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Interaction of a small-size wave packet with a hadron target
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We calculate in QCD the cross section for the scattering of an energetic small-size wave packet off a hadron
target. We use our results to study the smaatbehavior ofP (o), the distribution over the cross section for
the pion-nucleon scattering, in the leadiag order.[S0556-282(97)01001-1
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I. INTRODUCTION lying resonances. Finally, in Sec. VI, we calculate the cross-
section distribution for the piof® (o) in the small cross-
Recently phenomena involving interactions of hadrons insection limit where it is governed byq configurations
small-size configurations have been intensively discussetiaving small spatial size. Basing on QCD evolution equation
both in relation with the phenomenon of color transparencywve evaluate also the functional dependenc® pfo)—0 on
and vector meson electroproduction observed at energies and on the incident energy.
reached at the DES¥p collider HERA. There is also a deep
relation between presence of the weakly interacting small- Il. HARD y*T TOTAL CROSS SECTION AND THE
size configurations in hadrons and phenomenon of cross- INTERACTION OF SMALL-SIZE CONFIGURATIONS
section fluctuations in the interactions of the hadrons which Let us consider a particular contribution into thé T
manifests itself in the inelastic coherent diffraction pro- : par . .
cessesh+N(A)—X+N(A), see Ref[1]. In this paper, we cross section forrespond'lng to a_tran.sfo'rmatlon of theIV|rtuaI
focus on the systematic derivation of the formulas for thePhoton wheny™ converts into & Q pair with quarks having
interaction of the color singlejq pair having a small trans- & large relative transverse momentum. Usually, this contri-
verse size with a hadron target. Then, we use these formuld&/tion is written as a convolution of the infinite momentum
to calculate the probability of the distribution for the inter- IT@me wave function of the target with the perturbative QCD
action of a photon and a pion with a target for small inter-(PQCD calculable coefficient function describing the short-

action cross sections. Although some of equations deduceqﬁtance propagation of the particles between two virtual

in the paper existed before, no derivations with analysis oP ot(_)n vgrtices. Our aim is_ to express the releva_nt coefficient
their accuracy have been presented. function in terms of the light-cone wave functions of the

The paper is organized as follows. In Sec. I, we considelirual photons as viewed from the reference frame where
the virtual forward Compton amplitude in the smalfegion the target is at rest. The contribution we are interested in is
where it is dominated by the photon-gluon scattering subpro9Ven by the sum of diagrams shown in Fig. 1.~~~
cess. We outline there a derivation of the basic formula ex- The Iower_ blob corr_esponds to the_gluon distribution in
pressing the total cross section 1 as a convolution of the the tar_get. It is convenient to parametrlze the gluon momen-
gluon distribution amplitud&+(x,Q?) and theyg scattering tumk in terms of the Sudakov variables
cross section. In Sec. llI, we write down thg cross section s
in terms of theqq light-cone wave functions of the virtual k=—aq' +B8p +k;, d*k= Edadﬁdzkt. (2.1
photons. In the next section, we calculate the cross-section
distribution P« (o) for the virtual photon. In Sec. V, we

discuss the quark-hadron duality interplay between the per- q e
turbative free-quark results and contributions due to low-
«t
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Here,q' andp’ are lightlike momenta related fo,q by In this estimate we use also scaling 0@# in the box dia-
gram. The amplitude due to the exchange by two-vector par-
. ?® ., Y p> 22 ticles increases liks, and we have
a=q —z(p,q,)p v P=P 2(p’q’)q ; .

f Tg)MdaSOC(aS)ZJ“n.

2,2 L

o qp
2(pq)=2(p'0") + 577y - 23 | | |
(p'a’) Here, n>0, since, according to the QCD evolution equa-
tions, the deep inelastic amplitudes increase with energy in

For our goals, the most interesting region is that of Sma"region of applicability of the perturbative QCD.

H ,_ 2

values of the Bjorken parameter=—q/2(pg) -0, where As a result of this power counting estimate we obtain
we may safely approximate @(q’)=s.

In the d*k integral, the regiork?~Q? corresponds to the (Bs)? (as)®>™™  d%k, ) o
next-orderag correction, so we will take into account only 50~f P s (aBstKi)? 6(ki <kio
the contribution of the regionkt2<Q2. This corresponds to !
the leadinganQ%A? approximation in which theD(as) X 0 aBs<k?)
corrections are neglected. In this kinematical region, the con-
tribution of the diagrams shown in Fig. 1 can be considerably %f K2< K2 n n 2
simplified. The essential region of integration is Bk <kio) (a9)"ex(as)". 2.8

|k?|=|aBs+k3|<Q?. (2.4 Here, we substituted83s~k?. Thus, due to the presence of

the factore in Eq. (2.8), in the leadingagInQ%\? approxi-
Note that 8s~Q?x(massf of the qq state produced by mation, the contribution due to the exchange of a trans-
¥*. Hence, versely polarized gluon is negligible compared to the contri-
bution of the longitudinal polarization specified by EA.6).
a<l (2.5  We use here the observation that in QCD the powehar-
acterizing the energy dependence of the amplitude is the
is the essential region of integration ower It is convenient same for scattering of transversely and longitudinally polar-
to write the propagatom#;(k)/k2 of the exchanged gluon in ized gluons.

the light-cone gaugeg, A*=0, in which Using the gluon propagator in the form given by Eg.
(2.6), we get the following expression for the total contribu-
q k+k,q-— tion of the diagrams shown in Fig. 1:
N T @ 1
- b(P ab(T)
ImM—fW(—kZTZZImTfM( >|me d, (k) dyx(K).

It can be showrtcf. [2]) that in our case thbﬂq;—part of the
propagator dominates. Using EQ.5), the dominant part of
the gluon propagator can be further simplified: Here,TZﬁ(P)zTZ‘;(y*geQa) is the sum of the box dia-
0 gl grams describing the* g scattering and’i—bg) is the ampli-
r (2.6 tude of the gluon scattering off the target

(p'a’)’ Using the dominance of the longitudinal gluon polariza-

tion (2.6) and incorporating Eq(2.1) we can rewrite Eq.
In other words, it is sufficient to take into accountonlythe(z_g)(as) P 9 Eq2D .

longitudinal polarization of the exchanged gluons. Indeed, let
us estimate the contribution due to exchange of a trans-
versely polarized gluon:

(2.9

d,utk)=

b _
ImM _j sdadBd?k; 21mT23"'p,py 4|mTi—hﬂ)qu
. .

s 22m*(k*?  4(pg)?
) ] (2.10
ZLJ_)\J_ IR dzkt
So~-——| ——d d
=G s (Bs) s d(as) k22" Now, we will use the fact that
(2.7)
T2 Pk, =T Pk, =0, (2.11)

Here, TO") is the imaginary part of the amplitude of the . . .
Bin, ginary p P since the box diagram contains no gluons and, therefore, the

y* scattering off a gluon given by the lowest-order Feynmanward identities in this approximation are the same as in an
diagrams andT,TLLAL is that for the gluon scattering off a Abelian gauge theoryab are the color indices From Egs.
targetT. Using the fact that, at high energies, the Feynmar{2.1) and(2.11) it follows that

amp[itude of processes due to excha_nge by two elementary . ab(®) L L
fermions tends to constafi], we obtain ImT23p,py  IMT, X ik

4(pg)> (Bs)?

(2.12

. s)?
[ 17 o B

and
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ImM dasdk,
T‘f Bs—gs7 | Zm k7
4k2ImTab(T)qﬂ7
X 32 : (2.13

It is useful to define the cross section pf scattering off a
gluong averaged over the gluon color:

ab(P)
ImTM )

— 1
SapS" o(y g—aR) =5 2 (2.14

=12

wheres’ is the invariant mass of the producegd system:
s'=(k+q)?=Bs—Q?. Thus,

ImM j f sdad?k, 2
Oy 1= FU(')’ QHQQ) (2'77)4(|( ) t
4ImTa(AT qatn
X 2 —32 (2.15

In the leadingx¢InQ? approximation, we can substituké by

kf Comparing our result with the QCD-improved parton
model expression for the production of heavy quafkse
e.g.,[4]), we observe that

sdad?k,
(2 )4k2

aa(T)

S a2 AIMTES g0 = BGr(B8,Q%),

(2.16

whereGy is the gluon distribution in a targdt. This gives

opr=| o ygﬂme (BQY]. (217

The first argument of5(3,Q?) is B=(Q?+M?)/s. Here,

M is the mass of the produceg pair, which is typically of
the order ofQ. Hence, the essential region of integration is
B~X. As the evolution scale for the gluon distribution func-
tion, we takeQ?. Of course, higher-order corrections may
changeQ? by some numerical factor. This scale-fixing am-
biguity is a usual feature of the leadingInQ? approxima-
tion.

lll. LIGHT-CONE WAVE FUNCTIONS AND 0 g

Now, let us express ,«4 in terms of the light-cone wave
functions of the virtual photon. To this end, we write down
the four-momenta (r,) of quark (antiquark in the box in
terms of the light-cone variables,;={r; ,r; ,r; with
r{ =7q" and take the integral ovei by residue. Introduc-
ing the lowest-order perturbativgq light-cone wave func-
tions of the virtual photo5]

:U_(rl)YMU(_rz) 1 (3.2)
fomir bqe V11w '

7(1-7n)
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we obtain the following expression for the sum of the box
diagrams:

b(p)
f CI0[S|m T pp,AOA & ZJ

X{2¢,(n,r) —
= (1~ k) }FaFp,

whereg? is the QCD coupling constant arfel=\,/2, A\,
being the Gell-Mann matrices of the ). group in the
fundamental representation.

It is convenient to rewrite this formula in the impact pa-
rameter space:

dnd?r,
—377%(77 r

'r//p,( 7]vrt+ kt)
(3.2

wﬂ(x,rt)zf ,(x,b)e"Pd?b. (3.3
Then,
ImTPAp“
f das—opg?
><{71-[2—e"‘tb—e"ktb]Tr(Fan)}.
(3.9

Within the leading anQ? approximation, to obtain Eq.
(2.12), it is necessary to decompose exponent into a power
series overl;b) and to keep terms up to the second order in
k2. Combining Egs(3.3), (2.10, and(2.16), we obtain
dzdzb 1, (kib)?2_ F?
_gS kt2 Tr—

TpT= eJlﬂ(nb) 8

X Gr(x,\/b?). (3.5
Here, factor\ can be estimated from analysis @f (y* N)
cross section. Since the gluon density increases whée-
creases,\ slowly increases with decrease &f [6]. For
x~1073, A~9.

It is instructive to represent .« in the form

2

d
7= [ 00 TN 0. (39

Here,a?q_is the cross section for the interaction of a color-
less small transverse siggy pair with the targefr:

2

T——1Ir

2 N, 3.7

F2
qq—gs ( )XGT(X Ab?).

This expression was obtained originally [iA,8]. As usual,

N, is the number of colors, and the Casimir operator of the
SU(3) group in the fundamental representation can be easily
calculated:

1
=_TrF3=

11TF2 3.8

Combining all the numbers together, we finally obtain:
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J—3 tion is applicable for the interactions with smal) Eq. (4.1
U$q23bz[XGT(X.?\/bZ)]as()\/bz)- (3.9  has a more general nature. In fact, it has been understood
long ago[14-1§ that many features of the interaction of a
Here, b= (by—bg). This formula describes the essence offast projec_tile can _be described in terms of distribution over
the color transparencCT) phenomenor(cf. discussion in  CroSs section. An |mport§nt advantage pf suqh a guantity is
[9]): qq configuration of a small spatial size has a smalthat it accura?ely takes into account.d|ffract|v<lT processes.
interaction cross section. However, for sufficiently small SOme properties oP(o) have been discussed in detail in
the interaction becomes strong due to the formation of th&l7). However, for our purposes, it is sufficient to consider
soft gluon field. In this respect, E¢3.5) predicts the inter- Py*n(0) in the limit o—0. _
action of a small-size configuration which is qualitatively N general, Eq.(4.3 predicts a rather involved depen-
different from that of the models of Loyi0] and of Gunion ~ dence ofP(o) on Ino at smallo. However, this dependence
and Sopef11]. The fact that3 is proportional to the gluon can be easily calculated using QCD evolution equations. The

distribution in Eq.(3.7), increasing in the smak-region, has distinctive feature of Eq(4.3) is that

important experimental consequences, e.g., it makes it pos- 1

sible to observe the small-size quark configurations at HERA Psn(0—0)|,0~—= uptolIno/op) terms. (4.4
in the electroproduction of vector mesons at smmalin fact, e

Eq. (3.5 can be inferred from a formula derived in REI2]

within a model approximation to QCD. Using some simple V. TRANSITION TO MESONS

tricks, one can also obtain E.5) from a formula obtained
in [13] within the leadingxgInx approximation of QCD com-
bined with some bold assumptions concerning the parto

The perturbative version of the virtual photon wave func-
|11ion ¥, (n,ry), Ed.(3.1), can be written through a dispersion

model structure. integral

Using Eq.(3.9), we can calculate distribution over cross 1 (= — 2
section for the fast photon or pion projectile for smal(cf. b ()= —f P2 (5.7
[7]) mJo K +Q

where
IV. DISTRIBUTION OF P.xy(o) FOR THE PHOTON
PROJECTILE ey VAU a) |, it

In the previous section we have derived E8.5 which p QT Jn(1—17) 7(1—7)

expresses the .« cross section in terms of the light-cone (5.2)

wave functions of the virtual photop* . This formula gives _

us the possibility to calculate another useful quantity, distri-is the wave function of a noninteractimg) pair with invari-
bution over cross sectioR.« (o). By definition, the differ- ~ ant massc. The interaction between the quarks modifies the
ential probability that the virtual photop* interacts with the  virtual photon wave functiow, (#,r)—W¥ ,(#,r;), and the
targetT with the cross sectiomr. In other words, the experi- dispersion representation

mentally observable total cross section in termd¢#r) is )

X 1 (> — d
given by ()= ;fo l//Eq(K;ﬂ,rt)KzTKQz (5.9

UY*N:J Pyn(o)odo. @D for the “exact’ wave function¥ ,(7,ry) is in terms of the

modified spectral density)**(x;7,r,) in which, instead of

&he free-quark approximatiogs,%(«; 7,r,), one has a sum
over resonances, themeson being the dominant feature in
the low-« region:

In Refs.[14,15, it has been suggested to represent th
cross sectiowr in terms of the eigenstates of tBamatrix. In
the case of smalir, as a result of color screening and as-
ymptotic freedom, the scattering state i€ q pair. So, the
contribution of smalls has the form of Eq(3.6). Using Eg. Ad( ey hadi - o r Y= 0 (7.1 S k2 — m>
(37)’ we can W“te w,u, (K1 7, t)—>¢/_,b -(K’n’ t) gpw/,l,( 7, I) (K p)

2 0 ) + e e 1), (5.4
—a2 _ _
€oynTE€ f Yo (mb) g-Neo—g—do . (4.2 whereg,, is the magnitude of thp-state projection onto the
electromagnetic current. At large the resonances are wide,
Let us define and their sum rapidly approaches the free-quark value, i.e.,
one has a perfect quark-hadron dualitfor sufficiently

dv  wdb® largeQ?, the dispersion integrab.3) is dominated by higher
Py*N(tHO):fezzﬁi*(v,mTNcW, 4.3 geQ P grab.3 y hig

where i.«(7,b) is given by Egs(3.1) and (3.3). It is im- 'Note, that since the large-behavior off*%(x; 7,r,) coincides
plied here that the functional dependencebobn o in Eq.  with that of }%(«; ,r,), the dispersion integral in E¢5.3) has the
(4.3 should be calculated from E@3.7). Now, we can re- same convergence properties as those in(&q), i.e., no subtrac-
write Eq. (4.2 in the form of Eq.(4.1). Though our deriva- tions are needed in Eg@5.3).
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states, and the free-quark approximation is completely justi- <0|‘]A|7T,P>: \/§pr ) (6.2

fied. Decreasindd?, one would observe mismatch between a #

the free-quark calculation and the dispersion integral oveHence, we should extract the amplituee® , P, correspond-
the resonances. Such a situation is well known from QCDOng to the longitudinal polarization of the axial current.
sum rules: the difference between the resonance and freggain, the transition from the virtual amplitude for the cur-
quark spectra is described by power correction®Qf)Y. rents to that involving the pion can be understood in terms of
The usual procedure is to approximate the higher states biyie dispersion representation and quark-hadron duality. In
the free-quark contribution(“first resonance plus con- other words, below the effective higher-state threstsgld
tinuum” mode) one should substitute the free-quark contribution by that due

. — to the pion pole:
Yo mur) = 0(k>>8E) Yl (),

: . . . AR S NN
wheres]j is the effective threshold for higher resonances in e ! Su t

the p channel and then fix its value by the requirement of the =q,[f i 7,r0) K>— mi)
best agreement between the two sides of the resulting sum —
rule +0(k*>s7) g% pr)]. (6.3
1(s . _ d 2 The local duality prescription gives a correctly normalized
;fo [ 79,97 (7,70 8(k*—me) — ¢ U-rt)];er—Qz wave function provided thasy=1672f2~0.67 Ge\f. Of
course, one can use a pion wave function different from that
Ay given by the local duality. However, the duality consider-
= 2 @ (5.5 ations justify the use of the effective two-body wave function
N=2 (see[18)).

The actual calculation consists of the same steps as those
leading to Eq.(3.6). For a small-size configuration, we get
the following contribution o,y into the scattering cross
section:

After fixing sf from the magnitude of the power corrections
An/(QHN, one can take the limiQ%?—x to get the local
duality relation

dpd®
50ﬂm=f|¢w(n,b)|2 2 Neol(b?). (64

LR ACANES J:gwf‘(m,rt) de?. (5.6

In other words, thep-meson wave function in such an ap-
proach is dual to the free-quark wave functions integrate
over the duality interval & «><s}.

For the forward virtual Compton amplitude, the disper- db? dy
sion representation can be applied both for the initial and 60 ,n=P n(o)do= EJ |¢,,(77,b)|270d0 ,
“final” virtual photon. However, taking only thg-meson

Fffectively, the vertexey.« N, is substituted by the pion
wave function. Rewritingdo . as

contribution in the dispersion integral for the final state, one €.
naturally obtains the amplitude for thg" T—pT transition  we obtain
considered in Ref[9]. Furthermore, by picking out the
p-meson contribution in both dispersion integrals, one would db? ,d7
get the amplitude for theT— pT scattering. This idea can Pmn(o—0)= EJ |¢y2(1,b—0)| - (69
be also used to study the pion diffractive electroproduction
and the pion diffractive scattering. whereo(b?) is given by Eq.(3.9).
Thus, P .n(0c—0) is determined by the pion wave func-
VI. CALCULATION OF P_\(o—0) tion at the origin of the impact parameter space, or, which is

) ) ) the same, by the integral of the momentum wave function
magnetic current by the axial current in the original ampli- ya|ly gives the pion distribution amplitude
tude, i.e., simply adds in the current vertices. For massless

quarks, the final result has the same structure as that for the J3
vector current. Of course, thag-pair wave function would er(1m)= (ZT)3J' Pa(m,r)dr,.
have an extrays, and the vertex factor analogous to that in
Eq.(5.2 is However, in QCD(and in any theory with dimensionless
— coupling constant this integral diverges. The standard pro-
U(XPy) y*ysV((1-X)Py) b 6.1 cedure is to supplement the integral with some renormaliza-
m S D tion prescription characterized by a cutoff parametei.e.,

o-(n)— e (n,n). In fact, the Fourier transformation from
where P is the four-momentum associated with the axialthe momentum to the impact parameter space
current.
The projection of a single-pion state onto the axial current

dr,
is specified by ther— uv decay constant_ : l/fw(ﬂab)—f 1//77(77'rt)(27T)2
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for smallb can also be treated as a particular cutoff prescrip- -~ 0.06
tion with 1b playing the role of the renormalization param- =
eter u. In the b—0 limit, one encounters the singularbfn i 0.05 |
terms. It is exactly the logarithms which generate the evolu- &
tion of the pion distribution amplitude. Summing the loga- o GRV (LO)
rithms by the renormalization group methods gives, for small 004 - GRYV (NLO)
b:
INbZA 2| 7020 003 |
Ya(mb)=n(1=7) 2 a@ﬁ"“(h—l)(l%) ! -
n=0 nb“A

where 7(1— 5)C¥427—1) are the eigenfunctions of the 0.01
evolution kerne[ C3%27—1) being the Gegenbauer poly-

nomiald, the anomalous dimensiong, are its eigenvalues

and B, is the one-loop QCIB-function coefficient. Theé, 00" 51015 20 25 30 35 40 45 50
parameter characterizes the effective onset of the perturba- o(mb)

tive evolution. The coefficienta, are the Gegenbauer mo-

ments of the pion wave function at this scale. Note that the FIG. 2. Comparison oP (o) calculated in PQCD using Eq.
anomalous dimension of the axial current vanishgs=(0) (6.14 and GRV para_metrlzatlor[QO].of th(_e gluon density and fits
and all othery,’s are positive. Hence, after the renormaliza- Pased on the analysis of the soft diffraction dath

tion group improvement, the limib— 0 is well defined in
this case and

Assuming that, at the scale=b,, the » dependence of
the pion wave function corresponds to the Chernyak-

¥ (9,0=0)= 48t _n(1—7), (6.8  Zhitnitsky [19] ansatz
wheref =92 MeV. The absolute normalization of the pion ¢S4 (n,b=by)=548xf, (1—n)(1-27)?
wave function forb=0 is fixed by the matrix element of the (6.13
axial-vector current,
we obtain
[ y dndte_ f 6.9 )
A7) g3 =——, . 10 db
Yosm N, P_(or,b=bg)= =z m2f2 — 6.14

21" "do’
or in the impact parameter spajsee Eq(3.3)]:
Thus, in this case the evolution would decrease the integral

n f I by ~20% whenb changes fromb, to 0. Taking the as-
f .(n,b=0) E:W' (6.10  ymptotic result, we get
Cc
2
In other words, for the pion, the singularblterms sum P_(0—0)= E f 6.15

into harmless (1/I6PA?)"2fo factors vanishing in thé—0 5 aXGn(X,\/b?%)"
limit. As a result, then dependence of the pion wave func-
tion ,(#,b) in the formalb—0 limit always assumes its  Distribution P (o) was determined in Ref7] from the
asymptotic form ¢_(,b)~ n(1— 1), irrespective of its analysis of the soft diffractive processes ff~200 GeV,
shape at the scal®,. It is natural to expect thdi, is related ~ see solid curves in Fig. 2. In the limit<(o), we can com-
to the scale characterizing the magnitude of the nonperturba@are this result with Eq(6.14). The applicability region of
tive momentum distribution in the pion. The momentumthis equation is restricted by several conditions. Fixgk
scale o= /sj~0.8 GeV suggested by the local duality is should be small enough so that the average longitudinal dis-
rather large, and there may exist a transitional region of distances in the scattering processrifx are larger than the
tancesb~b, small compared to the pion size but not small hucleon size, which corresponds xe=0.05. Furthermore,
enough to produce sizable perturbative evolution effects. Ithe virtualities in the process should be large enough so that
this case, one can try the dependences af(7,b) differ- one can apply PQCD which corresponds to the requirement
ent from the asymptotic form. In fact, the integral Q%=1-2 Ge\A. In our analysis we also neglect thede-
pendence of the wave function of tlig component at large
_ ,d7 b (this is a higher twist effegt which restricts consideration
|=J |¢=(7.b)] 4 6.1 {5b=0.5 fm. In the numerical calculation, we use the Gluck-
Reya-Vogt (GRV) parametrization[20] since it describes
is rather insensitive to the evolution effects. If we take thewell the parton distributions down tQ%~1.5 Ge\?. We

asymptotic wave functio6.8), then present results both for the leading orde®©) and next-to-
) leading order(NLO) GRV parametrizations, see dashed
P (0—0)= —wzfzﬁ 612 Cuves in Fig. 2. Difference between LO and NLO results
m 5" "do’ ' illustrates range of uncertainties of the current analysis. One
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= 00s | ——— p,=200 GeV
n-:3. o pn=1000 GeV
004 F e pn=5000 GeV
0.03 |
0.02 |,
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o(mb)

FIG. 3. Incident momentum dependenceRf,(o) for small
o calculated using Eq6.14 and GRV NLO parametrizatiof20]
of the gluon density.

can see that the results of our calculations are in qualitative

agreement with the phenomenological result$7gf

Another interesting feature of our results is a substantial
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Since the existence of configurations with small spatial
size has been confirmed experimentally in the energy depen-
dence and absolute value of cross section of electroproduc-
tion of vector mesons, we consider the above result as a
reflection of soft matching between nonperturbative and
PQCD regimes.

VIl. SUMMARY AND CONCLUSIONS

In this paper, we applied a PQCD approach to describe
the basic features of the high-energy interactions of a small-
sizeqq configurations with a hadron target. This interaction
is proportional to the gluon distribution functid®(x,Q?)
of the target and, hence, the cross section is enhanced in the
smallx region. Theqq configuration can be described by the
wave functions whose particular form is determined by the
projection of the initial particle(y*, p, or 7) onto theqq
component. For smali, we calculated the cross-section dis-
tribution P (o) for the pion and demonstrated that it is
rather insensitive to the specific form of the pion distribution
amplitude.
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