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I. INTRODUCTION

Recently phenomena involving interactions of hadrons in
small-size configurations have been intensively discussed
both in relation with the phenomenon of color transparency
and vector meson electroproduction observed at energies
reached at the DESYep collider HERA. There is also a deep
relation between presence of the weakly interacting small-
size configurations in hadrons and phenomenon of cross-
section fluctuations in the interactions of the hadrons which
manifests itself in the inelastic coherent diffraction pro-
cesses:h1N(A)→X1N(A), see Ref.@1#. In this paper, we
focus on the systematic derivation of the formulas for the
interaction of the color singletqq̄ pair having a small trans-
verse size with a hadron target. Then, we use these formulas
to calculate the probability of the distribution for the inter-
action of a photon and a pion with a target for small inter-
action cross sections. Although some of equations deduced
in the paper existed before, no derivations with analysis of
their accuracy have been presented.

The paper is organized as follows. In Sec. II, we consider
the virtual forward Compton amplitude in the small-x region
where it is dominated by the photon-gluon scattering subpro-
cess. We outline there a derivation of the basic formula ex-
pressing the total cross sectionsg* T as a convolution of the
gluon distribution amplitudeGT(x,Q

2) and thegg scattering
cross section. In Sec. III, we write down thegg cross section
in terms of theq̄q light-cone wave functions of the virtual
photons. In the next section, we calculate the cross-section
distribution Pg* (s) for the virtual photon. In Sec. V, we
discuss the quark-hadron duality interplay between the per-
turbative free-quark results and contributions due to low-

lying resonances. Finally, in Sec. VI, we calculate the cross-
section distribution for the pionPp(s) in the small cross-
section limit where it is governed byq̄q configurations
having small spatial size. Basing on QCD evolution equation
we evaluate also the functional dependence ofPp(s)→0 on
s and on the incident energy.

II. HARD g*T TOTAL CROSS SECTION AND THE
INTERACTION OF SMALL-SIZE CONFIGURATIONS

Let us consider a particular contribution into theg*T
cross section corresponding to a transformation of the virtual
photon wheng* converts into aQQ̄ pair with quarks having
a large relative transverse momentum. Usually, this contri-
bution is written as a convolution of the infinite momentum
frame wave function of the target with the perturbative QCD
~PQCD! calculable coefficient function describing the short-
distance propagation of the particles between two virtual
photon vertices. Our aim is to express the relevant coefficient
function in terms of the light-cone wave functions of the
virtual photons as viewed from the reference frame where
the target is at rest. The contribution we are interested in is
given by the sum of diagrams shown in Fig. 1.

The lower blob corresponds to the gluon distribution in
the target. It is convenient to parametrize the gluon momen-
tum k in terms of the Sudakov variables

k52aq81bp81kt , d4k5
s

2
dadbd2kt . ~2.1!

*On leave of absence from the St. Petersburg Nuclear Physics
Institute, Russian Federation.
†Also at Laboratory of Theoretical Physics, JINR, Dubna, Russian

Federation.
‡Also at St. Petersburg Nuclear Physics Institute, Russian Federa-

tion.
FIG. 1. Leading small-x contribution to the forward virtual

Compton amplitude.
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Here,q8 andp8 are lightlike momenta related top,q by

q5q81
q2

2~p8q8!
p8, p5p81

p2

2~p8q8!
q8, ~2.2!

2~pq!52~p8q8!1
q2p2

2~p8q8!
. ~2.3!

For our goals, the most interesting region is that of small
values of the Bjorken parameter:x52q2/2(pq)→0, where
we may safely approximate 2(p8q8)5s.

In thed4k integral, the regionkt
2;Q2 corresponds to the

next-orderas correction, so we will take into account only
the contribution of the regionkt

2!Q2. This corresponds to
the leadingaslnQ

2/L2 approximation in which theO(as)
corrections are neglected. In this kinematical region, the con-
tribution of the diagrams shown in Fig. 1 can be considerably
simplified. The essential region of integration is

uk2u5uabs1kt
2u!Q2. ~2.4!

Note thatbs;Q2}(mass)2 of the qq̄ state produced by
g* . Hence,

a!1 ~2.5!

is the essential region of integration overa. It is convenient
to write the propagatordmm̄(k)/k

2 of the exchanged gluon in
the light-cone gaugeqm8A

m50, in which

dmm̄~k!52gmm̄1
qm8 km̄1kmqm̄8

~kq8!
.

It can be shown~cf. @2#! that in our case thekmqm̄8 part of the
propagator dominates. Using Eq.~2.5!, the dominant part of
the gluon propagator can be further simplified:

dmm̄~k!.
pm8qm̄8

~p8q8!
. ~2.6!

In other words, it is sufficient to take into account only the
longitudinal polarization of the exchanged gluons. Indeed, let
us estimate the contribution due to exchange of a trans-
versely polarized gluon:

ds;
1

~2p!4
E Tm'l'

g*

s
d~bs! E Tm'l'

T

s
d~as!

d2kt
~k2!2

.

~2.7!

Here, Tm'l'

(g* ) is the imaginary part of the amplitude of the

g* scattering off a gluon given by the lowest-order Feynman
diagrams andTm'l'

T is that for the gluon scattering off a

targetT. Using the fact that, at high energies, the Feynman
amplitude of processes due to exchange by two elementary
fermions tends to constant@3#, we obtain

E Tm'l'

g* d~bs!}
~bs!2

Q2 .~Q2!.

In this estimate we use also scaling overQ2 in the box dia-
gram. The amplitude due to the exchange by two-vector par-
ticles increases likes, and we have

E Tm'l'

~T! das}~as!21n.

Here, n.0, since, according to the QCD evolution equa-
tions, the deep inelastic amplitudes increase with energy in
region of applicability of the perturbative QCD.

As a result of this power counting estimate we obtain

ds;E ~bs!2

s

~as!21n

s

d2kt
~abs1kt

2!2
u~kt

2,kt0
2 !

3u~abs<kt0
2 !

'E u~kt
2,kt0

2 !~as!n}~as!n. ~2.8!

Here, we substitutedabs;kt
2 . Thus, due to the presence of

the factora in Eq. ~2.8!, in the leadingaslnQ
2/l2 approxi-

mation, the contribution due to the exchange of a trans-
versely polarized gluon is negligible compared to the contri-
bution of the longitudinal polarization specified by Eq.~2.6!.
We use here the observation that in QCD the powern char-
acterizing the energy dependence of the amplitude is the
same for scattering of transversely and longitudinally polar-
ized gluons.

Using the gluon propagator in the form given by Eq.
~2.6!, we get the following expression for the total contribu-
tion of the diagrams shown in Fig. 1:

ImM5E d4k

~2p!4i

1

~k2!2
2ImTml

ab~P!ImTm̄ l̄

ab~T!
dmm̄~k!dl l̄~k!.

~2.9!

Here,Tml
ab(P)5Tml

ab (g* g→QQ̄) is the sum of the box dia-

grams describing theg* g scattering andTm̄ l̄

ab(T)
is the ampli-

tude of the gluon scattering off the targetT.
Using the dominance of the longitudinal gluon polariza-

tion ~2.6! and incorporating Eq.~2.1! we can rewrite Eq.
~2.9! as

ImM

s
5E sdadbd2kt

2~2p!4~k2!2
2ImTml

ab~P!pmpl

4~pq!2
4ImTm̄ l̄

ab~T!
qm̄q l̄

s
.

~2.10!

Now, we will use the fact that

Tml
ab~P!km5Tml

ab~P!kl50, ~2.11!

since the box diagram contains no gluons and, therefore, the
Ward identities in this approximation are the same as in an
Abelian gauge theory (a,b are the color indices!. From Eqs.
~2.1! and ~2.11! it follows that

ImTml
ab~P!pmpl

4~pq!2
5
ImTm'l'

ab~P!kt
mkt

l

~bs!2
~2.12!

and
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ImM

s
5E dbs

1
2( Tm'm'

ab~P!

~bs!2
E dasd2kt

~2p!4~k2!2

3
4kt

2ImTm̄ l̄

ab~T!
qm̄q l̄

s2
. ~2.13!

It is useful to define the cross section ofg* scattering off a
gluong averaged over the gluon color:

dab•s8•s~g* g→qq̄!5
1

2 (
m'51,2

ImTm'm'

ab~P! , ~2.14!

wheres8 is the invariant mass of the producedqq̄ system:
s85(k1q)2.bs2Q2. Thus,

sg* T5
ImM

s
5E db

b
s~g* g→q̄q!E sdad2kt

~2p!4~k2!2
kt
2

3(
a

4ImTm̄ l̄

a~T!
qm̄q l̄

s2
. ~2.15!

In the leadingaslnQ
2 approximation, we can substitutek2 by

kt
2 Comparing our result with the QCD-improved parton
model expression for the production of heavy quarks~see
e.g.,@4#!, we observe that

E sdad2kt
~2p!4kt

2(
a

4ImTm̄ l̄

aa~T!
qm̄q l̄5bGT~b,Q2!,

~2.16!

whereGT is the gluon distribution in a targetT. This gives

sg* T5E sg* g
db

b
@bGT~b,Q2!#. ~2.17!

The first argument ofG(b,Q2) is b5(Q21M2)/s. Here,
M is the mass of the producedqq̄ pair, which is typically of
the order ofQ. Hence, the essential region of integration is
b;x. As the evolution scale for the gluon distribution func-
tion, we takeQ2. Of course, higher-orderas corrections may
changeQ2 by some numerical factor. This scale-fixing am-
biguity is a usual feature of the leadingaslnQ

2 approxima-
tion.

III. LIGHT-CONE WAVE FUNCTIONS AND sg* g

Now, let us expresssg* g in terms of the light-cone wave
functions of the virtual photon. To this end, we write down
the four-momentar 1(r 2) of quark ~antiquark! in the box in
terms of the light-cone variablesr 15$r 1

1 ,r 1
2 ,r t% with

r 1
15hq1 and take the integral overr 1

2 by residue. Introduc-
ing the lowest-order perturbativeq̄q light-cone wave func-
tions of the virtual photon@5#

cm5
Ū~r 1!gmU~2r 2!

m21r t
2

h~12h!
1Q2

1

Ah~12h!
, ~3.1!

we obtain the following expression for the sum of the box
diagrams:

E das
Im Tml

ab~p!pmpl

s2
5e2gs

2E dhd2r t
2~2p!3

pcm~h,r t!

3$2cm~h,r t!2cm~h,r t1kt!

2cm~h,r t2kt!%FaFb , ~3.2!

wheregs
2 is the QCD coupling constant andFa5la/2, la

being the Gell-Mann matrices of the SU~3! c group in the
fundamental representation.

It is convenient to rewrite this formula in the impact pa-
rameter space:

cm~x,r t!5E cm~x,b!eir tbd2b. ~3.3!

Then,

E das
ImTml

P pmpl

~2pq!2
5E cm

2 ~x,b!
dxd2b

4p
gs
2

3$p@22eiktb2e2 iktb#Tr~FaFb!%.

~3.4!

Within the leadingaslnQ
2 approximation, to obtain Eq.

~2.12!, it is necessary to decompose exponent into a power
series over (ktb) and to keep terms up to the second order in
kt
2 . Combining Eqs.~3.3!, ~2.10!, and~2.16!, we obtain

sg* T5e2E cm
2 ~h,b!

dzd2b

4p
NcH 1

Nc
gs
2p

~ktb!2

kt
2 Tr

F2

8 J
3GT~x,l/b

2!. ~3.5!

Here, factorl can be estimated from analysis ofsL(g*N)
cross section. Since the gluon density increases whenx de-
creases,l slowly increases with decrease ofx @6#. For
x;1023, l'9.

It is instructive to representsg* T in the form

sg* T5e2E cm
2 ~h,b!

dhd2b

4p
NcsT

q q̄~b2!. ~3.6!

Here,sT
q q̄ is the cross section for the interaction of a color-

less small transverse sizeqq̄ pair with the targetT:

sT
q q̄5gs

2p
b2

2

1

Nc
TrS F2

8 D xGT~x,l/b
2!. ~3.7!

This expression was obtained originally in@7,8#. As usual,
Nc is the number of colors, and the Casimir operator of the
SU~3! group in the fundamental representation can be easily
calculated:

1

8

1

Nc
TrF25

1

3
TrF3

25
1

6
. ~3.8!

Combining all the numbers together, we finally obtain:
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sT
q q̄5

p2

3
b2@xGT~x,l/b

2!#as~l/b2!. ~3.9!

Here, b5(bq2bq̄). This formula describes the essence of
the color transparency~CT! phenomenon~cf. discussion in
@9#!: qq̄ configuration of a small spatial size has a small
interaction cross section. However, for sufficiently smallx,
the interaction becomes strong due to the formation of the
soft gluon field. In this respect, Eq.~3.5! predicts the inter-
action of a small-size configuration which is qualitatively
different from that of the models of Low@10# and of Gunion
and Soper@11#. The fact thatsT

q q̄ is proportional to the gluon
distribution in Eq.~3.7!, increasing in the small-x region, has
important experimental consequences, e.g., it makes it pos-
sible to observe the small-size quark configurations at HERA
in the electroproduction of vector mesons at smallx. In fact,
Eq. ~3.5! can be inferred from a formula derived in Ref.@12#
within a model approximation to QCD. Using some simple
tricks, one can also obtain Eq.~3.5! from a formula obtained
in @13# within the leadingaslnx approximation of QCD com-
bined with some bold assumptions concerning the parton
model structure.

Using Eq.~3.9!, we can calculate distribution over cross
section for the fast photon or pion projectile for smalls ~cf.
@7#!.

IV. DISTRIBUTION OF Pg*N„s… FOR THE PHOTON
PROJECTILE

In the previous section we have derived Eq.~3.5! which
expresses thesg* T cross section in terms of the light-cone
wave functions of the virtual photong* . This formula gives
us the possibility to calculate another useful quantity, distri-
bution over cross sectionPg* T(s). By definition, the differ-
ential probability that the virtual photong* interacts with the
targetT with the cross sections. In other words, the experi-
mentally observable total cross section in terms ofP(s) is
given by

sg*N5E Pg*N~s!sds. ~4.1!

In Refs. @14,15#, it has been suggested to represent the
cross sections in terms of the eigenstates of theSmatrix. In
the case of smalls, as a result of color screening and as-
ymptotic freedom, the scattering state is aqq̄ pair. So, the
contribution of smalls has the form of Eq.~3.6!. Using Eq.
~3.7!, we can write

esg*N5e2E cg*
2

~h,b!
dn

4p
Ncs

pdb2

ds
ds . ~4.2!

Let us define

Pg*N~s→0!5E e2cg*
2

~n,b!
dn

4
Nc

pdb2

ds
, ~4.3!

wherecg* (h,b) is given by Eqs.~3.1! and ~3.3!. It is im-
plied here that the functional dependence ofb on s in Eq.
~4.3! should be calculated from Eq.~3.7!. Now, we can re-
write Eq. ~4.2! in the form of Eq.~4.1!. Though our deriva-

tion is applicable for the interactions with smalls, Eq. ~4.1!
has a more general nature. In fact, it has been understood
long ago@14–16# that many features of the interaction of a
fast projectile can be described in terms of distribution over
cross section. An important advantage of such a quantity is
that it accurately takes into account diffractive processes.
Some properties ofP(s) have been discussed in detail in
@17#. However, for our purposes, it is sufficient to consider
Pg*N(s) in the limit s→0.

In general, Eq.~4.3! predicts a rather involved depen-
dence ofP(s) on lns at smalls. However, this dependence
can be easily calculated using QCD evolution equations. The
distinctive feature of Eq.~4.3! is that

Pg*N~s→0!us→0;
1

s
up to ln~s/s0! terms. ~4.4!

V. TRANSITION TO MESONS

The perturbative version of the virtual photon wave func-
tion cm(h,r t), Eq. ~3.1!, can be written through a dispersion
integral

cm~h,r t!5
1

pE0
`

cm
q̄q~k;h,r t!

dk2

k21Q2 , ~5.1!

where

cm
q̄q~k;h,r t!5

Ū~hq1!gmU„~12h!q1…

Ah~12h!
dS k22

mq
21r t

2

h~12h!
D

~5.2!

is the wave function of a noninteractingq̄q pair with invari-
ant massk. The interaction between the quarks modifies the
virtual photon wave functioncm(h,r t)→Cm(h,r t), and the
dispersion representation

cm~h,r t!5
1

pE0
`

cm
q̄q~k;h,r t!

dk2

k21Q2 ~5.3!

for the ‘‘exact’’ wave functionCm(h,r t) is in terms of the
modified spectral densitycm

hadr(k;h,r t) in which, instead of
the free-quark approximationcm

q̄q(k;h,r t), one has a sum
over resonances, ther meson being the dominant feature in
the low-k region:

cm
q̄q~k;h,r t!→cm

hadr~k;h,r t!5grcm
r ~h,r t!d~k22mr

2!

1cm
higher states~k;h,r t!, ~5.4!

wheregr is the magnitude of ther-state projection onto the
electromagnetic current. At largek, the resonances are wide,
and their sum rapidly approaches the free-quark value, i.e.,
one has a perfect quark-hadron duality.1 For sufficiently
largeQ2, the dispersion integral~5.3! is dominated by higher

1Note, that since the large-k behavior ofcm
hadr(k;h,r t) coincides

with that ofcm
q̄q(k;h,r t), the dispersion integral in Eq.~5.3! has the

same convergence properties as those in Eq.~5.1!, i.e., no subtrac-
tions are needed in Eq.~5.3!.
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states, and the free-quark approximation is completely justi-
fied. DecreasingQ2, one would observe mismatch between
the free-quark calculation and the dispersion integral over
the resonances. Such a situation is well known from QCD
sum rules: the difference between the resonance and free-
quark spectra is described by power corrections (1/Q2)N.
The usual procedure is to approximate the higher states by
the free-quark contribution~‘‘first resonance plus con-
tinuum’’ model!

cm
higher states~k;h,r t!5u~k2.s0

r!cm
q̄q~h,r t!,

wheres0
r is the effective threshold for higher resonances in

ther channel and then fix its value by the requirement of the
best agreement between the two sides of the resulting sum
rule

1

pE0s0
r

@pgrcm
r ~h,r t!d~k22mr

2!2cm
q̄q~k;h,r t!#

dk2

k21Q2

5 (
N52

AN

~Q2!N
. ~5.5!

After fixing s0
r from the magnitude of the power corrections

AN /(Q
2)N, one can take the limitQ2→` to get the local

duality relation

pgrcm
r ~h,r t!5E

0

s0
r

cm
q̄q~k;h,r t! dk2. ~5.6!

In other words, ther-meson wave function in such an ap-
proach is dual to the free-quark wave functions integrated
over the duality interval 0<k2<s0

r .
For the forward virtual Compton amplitude, the disper-

sion representation can be applied both for the initial and
‘‘final’’ virtual photon. However, taking only ther-meson
contribution in the dispersion integral for the final state, one
naturally obtains the amplitude for theg*T→rT transition
considered in Ref.@9#. Furthermore, by picking out the
r-meson contribution in both dispersion integrals, one would
get the amplitude for therT→rT scattering. This idea can
be also used to study the pion diffractive electroproduction
and the pion diffractive scattering.

VI. CALCULATION OF PpN„s˜0…

To analyze the pion scattering, we substitute the electro-
magnetic current by the axial current in the original ampli-
tude, i.e., simply addg5 in the current vertices. For massless
quarks, the final result has the same structure as that for the
vector current. Of course, theq̄q-pair wave function would
have an extrag5, and the vertex factor analogous to that in
Eq. ~5.2! is

Ū~xP1!gmg5V„~12x!P1…

Ax~12x!
5P1

m , ~6.1!

where P is the four-momentum associated with the axial
current.

The projection of a single-pion state onto the axial current
is specified by thep→mn decay constantfp :

^0uJm
Aup,P&5A2 f pPm . ~6.2!

Hence, we should extract the amplitude;PmPn correspond-
ing to the longitudinal polarization of the axial current.
Again, the transition from the virtual amplitude for the cur-
rents to that involving the pion can be understood in terms of
the dispersion representation and quark-hadron duality. In
other words, below the effective higher-state thresholds0

p ,
one should substitute the free-quark contribution by that due
to the pion pole:

c5m
q̄q~k;h,r t!→C5m

hadr~k;h,r t!

5qm@ f pcp~h,r t!d~k22mp
2 !

1u~k2.s0
p!c q̄q~k;h,r t!#. ~6.3!

The local duality prescription gives a correctly normalized
wave function provided thats0

p516p2f p
2'0.67 GeV2. Of

course, one can use a pion wave function different from that
given by the local duality. However, the duality consider-
ations justify the use of the effective two-body wave function
~see@18#!.

The actual calculation consists of the same steps as those
leading to Eq.~3.6!. For a small-size configuration, we get
the following contributiondspN into the scattering cross
section:

dspN5E ucp~h,b!u2
dhd2b

4p
NcsN

q q̄~b2!. ~6.4!

Effectively, the vertexecg*ANc is substituted by the pion
wave function. RewritingdspN as

dspN5PpN~s!ds5
db2

ds E ucp~h,b!u2
dh

4
sds ,

~6.5!

we obtain

PpN~s→0!5
db2

ds E ucp~h,b→0!u2
dh

4
, ~6.6!

wheres(b2) is given by Eq.~3.9!.
Thus,PpN(s→0) is determined by the pion wave func-

tion at the origin of the impact parameter space, or, which is
the same, by the integral of the momentum wave function
cp(h,r t) over all transverse momentar t . This integral for-
mally gives the pion distribution amplitude

wp~h!5
A3

~2p!3
E cp~h,r t!d

2r t .

However, in QCD~and in any theory with dimensionless
coupling constant!, this integral diverges. The standard pro-
cedure is to supplement the integral with some renormaliza-
tion prescription characterized by a cutoff parameterm, i.e.,
wp(h)→wp(h,m). In fact, the Fourier transformation from
the momentum to the impact parameter space

cp~h,b!5E cp~h,r t!
d2r t

~2p!2
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for smallb can also be treated as a particular cutoff prescrip-
tion with 1/b playing the role of the renormalization param-
eterm. In the b→0 limit, one encounters the singular lnb2

terms. It is exactly the logarithms which generate the evolu-
tion of the pion distribution amplitude. Summing the loga-
rithms by the renormalization group methods gives, for small
b:

cp~h,b!5h~12h! (
n50

anCn
3/2~2h21!S lnb02L2

lnb2L2D gn/2b0

,

~6.7!

where h(12h)Cn
3/2(2h21) are the eigenfunctions of the

evolution kernel@Cn
3/2(2h21) being the Gegenbauer poly-

nomials#, the anomalous dimensionsgn are its eigenvalues
andb0 is the one-loop QCDb-function coefficient. Theb0
parameter characterizes the effective onset of the perturba-
tive evolution. The coefficientsan are the Gegenbauer mo-
ments of the pion wave function at this scale. Note that the
anomalous dimension of the axial current vanishes (g050)
and all othergn’s are positive. Hence, after the renormaliza-
tion group improvement, the limitb→0 is well defined in
this case and

cp~h,b50!5A48p f ph~12h!, ~6.8!

where f p592 MeV. The absolute normalization of the pion
wave function forb50 is fixed by the matrix element of the
axial-vector current,

E cp~h,r t!
dhd2r t
8p3 5

f p

ANc

, ~6.9!

or in the impact parameter space@see Eq.~3.3!#:

E cp~h,b50!
dh

2p
5

f p

ANc

. ~6.10!

In other words, for the pion, the singular lnb terms sum
into harmless (1/lnb2L2)gn/2b0 factors vanishing in theb→0
limit. As a result, theh dependence of the pion wave func-
tion cp(h,b) in the formalb→0 limit always assumes its
asymptotic form cp(h,b);h(12h), irrespective of its
shape at the scaleb0. It is natural to expect thatb0 is related
to the scale characterizing the magnitude of the nonperturba-
tive momentum distribution in the pion. The momentum
scalem05As0p'0.8 GeV suggested by the local duality is
rather large, and there may exist a transitional region of dis-
tancesb;b0 small compared to the pion size but not small
enough to produce sizable perturbative evolution effects. In
this case, one can try theh dependences ofcp(h,b) differ-
ent from the asymptotic form. In fact, the integral

I[E ucp~h,b!u2
dh

4
~6.11!

is rather insensitive to the evolution effects. If we take the
asymptotic wave function~6.8!, then

Pp~s→0!5
2

5
p2f p

2db
2

ds
. ~6.12!

Assuming that, at the scaleb5b0, the h dependence of
the pion wave function corresponds to the Chernyak-
Zhitnitsky @19# ansatz

cp
CZ~h,b5b0!55A48p f p h~12h!~122h!2,

~6.13!

we obtain

Pp~s,b5b0!5
10

21
p2f p

2 db
2

ds
. ~6.14!

Thus, in this case the evolution would decrease the integral
I by ;20% whenb changes fromb0 to 0. Taking the as-
ymptotic result, we get

Pp~s→0!5
6

5

f p
2

asxGN~x,l/b2!
. ~6.15!

DistributionPpN(s) was determined in Ref.@7# from the
analysis of the soft diffractive processes forEp'200 GeV,
see solid curves in Fig. 2. In the limits!^s&, we can com-
pare this result with Eq.~6.14!. The applicability region of
this equation is restricted by several conditions. First,xeff
should be small enough so that the average longitudinal dis-
tances in the scattering process 1/2mNx are larger than the
nucleon size, which corresponds tox&0.05. Furthermore,
the virtualities in the process should be large enough so that
one can apply PQCD which corresponds to the requirement
Qeff
2 *122 GeV2. In our analysis we also neglect theb de-

pendence of the wave function of theqq̄ component at large
b ~this is a higher twist effect!, which restricts consideration
to b&0.5 fm. In the numerical calculation, we use the Gluck-
Reya-Vogt ~GRV! parametrization@20# since it describes
well the parton distributions down toQ2;1.5 GeV2. We
present results both for the leading order~LO! and next-to-
leading order ~NLO! GRV parametrizations, see dashed
curves in Fig. 2. Difference between LO and NLO results
illustrates range of uncertainties of the current analysis. One

FIG. 2. Comparison ofPpp(s) calculated in PQCD using Eq.
~6.14! and GRV parametrizations@20# of the gluon density and fits
based on the analysis of the soft diffraction data@7#.
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can see that the results of our calculations are in qualitative
agreement with the phenomenological results of@7#.

Another interesting feature of our results is a substantial
energy dependence ofP(s,^s&) on the incident energy due
to a fast increase ofxGN(x,Q

2) with the decrease ofx, see
Fig. 3. This reflects the fact that the probability of pointlike
configurations in hadrons decreases with the increase of en-
ergy. Further diffractive data~preferably at higher energies!
are necessary to get better information aboutPpN(s).

Since the existence of configurations with small spatial
size has been confirmed experimentally in the energy depen-
dence and absolute value of cross section of electroproduc-
tion of vector mesons, we consider the above result as a
reflection of soft matching between nonperturbative and
PQCD regimes.

VII. SUMMARY AND CONCLUSIONS

In this paper, we applied a PQCD approach to describe
the basic features of the high-energy interactions of a small-
size q̄q configurations with a hadron target. This interaction
is proportional to the gluon distribution functionGT(x,Q

2)
of the target and, hence, the cross section is enhanced in the
small-x region. Theq̄q configuration can be described by the
wave functions whose particular form is determined by the
projection of the initial particle~g* , r, or p! onto the q̄q
component. For smalls, we calculated the cross-section dis-
tribution Pp(s) for the pion and demonstrated that it is
rather insensitive to the specific form of the pion distribution
amplitude.
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