop into a black
hole. The timeux(p2p*) required in order to reach the
maximal deviation is given simply by the relation

l~u*2ux!2a5x. ~2!
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Of course, a larger initial perturbation requires a shorter time
to reach this value. We define now the logarithmic time,
T[2 ln@(u*2u)/u* #, in which the critical solution is peri-
odic. The logarithmic timeTx , which corresponds to the loss
of self-similarity, is given by

Tx52a21ln~p2p* !1bk , ~3!

wherebk depends onx, u* , andk. The indexk denotes the
family of initial conditions considered. We conjecture now
that the logarithmic time until the horizon formation equals
Tx plus a periodic termF@ ln(p2p* )#, or

TBH52a21ln~p2p* !1bk1F@ ln~p2p* !#. ~4!

The period,Ã, is universal and it depends on the previous
universal parameters according to

Ã5aD/2. ~5!

Consider now two different initial conditions, which lead
to n andn11 echoes, respectively~until the deviation from
the critical self-similar evolution reachesx). These solutions
are related to each other by an exact scale transformation
with a factore(D/2). The final stages of these two supercritical
evolutions, from the stage when the deviation from the exact
critical evolution reachesx ~and the evolution ceases to be
periodic inT), up to the horizon formation, are equal up to a
scaling transformation. The periodic nature of the functionF
arises from this final stage: The period of the functionF is
the amount that should be added to the quantity ln(p2p* ), in
order to reduce the number of echoes by one. This will re-
duceTBH by D/2. From Eq.~4! this amounts to a period
Ã5aD/2 in F.

This conjecture is verified by numerical simulations of
four families of initial data~two neutral and two charged!. In
all those families we have found that2TBH as a function of
ln(p2p* ) was well fit by a straight line with a slope
1/a'0.37. On top of this straight line there was a small
modulation. The deviation from a straight line is shown in
Fig. 1, which provides numerical evidence for the existence
of the periodic termF in Eq. ~4!. We see that the functionF
is indeed periodic, with a universal periodÃ5aD/2'4.6.

We have to relate now the exponenta to the critical ex-
ponentb ~which describes the power-law dependence of the
black-hole mass!, and then generalize Choptuik’s scaling re-
lation by proving that one should also add a periodic term to
Choptuik’s mass scaling relation. We writeTBH in the form

TBH5Tinit1nD1F, ~6!

where Tinit is the initial logarithmic time required for the
system to settle down to a periodic behavior inT, andn is
the number of echoes. We assume thatTinit is independent of
(p2p* ). Using Eq.~4! we obtain

nD52a21ln~p2p* !1dk , ~7!

wheredk is a family-dependent constant. We defineM (n) as
the mass aftern echoes~note that this is not the final black-
hole mass!. SinceM decreases in each echo by a factor
e2D we have, using Eq.~7!,

M ~n!5M ~0!e2nD5M ~0!e2dk~p2p* !b, ~8!

from which it follows thatb51/a.
To obtainMBH , the final black-hole mass, one should

multiply M (n) by a periodic functionG@ ln(p2p* )# which
measures the change of mass, from the stage when the evo-
lution is no longer periodic inT, until the horizon forms. The
function G depends only on the field configuration at the
moment when the deviation from the exact self-similar evo-
lution reachesx ~and the evolution is no longer self-similar!.
Thus,G is expected to have the same value each time the
system completes another echo, i.e., each timen increases by
unity. Using Eq.~6! we find that the functionG@ ln(p2p* )# is
expected to have a period ofÃ5D/(2b). Thus, we obtain

ln~MBH!5b ln~p2p* !1ck1C@ ln~p2p* !#, ~9!

whereck is a family-dependent constant andC@ ln(p2p* )# is
a periodic function with auniversalperiod,Ã.

Figure 2 depicts this periodic fine structure for our four
families of solutions mentioned earlier. In all four families
we obtain the basic power law behavior withb'0.37. Fig-
ure 2 displays the deviation of ln(MBH) from this straight line
as a function of ln(p2p* ). The agreement between the four
families shows that the fine structure is indeed universal with
the expected period. The periodic functionsF and C are
universal in shape. However, there is a family-dependent
horizontal offset~which depends onb and on the previous
family-dependent constants! in these functions; see also@8#.

One may worry, of course, whether this fine structure is
real or if it could arise from some numerical errors. In a

FIG. 1. Illustration of the conjectureduniversal periodic fine
structureof 2TBH . The quantity@2TBH2^2TBH&# is plotted as a
function of ln(a), wherea[(p2p* )/p* , for the four families. The
curves were shifted horizontally~but not vertically! in order to
overlap the first oscillation of each family with the first one of
family (a). ^TBH& is the value ofTBH determined from a straight
line approximation, i.e.,̂TBH&5const1b ln(p2p* ). The numerical
results agree with thepredictedrelationÃ5aD/2'4.6.
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previous paper@4# we have established the stability and con-
vergence of our code with numerous tests. Still, because of
the importance of this issue, we demonstrate here the physi-
cal character of this fine structure. Figure 3 depicts the de-
viations of ln(MBH) from a straight line as a function of
ln(p2p* ) for five different calculations with 100, 200, 400,
800, and 1600 grid points for the same initial data. The same
features were found on all grids even though the grid sizes
differ by a factor of 16. The five curves overlap and all show
the same periodic behavior. Numerical convergence~the 800
and 1600 curves are nearer than the 100 and 200 curves, for
example! is clearly seen.

III. SUMMARY AND CONCLUSIONS

We have studied the spherical gravitational collapse of a
massless scalar-field, both for the uncharged case and for the
charged configurations. Our main interest was the supercriti-
cal (p.p* ) feature of Choptuik’s solution, i.e., the power-

law dependence of the black-hole mass on the critical sepa-
ration. We have shown the existence of a fine-structure
above this power-law dependence in the form of a periodic
term with a universal period,Ã. We are not aware of such a
fine-structure periodic term in any other phase transitions in
statistical mechanics. Our periodic term with its period
strongly depends on the discrete echoing character of the
critical solution. This discrete self-similarity has been seen
only in the works of Choptuik@1#, Abrahams and Evans@2#
~collapse of axisymmetric vacuum gravitational field!, and in
our work concerning the gravitational collapse of a charged
~complex! scalar field@4#. Abrahams and Evans@2# have
found an echoing period ofD'0.6. Thus, using our analyti-
cal argument, we conjecture that a careful analysis will re-
veal a periodic fine structure~to the power-law behavior!,
with a period ofÃ'0.8, in the model problem of the col-
lapse of axisymmetric gravitational wave packets.

We have learned, after submission, that Gundlach@8# has
shown independently that such a periodicity should exist.
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FIG. 2. Illustration of the conjectureduniversal periodic fine-
structure generalization of Choptuik’s mass-scaling relation.
ln(m)2^ln(m)& is plotted as a function of ln(a) for the four families,
wherem[MBH /Mi ,c is the normalized black-hole mass in units of
the initial mass in the critical solutionMi ,c . ^ ln(m)& is the value of
ln(m) determined from a straight line approximation. The curves
were shifted horizontally~but not vertically! in order to overlap the
first oscillation of each family with the first one of family (a). The
numerical results agree with the predicted relation
Ã5D/(2b)'4.6.

FIG. 3. ln(m)2^ln(m)& is plotted as a function of ln(a) for family
(a), and with it, five different resolution grids with 100, 200, 400,
800, and 1600 grid points. The five curves overlap and all show the
same periodic behavior.
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