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A new version of thed expansion is presented, which, unlike the conventionald expansion, can be used to
do nonperturbative calculations in a self-interacting scalar quantum field theory having broken symmetry. We
calculate the expectation value of the scalar field to first order ind, whered is a measure of the degree of
nonlinearity in the interaction term.@S0556-2821~97!50306-7#

PACS number~s!: 11.10.Lm, 02.30.Mv, 11.10.Kk, 11.30.Er

In a discussion with Bessis@1# we learned about the re-
markable non-Hermitian Hamiltonian

H5p2/21 ix3. ~1!

The eigenvalues of this Hamiltonian are all real and positive.
~We have no proof of this property, but there is ample nu-
merical evidence.! Indeed, we believe that the quantum
field theory defined by the LagrangianL5(¹f)2/2
1m2f2/21gif3 in D-dimensional Euclidean space also has
a real positive spectrum. To appreciate this property heuris-
tically one may consider the weak-coupling expansion. For a
conventionalgf3 theory the weak-coupling expansion is
real, and ~apart from a possible overall factor ofg) the
Green’s functions are independent of the sign ofg because
they are formal power series ing2. This series is not Borel
summable because it does not alternate in sign. Nonsumma-
bility reflects the fact that the spectrum of the underlying
theory is not bounded below. However, when we replaceg
by ig, the perturbation series remains real but now alternates
in sign. The perturbation series is now summable and this
suggests that the underlying theory has a real positive spec-
trum.

The Hamiltonian in Eq.~1! is intriguing because it sug-
gests a novel way to apply thed expansionto quantum field
theories having a broken symmetry. In this paper we intro-
duce our new version of thed expansion and use it to calcu-
late the ~nonzero! value of ^f& in a scalar quantum field
theory @see Eq.~31!#.

Thed expansion is a Taylor series in powers ofd, where
d measures the degree of nonlinearity of an interaction term
@2#. For a scalar quantum field theory, the conventional ap-
proach@3# has been to introduce the parameterd into the
Euclidean Lagrangian density by

L5~¹f!2/21m2f2/21g~f2!11d. ~2!

The advantage of thed expansion is that it is nonperturbative
in the coupling constantg and massm and has a nonzero
radius of convergence. The conventional delta expansion has
been used to study renormalization@4#, supersymmetry@5#,
local gauge invariance@6#, stochastic quantization@7#, and
finite-temperature field theory@8#.

A drawback of the Lagrangian density in Eq.~2! is that it
becomes agufu3 theory rather than agf3 theory when
d5 1

2. The gufu3 theory is symmetric underf→2f and
cannot exhibit symmetry breaking. In general, the conven-
tional d expansion is unsuitable for studying theories with
symmetry breaking.

In the past it was assumed that to satisfy the physical
requirement that the Hamiltonian be bounded below for all
d, the parameterd should appear in the Lagrangian density
~2! as the exponent off2 and not of f. This assumption
appears to be even more reasonable if one expands the inter-
action term in Eq.~2! in powers ofd:

g~f2!11d5gf2(
k50

`
dk

k!
~ lnf2!k. ~3!

One would think that the argument of the logarithm in Eq.
~3! should be positive to avoid complex numbers.

However,H in Eq. ~1! describes a theory having a posi-
tive spectrum. This suggests a surprising new version of the
d expansion in which we replace Eq.~2! by

L5~¹f!2/21m2f2/22g~ if!21d. ~4!

As with Eq. ~2!, d50 gives free field theory. Atd51 we
recover~when the dimension of space-time is one and the
bare mass vanishes! the theory described by Eq.~1!.

We believe that for Red.22 the quantum-mechanical
theory has a positive real spectrum. Here, we verify this to
first order in d. The shift in the nth energy level of
H5p2/22( ix)21d is the expectation value ofdx2ln(ix) in
the unperturbed harmonic-oscillator basisun&:
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DEn5^nudx2ln~ ix !un&

5dE
2`

`

dxcn
2~x!x2ln~ ix !

5dS E
2`

0

1E
0

` D dxcn
2~x!x2ln~ ix !

5dE
0

`

dxcn
2~x!x2@ ln~2 ix !1 ln~ ix !#

52dE
0

`

dxcn
2~x!x2ln~x!

5d225/2@an2~2n11!g2~5n15/2!ln2#.
~5!

The sequencean52, 8, 16, 74/3, . . . is given by

an54n1414@n/2#1~4n12! (
k50

[n/211/2]
1

2k21
,

where@a# is the greatest integer ina. ~In the above calcu-
lation we choose the branch of the logarithm to lie along the
negative axis and choose the sheet of the Riemann surface
for which log150.! Although the Hamiltonian is not self-
adjoint, theO(d) shift in the energy levels isreal. This prop-
erty persists to all orders ind.1

We will now show that in any Euclidean dimension and
for all d.22 ~apart from a special discrete set of negative
values ofd), Eq. ~4! exhibits symmetry breaking. This result
is especially interesting for the cased52 because, although
the resultingf4 theory appears symmetric underf→2f,
symmetry breakingpersists.

We begin by considering a massless zero-dimensional
scalar quantum field theory, whose vacuum-persistence am-
plitudeZ andN-point Green’s functionGN are

Z5E
2`

`

dxe~ ix !21d
, GN5

1

ZE2`

`

dxe~ ix !21d
xN. ~6!

To evaluateGN we break the integral into two pieces:

ZGN5E
2`

0

dxe~ ix !21d
xN1E

0

`

dxe~ ix !21d
xN

52SRe ~ if N even!
i Im ~ if N odd! D E0

`

dxe~ ix !21d
xN.

~7!

This integral exists if21,Red,1. We letx21d5s and use
standard Fresnel contour integral methods to get

ZGN52~2 i !N
2p

N11Y GS 2
11N

21d D . ~8!

Using this result we calculateGN :

GN5
~2 i !N

N11
GS 2

1

21d D Y GS 2
11N

21d D . ~9!

The nonvanishing ofG2N11 in Eq. ~9! confirms that there is
symmetry breaking.

Let us examine the cased52 (f4 theory! in depth. Since
the one-point Green’s functionG1 for this model is nonvan-
ishing, the symmetry remains permanently broken asd ap-
proaches 2. The Green’s functions for this theory are
GN5(2 i )NG(3/4)/G(3/42N/4). In the presence of an ex-
ternal sourceJ, the vacuum functionalZ@J# for the theory
has a convergent Taylor series inJ:

Z@J#5Z@0# (
N50

`
JNGN

N!
5

p

2 (
N50

`
JN~2 i !N

N!GS 32N

4 D . ~10!

Note thatZ@J# obeys the third-order differential equation

Z-@J#1JZ@J#/450. ~11!

This is theD50 form of the functional Schwinger-Dyson
equation for the theory. IfJ is rotated byeip/4, Eq. ~11!
becomes the differential equation satisfied by the vacuum
functional Z̃@J# for a conventional zero-dimensionalf4

theory in the presence of an external source:

Z̃@J#5E
2`

`

dx exp~2x41Jx!. ~12!

This model does not exhibit symmetry breaking.
The Schwinger-Dyson equation~11! does not specify the

vacuum functional uniquely2 @10#. Indeed, there are four dis-
tinct solutions to the rotated version of Eq.~11!:

Zj@J#5E
Cj

dx exp~2x41Jx! ~ j51,2,3,4!. ~13!

Here,Cj are contours in the complex-x plane;C1 joins i` to
1`, C2 joins 1` to 2 i`, C3 joins 2 i` to 2`, andC4
joins 2` to i`. ~The four solutionsZj@J# are not linearly
independent; their sum is zero.! The vacuum functional
Z̃@J# in Eq. ~12! is given by Z4@J#1Z1@J#. The vacuum
functional for the symmetry-broken theory in Eq.~10! is
eip/4Z1@e

3ip/4J#. The symmetry-broken theory correspond-
ing to d52 in Eq.~6! is distinguished from the conventional
unbroken theory in Eq.~12! in that the sign of thex4 term is
reversed~reflecting the factor ofe3ip/4 in the source term
above!.

Next, let us examine the analytic behavior of Eq.~6! as a
function of complexd. The d expansion of the one-point
Green’s functionG1, whose nonvanishing signals the pres-
ence of symmetry breaking, is

1To orderd2 the energy remains real because the imaginary parts
in ^nuH1um&^muH1un& cancel as in Eq.~5!. We are convinced that
similar cancellations occur to all orders.

2Schwinger-Dyson equations, symmetry breaking, and choice of
path integral contour have been studied by@9#.
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G152 iAp$d/21d2~g2222ln2!/8

2d3@481p226~g2422ln2!2#/3841•••%.

~14!

The radius of convergence of this expansion is 2 because
there is one singularity in thed-plane atd522. @One might
think ~incorrectly! that asd→21 the integral forZ in Eq.
~6! would become a representation of a Diracd function,
which is singular. However, it is not generally true that when
an integral representation for a function ceases to exist, the
function exhibits a singularity.3# GN is analytic for
Red.22 because the integration path in Eq.~6! is an im-
plicit function of d. Indeed, asd ranges through real values,
the paths of integration of the two integrals in the first line of
Eq. ~7! rotate in opposite directions.4 The path of integration
of the first integral connects 0 and̀in the complex-x plane
along the straight line

path 1: argx53p/22p/~21d!. ~15!

The second integration path runs from 0 to` along

path 2: argx5p/~21d!2p/2. ~16!

Whend50 ~free field theory!, path 1 connects2` to 0
and path 2 connects 0 tò along the real-x axis. For this
caseGN is real and there is no symmetry breaking. Asd
increases, path 1 rotates anticlockwise and path 2 rotates
clockwise. The two paths slope downward at 45° angles
whend52 (f4 field theory!. As d→`, both paths connect
the origin to2 i`. Since the paths overlap and the integra-
tions are in opposite senses, the two integrals in Eq.~7! can-
cel. @This cancellation becomes evident if we setd5` in Eq.
~8!.# However, for thisf` theory the expectation values
GN approach finite limits:

lim
d→`

GN5~2 i !N. ~17!

The cased,0 is more interesting. Asd decreases below
0, path 1 rotates clockwise and path 2 rotates anticlockwise.
~The paths rotate infinitely fast asd→22.! Whenever the
two paths are horizontal, the resultingf2/(2k11) theory is real
and there isno symmetry breaking. This happens for the
special set of values

d524k/~2k11! ~k50,1,2,3, . . .!. ~18!

For this case we have

lim
d→24k/~2k11!

GN5H 0 ~N odd!,

G@~N11!~ 1
2 1k!#

G~ 1
2 1k!

~N even!.

~19!

If the two paths overlap~this occurs when the paths are ver-
tical and go up or down the imaginary axis!, there is cancel-
lation. This happens for af1/k theory when

d5~122k!/k ~k50,1,2,3, . . .!. ~20!

For this case we have

lim
d→~122k!/k

GN5~2 i !N~21!kN@k~N11!#!/k!, ~21!

which reduces to Eq.~17! for the special casek50.
Next, we examine theories in one-dimensional space-time

~quantum mechanics!. In general, the Hamiltonian

H5p2/21~ ix !21d ~22!

represents a broken-symmetry theory becauseH is not in-
variant under the parity operationP, whose effect is to make
the replacementsp→2p andx→2x. ~While H is not sym-
metric under time reversalT, which makes the replacements
p→2p, x→x, and i→2 i , H is symmetric underPT.! We
emphasize that there are both broken- and unbroken-
symmetric phases in zero- and one-dimensional Euclidean
space-time, but there is no transition between these different
phases. Transitions can only occur when the dimension is
two or more.

As in the case of zero dimensions, there is a set of values
of d @see Eq.~18!# corresponding to quantum-mechanical
theories for which there is no broken symmetry. These spe-
cial theories are described by the Hamiltonians

H5p2/22x2/~2k11! ~k50,1,2,3, . . .!, ~23!

where we have choseni 2/(2k11)521. The Hamiltonians in
Eq. ~23! have a deep connection with quasiexactly solvable
theories in quantum mechanics@12#. To express our theories
in a more familiar form we make the change of independent
variable x5t2k11 in the Schro¨dinger equationHc(x)
5Ec(x), followed by the multiplicative change of depen-
dent variablec5tky to eliminate one-derivative terms. We
obtain the Schro¨dinger equation

y9~ t !5@~k21k!t2222~2k11!2t4k~ t21E!#y~ t !. ~24!

Equation~24! represents a particle of zero energy in a rota-
tionally symmetric quasiexactly solvable potential having a
centrifugal barrier.

Finally, we use our newd-expansion to calculate the one-
point Green’s functionG1 in a symmetry-broken scalar
quantum field theory inD-dimensional Euclidean space. The
vacuum-persistence amplitude for the Lagrangian density in
Eq. ~4! is

Z5E Df expS E dDx@2 1
2 ~¹f!22 1

2 m
2f21g~ if!21d# D .

~25!

Since the fieldf has dimensionsM (D22)/2 and the coupling
constantg has dimensionsM21d2dD/2, whereM is a mass,
we re-express Eq.~25! using dimensionally explicit quanti-

ties by substitutingg5 1
2 M

21d2dD/2. Expanding the expo-
nent to first order ind gives

3A simple example is the integral*0
`dte2t/z, which exists for

Rez.0. When this condition is met, the integral evaluates toz,
which is an entire function ofz.
4A detailed discussion of the rotation of contours for eigenvalue

problems is given in@11#.
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Z5E Df expH 2S02
1
2 E dDx

3@dM2f2ln~ ifM12 ~D/2!!1O~d2!#J
5E Dfe2S0H12 1

2 dM2E dDtf2~ t !

3 ln@ if~ t !M12 ~D/2!#J 1O~d2!, ~26!

whereS05
1
2 *dDx@(¹f)21m2f2# andm2[m21M2.

To evaluate the one-point Green’s functionG1 we insert a
factor off(0) into the integrand of Eq.~26! and divide by
Z. By symmetry, the resulting expression vanishes atd50.
To first order ind we have

G152d
E Dfe2S0f~0!E dDtf2~ t !ln@ if~ t !M12 ~D/2!#

2M22E Dfe2S0

.

We now show thatG1 is pure imaginary: We average the
above expression with that obtained by settingf to 2f at
every lattice point.Provided that the integrals exist, we ob-
tain the explicitly imaginary result

G152 ipdM2
E Dfe2S0f~0!E dDtf~ t !uf~ t !u

4E Dfe2S0

.

~27!

It is not easy to evaluate this functional integral because it
contains uf(t)u, so we employ a limiting process:
lima→1/2f

2a5ufu. Before taking the limit we temporarily
treat a as an integer. Thus, this limiting process involves
continuing off the integers.@We cannot prove the validity of
this technique, but we justify this procedure in part by com-
paring the final result with the first term in Eq.~14! for the
caseD50.# To evaluate this limit we introduce an external
sourceJ(x), and expressG1 in terms of functional deriva-
tives with respect toJ(x):

G152 i
p

4
dM2E dDt

d

dJ~0!

3 lim
a→1/2

S d

dJ~ t ! D
112a Z@J#

Z@0#
U
J50

, ~28!

where

Z@J#[E Df expS E dDx@2 1
2 ~¹f!22 1

2 m2f21Jf# D
5Z@0# expS 1

2 E E dDxdDyJ~x!J~y!D~x,y! D , ~29!

andD(x,y), the free propagator inD-dimensional Euclidean
space, is the Fourier transform of 1/(p21m2):

D~x,y!5E dDp

~2p!D
e2 ip•~x2y!

1

p21m2

5
1

2p S 2pux2yu
m D 12 ~D/2!

K211 ~D/2!~mux2yu!. ~30!

For integera we use Eqs.~29! and~30! to evaluate Eq.~28!
and obtain the final result forG1:

G152 i
p

4
dM2 lim

a→1/2
E dDt

d

dJ~0! S d

dJ~ t ! D
112a

3F12E E dDxdDyJ~x!J~y!D~x,y!Ga11Y ~a11!!

52 i
p

4
dM2 lim

a→1/2

~2a12!!Da~0,0!E dDtD~0,t !

2a11~a11!!

52 idM2ApD~0,0!/2E dDtD~0,t !

52 idM2m23~m2/4p!D/4ApG~12D/2!/2, ~31!

where we have used*dDtD(0,t)5m22 and

D~0,0!5mD2222Dp2D/2G~12D/2! ~D,2!. ~32!

At D50, m50, andM5m5A2, Eq. ~31! reduces to the
first term in Eq.~14!. Note that asD increases past 2,G1 in
Eq. ~31! becomesreal because the gamma function changes
sign. ForD,2,D(0,0) is finite and positive, but forD.2 it
is a divergent integral regulated by continuing through com-
plex dimension. Thus, forD.2, the sign isa priori unpre-
dictable.

In conclusion, we emphasize that the nonvanishing of the
one-point Green’s function~tadpole graphs! in Eq. ~31!
shows that the theory exhibits symmetry breaking. This re-
sult is can only be obtained using a nonperturbative tech-
nique; any attempt to calculateG1 perturbatively as a formal
power series in the coupling constantg in gf4 theory will
necessarily give the result 0. Furthermore, this is the first
time that thed expansion has be used to perform nonpertur-
bative calculations in a theory having a broken symmetry.
~The nonperturbative dependence ofG1 on g is implicit; m
depends ong.!
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