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Nonperturbative calculation of symmetry breaking in quantum field theory
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A new version of thes expansion is presented, which, unlike the conventidghetpansion, can be used to
do nonperturbative calculations in a self-interacting scalar quantum field theory having broken symmetry. We
calculate the expectation value of the scalar field to first ordef, iwhere § is a measure of the degree of
nonlinearity in the interaction ternjS0556-282097)50306-7

PACS numbgs): 11.10.Lm, 02.30.Mv, 11.10.Kk, 11.30.Er

In a discussion with Bessid] we learned about the re- The advantage of théexpansion is that it is nonperturbative
markable non-Hermitian Hamiltonian in the coupling constang and masam and has a nonzero
radius of convergence. The conventional delta expansion has
been used to study renormalizatipf], supersymmetry5],
H=p2/2+ix3. (1) local gauge invariancg6], stochastic quantizatiof], and
finite-temperature field theor].
A drawback of the Lagrangian density in H®) is that it
The eigenvalues of this Hamiltonian are all real and positivebecomes ag|$|® theory rather than a¢® theory when
(We have no proof of this property, but there is ample nu-6= 3. The g| |3 theory is symmetric undep— — ¢ and
merical evidencg. Indeed, we believe that the quantum cannot exhibit symmetry breaking. In general, the conven-
field theory defined by the LagrangiarC=(V$)%/2 tional & expansion is unsuitable for studying theories with
+m2¢?/2+ gi¢* in D-dimensional Euclidean space also hassymmetry breaking.
a real positive spectrum. To appreciate this property heuris- In the past it was assumed that to satisfy the physical
tically one may consider the weak-coupling expansion. For aequirement that the Hamiltonian be bounded below for all
conventionalg¢® theory the weak-coupling expansion is &, the parametes should appear in the Lagrangian density
real, and(apart from a possible overall factor @f) the (2) as the exponent of? and not of ¢. This assumption
Green's functions are independent of the sigrgdfecause appears to be even more reasonable if one expands the inter-
they are formal power series gf. This series is not Borel action term in Eq(2) in powers of5:
summable because it does not alternate in sign. Nonsumma-
bility reflects the fact that the spectrum of the underlying
theory is not bounded below. However, when we replgce * sk
by ig, the perturbation series remains real but now alternates g(p?) 1+ o=gp? Y, W(In(bz)k. 3
in sign. The perturbation series is now summable and this k=01
suggests that the underlying theory has a real positive spec-
trum.

The Hamiltonian in Eq(1) is intriguing because it sug- One would think 'Fhat the argument of the logarithm in Eq.
gests a novel way to apply theexpansiorto quantum field (3) should be positive to avoid complex numbers. _
theories having a broken symmetry. In this paper we intro- However,H in Eq. (1) describes a theory having a posi-
duce our new version of thé expansion and use it to calcu- tive spectrum. This suggests a surprising new version of the
late the (nonzero value of (¢) in a scalar quantum field ¢ €xpansion in which we replace E®) by
theory[see Eq.(31)].

The § expansion is a Taylor series in powers®fwhere
& measures the degree of nonlinearity of an interaction term L=(V )22+ m?¢?12—g(i¢)**°. (4)

[2]. For a scalar quantum field theory, the conventional ap-

proach[3] has been to introduce the paramefemto the

Euclidean Lagrangian density by As with Eq. (2), 6=0 gives free field theory. Ab=1 we
recover(when the dimension of space-time is one and the
bare mass vanishethe theory described by El).

L=(V )22+ m2p?[2+g(p?)1H2. 2) We believe that for R&>—2 the quantum-mechanical
theory has a positive real spectrum. Here, we verify this to
first order in 6. The shift in the nth energy level of

*Electronic address: cmb@howdy.wustl.edu H=p?/2—(ix)2*? is the expectation value afx?In(ix) in
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AE,=(n|8x%n(ix)|n) Using this result we calculaté,:
° 2 o (—i)N 1 1+N
=5f_ dxii(x)x7In(ix) Gn= NF1 r 575 r ~ %55/ 9

0 o ) - The nonvanishing o6,y .1 in Eg. (9) confirms that there is
=0 ffor J;) dxer(X)x“In(ix) symmetry breaking.
Let us examine the cast=2 (¢* theory in depth. Since
o the one-point Green'’s functioB@, for this model is nonvan-
= 5f dxwﬁ(x)xz[ln(—ix)+|n(ix)] ishing, the symmetry remains permanently brokensap-
0 proaches 2. The Green’s functions for this theory are
. Gn=(—1)"I'(3/4)T'(3/4—N/4). In the presence of an ex-
zzgj dxgr2(x)x?In(x) ternal sourcel, the vacuum functionaf[J] for the theory
0 has a convergent Taylor seriesdn

=625 a,—(2n+1)y—(5n+5/2)In2]. © N o N/ _i\N
J'G T IV (=i
(5) Z[3]1=2[01>, —1 =~ by (10)
K=o N! 25=0 3—N
The sequenca,=2, 8, 16, 74/3. .. isgiven by N!T 4
[n/2+1/2]
a,=4n+4+4[n/2]+(4n+2) E ST Note thatZ[J] obeys the third-order differential equation
k=0 -
Z"[J]+JZ[J)/4=0. (11)

where[ ] is the greatest integer ia. (In the above calcu-

lation we choose the branch of the logarithm to lie along therhis is theD=0 form of the functional Schwinger-Dyson
negative axis and choose the sheet of the Riemann Surfa%uaﬂon for the theory_ 1f) is rotated byeiﬂ'/“, Eq (11)

for which log1=0.) Although the Hamiltonian is not self- pecomes the differential equation satisfied by the vacuum
adjoint, theO( o) shift in the energy levels igal. This prop-  ,nctional E[J] for a conventional zero-dimensionab*

. - 1
erty persists to all orders ia. _ _ _ theory in the presence of an external source:
We will now show that in any Euclidean dimension and

for all 6>—2 (apart from a special discrete set of negative _ %

values ofé), Eq. (4) exhibits symmetry breaking. This result Z[J]= f dx exp(—x*+Jx). (12

is especially interesting for the cage=2 because, although -

the resultingg” theory appears symmetric under— — ¢,

symmetry breakingersists
We begin by considering

scalar quantum field theory, whose vacuum-persistence a

plitude Z and N-point Green’s functiorGy are

This model does not exhibit symmetry breaking.
a massless zero-dimensional 1n€ Schwinger-Dyson equatig@l) does not specify the
pyacuum functional uniqueh{10]. Indeed, there are four dis-
tinct solutions to the rotated version of Hd.1):

» : 1(~ ) .
2 [ axé®* ey axd @ 2[91- [ axew—x+a0 (-1234. (3
NS — o ]
To evaluateGy we break the integral into two pieces: Here,C; are contours in the complexplane;C, joinsico to
+o, C, joins + to —ioe, C; joins —io to —o, andCy
7Gu= JO dxd? N | fwdxe(ix)“ﬁxw joins —o to ic. (The four solutionsZ;[J] are not linearly
NT 0 independent; their sum is zeyoThe vacuum functional
Z[J] in Eq. (12) is given by Z,[J]+Z4[J]. The vacuum
Re (if N even) (= (248 functional for the symmetry-broken theory in E@LO) is
— dxe(lx) xN - -
ilm (if N odd/ J, : e'™4z,[e3™43]. The symmetry-broken theory correspond-

(7)  ingto =2 in Eq.(6) is distinguished from the conventional
unbroken theory in Eqi12) in that the sign of the* term is
This integral exists if-1<Res<1. We letx?**°=s and use  reversed(reflecting the factor oe®™* in the source term
standard Fresnel contour integral methods to get above.
Next, let us examine the analytic behavior of Eg). as a
®) function of complexé. The & expansion of the one-point
Green’s functionG,, whose nonvanishing signals the pres-
ence of symmetry breaking, is

1+N
246

2

ZGy=—(—iN— r(

N+1

To order 8 the energy remains real because the imaginary parts
in (n|H{/m){m|H4|n) cancel as in Eq(5). We are convinced that 2Schwinger-Dyson equations, symmetry breaking, and choice of
similar cancellations occur to all orders. path integral contour have been studied[ B}
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Gy= —iJ@{82+ 8% (y—2—2In2)/8 If the two paths overlajfthis occurs when the paths are ver-
tical and go up or down the imaginary axishere is cancel-
— 6% 48+ 7%~ 6(y—4—2In2)%]/384+ -} lation. This happens for & theory when
(14 5=(1-2K)/k (k=0,1,2,3,..). (20)

The radius of convergence of this expansion is 2 becaus
there is one singularity in thé-plane ats= —2.[One might
think (incorrectly that asé— —1 the integral forZ in Eq. ; — (i \N/_ 1\kN el

(6) would become a representation of a Diradunction, 5H<I1Ir_n2k),kGN (COTEDTN+D K, (2D
which is singular. However, it is not generally true that when

an integral representation for a function ceases to exist, th&/hich reduces to Eq17) for the special cask=0.

function exhibits a singularity] Gy is analytic for Next, we examine theories in one-dimensional space-time
Res> — 2 because the integration path in Ef) is an im-  (quantum mechanigsin general, the Hamiltonian

plicit function of 6. Indeed, as’ ranges through real values, ) ors

the paths of integration of the two integrals in the first line of H=p®/2+(ix) (22)

Eq. (7) rotate in opposite directiorfsThe path of integration
of the first integral connects 0 andin the complexx plane
along the straight line

Eor this case we have

represents a broken-symmetry theory becatdsis not in-
variant under the parity operatid? whose effect is to make
the replacements— — p andx— —x. (While H is not sym-

path 1: arg=3w/2—w/(2+5). (15) metric under time reversdl, which makes the replacements
p— —p, X—X, andi— —i, H is symmetric undef7) We
The second integration path runs from O«¢calong emphasize that there are both broken- and unbroken-
symmetric phases in zero- and one-dimensional Euclidean
path 2:  arg=m/(2+6)—m/2. (16 gpace-time, but there is no transition between these different
phases. Transitions can only occur when the dimension is

When §=0 (free field theory, path 1 connects-« to 0

and path 2 connects 0 to along the reak axis. For this As in the case of zero dimensions, there is a set of values

caseGy is real and there is no symmetry breaking. As of & [see Eq.(18)] corresponding to quantum-mechanical

increases, path 1 rotates anticlockwise and path 2 rotat ; : .
clockwise. The two paths slope downward at 45° angle(i.eOrIeS f_or which ther_e s no broken symmetry. These spe-
. cial theories are described by the Hamiltonians

when 6=2 (¢* field theory. As §—x, both paths connect
the origin to—i«. Since the paths overlap and the integra- H=p2/2—x22+D  (k=0,1,2,3,..) (23)
tions are in opposite senses, the two integrals in(Eqcan- e
cel.[This cancellation becomes evident if we set< in EQ.  \yhere we have chosd”f®*+1D=—1. The Hamiltonians in
(8).] However, for this¢™ theory the expectation values Eq. (23) have a deep connection with quasiexactly solvable
Gy approach finite limits: theories in quantum mechanigk2]. To express our theories
lim Gy=(—i)N a7 in a more familiar form we make the change of independent
som N : variable x=t>**1 in the Schrdinger equationH y(x)
=Ey(x), followed by the multiplicative change of depen-
The case’<0 is more interesting. A$ decreases below dent variabley=t*y to eliminate one-derivative terms. We
0, path 1 rotates clockwise and path 2 rotates anticlockwiseabtain the Schidinger equation
(The paths rotate infinitely fast a&— —2.) Whenever the
two paths are horizontal, the resultigd®** 1) theory is real
and there isno symmetry breakingThis happens for the
special set of values

two or more.

Y (1) =[(K2+k)t~2—2(2k+ 1)2t*(t2+ E)y(t). (29

Equation(24) represents a particle of zero energy in a rota-
tionally symmetric quasiexactly solvable potential having a

5= —4k/(2k+1) (k=0,1,2,3,..). (18  centrifugal barrier. _

Finally, we use our new-expansion to calculate the one-

For this case we have point Green’s functionG; in a symmetry-broken scalar
quantum field theory ifb-dimensional Euclidean space. The

0 (N odd), vacuum-persistence amplitude for the Lagrangian density in
im  Gy={ TN+ 1)} +K)] ks
5——4k/(2k+1) T (N even.
’ 19 z:fDqs exp(dex —3(Ve)?— smP¢?+g(ih) 1.

(29

Since the field$ has dimension$/ and the coupling
; ; 2+ 8- 5DI2 ;
Rez>0. When this condition is met, the integral evaluateszto constantg has dlmenS|opM . ! whereM ',S ,a mass:
which is an entire function of. we re-express E(25) using dimensionally explicit quanti-
“A detailed discussion of the rotation of contours for eigenvalueties by substitutingg= 3 M2~ %P’2_ Expanding the expo-
problems is given if11]. nent to first order ins gives

3In . . w . . (D-2)/2
A simple example is the |ntegrejlodte’”z, which exists for
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z=fD¢ exp[—So—%JdDX
X[6M2¢>2In(i¢Ml(D/Z))+O(52)]}
:f Dd,eSO[l—%&sz dPt (1)

XIn[i p(t)M1~ (P/2]

+0(8%), (26)

whereSy= % [dPX[(V ¢)?+ u?¢?] and u’=m?+ M2,

To evaluate the one-point Green'’s functi@p we insert a
factor of ¢(0) into the integrand of Eq26) and divide by
Z. By symmetry, the resulting expression vanishegal.
To first order iné we have

qubefs"(ﬁ(o)f dPte?(O)Infigp(tyM*~ P2
Gl:_5 .

2M’2J' Dgpe o

We now show thaG, is pure imaginary: We average the
above expression with that obtained by settihdo — ¢ at
every lattice pointProvided that the integrals exjsive ob-
tain the explicitly imaginary result

f DeS(0) f dPra(t)] ()]

G,=—iméM?
4J Dpe~ S

(27)

contains |¢(t)|, so we employ a limiting process:
lim,_1,0°“=|¢|. Before taking the limit we temporarily

treat « as an integer. Thus, this limiting process involves

continuing off the integer§We cannot prove the validity of

this technique, but we justify this procedure in part by com-

paring the final result with the first term in E¢L4) for the
caseD=0.] To evaluate this limit we introduce an external
sourceJ(x), and expres$s; in terms of functional deriva-
tives with respect td(x):

T zf
|46M

X lim (
a—1/2

s
D
45500

1+2a@
Z[0]

G]_: -

53(1) . 28

where
201= [ Do e [ @ox— 1V 1utea0)

=Z[0] exp(%f JdDXdDyJ(X)J(Y)A(X.Y)), (29
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andA(x,y), the free propagator iB-dimensional Euclidean
space, is the Fourier transform of pft+ u2):

A(x y)=f d°p e ip-(x=y) 1
’ (2m)° pZ+ 112
1 (27|x—y[| 1~ @2
AN K1+ o) (plx=y]). (30

For integera we use Eqs(29) and(30) to evaluate Eq(28)
and obtain the final result faB:
F) 1+ 2«
( 5J(t)>

a+l
/ (at+1)!

(2a+2)! A“(0,0)f dPtA(0})

1)
dPt———

P VERT
I im 53(0)

4 a— 1/2f

1
. J f d°xdPyI(x)I(Y)A(x.Y)

G]_: -

X

- 7T 2 -
=—i—50M*“ lim
a—1/2

=—j 5|\/|2\/77A(0,0)/2J dPtA(0t)

29" (a+1)!

=~ 6M?u " 3(u?l4m)P*\ 7T (1-D12)/2, (31
where we have usefld®tA(0t)=u 2 and
A(0,00=uP 22 P7 D2r(1-D/2) (D<2). (32)

At D=0, m=0, andM=pu=2, Eq. (31) reduces to the

. . . . first term in Eq.(14). Note that ad increases past 35, in
It is not easy to evaluate this functional integral because i

Eq. (31) becomeseal because the gamma function changes
sign. ForD<2, A(0,0) is finite and positive, but fdd>2 it

is a divergent integral regulated by continuing through com-
plex dimension. Thus, fob>2, the sign isa priori unpre-
dictable.

In conclusion, we emphasize that the nonvanishing of the
one-point Green’s functior{tadpole graphsin Eq. (31
shows that the theory exhibits symmetry breaking. This re-
sult is can only be obtained using a nonperturbative tech-
nigue; any attempt to calcula€e, perturbatively as a formal
power series in the coupling constaptn g¢* theory will
necessarily give the result 0. Furthermore, this is the first
time that thed expansion has be used to perform nonpertur-
bative calculations in a theory having a broken symmetry.
(The nonperturbative dependence@f on g is implicit;
depends omgy.)
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