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We have derived constraints on theneutrino mass and fourth generation mixing from an analysis of the
partial widths of7 lepton decays, in particular,” —e vev,, T_—>/,L_V_/,_VT, T—m v, andr—K v_. We
present predictions for thedecay widths, allowing for a nonzeroneutrino massn, and for mixing with a
neutrino of massn, >M /2, which is parametrized using a Cabibbo-like mixing argjle By comparison of
these theoretical predictions with the experimental measurements, we obtain the following bounds at the 90%
confidence levelm, <42 MeV and Sif 6,<0.014.[S0556-282(97)50101-9

PACS numbdrs): 14.60.Pq, 13.35.Dx

[. INTRODUCTION (v.,L7) [6,9-13, where the neutrino has a madd
>M/2.

Massive neutrinos feature in many extensions to the stan- We present calculations of thepartial widths for these
dard model[1]. They have been suggested as a source othannels which allow for the effects of nonzermeutrino
dark mattef2] and, if they oscillate in the Sun, as an expla- mass and mixing. Then, using data freme ™ experiments,
nation for the deficit in the observed solar neutrinoWe derive constraints on theneutrino mass and mixing.
flux [3, 4]. The best experimental upper limit on theneu- This approach is complementary to traditional analyses of
trino mass ism, <24 MeV at the 95% confidence levid], the kinematic end point of multihadrandecays, which yield

which was obtained using many-body hadronic decays of th(t:’jghter constraints om,_but which are insensitive to fourth
. generation mixing. Moreover, the channels we consider are

In this paper we describe a complementary method foptatistically independent and theoretically very well under-
constraining ther neutrino massn,_from precise measure- stood.
ments of 7 partial widths for the following decays:

T —€ Vel,, T DM VUV, T =T Vv, and

7 —K"v.. The dependence of the purely leptonic decay |, the standard model describing the electroweak interac-
rates onm, has been considered by oth¢6s-8], whereas, iion  the partial width I, for the decay

to the bestrof our knowledge, the hadronic decays have not. /~v v (Xgy), With /" =e”, u~ and Xgy=1,

Il. PARTIAL WIDTHS FOR 7+ DECAYS

previously been analyzed for this purpose. Theartial de- -+, e*e™,..., isgiven by
cay widths are also sensitive to mixing in the leptonic sector
with a fourth generation weak isospin lepton doublet B, Gémi
R A @

Henceforth we denote the branching ratios for these processes ¥1ereGg is the Fermi constantn, and 7, are ther mass
Be, B,, B., By, respectively; B, denotes eitherB, or B, and lifetime. The radiative—correction functi®) has been
while B;, denotes eitheB3,. or B . calculated 14—17, with a(m,)=1/133.3[17], to be
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If the neutrino masses are zero for all generations, then the
phase-space factﬁ‘} is given by the well-known expression

133
s,

F/F°

(@)

O

(@)
‘\({\‘\\\\\({I
e

0.98 N

Fo(x)=1-8x—12x%n x+8x3—x* [1 (#=e),
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Where X= m//m A value of Gg=(1.1663%-0.00002 C )
X 10 ° GeV 2[18] is obtained from the measurement of the 0.92 B O —
muon lifetime using Eq(1), with /~=e~ and substituting = ~(d)T—Kv \
7—u. G implicitly includes the residual effects of radiative 0ol il vl vl
corrections not explicitly included in Eq2). 0 005 01 015 02
The partial widths for the decays —h~ v, (y), with m(v;) (GeV)

h™=#"/K™, are given by
) 3 FIG. 1. Relative phase-space suppression factors, as a function
B Ggm f 7 neutrino m f e vy b) 77 —u v,v
_Pn_ TI2R, |V, | 2F 4 of = neutrino mass fora) e vev,, (b) uovv,, (€)
h— 7',._ 167 h| "‘B| h» 4) T —a v, and(d) 7 =K v,.

where f,, are the hadronic form factord,. and fx, and N,=2.991+0.016[18]). Since such a neutrino is kinemati-
V, are the Cabibbo-Kobayashi-Maska¢@KM) matrix el- cally forbidden inr decays, the corresponding phase-space
ementsV,q and Vs, for 7~ andK~, respectively. From factor is zeroI', is therefore suppressed by a factor which
an analysis ofr~—pu v, and K —u v, decays, one depends on the strength of the mixing of the third and fourth
obtains f_ |V, =(127.4-0.1) MeV and f¢|V,J=(35.18 generations, but not on the mass, . From the above, Eq.
+0.05) MeV[19, and references thergiThe radiative cor- (7) reduces to
rection factorRy, is given by[17] G2

2a mz r/ 1927 SR/(l Sln209|_)F/, (8)
ha 1+ ?In (H

T

+---=1.02. (5)

where the factor of (%sirf6)=|U4f?> allows for the
The ellipsis represents terms, estimated to-e0.01[19], Cabibbo-like suppression due to fourth generation mixing,
which are neither explicitly treated nor implicitly absorbed and the phase-space factor is given by

into Gg, f,|Vudl, or fx|V,d. For massless neutrinos the

_ =0
phase-space functidRl is given by F (xy)=F)(x)—8y(1-x)%+:--, ©)
0.9877 (h=m), wherey=m? /mZ, F7 is given by Eq.(3) and the ellipsis
Fﬂ(x)z(l—x)z%o 8516 (h=K) (6)  represents negligible terms of higher ordernm_. Figures
1(a) and Xb) show the variation oiF//F9 with m,, for
wherem,, is the hadron mass and=m2/m?. 7" —€ ver, and 7 —u v,v, decays, respectively.

We now consider the effects of neutrino masses and mix- The expression fod',, allowing for nonzero neutrino
ing on ther decay rates. The expression 1oy, allowing for  masses and mixing in a similar fashion, is given by
nonzero neutrino masses and mixing betwadepton gen-

erations, is given by Zm? "

Ggm:
Th=mfﬁRh|Vaﬁ|22 |UiI%Fn
G2 5 n n =1
r,= 192W3R/E 2, [Ual?u%F,, (7) 23

GFm’T .
= o fnRnlVagl?(1=sin® 6)F, (10

where U,; is the lepton mixing matri{18, p. 276 and
F,, the phase-space factor, depends on the neutrino and/here the phase-space function has been calculated to be
charged lepton masses.

The electron and muon neutrinos couple dominantly to Fr(x.y) = FO(x)| 1— 2+x-y /1_ 2+2x—y
v, and v, and have small mass¢$8]. We therefore ne- hGY)=Fh YIT1=x y (1-x)? |’
glect the masses of; and », and their mixing withvs. (11

We do, however, consider the possible existence of a fourth
generation neutrinoy, , of massm, >M_/2 which mixes with y =m; /m Figures 1c) and 1d) show the variation of

with v (data from the CERN:* e~ collider LEP have con- Fn/Fi with m,, for r——7"v, and —K"», decays, re-
strained the number of neutrinos of mass<M/2 to be  spectively. Note the lower sensitivity tm,_ of the (two-
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TABLE I. Upper limits obtained om,_ and siff,_, sepa-

ch.—l 22;1 é 90% CL 95% CL  (a) rately for eachr decay channel and for all channels combined.
w Tk Upper limit on m,, (MeV) | Upper limit on sirtg,
0.02 at the 90%(95% C.L. |at the 90%(95%) C.L.
0.01 i— T’He’@f 63 (72 0.016 (0.019
0 :1 Ll R AR L1 Tﬁ*)’u’iyﬂy" 66 (76) 0.018 (0'022
0 0.05 0.1 0.15 02 T T v, 141 (160 0.028 (0.033
m(V3) (GeV) 7T =K v, 333 (375 0.036 (0.038
. All channels 42 (48 0.014 (0.019
= (b)
g The sole exception is the use of the BESnass[20], ob-
a tained from the measurement af" 7~ production near
z threshold, since this has no dependencengp Substituting
— in Egs.(1) and(4) for the measured quantities, and assuming

O‘ ' l(l)l()SI : '0{1‘ ' ‘(‘).\15" ‘ '0‘2 thatm, =0 and sif6 =0 we obtain

m(v,) (GeV) 0.996+0.007 (—0.540) for 7 —e vev,,
Gf | 0.996-0.008 (~0.55) for T u v,
© Gr | 1.01080.017 (+0.60r) for 7 —m v,

0.987£0.070 (—0.1&) for 7 —K ..
(12)

where the number of standard deviations from the universal-
I A T A ity prediction (of unity) are shown in parentheses. These re-
0 001 002 003 004 sults, which are all consistent with unity, indicate that the
sin°© lepton couplings are universal and show no indications for
nonzero neutrino mass or mixing. We therefassumaeuni-
FIG. 2. Likelihood distributions for al- decay channels com- Vversality holds and use the measureplrtial widths to con-
bined, for(a) m, vs sirf,, (b) m, , integrated over sfig , and(c) ~ Strainm,_and sirté, .
sir’6_ , integrated ovem, . We have mapped the likelihood of observing the mea-
sured 7 partial widths, as a function of both
m,, and sirtg_, by randomly sampling all the quantities

body) hadronic decay modes compared to tteree-body used according to their experimental errors, allowing for the

leptonic modes, despite the higher masses of the final stagstimated 1% theoretical uncertainty &y,. The CLEO
hadrons. measurement of the mass was used to further constrain

m,,. From an analysis of* 7~ — (7 n7%v,) events(with
Ill. CONSTRAINTS ON v, MASS AND MIXING n<2, m<s2, 1lsn+m=<3), CLEO determined the mass

= + 2
In the standard model of electroweak interactions, th fo be m, _(1?77'&0'7_ 1'7)+[m”3 (MeV)]/1400 MeV
three lepton generations interact in an identical way, apai2L)- The likelihood for the CLEO and BES measurements to

from effects caused by their differing masses. In particular@9ree as a function af, is included in the global likeli-
they each couple with the same strength to the charged wedlood.

current. If this assumption of universality is relaxed for the Figure 2a) shows the 90% and 95% contours of the two-
then ther: factor appearing in Eqg1) and (4) may be dimensional likelihood distribution combined for all four
replaced byG-GZ, where GZ is not necessarily equal to decay channels. No evidence is seen for a nonzero neutrino
Ge. If the measured values dB”, evaluated assuming Mass, nor for mixing. By integration of the two-dimensional

massless neutrinos and no mixing, appeared to be signiflikélinood over all values of sffi., we obtain the one di-
cantly smaller tharG. it could indicate either new physics Mensional likelihood fom, ,, independent of the value of
[13] or the suppression of decay rates due to nonzero ne@in’d., as shown by the solid line of Fig(t®. We obtain the

1/P dP/d(sin°®, )

L

trino masses or mixing. following upper limits:m, <42(48) MeV at the 9(5)%
We use the Particle Data Group values and effrb8$ for confidence levels. The solid line of Fig(c2 shows the one-
the measured quantities: in particular, dimensional likelihood distribution for srg,, integrated

over all values oim,_, from which we derive the upper lim-
=(291.0+1.5 fs; m,=(1776.9653" 52 MeV; L "3 .

7= S ~( 6021 017 its: sirf6,<0.014(0.017) at the 905)% confidence levels.

B.=(17.80:0.08%; B,=(17.30=0.10%; Table | summarizes the upper limits af,, and sirf6,

B,=(11.07+0.18%; Bx=(0.71x0.09%. individually for each channel and for all channels combined.
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Since the mixing ofm,  with other neutrinos is small, the the partial widths of tau lepton decaysim,

limits derived formV3 can be reasonably interpreted as limits <42 MeV and siff, <0.014 at the 90% confidence level.
onm, . These results are statistically and systematically independent
Noninclusion of the constraint from the CLE®@ mass 8; }[Laed:ucl)\;llc?:eeor:/de_rp\c/)vlgts?rrrlnill)tlzgtseouussl,ll;gcr;]rl:étilggrd:ﬁ&li%ge;ﬁés
measurement results_ inthe following limitsm,, are insensitive to fortuitous or pathological events close to
<59(68) MeV and sif <0.013(0.016) at the 905)%  the kinematic limits, details of the resonant structure of mul-
confidence levels. The slight reduction in the“gjnlimit tihadron = decays, and the absolute energy scale of the de-
values, despite the increase in thg_ limit, is due to the tectors.
anticorrelation of the effects on the likelihood of nonzero These results will improve with more precise measure-
values formV3 and siftg, . ments of ther mass, lifetime, and branching fractions, for
example at a~charm factory. Ultimately, we expect that this
method will be limited by the uncertainty on thelifetime.
IV. CONCLUSIONS The exte_nsmn_of thls tephnlqu.e to include mulyhadromc.
decays, in conjunction with an improved theoretical descrip-
We have derived the following constraints on theeu- tion, should provide considerably more sensitivity due to the
trino mass and fourth generation mixing from an analysis ohigher multiplicity of the final states.
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